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Estimation of a cumulative distribution function

under interval censoring “case 1”

via warped wavelets

Christophe Chesneau1 and Thomas Willer2

Abstract: The estimation of an unknown cumulative distribution function in the
interval censoring “case 1” model from dependent sequences is considered. We
construct a new adaptive estimator based on a warped wavelet basis and a hard
thresholding rule. Under mild assumptions on the parameters of the model, consid-
ering the L2 risk and the weighted Besov balls, we prove that the estimator attains
a sharp rate of convergence. We also investigate its practical performances thanks
to simulation experiments.
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AMS 2000 Subject Classifications: 62G05, 62G20.

1 Introduction

The mathematical context of the interval censoring “case 1” model can be described as follows:
let (δi, Ui)i∈Z be a strictly stationary process where, for any i ∈ Z,

δi = 1{Xi≤Ui},

1A is the indicator function on any random event A, Xi and Ui are independent for any i,
and (Xi)i∈Z is a strictly stationary process with common unknown cumulative distribution F .
We assume that U1 admits a density, denoted by g, and we denote by G its cumulative distri-
bution function. Our goal is to estimate F under mild assumptions on g from n observations
(δ1, U1), . . . , (δn, Un) of (δi, Ui)i∈Z. This model has applications in Demography and Biology.
See e.g. [14] and [19], and the references therein.

For recent statistical results, we refer to [25], [2] and [7]. In particular, considering the
independent case, [2] have constructed adaptive penalized minimum contrast estimators built
on trigonometric, polynomial or wavelet spaces. Using the L2 risk over Besov balls, under some
boundedness assumptions on g, [2, Corollary 3.1] proves that it attains the standard rate of
convergence “n−2s/(2s+1)” where s characterizes the smoothness of F .

However, the independence assumption on (δi, Ui)i∈Z is often stringent in applications. In
this study, we investigate the adaptive estimation of F in a dependent setting (including the
independent one). The so-called strong mixing case is considered. Examples and applications
of this kind of dependence can be found in [4] and [16].

Assuming that g is known but with no boundedness assumptions on it, we develop a new
adaptive estimator based on a warped wavelet basis and a hard thresholding rule. The features
of this basis consist of a standard wavelet basis and of the definition of G related to the model.
This enables us to give a significant stability to our thresholding algorithm. Such a technique
has been already used with success in the framework of nonparametric regression with random
design by [20]. Recent works on warped wavelet basis in nonparametric statistics can be found
in [8], [9], [3], [24], [5] and [6].
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Considering the L2 risk over weighted Besov balls, we prove that our estimator attains
the rate of convergence “(lnn/n)2s/(2s+1)”, where s characterizes the smoothness of F . This
rate of convergence corresponds to the one attained in the i.i.d. case (see [2]) up to an extra
logarithmic term. Finally, we explore the numerical performances of the estimator.

The rest of the paper is organized as follows. Section 2 introduces notations and assump-
tions on the model. In Section 3, we describe warped wavelet bases on [0, 1] and weighted Besov
balls. Our adaptive wavelet estimator is defined in Section 4. Theoretical and practical results
are presented in Section 5. The proofs are postponed to Section 6.

2 Notations and assumptions

2.1 Assumptions on the dependence structure of the process

For any m ∈ Z, we define the m-th strongly mixing coefficient of (Xi, Ui)i∈Z by

am = sup
(A,B)∈F

(X,U)
−∞,0 ×F

(X,U)
m,∞

|P(A ∩B)− P(A) P(B)| , (2.1)

where F (X,U)
−∞,0 is the σ-algebra generated by the pairs of random variables . . . , (X−1, U−1), (X0, U0)

and F (X,U)
m,∞ is the σ-algebra generated by the random variables (Xm, Um), (Xm+1, Um+1), . . .

We consider the exponentially strongly mixing case: there exist two constants γ > 0 and
c > 0 such that, for any integer m ≥ 1,

am ≤ γ exp(−cm). (2.2)

This assumption is not very restrictive; some examples of processes satisfying such conditions
can be found in e.g. [26], [16], [23] and [4].

2.2 Assumptions on the densities

For the sake of simplicity, we suppose that all the considered random variables take their values
in [0, 1].

In the main part of the study, we assume that g is known. The unknown case will only be
explored in the simulation study in subsection 6.2.

We suppose that, for any interval [a, b] ⊆ [0, 1], there exists a constant C > 0 such that

(

1

b− a

∫ b

a
g(x)2dx

)1/2

≤ C
1

b− a

∫ b

a
g(x)dx. (2.3)

This “reverse Hölder inequality” is related to the Muckenhoupt weights theory. It includes
a wide variety of densities, non-necessarily bounded from above and/or below. For instance,
g(x) = (u + 1)xu, x ∈ [0, 1] and u ∈ (0, 1) satisfies (2.3). Further details can be found in [20,
subsection 4.1].

For any m ∈ {1, . . . , n}, let f(X0,U0,Xm,Um) be the density of (X0, U0,Xm, Um), f(X0,U0) the
density of (X0, U0) and, for any (y, x, y∗, x∗) ∈ [0, 1]4,

hm(y, x, y∗, x∗) =

f(X0,U0,Xm,Um)(y, x, y∗, x∗)− f(X0,U0)(y, x)f(X0,U0)(y∗, x∗). (2.4)

We suppose that there exists a constant C > 0 such that

sup
m∈{1,...,n}

sup
(x,x∗)∈[0,1]2

1

g(x)g(x∗)

∫ x

0

∫ x∗

0
|hm(y, x, y∗, x∗)|dydy∗ ≤ C. (2.5)

Note that, in the independent case, we have hm(y, x, y∗, x∗) = 0 and (2.5) is satisfied. Moreover,
functions g satisfying (2.3) and (2.5) are not necessarily bounded from below and above. Hence
our conditions are less restrictive than [2, Assumption A1].
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3 Warped wavelets and weighted Besov balls

Let N be a positive integer. We consider an orthonormal wavelet basis generated by dilations
and translations of a ”father” Daubechies-type wavelet φ and a ”mother” Daubechies-type
wavelet ψ of the family db2N (see [11]). In particular, mention that φ and ψ have compact
supports.

We set
φj,k(x) = 2j/2φ(2jx− k), ψj,k(x) = 2j/2ψ(2jx− k).

Suppose that (2.3) holds and recall that

G(x) = P(U1 ≤ x) =

∫ x

0
g(u)du, x ∈ R.

Then, with an appropriate treatment at the boundaries, there exists an integer τ satisfying 2τ ≥
2N such that, for any integer j∗ ≥ τ , any h ∈ L2([0, 1]) =

{

h : [0, 1] → R;
∫ 1
0 h

2(x)dx <∞
}

can be expanded into a warped wavelet series as

h(x) =

2j∗−1
∑

k=0

αj∗,kφj∗,k(G(x)) +

∞
∑

j=j∗

2j−1
∑

k=0

βj,kψj,k(G(x)), x ∈ [0, 1],

where

αj,k =

∫ 1

0
h(G−1(x))φj,k(x)dx, βj,k =

∫ 1

0
h(G−1(x))ψj,k(x)dx. (3.1)

See [20, subsection 3.3].
Let M > 0 and s > 0. We say that a function h in L2([0, 1]) belongs to the weighted Besov

ball Bw
s,∞(M) if there exists a constant M > 0 such that the associated wavelet coefficients

(3.1) satisfy, for any integer j ≥ τ ,

2j−1
∑

k=0

β2j,kwj,k ≤M2−j(2s+1),

where

wj,k =

∫ (k+1)/2j

k/2j

1

g(G−1(x))
dx. (3.2)

In this expression, s is a smoothness parameter. Details concerning the warped wavelets and
the analytic definition of weighted Besov balls can be found in [20, Section 7]. For the standard
wavelet basis on [0, 1], see e.g. [22] and [10].

4 Estimators

For any integer j ≥ τ and any k ∈ {0, . . . , 2j − 1}, we estimate the unknown warped wavelet
coefficients of F i.e. αj,k =

∫ 1
0 F (G

−1(x))φj,k(x)dx and βj,k =
∫ 1
0 F (G

−1(x))ψj,k(x)dx by
respectively

α̂j,k =
1

n

n
∑

i=1

δiφj,k(G(Ui)), β̂j,k =
1

n

n
∑

i=1

δiψj,k(G(Ui)). (4.1)

Some of their statistical properties are investigated in Propositions 6.1, 6.2 and 6.3 below.
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We estimate F by the following hard thresholding estimator F̂ :

F̂ (x) =

2j0−1
∑

k=0

α̂j0,kφj0,k(G(x)) +

j1
∑

j=j0

2j−1
∑

k=0

β̂j,k1{|β̂j,k|≥κρn}ψj,k(G(x)), (4.2)

where x ∈ [0, 1], j0 is an integer such that

1

2
lnn < 2j0 ≤ lnn,

α̂j0,k and β̂j,k are defined by (4.1), j1 is the integer satisfying

1

2

n

(lnn)3
< 2j1 ≤ n

(lnn)3
, (4.3)

κ is a large enough constant (the one in Proposition 6.3 below) and ρn denotes the “universal
threshold”, i.e.

ρn =

√

lnn

n
. (4.4)

Naturally, for x < 0, we put F̂ (x) = 0 and, for x > 1, F̂ (x) = 1.
Note that F̂ is adaptive: its construction does not depend on the smoothness of F .
The general idea in the construction of F̂ is to apply a term-by-term selection on the

unknown wavelet coefficients of F : only the most significant are kept. The reason is that
only these few coefficients contain the main characteristics of F . For the construction of hard
thresholding wavelet estimators in the standard nonparametric models, see e.g. [15], [13] and
[18].

When g is unknown, an intuitive adaptive estimator of F is (4.2) but, instead of G, we
consider its empirical version:

Ĝn(x) =
1

n

n
∑

i=1

1{Ui≤x}.

This plug-in method yields the hard thresholding estimator

F̂ ∗(x) =

2j0−1
∑

k=0

α̂∗
j0,kφj0,k(Ĝn(x)) +

j1
∑

j=j0

2j−1
∑

k=0

β̂∗j,k1{|β̂j,k|≥κρn}ψj,k(Ĝn(x)), (4.5)

x ∈ [0, 1], where

α̂∗
j,k =

1

n

n
∑

i=1

δiφj,k(Ĝn(Ui)), β̂∗j,k =
1

n

n
∑

i=1

δiψj,k(Ĝn(Ui)).

We do not investigate the theoretical performances of this estimator, but we use it throughout
the simulation and real data study of Section 5.2.

5 Performances of F̂

5.1 Theoretical results

Theorem 5.1 Suppose that the assumptions of Section 2 hold. Let F̂ be (4.2). Suppose that

F ∈ Bw
s,∞(M) with s > 0. Then there exists a constant C > 0 such that

E

(∫ 1

0

(

F̂ (x)− F (x)
)2
dx

)

≤ C

(

lnn

n

)2s/(2s+1)

.
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The proof of Theorem 5.1 uses a suitable decomposition of the L2 risk including some geo-
metrical properties of the warped wavelet basis and the statistical properties of the wavelet
coefficients estimators presented in Propositions 6.1, 6.2 and 6.3.

Theorem 5.1 shows that, under mild assumptions on the dependence of the observations
and on g, F̂ attains a rate of convergence close to the one for the i.i.d. case i.e. n−2s/(2s+1).
The difference is the “negligible” logarithmic term (lnn)2s/(2s+1).

Let us recall that, if we restrict our study to the independent case, contrary to [2, Assump-
tion A1], Theorem 5.1 holds without boundedness assumptions on g.

5.2 Practical results

This section is devoted to the numerical performances of F̂ . We restrict ourselves to the i.i.d.
case: no exponentially strongly mixing hypothesis is made here.

5.2.1 Preliminary remarks on the estimators

In practice, the construction and the performances of the two estimators in the case of known
or unknown design density are very close. Thus for the sake of brevity, we present only the
results for the unknown design density procedure.

We compare the performances of the warped wavelet estimator to those of the piecewise
polynomial regression estimator developped in [2]. Another procedure, named quotient esti-
mator, is also proposed in that paper. However it is generally outperformed by the regression
estimator, so we focus only on the warped wavelet and the piecewise polynomial estimators.
We name them respectively WWE and PPE in the sequel. We give examples of their behaviours
when applied to various simulated data sets and to one real data set.

In both methods, one needs to fit several preliminary parameters. For the WWE, the
calibration of the threshold κρn and of the cutoff level j1 are important practical issues. The
values given by the theory are not useful in practice. Indeed the thresholds are defined up to
some intricate ”large enough constant κ”. Moreover the cutoff level j1 defined in (4.3) is too
small in practice, as it is even lower than the minimal coarsest level value. Thus, for j1, we use
j1 = log2(n) − 1, i.e. the maximal possible level, hoping the high resolution ”noise” is filtered
thanks to thresholding.

For the thresholds, we can use an analogy with the non-parametric regression model in
random design. Indeed the censoring model amounts to observing at each design point Ui

some Bernoulli variable δi with (conditionally to Ui) expectation F (Ui) and standard deviation
√

F (Ui)(1− F (Ui)). In the usual regression model one observes at each design point Ui some
Gaussian variable δi with (conditionally to Ui) expectation F (Ui) and some given standard
error σ. Thus we calibrate κ as in regression (see [9]) as the following random value:

κr =

√

√

√

√

1

n− 2

n
∑

i=2

(δ(i) − δ(i−1))2,

where each δ(i) refers to the value δk such that Uk is the i-th higher coordinate of the vector
(Uj)1≤j≤n. Nevertheless, the standard error is highly heteroscedastic in the censoring problem:
it varies from 0 for observations near the edges of the observation interval, to 0.5 near the
median of F . Thus we also use a more conservative deterministic threshold corresponding to

κd = 0.5×
√
2 =

1√
2
.

Thus, we make sure that the high noise of the median observations is well taken into account
in the thresholds. In the sequel, we name the random threshold estimator WWEr and the

deterministic threshold estimator WWEd.
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Lastly, we use the ’Daubechies 4’ wavelet basis for the simulated data study, and the
’Daubechies 3’ wavelet basis for the real data study (as the number of observations is a bit
small for Daubechies 4 basis).

The PPE also requires to fix some preliminary parameters. First some maximal degree of
the polynomials and some maximal numbers of intervals must be put as arguments. We choose
the degree as equal to 6 and maximum number of intervals as equal to 64 for the simulated data,
and to 32 for the real data. Secondly some noise variance level must be put as an argument
as well. We make two choices corresponding to the random and deterministic values used for
WWEr and WWEd. Likewise, in the sequel, we name the corresponding estimators PPEr and

PPEd.

Hence for each data set we compare the performances of four estimators: WWEr, WWEd,
PPEr and PPEd.

Concerning the programs, the WWE is very simple to implement in practice. The program
consists mainly in simple wavelet decompositions or recompositions, computations of thresholds,
and shrinkage of some small wavelets coefficients. The PPE was implemented thanks to the
FY3P.m Matlab file and several other sub-programs (all available on Yves Rozenholc’s web
page). The implementation is much more complex, as can be seen from the programs. What
is more, the processing times necessary to compute the estimators are very different. For
example one needs a CPU time of 0.078 to compute the eight Warped Wavelets Estimators
represented in Figure 5.2.2, whereas one needs a CPU time of 670.49 to compute the eight
Piecewise Polynomial Estimators built on the same data and represented in the same figure.

5.2.2 Study with simulated data

Simulation of the data

We consider four target functions F which correspond to the following formula with values
q = 0.2, 1, 5, 50:

Fq(t) =

{

2q−1tq, t ∈ [0, 0.5],

1− 2q−1(1− t)q, t ∈ [0.5, 1].
(5.1)

These four functions are plotted in Figure 1. Furthermore we consider five different densities
of the Uis. We name them Bump1, Bump2, Pit1, Pit2 and Uniform. They correspond to the
following formulas (up to normalization constants), and are plotted in Figure 2.

• Bump1 g(x) = exp(−(100 ∗ (x− 0.5)2)) + 1,

• Pit1 g(x) = − exp(−(100 ∗ (x− 0.5)2)) + 1.05,

• Bump2 g(x) = exp(−(100 ∗ x2)) + exp(−(100 ∗ (x− 1)2)) + 1,

• Pit2 g(x) = − exp(−(100 ∗ x2))− exp(−(100 ∗ (x− 1)2)) + 1.05,

• Uniform g(x) = 1.

The non uniform densities correspond to a surplus or a lack of design points near the edges
or near the middle of the interval. TheWWE should normally capture detail coefficients in zones
of dense design, and fail to do so in low design density zones. Nevertheless, this design effect
can be counterbalanced by the variations of the level of noise in the observation, as mentioned
previously. Thus it is difficult to predict the performances of the estimator, especially in the
middle of the interval. As an example, the wavelet detail coefficients of the targets are plotted
in Figure 3. One can remark that Fq has high detail coefficients near the edges of the interval
[0, 1] when q is small, and at the middle of the interval [0, 1] when q is large. One can expect
estimation problems for example for the F5 or F50 functions in the case of the ’Pit1’ design
density.
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Figure 1: Four target cumulative distribution functions: F0.2, F1, F5, F50 (from left to right)
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Figure 2: Densities of the (Ui)s: Bump1, Pit1, Bump2, Pit2 and Uniform (from left to right)

0 0.5 1
−0.5

0

0.5
Lev 3

0 0.5 1
−0.1

0

0.1
Lev 3

0 0.5 1
−0.2

0

0.2
Lev 3

0 0.5 1
−2

0

2
Lev 3

0 0.5 1
−0.1

0

0.1
Lev 4

0 0.5 1
−0.05

0

0.05
Lev 4

0 0.5 1
−0.05

0

0.05
Lev 4

0 0.5 1
−0.5

0

0.5
Lev 4

0 0.5 1
−0.2

0

0.2
Lev 5

0 0.5 1
−0.01

0

0.01
Lev 5

0 0.5 1
−0.01

0

0.01
Lev 5

0 0.5 1
−0.2

0

0.2
Lev 5

0 0.5 1
−0.1

0

0.1
Lev 6

0 0.5 1
−0.02

0

0.02
Lev 6

0 0.5 1
−2

0

2
x 10

−3Lev 6

0 0.5 1
−0.2

0

0.2
Lev 6

0 0.5 1
−0.2

0

0.2
Lev 7

0 0.5 1
−5

0

5
x 10

−3Lev 7

0 0.5 1
−5

0

5
x 10

−4Lev 7

0 0.5 1
−0.05

0

0.05
Lev 7

0 0.5 1
−0.05

0

0.05
Lev 8

0 0.5 1
−2

0

2
x 10

−4Lev 8

0 0.5 1
−5

0

5
x 10

−5Lev 8

0 0.5 1
−5

0

5
x 10

−3Lev 8

Figure 3: Detail wavelet coefficients of each target function: the first row relates to F0.2, the second to F1, the

third to F5 and the fourth to F50.
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Figure 4: Data with (Ui)s (uniformly distributed) on axis 1, and their corresponding (δi)s on axis 2, for the

F50 function.
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Figure 5: Random thresholds (lower horizontal bars), deterministic thresholds (higher horizontal bars), wavelet

detail coefficients of F50 (first row of graphics), wavelet detail coefficients of the (δi)s (second row of graphics)

An example of data and wavelet estimator

An example of the data on which the estimators are based is given in Figures 4 and 5 (for
the cdf F50 and for a uniform distribution of the Uis). Figure 4 represents the couples (Ui, δi).
The second row of Figure 5 gives the detail wavelet coefficients of the sequence (δσU (i))i∈{1,...,n},
where σU is the following permutation: σU (i) is the index j such that Uj is the i

st largest element
of the sequence U . These coefficients are approximations of the ones given in equation (4.1), as
their construction consists in replacing G by the empirical pdf Ĝn in their expressions. They
should be estimations of the coefficients of the target function, which are plotted in the first
row of Figure 5. Then the estimation consists in trying to select the coefficients corresponding
to the signal F , and to put to zero those corresponding to the ”noise”.

As one can see from Figure 5, the thresholding is a hard task as the coefficients of the data
are significantly different from the target coefficients. This may stem from the high noise of the
observations in the middle of the interval, as discussed previously. The deterministic threshold
is conservative as all the detail coefficients are thresholded. The random threshold is too low
and leaves high resolution noise unfiltered. The corresponding estimators can be seen in Figure
6, and WWEr indeed contains artefacts in the middle of the interval.

Some examples of results

We give examples of realizations of the 4 estimators for all the 20 simulated data sets.
Figures 6, 7, 8, 9, 10 give examples for respectively the Uniform, Bump1, Pit1, Bump2, and
Pit2 design densities. Each figure represents the target function (dashed line) and the estimator
(solid line). We can draw the following conclusions.
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• All the estimators behave rather properly at the edges of the interval, while there are
sometimes problems in the middle of the interval. This is coherent with the variations of
the noise variance, as discussed previously. As one could expect, the random threshold
estimators have poor performances in the middle of the interval for the Uniform and Pit1
designs.

• Generally, the deterministic threshold estimators are better than the random threshold
estimators. Probably the latter underestimate the noise level in the middle of the interval,
and thus their performances are poor, especially when the number of observations in this
zone is small.

• For the F0.2 or F1 targets, all the estimators are generally rather close. One can remark
however that PPE is a bit better than WWE. One can check that they consist of rough
approximation methods: for WWE all the detail coefficients are cut, and for PPE low
degree polynomials and few intervals are selected. For WWE, one may ask oneself if the
results could be improved by using other calibrations of κ and j1. For this purpose, one
can compute some ”oracle” estimator in the sense that it uses the threshold and the cutoff
values which minimize the mean square error among all estimators of the type of Section
4, except with κ and j1 left free. Of course this estimator is completely inaccessible in
practice. Monte Carlo approximations of the mean square error show that the oracle
strategy consists in putting all the detail coefficients to zero. Thus these two functions
probably lead to globally noisy observations, and it must be hopeless to try to recover
details of the targets in these cases.

• For the F5 target, WWE generally outperforms PPE. However, for the F50 target, PPE
generally outperforms WWE.

5.2.3 Study with real data

We use a data set concerning a tumorigenicity experiment conducted by the National Toxicology
Program (NTP) which is described and summarized in Dunson and Dinse (2002). There are
four sets of data. We use only the one corresponding to the ’control’ group and the presence of
adrenal tumor. The subjects were fifty rats or mice. TheXis are unobserved dates of occurrence
of an adrenal tumor and the Ui are dates of death. Every month during 25 months, all the
dead mice or rats were examined to check if they had a tumor or not, which corresponds to
respectively δi = 1 and δi = 0. The experience stopped after the 25th month (we consider this
date as the 26th month) when all the remaining were killed and examined.

Several remarks need to be made on this data set. First at month 26 the data show that 5
out of the 13 remaining mice had no tumor, thus the upper bound of the support of F was not
reached. This is why in the sequel, our estimators stop at about 0.7 and not 1. Secondly, the
design dates cannot be considered as realizations of continuous random variables. In particular,
since the observations are gathered by months, several deaths occurred at exactly the same time.
Thus we considered that all the deaths at month m were in fact distributed on a regular grid
between months m− 1 and m.

The four estimators are plotted in Figure 11. The two thresholding techniques yield to the
same estimator. The PPE yields a rough one degree polynomial estimation, whereas the WWE
yields a more detailed curve.
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Figure 6: Uniform design: estimators WWEd, WWEr, PPEd, PPEr (left to right) for targets F0.2, F1, F5, F50
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Figure 7: Bump1 design: estimators WWEd, WWEr, PPEd, PPEr (left to right) for targets F0.2, F1, F5, F50

(from top to bottom)
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Figure 8: Pit1 design: estimators WWEd, WWEr, PPEd, PPEr (left to right) for targets F0.2, F1, F5, F50

(from top to bottom)
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Figure 9: Bump2 design: estimators WWEd, WWEr, PPEd, PPEr (left to right) for targets F0.2, F1, F5, F50

(from top to bottom)
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Figure 10: Pit2 design: estimators WWEd, WWEr, PPEd, PPEr (left to right) for targets F0.2, F1, F5, F50

(from top to bottom)
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Figure 11: Estimators WWEd, WWEr, PPEd, PPEr (left to right) for the NTP data set
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5.3 Conclusion and discussion

In this paper we develop a new adaptive estimator for the cumulative distribution function
under interval censoring “case 1” for possible dependent data. It is constructed from warped
wavelet basis and a hard thresholding rule. Theoretical results show the good performance
of our estimator under mild assumptions on the model (including vanishing density g). The
practical performances were investigated thanks to a comparison with the estimator developped
in [2]. The wavelet estimator displays generally satisfying performances, provided a conservative
calibration of the threshold is made. Moreover it is simpler and faster to compute than the
estimator of [2].

Possible perspectives of this work are to

• determine the rate of convergence of F̂ ∗ (4.5) under the L2 risk over Besov balls,

• relax assumptions (2.2) and/or (2.5),

• improve the obtained rate of convergence by considering more sophisticated thresholding
rules as those developed in [1].

6 Proofs

In this section, we suppose that the assumptions of Section 2 hold. Moreover, C denotes any
constant that does not depend on j, k and n. Its value may change from one term to another
and may depend on φ or ψ.

6.1 Auxiliary results on (4.1)

Proposition 6.1 Suppose that the assumptions of Section 2 hold. For any integer j ≥ j0 such

that 2j ≤ n and any k ∈ {0, . . . , 2j − 1}, let αj,k =
∫ 1
0 F (G

−1(x))φj,k(x)dx and α̂j,k be defined

as in (4.1). Then α̂j,k is an unbiased estimator for αj,k and there exists a constant C > 0 such

that

Var(α̂j,k) ≤ C
1

n
,

Let us mention that Proposition 6.1 can be proved with β̂j,k (4.1) instead of αj,k and

βj,k =
∫ 1
0 F (G

−1(x))ψj,k(x)dx instead of αj,k.

Proof of Proposition 6.1. We have

E(α̂j,k) = E(δ1φj,k(G(U1))) = E
(

1{Xi≤Ui}φj,k(G(U1))
)

=

∫ 1

0

∫ u

0
f(x)φj,k(G(u))g(u)dxdu =

∫ 1

0
F (u)φj,k(G(u))g(u)du

=

∫ 1

0
F (G−1(u))φj,k(u)du = αj,k.

An elementary covariance inequality yields

Var (α̂j,k) =
1

n2

n
∑

v=1

n
∑

ℓ=1

Cov (δvφj,k(G(Uv)), δℓφj,k(G(Uℓ))) ≤ S+T, (6.1)

where

S =
1

n
Var (δ1φj,k(G(U1)))
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and

T =
2

n2

∣

∣

∣

∣

∣

n
∑

v=2

v−1
∑

ℓ=1

Cov (δvφj,k(G(Uv)), δℓφj,k(G(Uℓ)))

∣

∣

∣

∣

∣

.

Since δ1 ≤ 1, we have

S ≤ 1

n
E
(

(δ1φj,k(G(U1)))
2
)

≤ 1

n
E
(

(φj,k(G(U1)))
2
)

=
1

n

∫ 1

0
(φj,k(G(x)))

2g(x)dx =
1

n

∫ 1

0
(φj,k(x))

2dx =
1

n
. (6.2)

It follows from the stationarity of (δi, Ui)i∈Z and 2j ≤ n that

T =
2

n2

∣

∣

∣

∣

∣

n
∑

m=1

(n−m)Cov (δ0φj,k(G(U0)), δmφj,k(G(Um)))

∣

∣

∣

∣

∣

≤ 2

n

n
∑

m=1

|Cov (δ0φj,k(G(U0)), δmφj,k(G(Um)))| = T1 +T2, (6.3)

where

T1 =
2

n

2j−1
∑

m=1

|Cov (δ0φj,k(G(U0)), δmφj,k(G(Um)))|

and

T2 =
2

n

n
∑

m=2j

|Cov (δ0φj,k(G(U0)), δmφj,k(G(Um)))| .

Upper bound for T1. Using (2.4), (2.5) and the change of variables y = 2jx− k, we obtain

|Cov (δ0φj,k(G(U0)), δmφj,k(G(Um)))|

=

∣

∣

∣

∣

∫ 1

0

∫ 1

0

∫ 1

0

∫ 1

0
hm(y, x, y∗, x∗)

(

1{y≤x}φj,k(G(x))1{y∗≤x∗}φj,k(G(x∗))
)

dydxdy∗dx∗

∣

∣

∣

∣

≤
∫ 1

0

∫ x∗

0

∫ 1

0

∫ x

0
|hm(y, x, y∗, x∗)| |φj,k(G(x))φj,k(G(x∗))| dydxdy∗dx∗

≤ C

(∫ 1

0
|φj,k(G(x))|g(x)dx

)2

≤ C

(∫ 1

0
|φj,k(x)|dx

)2

≤ C2−j.

Therefore

T1 ≤ C
1

n
2−j2j = C

1

n
. (6.4)

Upper bound for T2. Applying the Davydov inequality for strongly mixing processes (see [12]),
for any q ∈ (0, 1), we have

|Cov (δ0φj,k(G(U0)), δmφj,k(G(Um)))|

≤ Caqm

(

E
(

|δ0φj,k(G(U0))|2/(1−q)
))1−q

≤ Caqm

(

E
(

|φj,k(G(U0))|2/(1−q)
))1−q

≤ Caqm

(

sup
x∈[0,1]

|φj,k(G(x))|
)2q

(

E
(

(φj,k(G(U0)))
2
))1−q

.

We have supx∈[0,1] |φj,k(x)| ≤ C2j/2 and, by (6.2),

E
(

(φj,k(G(U0)))
2
)

≤ 1.
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Therefore

|Cov (δ0φj,k(G(U0)), δmφj,k(G(Um)))| ≤ C2qjaqm.

Hence

T2 ≤ C
1

n
2qj

n
∑

m=2j

aqm ≤ C
1

n

n
∑

m=2j

mqaqm ≤ C
1

n
. (6.5)

It follows from (6.3), (6.4) and (6.5) that

T ≤ C
1

n
. (6.6)

Combining (6.1), (6.2) and (6.6), we obtain

Var (α̂j,k) ≤ C
1

n
.

The proof of Proposition 6.1 is complete.

�

Proposition 6.2 Suppose that the assumptions of Section 2 hold. For any integer j ≥ j0 such

that 2j ≤ n and any k ∈ {0, . . . , 2j − 1}, let βj,k =
∫ 1
0 F (G

−1(x))ψj,k(x)dx and β̂j,k be defined

as in (4.1). Then there exists a constant C > 0 such that

E

(

(

β̂j,k − βj,k

)4
)

≤ C2j
1

n
.

Proof of Proposition 6.2. Observe that

|β̂j,k − βj,k| ≤ |β̂j,k|+ |βj,k| ≤ sup
(x,y)∈[0,1]2

|yψj,k(G(x))| + C

≤ sup
x∈[0,1]

|ψj,k(x)|+ C ≤ C2j/2. (6.7)

Using (6.7) and Proposition 6.1, we obtain

E

(

(

β̂j,k − βj,k

)4
)

≤ C2j E

(

(

β̂j,k − βj,k

)2
)

≤ C2j
1

n
.

The proof of Proposition 6.2 is complete.

�

Proposition 6.3 Suppose that the assumptions of Section 2 hold. For any j ∈ {j0, . . . , j1} and

any k ∈ {0, . . . , 2j − 1}, let βj,k =
∫ 1
0 F (G

−1(x))ψj,k(x)dx, β̂j,k be (4.1) and ρn be defined as in

(4.4). Then there exist two constants, κ > 0 and C > 0, such that

P
(

|β̂j,k − βj,k| ≥ κρn/2
)

≤ C
1

n4
.

Proof of Proposition 6.3. We shall use the Bernstein inequality for exponentially
strongly mixing process presented in Lemma 6.1 below. The proof can be found in [21].
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Lemma 6.1 ([21]) Let γ > 0, c > 0 and (Zi)i∈Z be a strictly stationary process defined on a

probability space (Ω,A,P) with the m-th strongly mixing coefficient (2.1). Let n be a positive

integer, h : R → R be a measurable function and, for any i ∈ Z, Vi = h(Zi). We assume that

E(V1) = 0 and there exists a constant M > 0 satisfying |V1| ≤M . Then, for any m ∈ {1, . . . , n}
and any λ > 0, we have

P

(∣

∣

∣

∣

∣

1

n

n
∑

i=1

Vi

∣

∣

∣

∣

∣

≥ λ

)

≤ 4 exp

(

− λ2n

16(Dm/m+ λMm/3)

)

+ 32
M

λ
nam,

where Dm = maxl∈{1,...,2m} Var
(

∑l
i=1 Vi

)

.

For any i ∈ {1, . . . , n}, set
Vi = δiψj,k(G(Ui))− βj,k.

Then

P
(

|β̂j,k − βj,k| ≥ κρn/2
)

= P

(∣

∣

∣

∣

∣

1

n

n
∑

i=1

Vi

∣

∣

∣

∣

∣

≥ κρn/2

)

, (6.8)

V1, . . . , Vn are identically distributed, depend on the strictly stationary strongly mixing process
(δi, Ui)i∈Z satisfying (2.2), Propositions 6.1 and 6.2 give

E (V1) = 0, E
(

V 2
1

)

≤ E
(

(δ1φj,k(G(U1)))
2
)

≤ 1,

and, using similar arguments to (6.7), |V1| ≤ C2j/2 ≤ C2j1/2 ≤ C(n/(ln n)3)1/2. Now set
m = [u lnn] with u > 0 (chosen later). Proceeding as in the bounds of S and T1 in the proof
of Proposition 6.1 with l instead of n, we have

max
l∈{1,...,2m}

Var

(

l
∑

i=1

Vi

)

≤ C max
l∈{1,...,2m}

(l + l22−j) ≤ C max
l∈{1,...,2m}

(l + l22−j0)

≤ C

(

m+
m2

lnn

)

≤ Cm.

It follows from Lemma 6.1 applied with these V1, . . . , Vn, λ = κCρn, ρn = (lnn/n)1/2,
m = u lnn with u > 0 (chosen later), M = C(n/(lnn)3)1/2 and (2.2) that

P
(

|β̂j,k − βj,k| ≥ κρn/2
)

≤ C

(

exp

(

−C κ2ρ2nn

1 + κρnmM

)

+
n1/2

ρn(lnn)3/2
n exp(−cm)

)

≤ C

(

exp

(

−C κ2 lnn

1 + κ(ln n/n)1/2u lnn(n/(lnn)3)1/2

)

+ n2 exp(−cu ln n)
)

≤ C
(

n−Cκ2/(1+κu) + n2−cu
)

.

Taking κ and u large enough, we obtain

P
(

|β̂j,k − βj,k| ≥ κρn/2
)

≤ C
1

n4
.

This ends the proof of Proposition 6.3.

�
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6.2 Proof of Theorem 5.1

Proof of Theorem 5.1. Since F ∈ L2([0, 1]), we can write

F (x) =

2j0−1
∑

k=0

αj0,kφj0,k(G(x)) +

∞
∑

j=j0

2j−1
∑

k=0

βj,kψj,k(G(x)), x ∈ [0, 1],

where αj0,k =
∫ 1
0 F (G

−1(x))φj0,k(x)dx and βj,k =
∫ 1
0 F (G

−1(x))ψj,k(x)dx.
We have, for any x ∈ [0, 1],

F̂ (x)− F (x)

=
2j0−1
∑

k=0

(α̂j0,k − αj0,k)φj0,k(G(x)) +

j1
∑

j=j0

2j−1
∑

k=0

(

β̂j,k1{|β̂j,k|≥κρn} − βj,k

)

ψj,k(G(x))

−
∞
∑

j=j1+1

2j−1
∑

k=0

βj,kψj,k(G(x)).

We now need the following lemma which is an immediate consequence of [20, Lemma 2] and
the Minkowski inequality.

Lemma 6.2 ([20]) Suppose that (2.3) holds. Then, for any sequences (uj,k) ∈ ℓ2(N
2) and any

integers j0 and j1 such that j1 > j0 ≥ j0, there exists a constant C > 0 such that

∫ 1

0





j1
∑

j=j0

2j−1
∑

k=0

uj,kψj,k(G(x))





2

dx ≤ C







j1
∑

j=j0

2j/2





2j−1
∑

k=0

u2j,kwj,k





1/2






2

,

where wj,k is defined by (3.2).

It follows from Lemma 6.2 and the Cauchy-Schwarz inequality that

E

(∫ 1

0

(

F̂ (x)− F (x)
)2
dx

)

≤ C(F+G+H), (6.9)

where

F = 2j0
2j0−1
∑

k=0

E
(

(α̂j0,k − αj0,k)
2
)

wj0,k,

G =







j1
∑

j=j0

2j/2





2j−1
∑

k=0

E

(

(

β̂j,k1{|β̂j,k|≥κρn} − βj,k

)2
)

wj,k





1/2






2

and

H =







∞
∑

j=j1+1

2j/2





2j−1
∑

k=0

β2j,kwj,k





1/2






2

.

Using Proposition 6.1 and
∑2j0−1

k=0 wj0,k = 1, we obtain

F ≤ C
1

n
2j0

2j0−1
∑

k=0

wj0,k ≤ C
lnn

n
≤ C

(

lnn

n

)2s/(2s+1)

. (6.10)
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Since F ∈ Bw
s,∞(M), we have

H ≤ C





∞
∑

j=j1+1

2−js





2

≤ C2−2j1s ≤ C

(

(lnn)3

n

)2s

≤ C

(

lnn

n

)2s/(2s+1)

. (6.11)

Let us now bound the term G. Observe that

G ≤ C(G1 +G2 +G3 +G4), (6.12)

where

G1 =







j1
∑

j=j0

2j/2





2j−1
∑

k=0

E

(

(

β̂j,k − βj,k

)2
1{|β̂j,k|≥κρn}1{|βj,k|<κρn/2}

)

wj,k





1/2






2

,

G2 =







j1
∑

j=j0

2j/2





2j−1
∑

k=0

E

(

(

β̂j,k − βj,k

)2
1{|β̂j,k|≥κρn}1{|βj,k|≥κρn/2}

)

wj,k





1/2






2

,

G3 =







j1
∑

j=j0

2j/2





2j−1
∑

k=0

E
(

β2j,k1{|β̂j,k|<κρn}1{|βj,k|≥2κρn}
)

wj,k





1/2






2

and

G4 =







j1
∑

j=j0

2j/2





2j−1
∑

k=0

E
(

β2j,k1{|β̂j,k|<κρn}1{|βj,k|<2κρn}
)

wj,k





1/2






2

.

Upper bounds for G1 +G3. Note that
{

|β̂j,k| < κρn, |βj,k| ≥ 2κρn

}

⊆
{

|β̂j,k − βj,k| > κρn/2
}

,

{

|β̂j,k| ≥ κρn, |βj,k| < κρn/2
}

⊆
{

|β̂j,k − βj,k| > κρn/2
}

and
{

|β̂j,k| < κρn, |βj,k| ≥ 2κρn

}

⊆
{

|βj,k| ≤ 2|β̂j,k − βj,k|
}

.

So

G1 +G3 ≤ C







j1
∑

j=j0

2j/2





2j−1
∑

k=0

E

(

(

β̂j,k − βj,k

)2
1{|β̂j,k−βj,k|>κρn/2}

)

wj,k





1/2






2

.

It follows from the Cauchy-Schwarz inequality, Proposition 6.2, Proposition 6.3 and 2j ≤ 2j1 ≤ n
that

E

(

(

β̂j,k − βj,k

)2
1{|β̂j,k−βj,k|>κρn/2}

)

≤
(

E

(

(

β̂j,k − βj,k

)4
))1/2

(

P
(

|β̂j,k − βj,k| > κρn/2
))1/2

≤ C

(

2j
1

n

)1/2( 1

n4

)1/2

≤ C
1

n2
.
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Since
∑2j−1

k=0 wj,k = 1, we have

G1 +G3 ≤ C
1

n2







j1
∑

j=j0

2j/2





2j−1
∑

k=0

wj,k





1/2






2

= C
1

n2





j1
∑

j=j0

2j/2





2

≤ C
1

n2
2j1 ≤ C

1

n
≤ C

(

lnn

n

)2s/(2s+1)

. (6.13)

Upper bound for G2. Using again Proposition 6.2, we obtain

E

(

(

β̂j,k − βj,k

)2
)

≤ C
1

n
≤ C

lnn

n
.

Hence

G2 ≤ C
lnn

n







j1
∑

j=j0

2j/2





2j−1
∑

k=0

1{|βj,k|>κρn/2}wj,k





1/2






2

.

Let j2 be the integer defined by

1

2

( n

lnn

)1/(2s+1)
< 2j2 ≤

( n

lnn

)1/(2s+1)
. (6.14)

We have

G2 ≤ C(G2,1 +G2,2),

where

G2,1 =
lnn

n







j2
∑

j=j0

2j/2





2j−1
∑

k=0

1{|βj,k|>κρn/2}wj,k





1/2






2

and

G2,2 =
lnn

n







j1
∑

j=j2+1

2j/2





2j−1
∑

k=0

1{|βj,k|>κρn/2}wj,k





1/2






2

.

Using 1{|βj,k|>κρn/2} ≤ 1 and
∑2j−1

k=0 wj,k = 1,

G2,1 ≤ C
lnn

n







j2
∑

j=j0

2j/2





2j−1
∑

k=0

wj,k





1/2






2

= C
lnn

n





j2
∑

j=j0

2j/2





2

≤ C
lnn

n
2j2 ≤ C

(

lnn

n

)2s/(2s+1)

and, since F ∈ Bw
s,∞(M),

G2,2 ≤ C
lnn

nρ2n







j1
∑

j=j2+1

2j/2





2j−1
∑

k=0

β2j,kwj,k





1/2






2

≤ C





j1
∑

j=j2+1

2−js





2

≤ C2−2j2s ≤ C

(

lnn

n

)2s/(2s+1)

.
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So

G2 ≤ C

(

lnn

n

)2s/(2s+1)

. (6.15)

Upper bound for G4. We have

G4 ≤







j1
∑

j=j0

2j/2





2j−1
∑

k=0

β2j,k1{|βj,k|<2κρn}wj,k





1/2






2

.

Let j2 be the integer (6.14). Then

G4 ≤ C(G4,1 +G4,2),

where

G4,1 =







j2
∑

j=j0

2j/2





2j−1
∑

k=0

β2j,k1{|βj,k|<2κρn}wj,k





1/2






2

and

G4,2 =







j1
∑

j=j2+1

2j/2





2j−1
∑

k=0

β2j,k1{|βj,k|<2κρn}wj,k





1/2






2

.

Using β2j,k1{|βj,k|<2κρn} ≤ Cρ2n and
∑2j−1

k=0 wj,k = 1, we have

G4,1 ≤ Cρ2n







j2
∑

j=j0

2j/2





2j−1
∑

k=0

wj,k





1/2






2

= C
lnn

n





j2
∑

j=j0

2j/2





2

≤ C
lnn

n
2j2 ≤ C

(

lnn

n

)2s/(2s+1)

.

Since F ∈ Bw
s,∞(M), we have

G4,2 ≤







j1
∑

j=j2+1

2j/2





2j−1
∑

k=0

β2j,kwj,k





1/2






2

≤ C





j1
∑

j=j2+1

2−js





2

≤ C2−2j2s ≤ C

(

lnn

n

)2s/(2s+1)

.

So

G4 ≤ C

(

lnn

n

)2s/(2s+1)

. (6.16)

It follows from (6.12), (6.13), (6.15) and (6.16) that

G ≤ C

(

lnn

n

)2s/(2s+1)

. (6.17)

Combining (6.9), (6.10), (6.11) and (6.17), we have

E

(∫ 1

0

(

F̂ (x)− F (x)
)2
dx

)

≤ C

(

lnn

n

)2s/(2s+1)

.

The proof of Theorem 5.1 is complete.
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[18] Härdle, W., Kerkyacharian, G., Picard, D. and Tsybakov, A. (1998). Wavelet, Approxi-

mation and Statistical Applications. Lectures Notes in Statistics New York 129, Springer
Verlag.

[19] Jewell, N. P. and van der Laan, M. (2004). Current status data: review, recent develop-

ments and open problems. Advances in survival analysis, 625-642, Handbook of Statist., 23,
Elsevier, Amsterdam.

[20] Kerkyacharian, G. and Picard, D. (2004). Regression in random design and warped
wavelets. Bernoulli, 10(6) :1053-1105.

[21] Liebscher, E. (2001). Estimation of the density and the regression function under mixing
conditions. Statist. Decisions, 19, (1), 9-26.

[22] Meyer, Y. (1992). Wavelets and Operators. Cambridge University Press, Cambridge.

[23] Modha, D. and Masry, E. (1996). Minimum complexity regression estimation with weakly
dependent observations. IEEE Trans. Inform. Theory, 42, 2133-2145.

[24] Pham Ngoc, T. M. (2009). Regression in random design and Bayesian warped wavelets
estimators. Electronic Journal of Statistics, 3, 1084-1112.

[25] van der Vaart, A. and van der Laan, M. J. (2006). Estimating a survival distribution with
current status data and high-dimensional covariates. Int. J. Biostat., 2, Art 9, 42pp.

[26] Withers, C. S. (1981). Conditions for linear processes to be strong-mixing. Zeitschrift für
Wahrscheinlichkeitstheorie und Verwandte Gebiete, 57, 477-480.


