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1 Université d’Orléans, Observatoire des Sciences de l’Univers en région Centre,
LPC2E Campus CNRS, 3A Av. Recherche Scientifique, 45071 Orléans, France
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Abstract. On the basis of a recently proposed strategy of finite element
integration in time domain for partial differential equations with a singular
source term, we present a fourth order algorithm for non-rotating black hole
perturbations in the Regge-Wheeler gauge. Herein, we address even perturbations
induced by a particle plunging in. The forward time value at the upper node of
the (r∗, t) grid cell is obtained by an algebraic sum of i) the preceding node values
of the same cell, ii) analytic expressions, related to the jump conditions on the
wave function and its derivatives, iii) the values of the wave function at adjacent
cells. In this approach, the numerical integration does not deal with the source
and potential terms directly, for cells crossed by the particle world line. This
scheme has also been applied to circular and eccentric orbits and it will be object
of a forthcoming publication.

PACS numbers: 04.25.Nx, 04.30.Db, 04.30.Nk, 04.70.Bw, 95.30.Sf

1. Introduction

In the scenario of the capture of compact objects by a supermassive black hole of mass
M , the seized object is compared to a small mass m (henceforth the particle or the
source) perturbing the background spacetime curvature and generating gravitational
radiation. A comprehensive introduction to the general relativistic issues related to
EMRI (Extreme Mass Ratio Inspiral) sources is contained in a topical volume [1].

Schwarzschild-Droste (SD) [2–5] (see Rothman [6] for a justification of this
terminology), black hole perturbations have been largely developed in the Regge-
Wheeler (RW) gauge, before in vacuum [7] and after in the presence of a particle by
Zerilli [8–11]. The first finite difference scheme in time domain was proposed by Lousto
and Price [12]. The initial conditions, reflecting the past motion of the particle and the
initial amount of gravitational waves, were parametrised by Martel and Poisson [13].

If the gravitational radiation emitted and the mass of the captured object are to
be taken into account for the determination of the motion of the latter, it is necessary
to compute the derivatives of the perturbations that implies the third derivative of the
wave function Ψ(r∗, t), see e.g. [14]. For a given accuracy O(h) of the third derivative
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of Ψ, the error on Ψ itself should be O(h4). Effectively, the reminder ought to be O(h5)
due to the presence in the mesh of the particle that lowers by one more degree the
convergence order of the code for geometrical effects [15]. We have therefore developed
a fourth order scheme.

The complexity in assessing the continuity of the perturbations at the position
of the particle and the compatibility of the self-force to the harmonic (Lorenz-de
Donder§) gauge [16, 17] has led researchers to convey their efforts to this gauge, as
commenced by Barack and Lousto [19]. Conversely, work in harmonic gauge is made
cumbersome by the presence of a system of ten coupled equations which replace the
single wave equation of the RW gauge.

We have proposed [20, 21] a finite element method of integration, in RW gauge,
based on the jump conditions that the wave function and its derivatives have to satisfy
for the SD black hole perturbations to be continuous at the position of the particle.
We first deal with the radial trajectory and the associated even parity perturbations,
while in a forthcoming paper we shall present the circular and eccentric orbital cases,
referring thus to both odd and even parity perturbations.

The main feature of this method consists in avoiding the direct and explicit
integration of the wave equation (the potential and the source term with the associated
singularities) whenever the grid cells are crossed by the particle. Indeed, the
information on the wave equation is implicitly given by the jump conditions on the
wave function and its derivatives. Conversely, for cells not crossed by the particle
world line, the integrating method might retain the previous approach by Lousto [22]
and Haas [15]. Among the efforts using jump discontinuities, although in a different
context, it is worthwhile to mention those of Haas [15], Sopuerta and coworkers [23–25]
getting the self-force in a scalar case. For the geodesic gravitational case, like Sopuerta
and coworkers, Jung et al. [26], Chakraborty et al. [27] rely on spectral methods;
Zumbusch [28], Field et al. [29] use a discontinuous Galerkin method; Hopper and
Evans [30] work partially in frequency domain. Among recent results not based
on jump discontinuities but concerning fourth order time domain codes, the one
proposed by Thornburg [31] deals with and adaptive mesh refinement, while Nagar
and coworkers replace the delta distribution with a narrow Gaussian [32, 33].

For the computation of the back-action, this method ensures a well behaved wave
function at the particle position, since the approach is governed by the analytical
values of the jump conditions at the particle position.

In [21] we have provided waveforms at infinity and the wave function at the
position of the particle at first order. Herein, we focus instead on the improvement
of the algorithm at fourth order and refer to [21] for all complementary information.
The features of this method can be summarised as follows:

• Avoidance of direct and explicit integration of the wave equation (the potential
and the source term with the associated singularities) for the grid cells crossed
by the particle.

• Improvement of the reliability, since analytic expressions partly replace numerical
ones (the replacement is total at first order [20, 21]).

• Applicability of the method to generic orbits, assuming that the even and odd
wave equations are satisfied by Ψ, respectively R, being C−1‖.

§ FitzGerald is considered to have also identified the harmonic gauge [18].
‖ A C−1 continuity class element, like a Heaviside step distribution, may be seen as an element
which after integration transforms into an element belonging to the C0 class of functions.
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Geometric units (G = c = 1) are used, unless stated otherwise. The metric
signature is (−,+,+,+).

2. The wave equation

The wave function (its dimension is such that the energy is proportional to
∫ ∞

0
Ψ̇2 dt),

in the Moncrief form [34] and RW gauge [7], is defined by

Ψl(t, r) =
r

λ + 1

[

Kl +
r − 2M

λr + 3M

(

H l
2 − r

∂Kl

∂r

)]

, (1)

where K(t, r) and H2(t, r) are the perturbations, and the Zerilli [9] normalisation is
used for Ψl. The wave equation is given by the operator Z acting on the wave function

ZΨl(t, r) = ∂2
r∗Ψl(t, r) − ∂2

t Ψl(t, r) − V l(r)Ψl(t, r) = Sl(t, r) , (2)

where r∗ = r+ 2M ln(r/2M − 1) is the tortoise coordinate and the potential V l(r) is

V l(r) =

(

1 −
2M

r

)
2λ2(λ+1)r3+6λ2Mr2+18λM2r+18M3

r3(λr+3M)2
, (3)

being λ = 1/2(l − 1)(l + 2). The source Sl(t, r) includes the derivative of the Dirac
distribution (the latter appear in the process of forming the wave equation out of the
ten linearised Einstein equations)

Sl =
2(r − 2M)κ

r2(λ + 1)(λr + 3M)
×

{
r(r − 2M)

2U0
δ′ [r − ru(t)] −

[
r(λ+ 1) − 3M

2U0
−

3MU0(r − 2M)2

r(λr + 3M)

]

δ [r − ru(t)]

}

, (4)

U0 = E/(1− 2M/ru) being the time component of the 4-velocity, E =
√

1 − 2M/ru0

the conserved energy per unit mass, and κ = 4m
√

(2l+ 1)π. The geodesic in the
unperturbed SD metric zu(τ ) = {tu(τ ), ru(τ ), θu(τ ), φu(τ )} assumes different forms
according to the initial conditions. For radial infall of a particle starting from rest at
finite distance ru0, ru(t) is the inverse function in coordinate time t of the trajectory
in the background field, corresponding to the geodesic in proper time τ (u stands for
unperturbed)

t(ru)

2M
=

√

1 −
2M

ru0

√

1 −
ru

ru0

( ru0

2M

) ( ru

2M

)1/2

+ 2arctanh







√
2M

ru
−

2M

ru0
√

1 −
2M

ru0







+

√

1 −
2M

ru0

(

1 +
4M

ru0

)( ru0

2M

)3/2

arctan

(√
ru0

r
− 1

)

(5)

The expressions above correspond to those in [14], where some of the errors of
previously published literature on radial fall are indicated.
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3. Jump conditions

From the visual inspection of the Zerilli wave equation (2), it is evinced that the
wave function Ψ is of C−1 continuity class (the second derivative of the wave function
is proportional to the first derivative of the Dirac distribution, in itself a C−3 class
element). Thus, the wave function and its derivatives can be written as (the l index
is dropped henceforth for simplicity of notation)

Ψ = Ψ+Θ1 + Ψ−Θ2 , (6)

Ψ,r = Ψ+
,rΘ1 + Ψ−

,rΘ2 +
(
Ψ+ − Ψ−

)
δ , (7)

Ψ,t = Ψ+
,tΘ1 + Ψ−

,t Θ2 − ṙu

(
Ψ+ − Ψ−

)
δ , (8)

Ψ,rr = Ψ+
,rrΘ1 + Ψ−

,rrΘ2 + 2
(
Ψ+

,r − Ψ−
,r

)
δ +

(
Ψ+ − Ψ−

)
δ′ , (9)

Ψ,tt = Ψ+
,ttΘ1 + Ψ−

,ttΘ2 − 2ṙu

(
Ψ+

,t − Ψ−
,t

)
δ − r̈u

(
Ψ+ − Ψ−

)
δ + ṙ2u

(
Ψ+ − Ψ−

)
δ′,(10)

Ψ,tr = Ψ+
,trΘ1 + Ψ−

,trΘ2 +
(
Ψ+

,t − Ψ−
,t

)
δ − ṙu

(
Ψ+

,r − Ψ−
,r

)
δ − ṙu

(
Ψ+ − Ψ−

)
δ′ , (11)

where in shortened notation Θ1 = Θ [r − ru(t)], and Θ2 = Θ [ru(t) − r] are two
Heaviside step distributions, while δ = δ [r − ru(t)] and δ′ = δ′ [r − ru(t)] are the
Dirac delta - and its derivative - distributions. The dot and the prime indicate time
and space derivatives, respectively.

3.1. Jump conditions from the wave equation

For the computation of back-action effects, we need first order derivatives of the
perturbations and thus third order wave function derivatives. To this end, we operate
directly on the wave equation, Eq. 2. The source term is cast in the following form

S(t, r) = G(t, r)δ + F (t, r)δ′ = G̃ru(t)δ + Fru(t)δ
′ , (12)

where G̃ru(t) = Gru(t)−F
′
ru(t) and one of the properties of the Dirac delta distribution,

namely φ(r)δ′ [r − ru(t)] = φru(t)δ
′ [r − ru(t)] − φ′

ru(t)δ [r − ru(t)], has been used at
the position of the particle. The determination of the jump conditions imposes the
transformation of Eq. 2 into the corresponding equation in (r,t) domain (the tortoise
coordinate can’t be inverted). Turning to the r variable, we get (f = 1 − 2M/r)

∂2
r∗Ψ = ff ′∂rΨ + f2∂2

rΨ

=
[
ff ′Ψ+

,r + f2Ψ+
,rr

]
Θ1 +

[
ff ′Ψ−

,r + f2Ψ−
,rr

]
Θ2 + ff ′

(
Ψ+ − Ψ−

)
δ

+ 2f2
(
Ψ+

,r − Ψ−
,r

)
δ + f2

(
Ψ+ − Ψ−

)
δ′ , (13)

∂2
t Ψ = Ψ+

,ttΘ1 + Ψ+
,ttΘ2 − 2ṙu∂t

(
Ψ+ − Ψ−

)
δ − r̈u

(
Ψ+ − Ψ−

)
δ

+ ṙ2u
(
Ψ+ − Ψ−

)
δ′ , (14)

V Ψ = VΨ+Θ1 + VΨ−Θ2 . (15)

The notation [Ψ] stands for the difference (Ψ+ − Ψ−)ru
and a likewise notation

is used for the derivatives at the point ru. Equating the coefficients of δ′, and owing
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to the above mentioned property of the delta derivative for which (Ψ+ − Ψ−) δ′ =
[Ψ] δ′ − [Ψ,r] δ, we get the jump condition for Ψ

[Ψ] =
1

f2
ru

− ṙ2u
Fru

. (16)

Equating the coefficients of δ, we get the jump condition on the space derivative

[Ψ,r ] =
1

f2
ru

− ṙ2u

[

G̃ru
+

(
fru

f ′ru
− r̈u

)
[Ψ] − 2ṙu

d

dru
[Ψ]

]

, (17)

and therefore the jump condition on the first time derivative

[Ψ,t] = ṙu
d

dru
[Ψ] − ṙu [Ψ,r ] . (18)

Since ZΨ± = 0, the coefficients of Θ1 and Θ2 ought to be equal. We thus obtain

[Ψ,tt] − fru
f ′ru

[Ψ,r] − f2
ru

[Ψ,rr] + Vru
[Ψ] = 0 , (19)

which is an equation with two unknowns. We circumvent the difficulty by using
i) the commutativity of the derivatives, [Ψ,tr] = [Ψ,rt], ii) the transformation
d/dt = ṙud/dru, and write

[Ψ,tt] =
d

dt
[Ψ,t] − ṙu [Ψ,tr] =

d

dt
[Ψ,t]− ṙu

{
d

dt
[Ψ,r ] − ṙu [Ψ,rr ]

}

=

= ṙu
d

dru
[Ψ,t]− ṙ2u

d

dru
[Ψ,r] + ṙ2u [Ψ,rr ] . (20)

The jump condition on the second space derivative can now be expressed by

[Ψ,rr ] =
1

f2
ru

− ṙ2u

{

ṙu
d

dru
[Ψ,t] − ṙ2u

d

dru
[Ψ,r ]− fru

f ′ru
[Ψ,r ] + Vru

[Ψ]

}

. (21)

The other second derivatives are obtained by

[Ψ,tr] = [Ψ,rt] =
d

dt
[Ψ,r ] − ṙu [Ψ,rr ] , (22)

[Ψ,tt] =
d

dt
[Ψ,t] − ṙu [Ψ,tr] . (23)

For the third order derivatives, we derive the wave equation with respect to r and
obtain

[Ψ,rrr ] =
1

ṙ2u − f2
ru

{

ṙ2u
d

dru
[Ψ,rr ] − ṙu

d

dru
[Ψ,rt]

+
(
f ′2ru

+ fru
f ′′ru

− Vru

)
[Ψ,r ] + 3fru

f ′ru
[Ψ,rr ] − V ′

ru
[Ψ]

}

, (24)

while deriving with respect to t, we obtain

[Ψ,ttt] =
ṙ2u

ṙ2u − f2
ru

{

f2
ru

d

dru
[Ψ,rt] − ṙ−1

u f2
ru

d

dru
[Ψ,tt] + fru

f ′ru
[Ψ,rt] − Vru

[Ψ,t]

}

,(25)
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[Ψ,ttr] = [Ψ,trt] = [Ψ,rtt] =
d

dru
[Ψ,tt] − ṙ−1

u [Ψ,ttt] , (26)

[Ψ,trr] = [Ψ,rtr] = [Ψ,rrt] =
d

dru
[Ψ,tr] − ṙ−1

u [Ψ,ttr] , (27)

[Ψ,rrr ] =
d

dru
[Ψ,rr ] − ṙ−1

u [Ψ,trr ] . (28)

Finally, we similarly proceed for the fourth derivatives

[Ψ,tttt] =
ṙ2u

ṙ2u − f2
ru

×

{

f2
ru

d

dru
[Ψ,ttr] − ṙ−1

u f2
ru

d

dru
[Ψ,ttt] + fru

f ′ru
[Ψ,ttr] − Vru

[Ψ,tt]

}

, (29)

[Ψ,tttr] = [Ψ,ttrt] = [Ψ,trtt] = [Ψ,rttt]
d

dru
[Ψ,ttt]− ṙ−1

u [Ψ,tttt] , (30)

[Ψ,ttrr] = [Ψ,trtr] = [Ψ,trrt] = [Ψ,rttr] [Ψ,rtrt] = [Ψ,rrtt] =

=
d

dru
[Ψ,ttr] − ṙ−1

u [Ψ,tttr] , (31)

[Ψ,trrr ] = [Ψ,rtrr ] = [Ψ,rrtr ] [Ψ,rrrt ]
d

dru
[Ψ,trr] − ṙ−1

u [Ψ,ttrr] , (32)

[Ψ,rrrr ] =
d

dru
[Ψ,rrr ] − ṙ−1

u [Ψ,rrrt ] . (33)

3.1.1. Jump conditions in explicit form. We list hereafter the jump conditions in
explicit form.

Jump conditions

[Ψ] =
κEru

(λ + 1)(3M + λru)
(34)

First derivative jump conditions

[Ψ,t] = −
κEruṙu

(2M − ru)(3M + λru)
(35)

[Ψ,r] =
κE

[
6M2 + 3Mλru + λ(λ + 1)r2u

]

(λ + 1)(2M − ru)(3M + λru)2
(36)

Second derivative jump conditions

[Ψ,rr] = −
κE

[
3M3(5λ − 3) + 6M2λ(λ − 3)ru + 3Mλ2(λ− 1)r2u − 2λ2(λ+ 1)r3u

]

(λ + 1)(2M − ru)2(3M + λru)3
(37)

[Ψ,tr] =
κE

(
3M2 + 3Mλru − λr2u

)
ṙu

(2M − ru)2(3M + λru)2
(38)

[Ψ,tt] = −
κEM

ru
2 (3M + ru λ)

(39)
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Third derivative jump conditions

[Ψ,rrr ] =
κE

ru (λ+ 1) (2M − ru)
3
(3M + ruλ)

4

[

81 (λ + 1)M5 + 9ru

(
19λ2 + 18E2λ+

3λ+ 18E2
)
M4 + 9r2uλ

(
7λ2 + 24E2λ− 14λ+ 24E2 + 3

)
M3 + 3r3uλ

2
(
7λ2

+36E2λ− 11λ+ 36E2 + 18
)
M2 + 3r4uλ

3
(
8E2λ− 7λ+ 8E2 − 1

)
M +

2r5uλ
3 (λ + 1)

(
E2λ+ 3

)
]

(40)

[Ψ,trr ] =
−κEṙu

ru(2M − ru)
3
(3M + ruλ)

3

[

27M4 + 6ru

(
5λ+ 9E2 − 3

)
M3 + 3r2uλ (5λ+

18E2 − 6
)
M2 + 6r3uλ

2
(
3E2 − 2

)
M + 2r4uλ

2
(
E2λ+ 1

)
]

(41)

[Ψ,ttr] =
κE

r3u (2M − ru) (3M + ruλ)
2

[

39M3 + 9ru

(
3λ + 2E2 − 2

)
M2 + r2uλ (4λ+

12E2 − 13
)
M + 2r3uλ

2
(
E2 − 1

)
]

(42)

[Ψ,ttt] =
−κEṙu

r3u (2M − ru) (3M + ruλ)

[

9M2+2ru

(
2λ+ 3E2 − 2

)
M+2r2uλ

(
E2 − 1

)
]

(43)

Fourth derivative jump conditions

[Ψ,rrrr ] =
−3κE

r2u (λ+ 1) (2M − ru)
4
(3M + ruλ)

5

[

567 (λ + 1)M7 + 162ru (λ + 1) (6λ

+16E2 − 5
)
M6 + 6r2u

(
139λ3 + 738E2λ2 − 123λ2 + 162E4λ+ 441E2λ

−171λ+ 162E4 − 297E2 + 27
)
M5 + 12r3uλ

(
21λ3 + 252E2λ2 − 85λ2+

135E4λ − 24λ+ 135E4 − 252E2 + 18
)
M4 + 3r4uλ

2
(
21λ3 + 344E2λ2−

95λ2 + 360E4λ − 340E2λ + 100λ+ 360E4 − 684E2 + 24
)
M3 + 2r5uλ

3 ·
(
88E2λ2 − 47λ2 + 180E4λ − 260E2λ+ 25λ+ 180E4 − 348E2 − 24

)
M2

+ 2r6uλ
4
(
6E2λ2 + 30E4λ − 53E2λ + 23λ+ 30E4 − 59E2 + 11

)
M +

4r7uλ
4 (λ+ 1)

(
E4λ− 2E2λ − 2

)
]

(44)

[Ψ,trrr ] =
3κEṙu

r2u(2M − ru)
4
(3M + ruλ)

4

[

135M6 + 27ru

(
7λ+ 32E2 − 6

)
M5 + 3r2u ·

(
35λ2 + 396E2λ− 75λ+ 108E4 − 144E2 + 18

)
M4 + r3uλ

(
35λ2+

612E2λ− 120λ+ 432E4 − 594E2 + 72
)
M3 + r4uλ

2
(
140E2λ− 45λ+

216E4 − 306E2 + 36
)
M2 + 2r5uλ

3
(
6E2λ+ 24E4 − 35E2 + 9

)
M +

2r6uλ
3
(
2E4λ − 3E2λ − 1

)
]

(45)
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[Ψ,ttrr] =
−κE

r4u(2M − ru)
2
(3M + ruλ)

3

[

1431M5 + 6ru

(
251λ+ 234E2 − 210

)
M4 +

9r2u
(
59λ2 + 160E2λ − 148λ+ 36E4 − 66E2 + 30

)
M3 + 6r3uλ

(
10λ2+

82E2λ− 79λ+ 54E4 − 102E2 + 48
)
M2 + 2r4uλ

2
(
28E2λ− 27λ+ 54E4

−105E2 + 52
)
M + 12r5uλ

3
(
E2 − 1

)2
]

(46)

[Ψ,tttr] =
κEṙu

r4u (2M − ru)
2
(3M + ruλ)

2

[

243M4 + 3ru

(
61λ+ 132E2 − 64

)
M3 + 3r2u ·

(
12λ2 + 92E2λ − 49λ+ 36E4 − 48E2 + 12

)
M2 + 2r3uλ

(
24E2λ− 15λ+

36E4 − 51E2 + 14
)
M + 6r4uλ

2
(
E2 − 1

) (
2E2 − 1

)
]

(47)

[Ψ,tttt] =
−κE

r6u (3M + ruλ)

[

189M3 + 2ru

(
36λ+ 84E2 − 77

)
M2 + 6r2u

(
E2 − 1

)
(10λ+

6E2 − 5
)
M + 12r3uλ

(
E2 − 1

)2
]

(48)

While heuristic arguments [35, 36] have been put forward to show that, for radial
fall in the RW gauge, even metric perturbations belong to the C0 continuity class
at the position of th particle, in [20, 21] we have provided an analysis vis à vis the
jump conditions that the wave function and its (first and second) derivatives have
to satisfy for guaranteeing the continuity of the perturbations at the position of the
particle. Therein, we have derived the same jump conditions (34 - 38) from the inverse
relations (expressions giving the perturbations as function of the wave function and
its derivatives) by fulfilment of the continuity conditions (equal coefficients for the
two Heaviside distributions, and null coefficients for the Dirac distribution and its
derivative).

4. The algorithm

The integration method considers cells belonging to two groups for cells never crossed
by the world line, the integrating method may be drawn by previous approaches
explored by Lousto [22] and Haas [15], whereas for cells crossed by a particle, we
propose a new algorithm. The grid is in the r∗, t domain.

Initial conditions require knowledge of the situation prior to t = 0. At fourth
order, the wave function may be Taylor-expanded around t = 0. For the boundary
conditions, simplicity suggests a sufficiently large grid to avoid unwanted reflections.

4.1. Empty cells

Empty cells are those cells which are not crossed by the particle. In this case, the
cell upper point is obtained by performing an integration of the wave equation over
the entire surface A of the cell, identified by the nodes α, β, γ, δ. We briefly recall the
algorithm used by Haas [15]. Therein, the sole numerical computation to be carried
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out is represented by the product of the potential term and the wave function V Ψ= g.
It is performed via a double Simpson integral, using points of the past light cone of
the upper node α, Fig. 1. We set gq = g(r∗q , tq) = V (rq)Ψ(r∗q , tq), Vq = V (rq) and
Ψq = Ψ(r∗q , tq), where q is one of the points shown in Fig. 1. The increment h is

defined as h = 1
2∆r∗ = 1

2∆t where ∆r∗ is the spatial step and ∆t is the time step.
We have
∫ ∫

Cell

gdA =

(
h

3

)2 [

gα+gβ+gγ+gδ+4 (gβγ + gαβ + gδγ + gαδ)+16gσ

]

+O(h6) ,(49)

where the sum of the intermediate terms between nodes is given by

gβγ + gαβ + gδγ + gαδ = 2VσΨσ

[

1 −
1

2

(
h

2

)2

Vσ

]

+ VβγΨβ

[

1 −
1

2

(
h

2

)2

Vβγ

]

+

VδγΨδ

[

1 −
1

2

(
h

2

)2

Vδγ

]

+
1

2

[

Vβγ − 2Vσ + Vδγ

]

(Ψβ + Ψδ)

+ O(h4) . (50)

The last intermediate term gσ in Eq. 49 is evaluated using given nodes in the past
light cone of α, Fig. 1

gσ =
1

16

[

8gβ + 8gγ + 8gδ − 4gγ1
− 4gγ2

+ gµ1
− gµ2

− gµ3
+ gµ4

]

+ O(h4) .(51)

For the differential operators, an exact integration simply leads to
∫ ∫

Cell

(
∂2

r∗ − ∂2
t

)
Ψ(r∗, t)dA = −4

[

Ψα − Ψβ + Ψγ − Ψδ

]

. (52)

Finally, we get

Ψα = −Ψγ + Ψβ

[

1 −
1

4

(
h

2

)2

(Vσ + Vβ) +
1

16

(
h

2

)4

Vσ (Vσ + Vβ)
]

+ Ψδ

[

1 −
1

4

(
h

2

)2

(Vσ + Vδ) +
1

16

(
h

2

)4

Vσ (Vσ + Vδ)
]

−

(
h

2

)2 [

1 −
1

4

(
h

2

)2

Vσ

][

gβγ + gαβ + gδγ + gαδ + 4gσ

]

(53)

For cells adjacent to cells crossed by the particle, the requirement of good accuracy
suggests a different dealing for the computation of gσ, since the past light cone of an
adjacent cell can cross the path of the particle. In such a case, gσ is approximated by
non-centred spatial finite difference expressions [15].
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α

δβ

γ

��

��

����

�	


�

�


��

��

��

��

r∗

t

2h 2h

γ2γ1

µ1 µ2 µ3 µ4

αβ αδ

σ

βγ δγ

(r∗0, t0)

h

Figure 1: Set of points (circles and crosses) used for the integration of the V Ψ= g term in
the vacuum case. The crosses don’t overlap with grid nodes; thus the field g at these points,
Eqs. (50,51), is approximated by the field at the nodes on the past light cone of the grid
node α.

4.2. Cells crossed by the world line

With reference to Figs. 2 - 4, we define α0, β0, γ0, δ0 the four corners of the cell. There
are three different envisaged cases depending upon the trajectory of the particle across
the cell. The fourth case, the trajectory entering through the γ0 - δ0 side, leaving
through the β0 - α0 side, and passing below the cell centre, is to be dealt as the case
of Fig. 2. We start considering the case shown by Fig. 2. The notation [Ψ]q stands
for the difference (Ψ+ − Ψ−)ru=ru(tq), where tq is the coordinate time at the point
q = a, b. A likewise notation is used for the derivatives.
In case 1, Fig. 2, the trajectory crosses the segment [α0γ0] at the point b. We define
the lapse εb = tα0

−tb. Our aim is the determination of the value of Ψ+
α0

, knowing: i)
εb, ii) the jump (analytical) conditions on Ψ and its derivatives at the point b; iii) the
values of Ψ on a set of 14 points {αi, βj, γi, µj} at the left hand-side of the world line.
A Taylor expansion is applied at each point around b up to 4th order

Ψ+
α0

=Ψ+ (tb+εb, r
∗
b ) =

4∑

n=0

εnb
n!
∂n

t Ψ+
b + O

(
ε5b

)
, (54)

Ψ−
γ0

=Ψ− (tb−(2h−εb), r
∗
b ) =

4∑

n=0

(−1)n (2h− εb)
n

n!
∂n

t Ψ−
b + O

(
(2h− εb)

5
)
, (55)

Ψ−
αi

=Ψ− (tb+εb, r
∗
b−2ih) =

∑

n+m≤4

(−1)n (2ih)n

n!

εmb
m!

∂n+m

∂n
r∗∂m

t

Ψ−
b + O

(
h5

)
, (56)

Ψ−
βj

=Ψ− (tb−(h−εb), r
∗
b−h(2j+1)) =

∑

n+m≤4

(−1)n+m (2jh+h)n

n!

(h−εb)
m

m!

∂n+m

∂n
r∗∂m

t

Ψ−
b + O

(
h5

)
,

(57)

Ψ−
γi

=Ψ− (tb−(2h−εb), r
∗
b−2ih) =

∑

n+m≤4

(−1)n+m (2ih)n

n!

(2h− εb)
m

m!

∂n+m

∂n
r∗∂m

t

Ψ−
b + O

(
h5

)
, (58)
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Ψ−
µj

=Ψ− (tb−(3h−εb), r
∗
b−h(2j+1)) =

∑

n+m≤4

(−1)n+m (2jh+h)n

n!

(3h−εb)
m

m!

∂n+m

∂n
r∗∂m

t

Ψ−
b + O

(
h5

)
,

(59)

for the indexes running as i = 1, 2, 3, j = 0, 1, 2, 3 and concerning the α, γ and β, µ
nodes, respectively.

r
∗
u(t)

α0α1α2α3

β0β1β2

γ3 γ2 γ1

γ0

µ2 µ1 µ0

δ0

b

��

��

��

��

��

 !

"#$%

&'

()

*+

,-

./

0

12

34

56

78

β3

µ3 9

:

;

<

r∗

t

2h 2h 2h

2h

Figure 2: Cell crossed by the particle and cells used for the computation of Ψ+
α0

. Since
the points α0 and γ0 are used to determine the jump conditions, the elimination of the
derivatives of Ψ−

b
demands (60) the utilisation of the points on the left of the path r∗u(t).

The points used in the algorithm are represented by circles. In this case, the particle crosses
the segment [α0γ0] at the point b. The background distinguishes two zones: one where
Ψ(r∗ < r∗u(t), t) = Ψ−(r∗, t), the other where Ψ(r∗ > r∗u(t), t) = Ψ+(r∗, t), the path r∗u(t)
representing the separation between the two zones.
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r
∗
u(t)

α0α1α2α3

β0β1β2

γ3 γ2 γ1

γ0

µ2 µ1 µ0

δ0
a

=>

?@

AB

CD

EF

GH

IJKL

MN

OP

QR

ST

UV

WX

YZ

[

\]

^

_`

a

b

Figure 3: Cell crossed by the particle and cells used for the computation of Ψ−

α0
. Since the

points α0 and δ0 are used to determine the jump conditions, the elimination of the derivatives
of Ψ−

a demands the utilisation of the points on the left of the path r∗u(t). The points used in
the algorithm are represented by circles. In this case, the particle crosses the segment [β0δ0] at
the point a. The background distinguishes two zones: one where Ψ(r∗<r∗u(t), t) = Ψ−(r∗, t),
the other where Ψ(r∗ > r∗u(t), t) = Ψ+(r∗, t), the path r∗u(t) representing the separation
between the two zones.

r
∗
u(t)

α3α2α1α0

δ2δ1δ0

γ0

γ1 γ2 γ3

µ1 µ2 µ3

a

cd

ef

gh

ij

kl

mn

opqr

st

uv

wx

yz

{|

}~�

��

�

��

�

�

�

�

β0

Figure 4: Cell crossed by the particle and cells used for the computation of Ψ+
α0

. Since the
points α0 and β0 are used to determine the jump conditions, the elimination of the derivatives
of Ψ+

a demands the utilisation of the points on the right of the path r∗u(t). The points used in
the algorithm are represented by circles. In this case, the particle crosses the segment [β0δ0] at
the point a. The background distinguishes two zones: one where Ψ(r∗<r∗u(t), t) = Ψ−(r∗, t),
the other where Ψ(r∗ > r∗u(t), t) = Ψ+(r∗, t), the path r∗u(t) representing the separation
between the two zones.

Ψ+
α0 = Ψ−

γ0 + [Ψ]b + εb [Ψ,t]b + c1∂tΨ
−
b +

ε2b
2

[Ψ,tt]b + c2∂
2
t Ψ−

b +
ε3b
3!

[Ψ,ttt]b +
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c3∂
3
t Ψ−

b +
ε4b
4!

[Ψ,tttt]b + c4∂
4
t Ψ−

b + O(h5) , (60)

where for an accuracy of order 4, all quantities O(h5) are disregarded, and the c
coefficients are given by

c1 = 2h (61)

c2 = 2h(εb − h) (62)

c3 =
h

3
(4h2 − 6hεb + 3ε2b) (63)

c4 =
h

3
(−2h3 + 4h2εb − 3hε2b + ε3b) (64)

The sum c1∂tΨ
−
b + c2∂

2
t Ψ−

b + c3∂
3
t Ψ−

b + c4∂
4
t Ψ−

b , Eq. 60, is composed by numerical
derivatives of lower order than O(h5). However, we can adopt a combination of wave

function values at adjacent cells
{

Ψ−
αi
,Ψ−

βj
,Ψ−

γi
,Ψ−

µj

}

, Fig. 2, that removes this sum.

Therefore, we look for coefficients {Ai}, {Bj}, {Gi}, {Mj} such that

Ψ+
α0 = Ψ−

γ0 + [Ψ]b + εb [Ψ,t]b +
ε2b
2

[Ψ,tt]b +
ε3b
3!

[Ψ,ttt]b +
ε4b
4!

[Ψ,tttt]b

+

3∑

i=1

(
AiΨ

−
αi

+ GiΨ
−
γi

)
+

3∑

j=0

(

BjΨ
−
βj

+ MjΨ
−
µj

)

, (65)

In other words, the coefficients must satisfy the following equality

c1∂tΨ
−
b + c2∂

2
t Ψ−

b + c3∂
3
t Ψ−

b + c4∂
4
t Ψ−

b =

3∑

i=1

(
AiΨ

−
αi

+ GiΨ
−
γi

)
+

3∑

j=0

(

BjΨ
−
βj

+ MjΨ
−
µj

)

. (66)

By injection of Eqs. 56-59 into Eq. 66, the system can be cast in a matrix form

T · P = C , (67)

where P is the unknown vector formed by the coefficients {Ai}, {Bj}, {Gi}, {Mj}

P = (A1, . . . ,A3,B0, . . . ,B3, G1, . . . , G3,M0, . . . ,M3)
t , (68)

C is given by

C = (0, c1, c2, c3, c4, 0, · · · , 0)t , (69)

while T is the matrix constructed from the Taylor coefficients in Eqs. 56-59 (see
appendix). By inversion of T, we get P and specifically

A1 = B2 = G2 = M1 = − 3 , (70)

A2 = B1 = G1 = M2 = + 3 , (71)

A3 = B0 = M3 = − 1 , (72)

B3 = M0 = G3 = + 1 , (73)
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which leads to

Ψ+
α0 = [Ψ]b + εb [Ψ,t]b +

ε2b
2

[Ψ,tt]b +
ε3b
3!

[Ψ,ttt]b +
ε4b
4!

[Ψ,tttt]b

+3
(

Ψ−
α2

+ Ψ−
β1

+ Ψ−
γ1

+ Ψ−
µ2

− Ψ−
α1

− Ψ−
β2
−Ψ−

γ2
−Ψ−

µ1

)

+
(

Ψ−
β3

+ Ψ−
µ0

+ Ψ−
γ3

− Ψ−
α3

− Ψ−
β0

− Ψ−
µ3

)

+ Ψ−
γ0

. (74)

We thus have obtained, without direct integration of the singular source and potential
term, the value of the upper node. Equation 74 shows three types of terms: the
preceding node values of the same cell, the jump conditions which are fully analytical
quantities, and the wave function values at adjacent cells. Incidentally, at first
order [21], the latter type of terms disappears and a simpler expression is obtained.

Similar relations are found for the other two remaining cases. For case 2, Fig. 3,
we obtain (having defined the shift εa = tδ0

−ra)

Ψ−
α0 = − [Ψ]a − εa [Ψ,r∗ ]a −

ε2a
2

[Ψ,r∗r∗ ]a −
ε3a
3!

[Ψ,r∗r∗r∗ ]a −
ε4a
4!

[Ψ,r∗r∗r∗r∗ ]a

+2
(

Ψ−
γ0

+ Ψ−
µ1

− Ψ−
α1

− Ψ−
β2

)

+
(
Ψ−

α2
+ Ψ−

γ3
− Ψ−

µ0
− Ψ−

µ2

)

+3
(

Ψ−
β1

− Ψ−
γ1

)

+ Ψ+
δ0

, (75)

while for case 3, Fig. 4

Ψ+
α0 = [Ψ]a − εa [Ψ,r∗ ]a +

ε2a
2

[Ψ,r∗r∗ ]a −
ε3a
3!

[Ψ,r∗r∗r∗ ]a +
ε4a
4!

[Ψ,r∗r∗r∗r∗ ]a

+2
(
Ψ+

γ0
+ Ψ+

µ1
− Ψ+

α1
− Ψ+

δ2

)
+

(
Ψ+

α2
+ Ψ+

γ3
− Ψ+

µ0
− Ψ+

µ2

)

+3
(
Ψ+

δ1
− Ψ+

γ1

)
+ Ψ−

β0
, (76)

where the jump conditions in the tortoise r∗ relate to those previously computed in
the r variable

[Ψ,r∗ ] = fru
[Ψ,r] , (77)

[Ψ,r∗r∗ ] = fru
f ′ru

[Ψ,r ] + f2
ru

[Ψ,rr ] , (78)

[Ψ,r∗r∗r∗ ] = fru

(
f ′2 + ff ′′

)

ru
[Ψ,r ] + 3f2

ru
f ′ru

[Ψ,rr ] + f3
ru

[Ψ,rrr ] , (79)

[Ψ,r∗r∗r∗r∗ ] = fru

(

f ′3 + 4ff ′f ′′ + f2f
′′′

)

ru

[Ψ,r] + f2
ru

(
7f ′2 + 4ff ′′

)

ru
[Ψ,rr ]

+ 6f3
ru
f ′ru

[Ψ,rrr ] + f4
ru

[Ψ,rrrr ] . (80)

5. Numerical implementation

Waveforms at infinity and at the particle position at first order are to be found
in [21], as well as comparisons with other methods. Herein we are concerned on the
numerical improvement. To tis end, we have considered a distant observer, located
at r∗ = 400(2M). The observer is reached by a pulse produced by a Gaussian, time-
symmetric perturbation

Ψ(r∗, t)t=0 = exp
[
−(r∗ − r∗0)

2
]
, (81)

∂tΨ(r∗, t)t=0 = 0 . (82)
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Figure 5: The waveform, ru0 = 5(2M), of a Gaussian, time-symmetric initial pulse.
The observer is located at r∗ = 400(2M).

Fig. 5, obtained for ru0 = 5(2M), shows the waveform produced in the
homogeneous case. The convergence rate is computed as (ε(n)(ξ) is the unknown
error function of order ≈ 1)

n = log

∣
∣
∣
∣

ψ(4h) − ψ(2h)

ψ(2h) − ψ(h)

∣
∣
∣
∣
/ log(2) + log

∣
∣
∣ε(n)(ξ)

∣
∣
∣ / log(2) . (83)

Fig. 6, obtained for ru0 = 5(2M), shows the fourth and second order convergence
rates (we remind that the first order code [21] includes empty cells dealt at second
order).

6. Conclusions

We have presented a fourth order novel integration method in time domain for the
Zerilli wave equation. We have focused our attention to the even perturbations
produced by a particle plunging in a non-rotating black hole. For cells crossed by
the particle world line, the forward time wave function value at the upper node of
the (t, r∗) grid cell is obtained by the combination of the preceding node values of the
same cell, analytic expressions related to the jump conditions, and the values of the
wave function at adjacent cells. In this manner, the numerical integration does not
deal directly nor with the source term and the associated singularities, nor with the
potential term. In short, the direct integration of the wave equation is avoided. For
other cells, we refer instead to already published approaches [15].

The scheme has also been applied to circular and eccentric orbits and it will be
object of a forthcoming publication.
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Figure 6: Convergence rates of the fourth and second order algorithms, ru0 = 5(2M).
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Appendix

Through Eq. 60, we have determined the value of Ψ at the upper node of the cell
as function of the analytic jump conditions and of the time derivatives of the wave
function up to fourth order. The derivatives are evaluated at the point b and weighted
by four coefficients c1, c2, c3 and c4. Afterwards, the derivatives are converted into a
linear combination of the wave function values taken on the left side of the trajectory.
Indeed, Eq. 66 represents such a system of linear equations. By injection of Eqs.
56-59 into Eq. 66, we get

A1T
(0,0)
α1

Ψb + A1T
(0,1)
α1

∂tΨb + A1T
(0,2)
α1

∂2
t Ψb + · · ·+ A1T

(1,3)
α1

∂r∗∂
3
t Ψb

+

A2T
(0,0)
α2

Ψb + A2T
(0,1)
α2

∂tΨb + A2T
(0,2)
α2

∂2
t Ψb + · · ·+ A2T

(1,3)
α2

∂r∗∂
3
t Ψb

+
...
+

M3T
(0,0)
µ3

Ψb + M3T
(0,1)
µ3

∂tΨb + M3T
(0,2)
µ3

∂2
t Ψb + · · ·+ M3T

(1,3)
µ3

∂r∗∂
3
t Ψb

=

c1∂tΨb

+
c2∂

2
t Ψb

+
c3∂

3
t Ψb

+
c4∂

4
t Ψb

,(84)

where T
(n,m)
p represent the Taylor series coefficients at p in the neighbourhood of b

and the indexes correspond to nth space and time mth derivatives. The wave function
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at p is thus given by

Ψp =
∑

n+m≤4

T (n,m)
p

∂n+m

∂n
r∗∂m

t

Ψb + O
(
h5

)
. (85)

An example shows the procedure applicable to all cases. We pick the node α1, Eq.

56, where T
(n,m)
α1

= (−1)n (2h)n

n!
εm

b

m!
and remind that T

(0,0)
p = 1 ∀ p. By grouping the

derivatives, we get
(

A1T
(0,0)
α1

+ A2T
(0,0)
α2

+ · · ·+ M3T
(0,0)
µ3

)

Ψb

+
(

A1T
(0,1)
α1

+ A2T
(0,1)
α2

+ · · ·+ M3T
(0,1)
µ3

)

∂tΨb

+
(

A1T
(0,2)
α1

+ A2T
(0,2)
α2

+ · · ·+ M3T
(0,2)
µ3

)

∂2
t Ψb

+
...
+

(

A1T
(1,3)
α1

+ A2T
(1,3)
α2

+ · · ·+ M3T
(1,3)
µ3

)

∂r∗∂
3
t Ψb

=

c1∂tΨb

+
c2∂

2
t Ψb

+
c3∂

3
t Ψb

+
c4∂

4
t Ψb

. (86)

By identification, we obtain a linear system, that is cast in the form
















1 · · · 1 · · · 1 · · · 1

T
(0,1)
α1

· · · T
(0,1)
β0

· · · T
(0,1)
γ1

· · · T
(0,1)
µ3

T
(0,2)
α1

· · · T
(0,2)
β0

· · · T
(0,2)
γ1

· · · T
(0,2)
µ3

...
...

...
...

...
...

T
(1,0)
α1

· · · T
(1,0)
β0

· · · T
(1,0)
γ1

· · · T
(1,0)
µ3

...
...

...
...

...
...

T
(1,3)
α1

· · · T
(1,3)
β0

· · · T
(1,3)
γ1

· · · T
(1,3)
µ3

















︸ ︷︷ ︸

T
















A1

...
B0

...
G1

...
M3
















︸ ︷︷ ︸

P

=
















0
c1
c2
c3
c4
0
...
0
















︸ ︷︷ ︸

C

, (87)

where the upper indexes (n,m) cover all combinations such that n+m ≤ 4. Finally,
by inversion of the T matrix, the unknown terms of the P vector are identified.

References

[1] Blanchet L Spallicci A and Whiting B 2011 Mass and motion in general relativity (Berlin:
Springer)

[2] Droste J 1915 Kon. Ak. Wetensch. Amsterdam 23 968. English translation: 1915 Proc. Acad.
Sci. Amsterdam 17 998

[3] Droste J 1916 Het zwaartekrachtsveld van een of meer lichamen volgens de theorie van Einstein
Doctorate thesis Dir. Lorentz H A (Rijksuniversiteit van Leiden)

[4] Droste J 1916 Kon. Ak. Wetensch. Amsterdam 25 163. English translation: 1917 Proc. Acad.
Sci. Amsterdam 19 197

[5] SchwarzschildK 1916 Sitzungsber. Preuss. Akad. Wiss., Phys. Math. Kl. 189. English translation
with foreword by Antoci S and Loinger A 1999 arXiv:physics/9905030v1 [physics.hist-ph]

[6] Rothman T 2002 Gen. Rel. Grav. 34 1541
[7] Regge T and Wheeler J A 1957 Phys. Rev. 108 1063
[8] Zerilli F J 1969 The gravitational field of a particle falling in a Schwarzschild geometry analyzed

in tensor harmonics, Doctorate thesis Dir. Wheeler J A (Princeton University)



Fourth order integration method 18

[9] Zerilli F J 1970 Phys. Rev. Lett. 24 737
[10] Zerilli F J 1070 J. Math. Phys. 11 2203
[11] Zerilli F J 1970 Phys. Rev. D 2 2141. Erratum, 1973 in Black holes Les Houches 30 July 31

August 1972 ed DeWitt C and DeWitt B (New York: Gordon and Breach Science Publ.)
[12] Lousto C O and Price R H 1997 Phys. Rev. D 56 6439
[13] Martel K and Poisson E 2002 Phys. Rev. D 66 084001
[14] Spallicci A 2011 in Mass and motion in general relativity, eds. Blanchet L Spallicci A Whiting

B (Berlin: Springer) p 561
[15] Haas R 2007 Phys. Rev. D 75 124011
[16] Lorenz L 1867 Philos. Mag. 34 287
[17] de Donder T 1921 La gravifique Einsteinienne (Paris: Gauthier-Villars)
[18] Hunt B J 1991 The Maxwellians (New York: Cornell University Press)
[19] Barack L and Lousto C O 2005 Phys. Rev. D 72 104026
[20] Aoudia S and Spallicci A to appear 12th Marcel Grossmann Meeting Paris 12-18 July 2009 ed.

Damour T Jantzen R T and Ruffini R (Singapore: World Scientific) 2010 arXiv:1003.3107v3
[gr-qc]

[21] Aoudia S and Spallicci A 2011 Phys. Rev. D 83 064029
[22] Lousto C O 2005 Class. Q. Grav. 22 S543
[23] Sopuerta C F and Laguna P 2006 Phys. Rev. D 73 044028
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