
HAL Id: hal-00715301
https://hal.science/hal-00715301v1

Submitted on 6 Jul 2012

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Solving Shallow Water flows in 2D with FreeFem++ on
structured mesh

Georges Sadaka

To cite this version:
Georges Sadaka. Solving Shallow Water flows in 2D with FreeFem++ on structured mesh. 2012.
�hal-00715301�

https://hal.science/hal-00715301v1
https://hal.archives-ouvertes.fr

Solving Shallow Water flows in 2D with

FreeFem++ on structured mesh

Georges Sadaka

LAMFA CNRS UMR 7352

Université de Picardie Jules Verne

33, rue Saint-Leu, 80039 Amiens, France

http://lamfa.u-picardie.fr/sadaka/

k georges.sadaka@u-picardie.fr

Abstract - FreeFem++ is an open source platform to solve partial differential equations
numerically, based on finite element methods. What we will present in this work is inspired from
the finite volume method for hyperbolic problem in order to solve it with finite element method in
FreeFem++. In particular we will see how it can be possible, with an approach of finite element
and finite volume method, to solve the Shallow Water equations (Saint - Venant system) in 2D
with topographic source term. More precisely, we will define the quantity types of finite volume
such as up-wind scheme, HLL flux, well balanced scheme with hydrostatic reconstruction that are
used in the numerical resolution of the variational problem.

To this end we will consider a particular rectangular structured isotropic domain using P1 finite
element space. We note that in other situations, for example with unstructured anisotropic mesh
or with other type of finite element space, an approach of Discontinuous Galerkin method could be
used as in [11]. We note also that, there is a FreeVol project in order to introduce Finite Volume
technic in FreeFem++ for hyperbolic PDEs by Frédéric Hecht et al. which is an ongoing work.

Keywords: Shallow Water equations, finite volume method, finite element method, well-balanced
scheme, hydrostatic reconstruction, FreeFem++.

1 Introduction

The Shallow Water equations introduced in [12] is very commonly used for the numerical
simulation of various geophysical shallow-water flows [2], such as rivers [4], lakes or coastal areas
[6], rainfall runoff on agricultural fields [9], or even atmosphere or avalanches [1, 8] when completed
with appropriate source terms.

The numerical study of damped hydrodynamic surface wave propagation is a very challenging
problem through the phenomena that represent (giant waves, Tsunamis, ...). The shallow water
equations are routinely used to predict a tsunami wave Run-up and, subsequently, constitute
inundation maps for tsunami hazard areas.

Our motivation in this paper comes from the oscillation that we see during our simulations, using
the Boussinesq system in 2D, with the propagation of Tsunamis near the coast where we are not in
the big deep water wave regime (cf. [17]).

To solve this problem, we must consider another regime for small deep water wave for example the
Shallow Water equations in order also to see the inundation of the Tsunamis. Many works have
consider this problem from a finite volume point of view to construct approximate solutions for the

1

http://lamfa.u-picardie.fr/sadaka/

hyperbolic conservation laws where they build a well balanced scheme which preserve the positivity
of the solution during the Run-up (cf. [3, 7, 13, 16]).

The two-dimensional Saint-Venant system for Shallow Water writes as follows :

∂tU + ∂xF (U) + ∂yG(U) = S(U), (1)

where

U =

h
hu
hv

 , F (U) =

hu

hu2 +
g

2
h2

huv

 , G(U) =

hv
huv

hv2 +
g

2
h2

 and S(U) =

0
−gh∂xzb
−gh∂yzb

 .

(2)
Here u and v are the scalar components in the horizontal x, y directions of the depth-averaged
velocity, h is the local water depth and g > 0 denotes the gravity constant. U is the vector for the
conservative variables, F (U) and G(U) stand for the flux functions respectively along the x and y

directions and S(U) represents the bed slope source term with the bed slope ∇zb =

(
∂xzb
∂yzb

)
.

This model is very robust, being hyperbolic and admitting an entropy inequality (related to the
physical energy E, see [18] for more details)

∂tẼ(U, zb) + ∂x

[
u ·
(
Ẽ(U, zb) +

gh2

2

)]
+ ∂y

[
v ·
(
Ẽ(U, zb) +

gh2

2

)]
≤ 0 (3)

where
E(U) = (hu2 + hv2)/2 +

g

2
h2 and Ẽ(U, zb) = E(U) + hgzb. (4)

Another nice property is that it preserves the steady state of a lake at rest

h+ zb = Cst, u = 0, v = 0. (5)

When solving numerically (1), it is very important to be able to preserve these steady states at the
discrete level and to accurately compute the evolution of small deviations from them, because the
majority of real-life applications resides in this flow regime. It is a difficult problem identified for
the first time in [5] and the scheme which preserves this type of equilibrium are called well
balanced since [14].

The paper is organized as follows. In Section 2 we remind the construction of the well-balanced
scheme with hydrostatic reconstruction. In Section 3 the HLL approximate Riemann solver is
presented for the wet/dry transition problem. In Section 4, we present the corresponding CFL
condition in order to have the stability of the up-wind scheme. We present in Section 5 the details
of the finite volume approach in FreeFem++ by giving the corresponding code for each step.
Finally, in Section 6 we present the numerical simulations starting by testing the correctness and
precision of the numerical scheme using an analytical solution, then by showing the simulation of a
solitary wave crossing an empty pond.

2 Well-balanced scheme with hydrostatic reconstruction

The system (1) can be written as :

∂tU + A(U)∂xU + B(U)∂yU = S(U), (6)

where

A(U) =

0 1 0
−u2 + gh 2u 0
−uv v u

 and B(U) =

0 0 1
−uv v u

−v2 + gh 0 2v

 ,

2

then
det(A(U)− λI) = (u− λ) · (λ− u−

√
gh) · (λ− u+

√
gh)

and
det(B(U)− λI) = (v − λ) · (λ− v −

√
gh) · (λ− v +

√
gh).

Thus, the eigenvalues of the linearized convection matrices A(U) and B(U) are, respectively :

λ1 = u, λ2 = u−
√
gh, λ3 = u+

√
gh and λ∗1 = v, λ∗2 = v −

√
gh, λ∗3 = v +

√
gh (7)

We remark that for h > 0, all the eigenvalues are distinct and the system is strictly hyperbolic.
Finite volume schemes for hyperbolic systems consist in using an up-winding of the fluxes. The
two-dimensional semi-discrete finite volume formulation of system (1) with hydrostatic
reconstruction, is given by :

Un+1
i,j −Un

i,j +
∆t

∆x

(
Fn

i+1/2,j − Fn
i−1/2,j

)
+

∆t

∆y

(
Gn

i,j+1/2 −Gn
i,j−1/2

)
= ∆t · Sn

i,j (8)

where

Fn
i+1/2,j = F

(
Ui+1/2,j,L,Ui+1/2,j,R

)
, Fn

i−1/2,j = F
(
Ui−1/2,j,L,Ui−1/2,j,R

)
,

Gn
i,j+1/2 = G

(
Ui,j+1/2,D,Ui,j+1/2,U

)
, Gn

i,j−1/2 = G
(
Ui,j−1/2,D,Ui,j−1/2,U

)
,

(9)

and

Sn
i,j =

0
1

∆x

(
g
2h

2
i+1/2,j,L − g

2h
2
i−1/2,j,R

)

1
∆y

(
g
2h

2
i,j+1/2,D − g

2h
2
i,j−1/2,U

)

 . (10)

Here F and G are the numerical flux to be define in the sequel and the evaluation of the cell
interface of the conservative variables are defined as :

Ui−1/2,j,L =

hi−1/2,j,L

hi−1/2,j,L · ui−1,j

hi−1/2,j,L · vi−1,j

 ,Ui−1/2,j,R =

hi−1/2,j,R

hi−1/2,j,R · ui,j
hi−1/2,j,R · vi,j

 ,

Ui+1/2,j,L =

hi+1/2,j,L

hi+1/2,j,L · ui,j
hi+1/2,j,L · vi,j

 ,Ui+1/2,j,R =

hi+1/2,j,R

hi+1/2,j,R · ui+1,j

hi+1/2,j,R · vi+1,j

 ,

Ui,j−1/2,D =

hi,j−1/2,D

hi,j−1/2,D · ui,j−1

hi,j−1/2,D · vi,j−1

 ,Ui,j−1/2,U =

hi,j−1/2,U

hi,j−1/2,U · ui,j
hi,j−1/2,U · vi,j

 ,

and

Ui,j+1/2,D =

hi,j+1/2,D

hi,j+1/2,D · ui,j
hi,j+1/2,D · vi,j

 ,Ui,j+1/2,U =

hi,j+1/2,U

hi,j+1/2,U · ui,j+1

hi,j+1/2,U · vi,j+1

 .

We use the notation U for Up, L for Left, R for Right and D for Down (cf. Figure 1).
This ansatz is motivated by a balancing requirement, as follows. For nearly hydrostatic flows one
has u� √gh and v � √gh. In the associated asymptotic limit the leading order water height h
adjusts so as to satisfy the balance of momentum flux and momentum source terms, i.e.

∂x

(
gh2

2

)
= −hg∂xzb and ∂y

(
gh2

2

)
= −hg∂yzb. (11)

Integrating over the (i, j)-th grid cell, we obtain an approximation to the net source term as

−
∫ xi+1/2,j

xi−1/2,j

hg∂xzbdx =
g

2
h2
i+1/2,j,L −

g

2
h2
i−1/2,j,R

3

Figure 1: Notations

and

−
∫ yi,j+1/2

yi,j−1/2

hg∂yzbdy =
g

2
h2
i,j+1/2,D −

g

2
h2
i,j−1/2,U .

Thus we are able to represent locally the cell-averaged source term as the discrete gradient of the
hydrostatic momentum flux, and this motivates the source term discretization in (10).
It is obvious now that any hydrostatic state is maintained exactly if, for such a state, the
momentum fluxes in (8) and the locally reconstructed heights satisfy

Fn,hu
i+1/2,j =

g

2
h2
i+1/2,j,L =

g

2
h2
i+1/2,j,R and Gn,hv

i,j+1/2 =
g

2
h2
i,j+1/2,D =

g

2
h2
i,j+1/2,U .

This is the motivation for (9), which gives this property if for hydrostatic states we have

Ui+1/2,j,L = Ui+1/2,j,R =

hi+1/2,j,L

0
0

 =

hi+1/2,j,R

0
0

and

Ui,j+1/2,D = Ui,j+1/2,U =

hi,j+1/2,D

0
0

 =

hi,j+1/2,U

0
0

 .

The hydrostatic balance in (11) is equivalent to the “lake at rest” equation (5), so that the
reconstruction of the leading order heights is straightforward,

hi+1/2,j,L = hi,j + zbi,j − zbi+1/2,j
, hi+1/2,j,R = hi+1,j + zbi+1,j − zbi+1/2,j

(12)

and
hi,j+1/2,D = hi,j + zbi,j − zbi,j+1/2

, hi,j+1/2,U = hi,j+1 + zbi,j+1 − zbi,j+1/2
. (13)

4

An important challenge is to design a scheme that robustly captures dry regions where h ≡ 0. In
order to ensure non negativity of the water height even when cells begin to “dry out”, we need first
to perform a truncation of the leading order heights in (12,13),

hi+1/2,j,L/R = max
(

0, hi+1/2,j,L/R

)
and hi,j+1/2,D/U = max

(
0, hi,j+1/2,D/U

)
. (14)

Next, the evaluation of the cell interface height zbi+1/2,j
and zbi,j+1/2

has to be done in a quite
subtle way. Our construction, combined with a centered value of zbi+1/2,j

and zbi,j+1/2
, is not stable.

We rather take an upwind evaluation of the form

zbi+1/2,j
= max

(
zbi,j , zbi+1,j

)
and zbi,j+1/2

= max
(
zbi,j , zbi,j+1

)
. (15)

With these choices, we ensure that 0 ≤ hi+1/2,j,L ≤ hi,j and 0 ≤ hi+1/2,j,R ≤ hi+1,j also that
0 ≤ hi,j+1/2,D ≤ hi,j and 0 ≤ hi,j+1/2,U ≤ hi,j+1 , and we prove below that this property ensures
the non negativity requirement.

3 HLL approximate Riemann solver

We implement here the HLL (Harten, Lax and van Leer) approximate Riemann solver proposed in
[15]. When working on dry bed problems the HLL approach highlights a better behavior, avoiding
unidimensionalisation effects on the flow field. Such a reason leads to the choice of the HLL
Riemann solver for the development of the presented code.

The application of this approach to the two-dimensional scheme gives the following expression for
the numerical flux:

F(a,b) =

F (a) if 0 < sL,
F (b) if sR < 0,
sR · F (a)− sL · F (b) + sL · sR · (b− a)

sR − sL
if sL ≤ 0 ≤ sR,

(16)

where

sL = inf
c=a,b

(
inf

i∈{1,2,3}
(λi(c))

)
and sR = sup

c=a,b

(
sup

i∈{1,2,3}
(λi(c))

)
, (17)

and

G(a,b) =

G(a) if 0 < sD,
G(b) if sU < 0,
sU ·G(a)− sD ·G(b) + sD · sU · (b− a)

sU − sD
if sD ≤ 0 ≤ sU ,

(18)

where

sD = inf
c=a,b

(
inf

i∈{1,2,3}
(λ∗i (c))

)
and sU = sup

c=a,b

(
sup

i∈{1,2,3}
(λ∗i (c))

)
. (19)

4 Numerical stability

Explicit schemes require a careful selection of the time step to fulfill stability requirements.
Classically, the time step needs to be restricted in such a way that no interaction is possible
between waves from different cells during each time step. Courant, Friedrichs and Lewy defined a
stability criterion for fully explicit schemes given by CFL < 1 where CFL is known as the Courant
number. Various definitions of this number have been proposed, leading to different time step
restrictions. As in [7] , we choose here to define the time step as follows:

∆t ≤ CFL
min(∆x,∆y)

max
(
|uL|+ cL; |uR|+ cR; |vD|+ cD; |vU |+ cU

) ; (20)

5

where

uL = ui+1/2,j,L;hL = hi+1/2,j,L; cL =
√
g · hL;uR = ui+1/2,j,R;hR = hi+1/2,j,R; cR =

√
g · hR

and

vD = vi,j+1/2,D;hD = hi,j+1/2,D; cD =
√
g · hD; vU = vi,j+1/2,U ;hU = hi,j+1/2,U ; cU =

√
g · hU .

5 Finite volume approach in FreeFem++

In this section, we present an approach in order to use finite volume method in FreeFem++. To this
end, we must restrict our study to a rectangular domain ABCD with a structured isotropic mesh
(cf. Figure 2). We must also use a P1 finite element space because in this case the number of
degree of freedom is the same that the number of vertex and then, using these hypothesis, we can
have access to each value of the vertex by using in FreeFem++ : X[](i) where i is the number of
degree of freedom.

Figure 2: Structured isotropic mesh.

5.1 Access to the nodes

We remind that in FreeFem++, to build a rectangular domain with isotropic mesh we use :

mesh Th=square(M,N,[x,y]); // build a square with M point on x

ådirection and N point on y direction

mesh Th1=movemesh(Th ,[x+1,y*2]); // translate the square

å]0 ,1[*]0 ,1[to a rectangle]1 ,2[*]0 ,2[

To have access to the nodes, we will use the numbering defined in Figure 3 and we remind that in
FreeFem++, the numbering of degree of freedom to a rectangular isotropic domain starts from the
down left vertex (by 0) to the upper right one (by Vh.ndof-1).

6

Figure 3: Numbering of the nodes (degree of freedom).

Since we discretize the x-direction with M point and the y-direction with N points, we have
Vh.ndof=(N+1)*(M+1) and we can remark that the position of the vertex A, B, C and D have the
coordinates A(Th(0).x,Th(0).y), B(Th(M).x,Th(M).y),
C(Th(Vh.ndof-M-1).x,Th(Vh.ndof-M-1).y) and D(Th(Vh.ndof-1).x,Th(Vh.ndof-1).y); and
the value of the finite element space at these points can be found using A[](0), B[](M),

C[](Vh.ndof-M-1) and D[](Vh.ndof-1).

5.2 Boundary condition

To put boundary condition on h, we can have access to the boundary of our rectangular domain
ABCD using :

int bc=0,da=0; // counter

for (int i=0;i<Vh.ndof;i+=1){

// =============

// for border AB

// =============

if (i <= M)

H[](i) = 1; // for example we take 1

// =============

// for border BC

// =============

if (i == bc*(M+1)+M){

H[](i) = 1;

bc+=1;

}

// =============

// for border CD

// =============

7

if(i >= Vh.ndof -M-1)

H[](i) = 1;

// =============

// for border DA

// =============

if (i == da*(M+1)){

H[](i) = 1;

da+=1;

}

}

5.3 Cell interface

In order to compute zbi+1,j , hi+1,j , ui+1,j and vi+1,j , we can define a macro function XIP1J(X)

where X will take the place of zb, h, u and v, such as :

int j;

Vh Xip1j;

macro XIP1J(X)

j=0;

for (int i=0;i<Vh.ndof;i+=1){

if (i == j*(M+1)+M){

Xip1j [](i) = X[](i);

j+=1;

}

else

Xip1j [](i) = X[](i+1);

}

#X#ip1j=Xip1j;//

XIP1J(zb); // give zbip1j

In the same way, we can compute zbi−1,j
, hi−1,j , ui−1,j and vi−1,j , we can define a macro function

XIM1(X) where X will take the place of zb, h, u and v, such as :

Vh Xim1j;

macro XIM1J(X)

j=0;

for (int i=0;i<Vh.ndof;i+=1){

if (i == j*(M+1)){

Xim1j [](i) = X[](i);

j+=1;

}

else

Xim1j [](i) = X[](i-1);

}

#X#im1j=Xim1j;//

XIM1J(zb); // give zbim1j

On the other hand, to compute zbi,j+1
, hi,j+1, ui,j+1 and vi,j+1, we can define a macro function

XIJP1(X) where X will take the place of zb, h, u and v, such as :

macro XIJP1(X)

for (int i=0;i<Vh.ndof;i+=1){

if(i<Vh.ndof -M-1)

Xijp1 [](i) = X[](i+M+1);

else

Xijp1 [](i) = X[](i);

8

}

#X#ijp1=Xijp1;//

XIJP1(zb); // give zbijp1

macro XIJM1(X)

for (int i=0;i<Vh.ndof;i+=1){

if (i<=M)

Xijm1 [](i) = X[](i);

else if(i>M)

Xijm1 [](i) = X[](i-M-1);

}

#X#ijm1=Xijm1;//

XIJM1(zb); // give zbijm1

Since we have ui+1/2,j,L = ui,j , ui,j+1/2,D = ui,j , ui−1/2,j,R = ui,j , ui,j−1/2,U = ui,j , vi+1/2,j,L =
vi,j , vi,j+1/2,D = vi,j , vi−1/2,j,R = vi,j , vi,j−1/2,U = vi,j , ui+1/2,j,R = ui+1,j , ui,j+1/2,U = ui,j+1,
ui−1/2,j,L = ui−1,j , ui,j−1/2,D = ui,j−1, vi+1/2,j,R = vi+1,j , vi,j+1/2,U = vi,j+1, vi−1/2,j,L = vi−1,j

and vi,j−1/2,D = vi,j−1, we can define them in FreeFem++ as :

Uip12jL=U; Uijp12D=U; Uim12jR=U; Uijm12U=U; Vip12jL=V; Vijp12D=V;

åVim12jR=V; Vijm12U=V;

Uim12jL=Uim1j; Uijm12D=Uijm1; Uip12jR=Uip1j; Uijp12U=Uijp1; Vim12jL

å=Vim1j; Vijm12D=Vijm1; Vip12jR=Vip1j; Vijp12U=Vijp1;

5.4 Hydrostatic reconstruction

For the hydrostatic reconstruction terms hi+1/2,j,L/R and hi,j+1/2,D/U defined in the equation (12)
to (15) we can write them as :

Hip12jL=H+zb -max(zb ,zbip1j); Hip12jL=max(Hip12jL ,0);

Hijp12D=H+zb -max(zb ,zbijp1); Hijp12D=max(Hijp12D ,0);

Hip12jR=Hip1j+zbip1j -max(zb ,zbip1j); Hip12jR=max(Hip12jR ,0);

Hijp12U=Hijp1+zbijp1 -max(zb ,zbijp1); Hijp12U=max(Hijp12U ,0);

Him12jL=Him1j+zbim1j -max(zbim1j ,zb); Him12jL=max(Him12jL ,0);

Hijm12D=Hijm1+zbijm1 -max(zbijm1 ,zb); Hijm12D=max(Hijm12D ,0);

Him12jR=H+zb -max(zbim1j ,zb); Him12jR=max(Him12jR ,0);

Hijm12U=H+zb -max(zbijm1 ,zb); Hijm12U=max(Hijm12U ,0);

5.5 CFL condition

We may write in FreeFem++ the CFL condition defined in (20) such as :

Vh cflL , cflR , cflD , cflU;

cflL=abs(Uip12jL)+sqrt(gravity*Hip12jL);

cflR=abs(Uip12jR)+sqrt(gravity*Hip12jR);

cflD=abs(Vijp12D)+sqrt(gravity*Hijp12D);

cflU=abs(Vijp12U)+sqrt(gravity*Hijp12U);

Vh maxLR , maxDU;

maxLR=max(cflL ,cflR); maxDU=max(cflD ,cflU);

real c = max(maxLR [].max ,maxDU []. max);

real Dx=Th(1).x-Th(0).x, Dy=Th(M+1).y-Th(0).y;

real dt=CFL*min(Dx ,Dy)/c;

9

5.6 Flux functions and source term

The flux functions F (U) and G(U) defined in (2) and the source term Sn
i,j defined in (10) can be

written in FreeFem++ such as :

macro Source(hp,hm)[0. ,.5* gravity *(hp^2 - hm^2) ,.5* gravity *(hp^2 -

åhm^2)]//

Vh SU,SHU ,SHV;

SU = Source(Hip12jL ,Him12jR)[0];

SHU = Source(Hip12jL ,Him12jR)[1];

SHV = Source(Hijp12D ,Hijm12U)[2];

macro F(h,u,v)[h*u,h*u^2+.5* gravity*h^2,h*u*v]//

macro G(h,u,v)[h*v,h*u*v,h*v^2+.5* gravity*h^2]//

5.7 HLL flux

The numerical HLL flux F(a,b) defined in (16) and (17) can be written in FreeFem++ as :

macro lambda1(u)(u)//

macro lambda2(h,u)(u-sqrt(gravity*h))//

macro lambda3(h,u)(u+sqrt(gravity*h))//

Vh S1L , S2L , S3L , S1R , S2R , S3R;

real S12Lm , S3L1m , S23Lm , sL1 , sL , S12LM , S3L1M , S23LM , sR1 , sR;

Vh FHp12 , FHUp12 , FHVp12 , FHm12 , FHUm12 , FHVm12;

Vh HFL , HUFL , HVFL , HFR , HUFR , HVFR;

Vh HGD , HUGD , HVGD , HGU , HUGU , HVGU;

macro HLLH(hL,uL,vL,hR,uR,vR,s)

S1L = lambda1(uL); S1R = lambda1(uR);

S2L = lambda2(hL ,uL); S2R = lambda2(hR ,uR);

S3L = lambda3(hL ,uL); S3R = lambda3(hR ,uR);

S12Lm = min(S1L[].min ,S2L[].min); S12LM = max(S1L[].max ,S2L

å[].max);

S3L1m = min(S3L[].min ,S1R[].min); S3L1M = max(S3L[].max ,S1R

å[].max);

S23Lm = min(S2R[].min ,S3R[].min); S23LM = max(S2R[].max ,S3R

å[].max);

sL1 = min(S12Lm ,S3L1m); sR1 = max(S12LM ,S3L1M);

sL = min(sL1 ,S23Lm); sR = max(sR1 ,S23LM);

HFL=F(hL ,uL ,vL)[0]; HUFL=F(hL ,uL ,vL)[1]; HVFL=F(hL ,uL ,vL)[2];

HFR=F(hR ,uR ,vR)[0]; HUFR=F(hR ,uR ,vR)[1]; HVFR=F(hR ,uR ,vR)[2];

if (sL >0) {

FH#s#12 = HFL;

FHU#s#12 = HUFL;

FHV#s#12 = HVFL;

}else if (sR <0){

FH#s#12 = HFR;

FHU#s#12 = HUFR;

FHV#s#12 = HVFR;

}else if (sL <=0 & sR >=0){

FH#s#12 = (sR*HFL -sL*HFR+sL*sR*(hR -hL))/(sR -sL);

FHU#s#12 = (sR*HUFL -sL*HUFR+sL*sR*(hR*uR -hL*uL))/(sR -sL);

FHV#s#12 = (sR*HVFL -sL*HVFR+sL*sR*(hR*vR -hL*vL))/(sR -sL);

}

10

// end of the macro

HLLH(Hip12jL , Uip12jL , Vip12jL , Hip12jR , Uip12jR , Vip12jR ,p);

HLLH(Him12jL , Uim12jL , Vim12jL , Him12jR , Uim12jR , Vim12jR ,m);

Similarly, the numerical HLL flux G(a,b) defined in (18) and (19) can be written in FreeFem++ as :

macro lambda1s(v)(v)//

macro lambda2s(h,v)(v-sqrt(gravity*h))//

macro lambda3s(h,v)(v+sqrt(gravity*h))//

Vh S1D , S2D , S3D , S1U , S2U , S3U;

real S12Dm , S3D1m , S23Dm , sD1 , sD , S12DM , S3D1M , S23DM , sU1 , sU;

Vh GHp12 ,GHUp12 ,GHVp12 ,GHm12 ,GHUm12 ,GHVm12;

macro HLLG(hL,uL,vL,hR,uR,vR,s)

S1D = lambda1s(uL); S1U = lambda1s(uR);

S2D = lambda2s(hL ,vL); S2U = lambda2s(hR ,vR);

S3D = lambda3s(hL ,vL); S3U = lambda3s(hR ,vR);

S12Dm = min(S1D[].min ,S2D[].min); S12DM = max(S1D[].max ,S2D

å[].max);

S3D1m = min(S3D[].min ,S1U[].min); S3D1M = max(S3D[].max ,S1U

å[].max);

S23Dm = min(S2U[].min ,S3U[].min); S23DM = max(S2U[].max ,S3U

å[].max);

sD1 = min(S12Dm ,S3D1m); sU1 = max(S12DM ,S3D1M);

sD = min(sD1 ,S23Dm); sU = max(sU1 ,S23DM);

HGD=G(hL ,uL ,vL)[0]; HUGD=G(hL ,uL ,vL)[1]; HVGD=G(hL ,uL ,vL)[2];

HGU=G(hR ,uR ,vR)[0]; HUGU=G(hR ,uR ,vR)[1]; HVGU=G(hR ,uR ,vR)[2];

if (sD >0) {

GH#s#12 = HGD;

GHU#s#12 = HUGD;

GHV#s#12 = HVGD;

}else if (sU <0){

GH#s#12 = HGU;

GHU#s#12 = HUGU;

GHV#s#12 = HVGU;

}else if (sD <=0 & sU >=0){

GH#s#12 = (sU*HGD -sD*HGU+sD*sU*(hR -hL))/(sU -sD);

GHU#s#12 = (sU*HUGD -sD*HUGU+sD*sU*(hR*uR -hL*uL))/(sU -sD);

GHV#s#12 = (sU*HVGD -sD*HVGU+sD*sU*(hR*vR -hL*vL))/(sU -sD);

}

// end of the macro

HLLG(Hijp12D , Uijp12D , Vijp12D , Hijp12U , Uijp12U , Vijp12U ,p);

HLLG(Hijm12D , Uijm12D , Vijm12D , Hijm12U , Uijm12U , Vijm12U ,m);

5.8 Solve the problem

Finally, to solve the problem defined by it semi-discrete finite volume formulation in (8), we define
the corresponding variational problem as :
Find Ui,j ∈ Vh = {vh ∈ C0(Ω̄); vh|T ∈ P1(T),∀T ∈ Th}, such that for all ϕ ∈ Vh,

∫

Ω

Un+1
i,j ϕ−

∫

Ω

Un
i,jϕ+

∫

Ω

[
∆t

∆x

(
Fn

i+1/2,j − Fn
i−1/2,j

)
+

∆t

∆y

(
Gn

i,j+1/2 −Gn
i,j−1/2

)
−∆t · Sn

i,j

]
ϕ = 0

(21)
To this end, we can proceed in FreeFem++ as :

11

Vh u,v;

solve PH(u,v,init=op) = int2d(Th)(u*v) - int2d(Th)((H - (FHp12 -

åFHm12)*dt/Dx - (GHp12 -GHm12)*dt/Dy + SU*dt)*v);

H=u;

solve PHU(u,v,init=op) = int2d(Th)(u*v) - int2d(Th)((HU - (

åFHUp12 -FHUm12)*dt/Dx - (GHUp12 -GHUm12)*dt/Dy + SHU*dt/Dx)*v);

HU=u;

solve PHV(u,v,init=op) = int2d(Th)(u*v) - int2d(Th)((HV - (

åFHVp12 -FHVm12)*dt/Dx - (GHVp12 -GHVm12)*dt/Dy + SHV*dt/Dy)*v);

HV=u;

We note that in order to make our code faster, we can use the keyword init in the declaration of
the problem, thus if init=0 we compute the mass matrix and if init=1 we use the mass matrix
computed before.

6 Numerical simulations

We present in this section some numerical simulations, we start by the rate of convergence of the
up-wind scheme in order to verify the accuracy of this scheme. Then, we show the simulation of a
solitary wave which will cross an empty pond.

6.1 Rate of convergence

Many exact solutions for the Shallow Water equation (called Thacker’s solutions) are given in
[10, 19] in order to compute the rate of convergence of the scheme. We will choose the one with the
planar surface in a paraboloid where the moving shoreline is a circle and the topography is given
by :

zb(x, y) = −h0

(
1− (x− L/2)2 + (y − L/2)2

a2

)

where (x, y) ∈ Ω = [0;L]× [0;L], h0 is the water depth at the central point of the domain for a
zero elevation and a is the distance from this central point to the zero elevation of the shoreline.
The free surface, which has a periodic motion and remains planar in time, are given by :

h(x, y, t) =
ηh0

a2

[
2

(
x− L

2

)
cos(ωt) + 2

(
y − L

2

)
sin(ωt)

]
− zb(x, y),

u(x, y, t) = −ηω sin(ωt),
v(x, y, t) = ηω cos(ωt),

where the frequency ω is defined as ω =

√
2gh0

a
and η is a parameter.

In this simulation we consider that the analytical solution at t = 0 s is taken as initial condition and
the parameter are defining such as a = 1 m, h0 = 0.1 m, η = 0.5, L = 4 m, g = 9.8 and CFL= 0.5.

The L2-norm of the error between the exact solution and the numerical one for the conservative
variable h, hu and hv are defined as :

E(h,Ni) = |hnum(Ni)− hex(Ni)|L2 , E(hu,Ni) = |(hu)num(Ni)− (hu)ex(Ni)|L2

and E(hv,Ni) = |(hv)num(Ni)− (hv)ex(Ni)|L2 with Ni = Nx = Ny = {2i+4, i = 0 : 1 : 5};
and, for a fixed time t = 3 s, these error are given in the Table 1.

We show in Figure 4 the L2-convergence curves for the water height h and for the flows hu and hv
and we see that the rate of convergence for these three conservative variable converge to the first
order which is conform with the used up-wind scheme.

12

We remind that the rate of convergence in space for u is :

r(•, Ni) =
log (E(•, Ni−1)/E(•, Ni))

log (Ni/Ni−1)
,∀i = 0 : 1 : 5

Ni E(h,Ni) r(h,Ni) E(hu,Ni) r(hu,Ni) E(hv,Ni) r(hv,Ni)
16 0.0278598 - 0.0212665 - 0.0253648 -
32 0.0187917 0.5681 0.0145818 0.5444 0.0164372 0.6259
64 0.0116788 0.6862 0.00914136 0.6737 0.0101747 0.6920
128 0.00686053 0.7675 0.00536215 0.7696 0.00599727 0.7626
256 0.00382327 0.8435 0.00297793 0.8485 0.00334075 0.8441
512 0.00204941 0.8996 0.00159311 0.9025 0.00177952 0.9087

Table 1: L2 norm of the error and the rate of convergence for h, hu and hv.

10
−3

10
−2

10
−1

10
0

10
−3

10
−2

10
−1

10
0

log (∆x)

lo
g
(||Ψ

n
u
m
−

Ψ
e
x
||2 L

2

)

Order of accuracy in loglog scale for the Shallow Water equation

Ψ=h

Ψ=hu

Ψ=hv

order 1

Figure 4: Rate of convergence for the Shallow Water equations.

6.2 Filling an empty pond with a solitary wave

We present in Figure 5, the simulation of the propagation of a solitary wave crossing an empty
pond.

In this experience, we work in the domain [−10; 10]× [−5; 5] with M = 150 and N = 75 and we
use as initial condition and parameter :

h(x, y, 0) =
4

cosh(3(x+ 2))2
, u(x, y, 0) = v(x, y, 0) = 0,CFL = 0.5, g = 9.8,

and the bottom as : zb(x, y) = −16

5
exp

(
− (x− 5)2

8
− 5y2

8

)
+ 4 exp

(
− (x− 5)2

2
− y2

4

)
− 1.

We remark that, after crossing the empty pond by the solitary wave, this region is filled of water
and we converge to a steady state solution.

13

Figure 5: Propagation of the solitary wave crossing an empty pond for different time t =
{0.2, 1, 1.5, 10} s. Video available at : http://lamfa.u-picardie.fr/sadaka/Runup_SW2D_

Gaussian.mpeg.

7 Conclusion and perspectives

In the present article we provided a detailed description of the FreeFem++ code, designed for
solving Shallow Water equation using an approach of finite element - finite volume method in order
to simulate the Run-up for the inundation of Tsunamis waves. Special attention was payed to the
finite volume method used for the Shallow Water equations especially for the wet/dry transition
problem and described in Sections 2, 3 and 4. In Section 5, we present the details of the code for
the finite volume approach in FreeFem++. The overall performance test and validation were done
in Section 6.

Finally, in order to be able to simulate the whole life-cycle of a tsunami from generation to
inundation with FreeFem++, a proper way to deal with this problem is to use a domain
decomposition method where in the first domain the Boussinesq systems is solved as in [17] and in
the second domain, the Shallow Water equation is solved as we present here in this paper.

On the other hand, solving Shallow Water flows in 2D with FreeFem++ on unstructured mesh is
still an open problem, where an approach of Discontinuous Galerkin method could be used as in
[11].

Acknowledgements : I would like to thank Emmanuel Audusse (LAGA-Paris 13), Olivier
Delestre (LJAD, Nice), Denys Dutykh (LAMA, Savoie), Jean-Paul Chehab (LAMFA, Amiens),
Youcef Mammeri (LAMFA, Amiens) and Jacques Sainte-Marie (LJLL, Paris 6) for very helpful
discussions.

14

http://lamfa.u-picardie.fr/sadaka/Runup_SW2D_Gaussian.mpeg
http://lamfa.u-picardie.fr/sadaka/Runup_SW2D_Gaussian.mpeg

References

[1] Céline Acary-Robert, Didier Bresch and Denys Dutykh. Mathematical modeling of
powder-snow avalanche flows. Studies in Applied Mathematics, 127(1), 38 - 66, 2011.

[2] Emmanuel Audusse. Modésitation hyperbolique et analyse numérique pour les écoulements
en eaux peu profondes. Thèse de l’Université de Pierre et Marie Curie - Paris 6, 2004.

[3] Emmanuel Audusse and Marie-Odile Bristeau. A well-balanced positivity preserving
”second-order” scheme for shallow water flows on unstructured meshes. JCP, Volume 206,
Issue 1, Pages 311-333, 2005.

[4] Emmanuel Audusse, Christophe Chalons, Olivier Delestre, Nicole Goutal,
Jacques Sainte-Marie, Jan Giesselmann and Georges Sadaka. Sediment transport
modeling relaxation schemes for Saint-Venant - Exner and three layer models. Proceedings
CEMRACS’11 (submit- ted), 2011.

[5] Alfredo Bermudez and Maria Elena Vazquez. Upwind methods for hyperbolic
conservation laws with source terms. Computers & Fluids, 23(8) :1049 - 1071, 1994.

[6] Philippe Bonneton and Fabien Marche. A simple and efficient well-balanced model for
2DH bore propagation and run-up over a sloping beach. Coastal Engineering, proceedings of
the 30th International Conference, page 998-1010, 2006.

[7] Philippe Bonneton, Pierre Fabrie, Fabien Marche and Nicolas Seguin.Evaluation
of well-balanced bore-capturing schemes for 2D wetting and drying processes. Int. J. Numer.
Meth. Fluids, 53:867-894, 2007.

[8] François Bouchut, Anne Mangeney-Castelnau, Benôıt Perthame and Jean-
Pierre Vilotte. A new model of Saint-Venant and Savage-Hutter type for gravity driven
shallow water flows. C. R. Math. Acad. Sci. Paris, 336, no.6, 531-536, 2003.

[9] Olivier Delestre. Simulation du ruissellement d’eau de pluie sur des surfaces agricoles.
Thèse de l’Université d’Orléans, 2010.

[10] Olivier Delestre, Carine Lucas, Pierre-Antoine Ksinant, Frédéric Darboux,
Christian Laguerre, Thi Ngoc Tuoi Vo, Francois James and Stephane Cordier.
SWASHES: a compilation of Shallow Water Analytic Solutions for Hydraulic and Environmen-
tal Studies. HAL arXiv:1110.0288v3, 2012.

[11] Karim DjaDel, Alexandre Ern and Serge Piperno. A well-balanced Runge-
Kutta Discontinuous Galerkin method for the Shallow Water Equations with
flooding and drying. Int. J. Numer. Meth. Fluids, 58(1), 1-25, 2008.

[12] Barré de Saint-Venant. Théorie du mouvement non permanent des eaux, avec application
aux crues des rivières et à l’introduction des marées dans leur lit. Comptes Rendus des Séances
de l’Académie des Sciences. Paris. 73, 147-154, 237-240, 1871.

[13] Frédéric Dias, Denys Dutykh and Raphaël Poncet. The VOLNA code for the
numerical modeling of tsunami waves: generation, propagation and inundation. European
Journal of Mechanics B/Fluids, 30(6), 598 - 615, 2011.

15

http://hal.archives-ouvertes.fr/hal-00354000
http://tel.archives-ouvertes.fr/docs/00/04/75/79/PDF/tel-00008047.pdf
http://ac.els-cdn.com/S0021999104005157/1-s2.0-S0021999104005157-main.pdf?_tid=d1aeb3b67a4854cdf27bd5a964d535d5&acdnat=1338658686_e1fddf3e518d6c9e4fd5b8babe4fe7be
http://ac.els-cdn.com/S0021999104005157/1-s2.0-S0021999104005157-main.pdf?_tid=d1aeb3b67a4854cdf27bd5a964d535d5&acdnat=1338658686_e1fddf3e518d6c9e4fd5b8babe4fe7be
http://hal.archives-ouvertes.fr/docs/00/67/43/63/PDF/cemracs-edf_final.pdf
http://hal.archives-ouvertes.fr/docs/00/67/43/63/PDF/cemracs-edf_final.pdf
http://eproceedings.worldscinet.com/9789812709554/preserved-docs/9789812709554_0085.pdf
http://eproceedings.worldscinet.com/9789812709554/preserved-docs/9789812709554_0085.pdf
http://www.icp8.cnrs.fr/indiv/bonneton/publications/papers/papers-nearshore/Marche_etal2007.pdf
http://www.icp8.cnrs.fr/indiv/bonneton/publications/papers/papers-nearshore/Marche_etal2007.pdf
http://ac.els-cdn.com/S1631073X03001171/1-s2.0-S1631073X03001171-main.pdf?_tid=b70c690fb5fee2ff5ef34f2b2c45d85d&acdnat=1336945620_43126e23db9bab93752a193bb5807ab0
http://tel.archives-ouvertes.fr/docs/00/56/16/76/PDF/olivier.delestre_1878.pdf
http://arxiv.org/abs/1110.0288v3
http://onlinelibrary.wiley.com/store/10.1002/fld.1674/asset/1674_ftp.pdf;jsessionid=BABEBD25AA107DDBFD907ADECAA27913.d02t04?v=1&t=h31ig7ew&s=1fecd4acd6010d356402bfdc078ebee69f57c5c9
http://gallica.bnf.fr/ark:/12148/bpt6k3030d/f147n8.capture
http://gallica.bnf.fr/ark:/12148/bpt6k3030d/f147n8.capture
http://hal.archives-ouvertes.fr/hal-00454591/
http://hal.archives-ouvertes.fr/hal-00454591/

[14] Joshua M. Greenberg and A. Y. LeRoux. A well-balanced scheme for the numerical
processing of source terms in hyperbolic equation. SIAM Journal on Numerical Analysis, 33
:1-16, 1996.

[15] Ami Harten. High resolution schemes for hyperbolic conservation laws. J. Comp. Physics, 49,
357–393, 1983.

[16] Mario Ricchiuto. Contributions to the development of residual discretization for hyperbolic
conservation laws with application to shallow water flows. HDR dissertation, September 2011.

[17] Georges Sadaka. Etude mathématique et numérique d’équations d’ondes aquatiques
amorties. Thèse de l’Université de Picardie Jules Verne - Amiens, 2011.

[18] Denis Serre. Systèmes hyperboliques de lois de conservation. Parties I et II., Diderot, Paris,
1996.

[19] William Carlisle Thacker. Some exact solutions to the nonlinear shallow water wave
equations. Journal of Fluid Mechanics, 107:499-508, 1981.

16

http://www.sciencedirect.com/science/article/pii/0021999183901365
http://www.sciencedirect.com/science/article/pii/0021999183901365
http://www.math.u-bordeaux1.fr/~mricchiu/HDR-ricchiuto.pdf
http://lamfa.u-picardie.fr/sadaka/these_GS.pdf

	Introduction
	Well-balanced scheme with hydrostatic reconstruction
	HLL approximate Riemann solver
	Numerical stability
	Finite volume approach in FreeFem++
	Access to the nodes
	Boundary condition
	Cell interface
	Hydrostatic reconstruction
	CFL condition
	Flux functions and source term
	HLL flux
	Solve the problem

	Numerical simulations
	Rate of convergence
	Filling an empty pond with a solitary wave

	Conclusion and perspectives

