
HAL Id: hal-00715419
https://hal.science/hal-00715419v2

Preprint submitted on 24 Jan 2013 (v2), last revised 5 Apr 2013 (v3)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Optimal Motion Planning for Humanoid Robots
Antonio El Khoury, Florent Lamiraux, Michel Taïx

To cite this version:
Antonio El Khoury, Florent Lamiraux, Michel Taïx. Optimal Motion Planning for Humanoid Robots.
2012. �hal-00715419v2�

https://hal.science/hal-00715419v2
https://hal.archives-ouvertes.fr


Optimal Motion Planning for Humanoid Robots

Antonio El Khoury∗, Florent Lamiraux∗ and Michel Taı̈x∗

∗CNRS, LAAS, 7 avenue du colonel Roche, F-31400 Toulouse Cedex 4, France

Univ de Toulouse, LAAS, F-31400 Toulouse Cedex 4, France.

aelkhour@laas.fr

Abstract—This paper aims at combining state of the art
developments of path planning and optimal control and to
create the algorithmic foundations to tackle optimal control
problems in cluttered environments. Our contribution is three-
fold: first, we describe a simple method to automatically generate
minimum bounding capsules around exact robot body geometries
represented by meshes. Second, we use the bounding capsules to
implement distance constraints for an optimal control problem
solver and achieve (self-)collision avoidance. Finally, we propose
a complete two-stage framework for optimal motion planning
on complex robots. This framework is successfully applied to
generate optimal collision-free trajectories both in simulation and
on the humanoid robot HRP-2.

I. INTRODUCTION

The generation of the best possible trajectory that does

not violate any constraints imposed by the environment is an

ubiquitous task in both industrial and humanoid robotics.

Numerous examples of successful robotic applications in the

domains of motion planning and optimal control can be en-

coutered in literature and industry. Very few however, if none,

consider the more general problem of optimal motion planning

for complex robots evolving in complex environments.

This paper aims at combining state of the art developments

of these two domains and to create the algorithmic foundations

to tackle optimal control problems in cluttered environments.

II. RELATED WORK

There are two established but still quite separate research

areas that both address a part of the optimal motion planning

problem, namely path planning and numerical optimal control.

A. Path Planning

Let the configuration q be a vector containing the gener-

alized coordinates of a robot, and let C be the set of all

possible configurations q. Path planning is mainly interested

in the determination of a feasible path P connecting a start

configuration qs to a goal configuration qg in C . P is said

to be feasible iff for all q ∈ P, q is valid with respect to

both geometric constraints, e.g. (self-)collision avoidance, and

kinematic constraints of the robot, e.g. joint limits.

Sampling-based algorithms, such as Rapidly-exploring Ran-

dom Trees (RRT) [1], are particularly powerful when it comes

to solving path planning problems in highly dimensional C and

cluttered environments. In its simplest form, this algorithm

expands a tree T rooted in qs by first sampling a random

configuration qrand in C , then extending an edge e from the

nearest configuration qnear in T towards qrand and finding a

valid configuration qnew. This process is iterative, and it stops

once T and qg can be connected.

It is interesting to note that all nodes and edges of the

final tree T lies in C . This can lead to infeasible paths if

the robot must respect additional kinematic constraints. Such

is the case for robots with a floating base, i.e. the configuration

contains an unactuated part that can be changed only through

maintaining contact with the environment. [2], [3], [4] propose

variants of RRT where the extension phase produces an edge

that lies in its entirety on a manifold M of C . M is defined by

kinematic constraints, each defined by a feature value in the

operational space, e.g. end-effector position and orientation.

The constrained RRT algorithm produces a path P such that

for all q ∈ P, q lies on the manifold M .

One of the most important features of sampling-based al-

gorithms is their probabilistic completeness, i.e. their capacity

to avoid falling into local minima and find a solution path if

it exists. They present however three major drawbacks. First,

due to their sampling nature, the configuration q might move

in a random fashion along the path P, which could lead to

unnecessarily long and unnatural paths. Second, we still need

to apply a time parameterization in order to transform the path

into a trajectory. This is a non-trivial task in the particular case

of a humanoid robot, as we must ensure its dynamic balance

along the trajectory. Third, the resulting paths are continuous

but not C1. The time-parameterized motion thus needs to

stop at each way-point or to leave the planned path around

way-points. Additional processing is thus needed to provide a

reshaped collision-free trajectory that can be executed on the

robot.

B. Numerical Optimal Control

Given a dynamic model, let:

− t be the time variable,

− x be the state vector,

− u be the control vector,

− t f be the trajectory duration,

− φ be the scalar objective function to minimize,

− f be the differential equation of the model,

− g be the equality constraint vector function,

− h be the inequality constraint vector function,

− r be the boundary conditions vector function.

An optimal control problem can be written as follows:

min
x(·),u(·),t f

∫ t f

0
φ(x(t),u(t))dt (1)



subject to:

ẋ(t) = f (t,x(t),u(t))
g(t,x(t),u(t)) = 0,

h(t,x(t),u(t)) ≥ 0,

r(x(0),x(t f )) = 0.

(2)

Starting from an initial value of x and u, numerical op-

timal control techniques are capable of iteratively converging

towards a trajectory that locally minimizes φ while taking into

account the dynamics of the system and verifying equality and

inequality constraints given by Eq. 2.

There exists several classes of optimization solvers, among

which gradient-based methods such as interior point opti-

mizers implemented notably in IPOPT [5], and Sequential

Quadratic Program (SQP) solvers. More particularly, multiple

shooting optimization, implemented in the software package

MUSCOD-II [6], is a very powerful tool that allows to solve

large-scale optimal control problems thanks to a specially

tailored SQP.

It is interesting to note that for all gradient-based solvers,

the objective and constraint functions can be nonlinear, but

they must be at least C1, i.e. continuously differentiable. This

requirement can be alleviated by the use of non gradient-based

solvers such as STOMP [7], but this method has so far been

only applied to simple trajectory optimization problems where

obstacle and torque constraints were integrated in the cost

function.

Optimal control techniques have been successfully applied

on humanoid figures [8] and humanoid robots [9], [10]. The

problems take into account complex robot dynamics and ac-

tuator limitations. However, current formulations either work

under the assumption the initial guess is collision-free and,

which can be a non-trivial task in complex environments,

either allow it to be slightly in collision by means of linear

interpolation between initial and final configurations. There are

then cases where the solver might get stuck in local minima

and fail to generate a trajectory without any collisions with

either the environment or bodies of the robot. Hence, to the

authors’ knowledge, initial trajectory generation and collision

avoidance have yet to be treated properly in the optimal control

formulation.

C. (Self-)Collision Avoidance Constraints

There are several ways to express collision avoidance

constraints between two bodies; one could express the con-

straint with the exact distance between the exact polyhedral

geometries such as in [11]. While distance computation is

precise and relatively efficient thanks to bounding volume tree

structures, the returned distance is zero in case of penetration,

which forbids the computation of a correct constraint gradient.

[12] propose a fast penetration computation algorithm, but

computation times are still restrictive. Moreover the distance

constraint between two non-strictly convex polyhedra is not

C1, which can cause the optimization solver to behave in-

correctly. [13] proposes a nice solution to this problem and

introduces Sphere-Torus Patches Bounding Volumes (STPBV),

which are strictly convex bounding volumes of the robot

bodies; in this case the distance between a STPBV and a

convex mesh is always C1. These constraints are successfully

used for self-collision avoidance in real-time control of a

humanoid robot [14]. In [15], also in a control context, self-

collision constraints are expressed as the distance between

bounding capsules, i.e. cylinders capped by half-spheres.

D. Sampling-Based Optimal Motion Planning

Recently [16] introduced RRT*, a new variant of RRT

that has the property of asymptotically converging towards

the global minimum solution path. This is a very interesting

approach as only one algorithm is needed to achieve optimal

motion planning. But if we want to generate an optimal

trajectory, we need to explore not only the configuration

space C , but the whole state space S where an element of

S is x = [q, q̇]T . This doubles the dimension of the problem.

Another problem arises from choosing the correct metric and

local optimal policy for the extension phase. [17] propose a

variant called LQR-RRT*. This variant uses local linearization

of a system to derive a coherent extension method. Results

have so far been only obtained on simple systems. Whether

this approach can reasonably scale up to complex systems such

as humanoid robots remains to be tested.

III. CONTRIBUTION

To the authors’ best knowledge there is no algorithmic

approach available that allows to address the problem of

optimal motion planning for very complex dynamic robot

systems in cluttered environments.

Our contribution is three-fold: first, we describe a simple

method to automatically generate minimum bounding capsules

around exact robot body geometries represented by meshes.

Second, we use the bounding capsules to implement distance

constraints for the solver and achieve collision and self-

collision avoidance. Finally, we propose a complete two-stage

framework for optimal motion planning on complex robots.

Given a start and goal task or configuration, the constrained

path planner produces a collision-free path where kinematic

constraints have been enforced, thus avoiding geometric lo-

cal minima. This path is given as an initial guess to the

MUSCOD-II solver, which generates a locally optimal trajec-

tory while enforcing dynamic constraints and (self-)collision

avoidance. This framework is successfully applied to generate

optimal collision-free trajectories both in simulation and on

the humanoid robot HRP-2.

Section IV describes the path planning stage. The collision

avoidance constraints are tackled in section V, and are used in

the optimal control problem described in section VI. Finally,

section VII showcases preliminary simulation and experimen-

tal results on the robot HRP-2.

IV. CONSTRAINED PATH PLANNING

We use the constrained planner in [2], which is imple-

mented with the motion planning library KineoWorks™[18].

This planner allows to generate a collision-free path, while



Fig. 1: Goal config generated on the goal submanifold Mg and a path
found by the constrained path planner in a shelves environment.

guaranteeing that the solution path lies on a manifold of

the configuration space. We want to generate for HRP-2 a

collision-free path that guarantees its quasi-static balance when

it is standing on both feet. We then define the manifold M

with the following stack of equality constraints:

1) Right foot has a fixed 6D transformation,

2) Left foot has a fixed 6D transformation,

3) Center of mass vertical projection lies in the center of

the support polygon.

Additionally, we would like to avoid choosing a single goal

configuration qg, but instead define a goal task xg. This task

can be defined by a sub-manifold Mg of the planning manifold

M . For a simple object manipulation task, Mg can be defined

with the following stack of equality constraints:

1) Right foot has a fixed 6D transformation,

2) Left foot has a fixed 6D transformation,

3) Center of mass vertical projection lies in the center of

the support polygon.

4) Gripper has the same 3D position as the object to grab.

5) Gripper thumb is oriented vertically.

Given a start configuration qs a planning manifold M

and a goal sub-manifold Mg, we first create a set of goal

configurations qg by sampling a fixed number of configurations

in Mg, then we solve the path problem from qs to qg. The

constrained planner diffuses exploration trees from qs and each

configuration of qg, and stops once at least one of the goal

configurations is in the same connected component as qs. A

shortcut optimizer can then be called to prune unnecessary

waypoints and smooth the solution path.

Figure 1 shows a concrete example where HRP-2 has to

grab an object on the lower shelf and place it on the upper

shelf.

V. (SELF-)COLLISION AVOIDANCE CONSTRAINTS

In path planning, collision queries are used to validate or

invalidate configurations and hence the whole path. This is ob-

viously not enough in optimal control, especially for gradient-

based solvers where constraint must be C1. Furthermore we

need to return negative values of the distance in case of

Fig. 2: Best fitting capsules for HRP-2

collision to provide the solver with the means to get out of

collision.

We must first define a bounding geometry of the real

geometry of the robot bodies, and we choose to use bounding

capsules, like in [15]. Capsule are basically sphere swept

segments; to compute the distance between two capsules, we

simply need to compute the distance between the capsule

axes, then subtract their radii. Similarly, we can compute the

distance between a capsule and a polyhedron in the environ-

ment by first computing the distance between the capsule axis

and the polyhedron, then subtracting the radius. The returned

distance can then become negative in case of collision.

A. Computing minimum bounding capsules

In [15], bounding capsules parameters, i.e. the 2 endpoints

e1,e2 and the radius r, were set by hand to obtain the best

fitting capsules around the body geometries. We propose here

to automatically find these parameters by solving, offline and

once for each body of the robot, the following optimization

problem:

min
e1,e2,r

‖e2 − e1‖πr2 +
4

3
πr3 (3)

subject to:

r−d(p,e1e2) ≥ 0, for all p ∈ P (4)

where d(p,e1e2) is the distance of p to line segment e1e2.

Equations 3 and 4 mean we want to find the minimum-

volume capsule while ensuring all points p of the underlying

polyhedron P lie inside the capsule. HRP-2 has 41 bodies,

each body polyhedron containing about 1000 points. We solve

all 41 optimization problems with RobOptim [19] and the

IPOPT solver [5] in less than 5s. Note that this operations is

done only once for each robot. Figure 2 shows the best fitting

bounding capsule superimposed on the robot geometries.

B. Distance computation

As mentioned previously, for capsule-capsule distance pairs,

we need to compute the distance between the two capsule axes

then subtract the radii to obtain the real distance. We rely on

the Wild Magic geometric library [20] to compute this distance

in an average time of 2 µs.

Concerning capsule-polyhedron pairs, we rely on an im-

plementation of OBB-Trees in the Kineo Collision Detection



Fig. 3: Constraints added in OCP: support foot positions (blue), joint
limits (purple), ZMP constraint (green), (self)-collision avoidance
(red).

(KCD) library [18] for an efficient computation. For the envi-

ronment in figure 1, the distance for one capsule-environment

pair takes about 500 µs to be computed.

C. Selection of pairs of bodies for distance computation

If we take into account all capsule-capsule pairs of the robot,

we end up with
n(n−1)

2
possible pairs, with n the number of

bodies. This means that for a robot like HRP-2, we can have

up to 780 pairs and it can be very costly to evaluate the

distance for all of them. Luckily, some bodies are either always

colliding because they are adjacent in the kinematic tree, or

never colliding due to the joint limits. This means that the

pairs corresponding to those bodies can be safely pruned. We

use the tool described in [21], which relies on finely exploring

the configuration space and keeping track of colliding bodies,

to save 510 useful pairs. Furthermore, since we are in the

particular case of double-support motion, we can be sure that

most of the leg bodies cannot collide with each other due to the

additional kinematic constraints. We finally end up with 327

capsule-capsule pairs that must be all evaluated to guarantee

self-collision avoidance. Similarly, we can prune some of the

capsule-environment pairs and keep 23 pairs.

VI. DESCRIPTION OF OPTIMAL MOTION PLANNING

FRAMEWORK

Now that we have properly set distance pairs, we can estab-

lish a complete formulation of the optimal control problem for

the second stage of our optimal motion planning framework.

A. Optimal Control Problem Formulation

1) Objective function: We choose to minimize, for a fixed

duration, the integral over time of the sum of square jerks, as

this criterion leads to smooth and natural trajectories.

The objective function can then be written as:

J =
∫ t f

0

...
q (t)T ...

q (t)dt (5)

and we define the state and control variables to be:

x(t) = [q(t), q̇(t), q̈(t)]T

u(t) = [
...
q (t)]T

(6)

2) Equality and inequality constraints:

a) Joint constraints: Each actuated joint is subject to

physical limitations of its underlying actuator and mechanical

structure. Box constraints on angular, speed and torque limits

are then added as:

qmin ≤ q ≤ qmax

q̇min ≤ q̇ ≤ q̇max

τmin ≤ τ ≤ τmax

(7)

b) Dynamic balance: The robot is submitted in our case

to multiple coplanar contact reaction forces from the ground.

We can then express the dynamic balance constraint thanks

to the Zero-Moment Point (ZMP) [22], which has to remain

inside the robot support polygon defined by its feet.

These constraints can be written as for any t ∈ [0, t f ]:

pl f (q(t)) = pl f (q(0))
pr f (q(t)) = pr f (q(0))

zmp(q(t), q̇(t), q̈(t)) ∈ Psup,

(8)

where pl f , pr f are respectively the 6D positions of the left

and right feet, zmp and Psup are the ZMP coordinates and the

support polygon respectively.

c) Collision avoidance constraints: We use the capsule-

capsule and capsule-environment pairs defined in V. Given a

configuration q of the robot, we check that distances for pairs

of bodies and pairs of body and obstacle are positive to ensure

(self-)collision avoidance. We first tried to add one constraint

per pair, which added up to (327+23)∗nms constraints, where

nms is the number of multiple shooting nodes in MUSCOD-

II. This led to poor performance as the solver systematically

went beyond the threshold number of iterations. We hence

propose to group all pairs for each single body and to define

as an inequality constraint, the minimum distance of the body

to other bodies and to the obstacles being positive.

B. Considerations for the Solver

With a complete formulation of the optimal control problem,

the solver starts from an initial value of q(t) and u(t) and

converges iteratively towards the locally optimal solution. It

is then obvious that the initial guess plays an important role

in the successful determination of the final solution and the

convergence speed.

The constrained path planner generates a collision-free path

where the kinematic constraints are enforced, but we still

need to apply a time parameterization before feeding it to

the optimization solver. We want to minimize the sum of

square jerks; [23] shows that an unconstrained minimum-jerk

trajectory is a polynomial of degree 5 which can be explicitly

computed if the initial and final states are known. We choose

then to place minimum-jerk trajectories between each pair of

waypoints (or nodes) of the path, assuming they start and

end at zero velocity and acceleration. This allows us to make



(a) Initial invalid path. (b) RRT path. (c) Shortcut path.

Fig. 4: Paths for the test case.

sure that the configuration q(t) follows exactly the solution

path and that collision avoidance constraints are not violated

in the initial guess. The optimization solver will of course

try to modify and reshape this non-optimal trajectory while

enforcing all constraints, leading to a smooth motion without

intermediate stops.

In order to solve a finite-dimension optimal problem, we

need to discretize both controls and constraints. We thus define

the control u(t) as a continuous piecewise linear function over

20 sub-intervals of the whole trajectory duration.

VII. RESULTS

We demonstrate the effectiveness of our optimal motion

planning framework by first using it in a a simple test case

example, then applying it to generate feasible motions on the

robot HRP-2. All tests were run on a computer with a 1.6

GHz Intel® Core™2 Duo processor.

A. Test Case

Figure 4a shows the motion planning problem to be solved:

HRP-2 starts from its rest position and moves to a goal

configuration by raising its left arm. A concave object is

placed such that the left hand is at one point enclosed in it

if the initial path connecting the start to goal configuration

is executed. This is a typical example of a problem with a

local minimum defined by the environment, where a real-time

control approach in task-space might fail. Figure 4b shows a

possible solution path found with constrained RRT. This path

can be shortened with a shortcut optimizer, as in figure 4c.

To showcase the usefulness of our approach, we try to solve

the optimal control problem defined in Section VI starting

from the different paths, and put all results in Table I. When

starting with the initial path from figure 4a, the solver failed

to achieve a single iteration. This can be explained by the fact

that in the middle of this path, the robot left hand is clearly

enclosed inside the obstacle and some distance constraints

are violated; the solver fails to determine a clear direction

which would lessen this violation due to the geometric local

minimum. Since the constrained RRT avoids it and generates a

collision-free path, the solver behaves correctly when starting

with the path in 4b, but the maximum number of iterations

is reached before reaching convergence. It is achieved when

starting with the shortcut path in 4c. Note that about 70%

of the optimization time is spent in evaluating the distance

TABLE I: Test Case Computation Times

Initial guess Initial path RRT path Shortcut path

Planning time (s) − 5 5

Shortcut time (s) − − 4

Optimization status ERROR MAX ITER OK

SQP iterations − 200 70

Optimization time (s) − 3068 1186

Constraints evaluation
time (s)

− 2176 847

Fig. 5: Plots of left arm body distance constraints.

constraints and their gradients; this significant overhead can

be explained by the fact that MUSCOD-II relies on internal

numerical differenciation to compute gradients and hessians.

Relying on analytical gradient expressions would hence clearly

accelerate the optimization process. Regarding the distance

constraints enforcement, figure 5 shows the evaluation of the

left arm distances: due to the constraints time discretization,

one constraint is violated during less than 100ms. This vio-

lation does not however exceed 4mm, and this is considered

as acceptable as all distance constraints are computed with

bounding capsule geometries which already define conserva-

tive volumes around the exact geometries.

B. Fast Trajectory Generation on HRP-2

We also use our approach to generate fast optimal collision-

free trajectories and execute them on the humanoid robot HRP-

2. In the first scenario, HRP-2 executes a kind of martial art

figure where it crosses its arms rapidly while bending its knees,

changes the arms configuration, then moves back to a rest

posture. The motion must be executed while ensuring the arms

do not collide with each other, and the robot does not fall. This

is quite a difficult task as the 3 trajectories durations are fixed

to 1, 2, and 2 seconds respectively. Particularly, the second

motion where one arm goes from being behind the other arm to

being ahead of it proved to be impossible to generate without

a prior planning phase as proposed in out approach.

In the second scenario, we add a complex environment that

contains shelves with different levels; HRP-2 first bends it

knees to grab a ball located deep on the lower shelf, then

moves it to an upper shelf to release it between two other

objects. The trajectories last respectively 2 and 5 seconds.



TABLE II: Computation Times for Martial Arts Scenario

Phase 1 2 3

Planning time (s) 4 13 2

Shortcut time (s) 4 6 1

SQP iterations 32 73 25

Optimization time (s) 346 1130 278

Constraints evaluation time (s) 124 356 83

TABLE III: Computation Times for the Shelves Scenario

Phase 1 2

Planning time (s) 13 38

Shortcut time (s) 6 23

SQP iterations 74 80

Optimization time (s) 1745 5020

Constraints evaluation time (s) 1396 2640

Here, both collision and self-collision constraints need to be

enforced in order to obtain a valid trajectory. Again, the ball

transfer motion cannot be generated using an optimal control

solver and a simple initial guess; a prior planning phase is

needed to find a collision-free transfer path.

We successfully apply our framework to generate feasible

motions for both scenarios as seen in figures 6 and 7. Com-

putation times are shown in Tables II and III. Videos of both

scenarios are available in the attached file.

C. Discussion

In subsection VII-A, we demonstrate in a simple example

the influence of the initial guess of the optimal control

problem on the solver success and performance. In fact, due

its probabilistic completeness, the usage of the constrained

planner in a first stage guarantees that an initial collision-free

and quasi-statically feasible trajectory can be found. All the

optimization solver then has to do is to reshape this trajectory

to minimize the objective function, i.e. the sum of jerks, and

enforce additionnal constraints, i.e. joint limits and dynamic

balance.

The trajectory duration is for the moment fixed. This means

that if it is not properly set, the optimization solver might

fail as some constraints such as velocity limits would never

be enforced. If it was to be included as a free variable in

the optimal control problem, we would have a guarantee of

success for the second stage. The complete framework would

then have both properties of probalistic completeness and

soundness.

VIII. CONCLUSION AND FUTURE WORK

In this paper we propose a novel approach to tackle optimal

control problems in cluttered environments. Our approach

combines, in a two-stage framework, a consrained path plan-

ning algorithm and an optimal control problem solver. We

generate optimal feasible trajectories for the humanoid robot

HRP-2 and successfully execute them.

Our approach can benefit from improvements to increase its

usability, such as taking into account movable obstacles, and

considering non-coplanar contacts. We are currently working

to include these features.

ACKNOWLEDGMENT

The authors would like to thank Katja Mombaur and Martin

Felis from University of Heidelberg for their active support in

using MUSCOD-II, and Olivier Stasse and Nicolas Mansard

from LAAS-CNRS for fruitful discussions. This work was

supported by the European Commission under the FP7 project

ECHORD (grant 231143).

REFERENCES

[1] J. Kuffner, J.J. and S. LaValle, “Rrt-connect: An efficient approach
to single-query path planning,” in Robotics and Automation, 2000.

Proceedings. ICRA ’00. IEEE International Conference on.
[2] S. Dalibard, A. Nakhaei, F. Lamiraux, and J.-P. Laumond, “Whole-

body task planning for a humanoid robot: a way to integrate collision
avoidance,” in Humanoid Robots, 2009. Humanoids 2009. 9th IEEE-RAS

International Conference on.
[3] D. Berenson, S. S. Srinivasa, D. Ferguson, and J. J. Kuffner, “Manip-

ulation planning on constraint manifolds,” in Robotics and Automation,

2009. ICRA ’09. IEEE International Conference on.
[4] M. Stilman, “Task constrained motion planning in robot joint space,”

in Intelligent Robots and Systems, 2007. IROS 2007. IEEE/RSJ Interna-

tional Conference on.
[5] L. Biegler and V. Zavala, “Large-scale nonlinear programming using

ipopt: An integrating framework for enterprise-wide dynamic optimiza-
tion,” Computers and Chemical Engineering, selected Papers from the
17th European Symposium on Computer Aided Process Engineering
held in Bucharest, Romania, May 2007.

[6] D. B. Leineweber, I. Bauer, A. Schfer, H. G. Bock, and J. P. Schlder,
“An efficient multiple shooting based reduced sqp strategy for large-scale
dynamic process optimization. parts 1 and 2,” Computers and Chemical

Engineering, 2003.
[7] M. Kalakrishnan, S. Chitta, E. Theodorou, P. Pastor, and S. Schaal,

“Stomp: Stochastic trajectory optimization for motion planning,” in
Robotics and Automation (ICRA), 2011 IEEE International Conference

on.
[8] G. Schultz and K. Mombaur, “Modeling and optimal control of human-

like running,” Mechatronics, IEEE/ASME Transactions on, 2010.
[9] M. Toussaint, M. Gienger, and C. Goerick, “Optimization of sequential

attractor-based movement for compact behaviour generation,” in Hu-

manoid Robots, 2007 7th IEEE-RAS International Conference on, 29
2007-dec. 1 2007, pp. 122 –129.

[10] S. Lengagne, P. Mathieu, A. Kheddar, and E. Yoshida, “Generation of
dynamic motions under continuous constraints: Efficient computation
using b-splines and taylor polynomials,” in Intelligent Robots and

Systems (IROS), 2010 IEEE/RSJ International Conference on.
[11] E. Larsen, S. Gottschalk, M. Lin, and D. Manocha, “Fast distance queries

with rectangular swept sphere volumes,” in Robotics and Automation,

2000. Proceedings. ICRA ’00. IEEE International Conference on.
[12] Y. J. Kim, M. A. Otaduy, M. C. Lin, and D. Manocha, “Fast penetration

depth computation for physically-based animation,” in Proceedings

of the 2002 ACM SIGGRAPH/Eurographics symposium on Computer

animation, ser. SCA ’02. New York, NY, USA: ACM, 2002, pp.
23–31. [Online]. Available: http://doi.acm.org/10.1145/545261.545266

[13] A. Escande, S. Miossec, and A. Kheddar, “Continuous gradient prox-
imity distance for humanoids free-collision optimized-postures,” in Hu-

manoid Robots, 2007 7th IEEE-RAS International Conference on.
[14] O. Stasse, A. Escande, N. Mansard, S. Miossec, P. Evrard, and A. Khed-

dar, “Real-time (self)-collision avoidance task on a hrp-2 humanoid
robot,” in Robotics and Automation, 2008. ICRA 2008. IEEE Interna-

tional Conference on.
[15] O. Kanoun, “Real-time prioritized kinematic control under inequality

constraints for redundant manipulators,” in Proceedings of Robotics:

Science and Systems, Los Angeles, CA, USA, 2011.

http://doi.acm.org/10.1145/545261.545266


Fig. 6: HRP-2 does a quick martial arts motion while avoiding self-collision.

Fig. 7: HRP-2 bends down quickly to grab a ball in the lower shelf and transfers it to the upper shelf.

[16] S. Karaman and E. Frazzoli, “Sampling-based algorithms for optimal
motion planning,” The International Journal of Robotics Research, 2011.

[17] A. Perez, R. J. Platt, G. Konidaris, L. Kaelbling, and T. Lozano-Perez,
“Lqr-rrt*: Optimal sampling-based motion planning with automatically
derived extension heuristics,” in Robotics and Automation, 2012. ICRA

’12. IEEE International Conference on.
[18] J.-P. Laumond, “Kineo cam: a success story of motion planning algo-

rithms,” Robotics Automation Magazine, IEEE, 2006.
[19] T. Moulard, “Roboptim,” https://github.com/laas/roboptim.
[20] D. H. Eberly, “Wild magic,” http://www.geometrictools.com/.
[21] I. Sucan, “planning environment,” http://www.ros.org/wiki/planning

environment.
[22] M. Vukobratovic and B. Borovac, “Note on the article ”zero-moment

point - thirty five years of its life”,” I. J. Humanoid Robotics, 2005.
[23] T. Flash and N. Hogans, “The coordination of arm movements: An ex-

perimentally confirmed mathematical model,” Journal of neuroscience,
1985.

https://github.com/laas/roboptim
http://www.geometrictools.com/
http://www.ros.org/wiki/planning_environment
http://www.ros.org/wiki/planning_environment

	Introduction
	Related Work
	Path Planning
	Numerical Optimal Control
	(Self-)Collision Avoidance Constraints
	Sampling-Based Optimal Motion Planning

	Contribution
	Constrained Path Planning
	(Self-)Collision Avoidance Constraints
	Computing minimum bounding capsules
	Distance computation
	Selection of pairs of bodies for distance computation

	Description of Optimal Motion Planning Framework
	Optimal Control Problem Formulation
	Objective function
	Equality and inequality constraints

	Considerations for the Solver

	Results
	Test Case
	Fast Trajectory Generation on HRP-2
	Discussion

	Conclusion and Future Work
	References

