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Estimation of a cumulative distribution function

under interval censoring “case 1”

via warped wavelets

Christophe Chesneau1 and Thomas Willer2

Abstract: The estimation of an unknown cumulative distribution function in
the interval censoring “case 1” model from dependent sequences is considered.
We construct a new adaptive estimator based on a warped wavelet basis and
a hard thresholding rule. Under mild assumptions on the parameters of the
model, considering the L2 risk and the weighted Besov balls, we prove that
the estimator attains a sharp rate of convergence. We also investigate its
practical performances thanks to simulation experiments.
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1 Introduction

The mathematical context of the interval censoring “case 1” model can be described as
follows: let (δi, Ui)i∈Z be a stationary process where, for any i ∈ Z,

δi = 1{Xi≤Ui},

1A is the indicator function on any random event A, (Xi)i∈Z and (Ui)i∈Z are independent,
and (Xi)i∈Z is a stationary process with common unknown cumulative distribution F .
We assume that U1 admits a density, denoted by g, and we denote by G its cumulative
distribution function. Our goal is to estimate F under mild assumptions on g from n ob-
servations (δ1, U1), . . . , (δn, Un) of (δi, Ui)i∈Z. This model has applications in Demography
and Biology. See e.g. [9] and [13], and the references there in.

For recent statistical results, we refer to [19] and [1]. In particular, considering the
independent case, [1] have constructed adaptive penalized minimum contrast estimators
built on trigonometric, polynomial or wavelet spaces. Using the L2 risk over Besov balls,
under some boundedness assumptions on g, [1, Corollary 3.1] proves that it attains the
standard rate of convergence “n−2s/(2s+1)” where s characterizes the smoothness of F .

However, the independence assumption on (δi, Ui)i∈Z is often stringent in applica-
tions. In this study, we investigate the adaptive estimation of F in a dependent setting
(including the independent one). The so-called strong mixing case is considered. Exam-
ples and applications of this kind of dependence can be found in [3] and [11].

Assuming that g is known but with no boundedness assumptions on it, we develop
a new adaptive estimator based on a warped wavelet basis and a hard thresholding rule.
The features of this basis consist of a standard wavelet basis and of the definition of G

1Université de Caen, LMNO, Campus II, Science 3, 14032, Caen, France
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related to the model. This enables us to give a significant stability to our thresholding
algorithm. Such a technique has been already used with success in the framework of
nonparametric regression with random design by [14]. Recent works on warped wavelet
basis in nonparametric statistics can be found in [4], [5], [2] and [18].

Considering the L2 risk over weighted Besov balls, we prove that our estimator
attains the rate of convergence “(lnn/n)2s/(2s+1)”, where s characterizes the smoothness
of F . This rate of convergence corresponds to the one attained in the i.i.d. case (see [1])
up to an extra logarithmic term. Finally, we explore the numerical performances of the
estimator.

The rest of the paper is organized as follows. Section 2 introduces notations and
assumptions on the model. In Section 3, we describe warped wavelet bases on [0, 1] and
weighted Besov balls. Our adaptive wavelet estimator is defined in Section 4. Theoretical
and practical results are presented Section 5. The proofs are postponed to Section 6.

2 Notations and assumptions

2.1 Assumptions on the dependence structure of the process

For any m ∈ Z, we define the m-th strongly mixing coefficient of (δi, Ui)i∈Z by

am = sup
(A,B)∈F

(δ,U)
−∞,0×F

(δ,U)
m,∞

|P(A ∩B)− P(A) P(B)| , (2.1)

where F (δ,U)
−∞,0 is the σ-algebra generated by the pairs of random variables . . . , (δ−1, U−1), (δ0, U0)

and F (δ,U)
m,∞ is the σ-algebra generated by the random variables (δm, Um), (δm+1, Um+1), . . .

We consider the exponentially strongly mixing case: there exist two known constants
γ > 0 and c > 0 such that, for any integer m ≥ 1,

am ≤ γ exp(−cm). (2.2)

This assumption is not very restrictive; some examples of processes satisfying such con-
ditions can be found in e.g. [20], [11], [17] and [3].

2.2 Assumptions on the densities

For the sake of simplicity, we suppose that all the considered random variables take their
values in [0, 1].

In the main part of the study, we assume that g is known. The unknown case will
only be explored in the simulation study in subsection 6.2.

We suppose that, for any interval [a, b] ⊆ [0, 1], there exists a constant C > 0 such
that

(

1

b− a

∫ b

a

g(x)2dx

)1/2

≤ C
1

b− a

∫ b

a

g(x)dx. (2.3)

This “reverse Hölder inequality” is related to the Muckenhoupt weights theory. It in-
cludes a wide variety of densities, non-necessarily bounded from above and/or below. For
instance, g(x) = (u+1)xu, x ∈ [0, 1] and u ∈ (0, 1) satisfies (2.3). Further details can be
found in [14, subsection 4.1].
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For any m ∈ {1, . . . , n}, let f(δ0,U0,δm,Um) be the density of (δ0, U0, δm, Um), f(δ0,U0) the
density of (δ0, U0) and, for any (y, x, y∗, x∗) ∈ [0, 1]4,

hm(y, x, y∗, x∗) =

f(δ0,U0,δm,Um)(y, x, y∗, x∗)− f(δ0,U0)(y, x)f(δ0,U0)(y∗, x∗). (2.4)

We suppose that there exists a known constant C > 0 such that

sup
m∈{1,...,n}

sup
(y,x,y∗,x∗)∈[0,1]4

1

g(x)g(x∗)
|hm(y, x, y∗, x∗)| ≤ C. (2.5)

Note that, in the independent case, we have hm(y, x, y∗, x∗) = 0 and (2.5) is satisfied.
Moreover, functions g satisfying (2.3) and (2.5) are not necessarily bounded from below
and above. Hence our conditions are less restrictive than [1, Assumption A1].

3 Warped wavelets and weighted Besov balls

Let N be a positive integer. We consider an orthonormal wavelet basis generated by
dilations and translations of a ”father” Daubechies-type wavelet φ and a ”mother”
Daubechies-type wavelet ψ of the family db2N . In particular, φ and ψ have compact
supports,

∫

φ(x)dx = 1 and, for any r ∈ {0, . . . , N − 1},
∫

xrψ(x)dx = 0.
Set

φj,k(x) = 2j/2φ(2jx− k), ψj,k(x) = 2j/2ψ(2jx− k).

Suppose that (2.3) holds and recall that

G(x) = P(U1 ≤ x) =

∫ x

0

g(u)du, x ∈ R.

Then, with an appropriate treatment at the boundaries, there exists an integer τ satis-
fying 2τ ≥ 2N such that, for any integer j∗ ≥ τ , any h ∈ L2([0, 1]) can be expanded into
a warped wavelet series as

h(x) =

2j∗−1
∑

k=0

αj∗,kφj∗,k(G(x)) +

∞
∑

j=j∗

2j−1
∑

k=0

βj,kψj,k(G(x)), x ∈ [0, 1],

where

αj,k =

∫ 1

0

h(G−1(x))φj,k(x)dx, βj,k =

∫ 1

0

h(G−1(x))ψj,k(x)dx. (3.1)

See [14, subsection 3.3].
Let M > 0 and s > 0. We say that a function h in L2([0, 1]) belongs to the weighted

Besov ball Bw
s,∞(M) if there exists a constant M > 0 such that the associated wavelet

coefficients (3.1) satisfy, for any integer j ≥ τ ,

2j−1
∑

k=0

β2
j,kwj,k ≤M2−j(2s+1),
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where

wj,k =

∫ (k+1)/2j

k/2j

1

g(G−1(x))
dx. (3.2)

In this expression, s is a smoothness parameter. Details concerning the warped wavelets
and the analytic definition of weighted Besov balls can be found in [14, Section 7]. For
the standard wavelet basis on [0, 1], see e.g. [16] and [6].

4 Estimators

For any integer j ≥ τ and any k ∈ {0, . . . , 2j − 1}, we estimate the unknown warped

wavelet coefficients of F i.e. αj,k =
∫ 1

0
F (G−1(x))φj,k(x)dx and βj,k =

∫ 1

0
F (G−1(x))ψj,k(x)dx

by respectively

α̂j,k =
1

n

n
∑

i=1

δiφj,k(G(Ui)), β̂j,k =
1

n

n
∑

i=1

δiψj,k(G(Ui)). (4.1)

Some of their statistical properties are investigated in Propositions 6.1, 6.2 and 6.3 below.
We estimate F by the following hard thresholding estimator F̂ :

F̂ (x) =
2τ−1
∑

k=0

α̂τ,kφτ,k(G(x)) +

j1
∑

j=τ

2j−1
∑

k=0

β̂j,k1{|β̂j,k|≥κρn}ψj,k(G(x)), (4.2)

where x ∈ [0, 1], α̂τ,k and β̂j,k are defined by (4.1), j1 is the integer satisfying

1

2

n

(lnn)3
< 2j1 ≤ n

(lnn)3
, (4.3)

κ is a large enough constant (the one in Proposition 6.3 below) and ρn denotes the
“universal threshold”, i.e.

ρn =

√

lnn

n
. (4.4)

Naturally, for x < 0, we put F̂ (x) = 0 and, for x > 1, F̂ (x) = 1.
Note that F̂ is adaptive: its construction does not depend on the smoothness of F .
The general idea in the construction of F̂ is to apply a term-by-term selection on the

unknown wavelet coefficients of F : only the most significant are kept. The reason is that
only these few coefficients contain the main characteristics of F . For the construction
of hard thresholding wavelet estimators in the standard nonparametric models, see e.g.
[10], [8] and [12].

5 Performances of F̂

5.1 Theoretical results

Theorem 5.1 Suppose that the assumptions of Section 2 hold. Let F̂ be (4.2). Suppose

that F ∈ Bw
s,∞(M) with s > 0. Then there exists a constant C > 0 such that

E

(
∫ 1

0

(

F̂ (x)− F (x)
)2

dx

)

≤ C

(

lnn

n

)2s/(2s+1)

.
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Figure 1: Four target cumulative distribution functions

The proof of Theorem 5.1 uses a suitable decomposition of the L2 risk including some
geometrical properties of the warped wavelet basis and the statistical properties of the
wavelet coefficients estimators presented in Propositions 6.1, 6.2 and 6.3.

Theorem 5.1 shows that, under mild assumptions on the dependence of the obser-
vations and on g, F̂ attains a rate of convergence close to the one for the i.i.d. case i.e.
n−2s/(2s+1). The difference is the “negligible” logarithmic term (lnn)2s/(2s+1).

Let us recall that, if we restrict our study to the independent case, contrary to [1,
Assumption A1], Theorem 5.1 holds without boundedness assumptions on g.

5.2 Practical results

This section is devoted to the numerical performances of F̂ .

5.2.1 Target functions and data

We consider four target functions F which correspond to the following formula with
values q = 0.2, 1, 5, 50:

Fq(t) =

{

2q−1tq, t ∈ [0, 0.5],

1− 2q−1(1− t)q, t ∈ [0.5, 1].
(5.1)

These four functions are plotted in Figure 1, and their wavelets detail coefficients are
plotted in Figure 2. One can remark that Fq has high detail coefficients near the edges of
the interval [0, 1] when q is small, and at the middle of the interval [0, 1] when q is large
(see Figure 2).

An example of the data on which the estimators are based is given in Figures 4 and 5
(for the cdf F50 and for a uniform distribution of the Uis). Figure 4 represents the couples
(Ui, δi). Figure 5 gives the detail wavelet coefficients of the sequence (δσU (i))i∈{1,...,n},
where σU is the following permutation: σU(i) is the index j such that Uj is the i

st largest
element of the sequence U . These coefficients are approximations of the ones given in
equation (4.1), as their construction consists in replacing G by the empirical pdf Ĝn

in their expressions. Then the estimation consists in trying to select the coefficients
corresponding to the signal F , and to put to zero those corresponding to the ”noise”. We
consider first the case of a known uniform density of the Uis, then the case of a known
varying density, and lastly the case of an unknown density.
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Figure 2: Detail wavelet coefficients of each target function: the first row relates to F0.2, the second

to F1, the third to F5 and the fourth to F50.
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Figure 3: Data with (Ui)s (uniformly distributed) on axis 1, and their corresponding (δi)s on axis 2,

for the F50 function.
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5.2.2 Uniform density of the design

First let us look at the performances of the main estimator presented in Section 4, in the
case of a uniform distribution of the Uis. The calibration of the threshold κρn and of
the cutoff level j1 are important practical issues. The values given by the theory are not
useful in practice. Indeed the thresholds are defined up to some intricate ”large enough
constant”. Moreover the cutoff level j1 defined in (4.3) is too small in practice, as it is even
lower than the minimal coarsest level value. Thus we try κ =

√
2 (universal thresholding)

and j1 = log2(n) − 1 (the maximal possible level), hoping the high resolution ”noise” is
filtered thanks to thresholding.

We give an example of the performances for F50. Figure 5 represents the true co-
efficients above, and the noisy ones below, along with the thresholds (horizontal bars).
Figure 6 represents the target function (dashed line) and the estimator (solid line). One
can see that the estimator fails to recover F properly in the middle of the interval, as
it leaves a lot of noise unfiltered in the high resolution scales. On the other hand the
estimator behaves properly outside of the middle of the interval.

The main problem with this estimator is that high resolution scales contain huge noise
coefficients that one cannot filter with thresholding, except if we put huge thresholds as
well, but then low scale information would be lost. Thus one may ask oneself if the results
could be improved by using other calibrations of κ and j1. For this purpose, one can
compute some ”oracle” estimator in the sense that it uses the threshold and the cutoff
values which minimize the mean square error among all estimators of the type of Section
4, except with κ and j1 left free. Of course this estimator is completely inaccessible in
practice. In the case of the F50 distribution, simulations show that this oracle estimator
is obtained approximately with a threshold t = 0.5 and a cutoff level j1 = 3. This means
that only some of the coarsest resolution detail coefficients should be kept. As can be
seen in Figure 7, this oracle estimator is better than the previous one.

We briefly look at the performances of the estimator for the three other distributions
Fq. The high resolution noise problem is far more present than for F50 (first row of Figure
8). The oracle strategy consists in cutting all the details. The functions obtained this
way are plotted in the second row of Figure 8.

5.2.3 Non-uniform density of the design

We now investigate the performances of the estimators for non-constant densities of the
Uis. We consider the four densities plotted in Figure 9, named Bump1, Bump2, Pit1 and
Pit2. They correspond to the following formulas (up to normalization constants):

• Bump1 g(x) = exp(−(100 ∗ (x− 0.5)2)) + 1,

• Pit1 g(x) = − exp(−(100 ∗ (x− 0.5)2)) + 1.05,

• Bump2 g(x) = exp(−(100 ∗ x2)) + exp(−(100 ∗ (x− 1)2)) + 1,

• Pit2 g(x) = − exp(−(100 ∗ x2))− exp(−(100 ∗ (x− 1)2)) + 1.05.

The effects of non uniformity seem to be multiple for the performances of the esti-
mator. Let us focus on the two cdf F5 and F50, and the Bump1 and Pit1 density. The
Bump1 density implies a surplus (resp. a lack) of observations in the middle of the inter-
val, where most important wavelet coefficients are located. On the one hand, low scale
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Figure 5: Theoretical thresholds (horizontal bars), wavelet detail coefficients of F50 (first row of graph-

ics), wavelet detail coefficients of the (δi)s (second row of graphics).
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Figure 6: Target function (dashed line) and the estimator of section 4 (solid line) for F50 in the uniform

case for Ui.

0 0.2 0.4 0.6 0.8 1
−0.2

0

0.2

0.4

0.6

0.8

1

Figure 7: Target function (dashed line) and the oracle estimator (solid line) for F50 in the uniform

case.
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Figure 10: Realizations of the estimator of Section 4 (top) and oracle estimator (bottom) for respec-

tively (from left to right): F5 and Bump1 density, F5 and Pit1 density, F50 and Bump1 density, F50 and

Pit1 density.

coefficients are better estimated thanks to a bump than to a pit (see the second row of
Figure 10). For the Pit1 density, the lack of observation in the middle of the interval
causes the estimator to fail locating the jump of the target function. But on the other
hand, the bump attributes numerous data near the median of F , which creates much
variability in the observations. Thus many artifacts appear in the middle of the interval
for the bump density, while no artifact remains for the pit density for the cdf F50 (see
the first row of Figure 10).

Moreover, the two other functions F1 or F0.2 remain very hard to estimate by the
techniques of Section 4. We consider the Bump2 (resp Pit2) density, which attributes
more (resp less) observations to the beginning and to the end of the interval (where
important detail coefficients lie for these two target functions). Then one really cannot
distinguish the true function in the first row of Figure 11. The oracle estimators are
plotted in the second row. Once again simulations show that the oracle strategy consists
in putting all the detail coefficients to zero. The oracle estimator behaves similarly
whether we use the Pit2 or the Bump2 density.

5.2.4 Unknown density of the design

When g is unknown, an intuitive adaptive estimator of F is (4.2) but, instead of G, we
consider its empirical version:

Ĝn(x) =
1

n

n
∑

i=1

1{Ui≤x}.

This plug-in method yields the hard thresholding estimator

F̂ ∗(x) =

2τ−1
∑

k=0

α̂∗
τ,kφτ,k(Ĝn(x)) +

j1
∑

j=τ

2j−1
∑

k=0

β̂∗
j,k1{|β̂j,k|≥κρn}ψj,k(Ĝn(x)),
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Figure 11: Realizations of the estimator of Section 4 (top) and oracle estimator (bottom) for respec-

tively: F0.2 and Bump2 density, F0.2 and Pit2 density, F1 and Bump2 density, F1 and Pit2 density.

x ∈ [0, 1], where

α̂∗
j,k =

1

n

n
∑

i=1

δiφj,k(Ĝn(Ui)), β̂∗
j,k =

1

n

n
∑

i=1

δiψj,k(Ĝn(Ui)).

Like previously, we look at the performances of the estimator for the F50 and F5 target
functions, with three different densities g (Bump1, Uniform, Pit1). The results are given
in Figure 12. We obtain similar performances to the ones in the case of known g, the
main general remarks remain true here.

6 Proofs

In this section, we suppose that the assumptions of Section 2 hold. Moreover, C denotes
any constant that does not depend on j, k and n. Its value may change from one term
to another and may depend on φ or ψ.

6.1 Auxiliary results on (4.1)

Proposition 6.1 Suppose that the assumptions of Section 2 hold. For any integer j ≥ τ

such that 2j ≤ n and any k ∈ {0, . . . , 2j − 1}, let αj,k =
∫ 1

0
F (G−1(x))φj,k(x)dx and α̂j,k

be (4.1). Then α̂j,k is an unbiased estimator for αj,k and there exists a constant C > 0

such that

Var(α̂j,k) ≤ C
1

n
,

Mention that Proposition 6.1 holds with β̂j,k (4.1) instead of αj,k and βj,k =
∫ 1

0
F (G−1(x))ψj,k(x)dx

instead of αj,k.
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Figure 12: Target function (dashed line), estimator of section 4 (solid line) for the cdf F50 (first row)

and F5 (second row) with unknown g equal to Bump1, Uniform, Pit1 (from left to right).

Proof of Proposition 6.1. We have

E(α̂j,k) = E(δ1φj,k(G(U1))) = E
(

1{Xi≤Ui}φj,k(G(U1))
)

=

∫ 1

0

∫ u

0

f(x)φj,k(G(u))g(u)dxdu =

∫ 1

0

F (u)φj,k(G(u))g(u)du

=

∫ 1

0

F (G−1(u))φj,k(u)du = αj,k.

An elementary covariance inequality yields

Var (α̂j,k) =
1

n2

n
∑

v=1

n
∑

ℓ=1

Cov (δvφj,k(G(Uv)), δℓφj,k(G(Uℓ))) ≤ S+T, (6.1)

where

S =
1

n
Var (δ1φj,k(G(U1)))

and

T =
2

n2

∣

∣

∣

∣

∣

n
∑

v=2

v−1
∑

ℓ=1

Cov (δvφj,k(G(Uv)), δℓφj,k(G(Uℓ)))

∣

∣

∣

∣

∣

.

Since δ1 ≤ 1, we have

S ≤ 1

n
E
(

(δ1φj,k(G(U1)))
2) ≤ 1

n
E
(

(φj,k(G(U1)))
2
)

=
1

n

∫ 1

0

(φj,k(G(x)))
2g(x)dx =

1

n

∫ 1

0

(φj,k(x))
2dx =

1

n
. (6.2)
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It follows from the stationarity of (δi, Ui)i∈Z and 2j ≤ n that

T =
2

n2

∣

∣

∣

∣

∣

n
∑

m=1

(n−m) Cov (δ0φj,k(G(U0)), δmφj,k(G(Um)))

∣

∣

∣

∣

∣

≤ 2

n

n
∑

m=1

|Cov (δ0φj,k(G(U0)), δmφj,k(G(Um)))| = T1 +T2, (6.3)

where

T1 =
2

n

2j−1
∑

m=1

|Cov (δ0φj,k(G(U0)), δmφj,k(G(Um)))|

and

T2 =
2

n

n
∑

m=2j

|Cov (δ0φj,k(G(U0)), δmφj,k(G(Um)))| .

Upper bound for T1. Using (2.4), (2.5) and the change of variables y = 2jx − k, we
obtain

|Cov (δ0φj,k(G(U0)), δmφj,k(G(Um)))|

=

∣

∣

∣

∣

∫ 1

0

∫ 1

0

∫ 1

0

∫ 1

0

hm(y, x, y∗, x∗) (yφj,k(G(x))y∗φj,k(G(x∗))) dydxdy∗dx∗

∣

∣

∣

∣

≤
∫ 1

0

∫ 1

0

∫ 1

0

∫ 1

0

|hm(y, x, y∗, x∗)| |yφj,k(G(x))y∗φj,k(G(x∗))| dydxdy∗dx∗

≤ C

(∫ 1

0

ydy

)2(∫ 1

0

|φj,k(G(x))|g(x)dx
)2

≤ C

(∫ 1

0

|φj,k(x)|dx
)2

≤ C2−j.

Therefore

T1 ≤ C
1

n
2−j2j = C

1

n
. (6.4)

Upper bound for T2. Applying the Davydov inequality for strongly mixing processes (see
[7]), for any q ∈ (0, 1), we have

|Cov (δ0φj,k(G(U0)), δmφj,k(G(Um)))|

≤ Caqm

(

E
(

|δ0φj,k(G(U0))|2/(1−q)
))1−q

≤ Caqm

(

sup
(x,y)∈[0,1]2

|yφj,k(G(x))|
)2q

(

E
(

(δ0φj,k(G(U0)))
2))1−q

.

Observe that
sup

(x,y)∈[0,1]2
|yφj,k(G(x))| ≤ sup

x∈[0,1]

|φj,k(x)| ≤ C2j/2

and, by (6.2),
E
(

(δ0φj,k(G(U0)))
2) ≤ 1.

Therefore

|Cov (δ0φj,k(G(U0)), δmφj,k(G(Um)))| ≤ C2qjaqm.
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Hence

T2 ≤ C
1

n
2qj

n
∑

m=2j

aqm ≤ C
1

n

n
∑

m=2j

mqaqm ≤ C
1

n
. (6.5)

It follows from (6.3), (6.4) (6.5) that

T ≤ C
1

n
. (6.6)

Combining (6.1), (6.2) and (6.6), we obtain

Var (α̂j,k) ≤ C
1

n
.

The proof of Proposition 6.1 is complete.

�

Proposition 6.2 Suppose that the assumptions of Section 2 hold. For any integer j ≥ τ

such that 2j ≤ n and any k ∈ {0, . . . , 2j − 1}, let βj,k =
∫ 1

0
F (G−1(x))ψj,k(x)dx and β̂j,k

be (4.1). Then there exists a constant C > 0 such that

E

(

(

β̂j,k − βj,k

)4
)

≤ C2j
1

n
.

Proof of Proposition 6.2. Observe that

|α̂j,k − αj,k| ≤ |α̂j,k|+ |αj,k| ≤ sup
(x,y)∈[0,1]2

|yφj,k(G(x))|+ C

≤ sup
x∈[0,1]

|φj,k(x)|+ C ≤ C2j/2. (6.7)

Using (6.7) and Proposition 6.1, we obtain

E
(

(α̂j,k − αj,k)
4) ≤ C2j E

(

(α̂j,k − αj,k)
2) ≤ C2j

1

n
.

The proof of Proposition 6.2 is complete.

�

Proposition 6.3 Suppose that the assumptions of Section 2 hold. For any j ∈ {τ, . . . , j1}
and any k ∈ {0, . . . , 2j − 1}, let βj,k =

∫ 1

0
F (G−1(x))ψj,k(x)dx, β̂j,k be (4.1) and ρn be

(4.4). Then there exist two constants, κ > 0 and C > 0, such that

P
(

|β̂j,k − βj,k| ≥ κρn/2
)

≤ C
1

n4
.

Proof of Proposition 6.3. We shall use the Bernstein inequality for exponentially
strongly mixing process presented in Lemma 6.1 below. The proof can be found [15].
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Lemma 6.1 ([15]) Let γ > 0, c > 0 and (Zi)i∈Z be a stationary process with the m-th

strongly mixing coefficient (2.1). Let n be a positive integer, h : R → R be a measurable

function and, for any i ∈ Z, Vi = h(Zi). We assume that E(V1) = 0 and there exists a

constant M > 0 satisfying |V1| ≤ M . Then, for any m ∈ {1, . . . , n} and any λ > 0, we

have

P

(∣

∣

∣

∣

∣

1

n

n
∑

i=1

Vi

∣

∣

∣

∣

∣

≥ λ

)

≤ 4 exp

(

− λ2n

16(Dm/m+ λMm/3)

)

+ 32
M

λ
nam,

where Dm = maxl∈{1,...,2m} Var
(

∑l
i=1 Vi

)

.

For any i ∈ {1, . . . , n}, set
Vi = δiψj,k(G(Ui))− βj,k.

Then

P
(

|β̂j,k − βj,k| ≥ κρn/2
)

= P

(∣

∣

∣

∣

∣

1

n

n
∑

i=1

Vi

∣

∣

∣

∣

∣

≥ κρn/2

)

, (6.8)

V1, . . . , Vn are identically distributed, depend on the stationary strongly mixing process
(δi, Ui)i∈Z satisfying (2.2), Propositions 6.1 and 6.2 give

E (V1) = 0, E
(

V 2
1

)

≤ E
(

(δ1φj,k(G(U1)))
2) ≤ 1,

using similar arguments to (6.7), |V1| ≤ C2j/2 ≤ C2j1/2 ≤ C(n/(lnn)3)1/2, and, proceed-
ing as in Proposition 6.1 with l instead of n, we have

max
l∈{1,...,2m}

Var

(

l
∑

i=1

Vi

)

≤ C max
l∈{1,...,2m}

l ≤ Cm.

It follows from Lemma 6.1 applied with these V1, . . . , Vn, λ = κCρn, ρn = (lnn/n)1/2,
m = u lnn with u > 0 (chosen later), M = C(n/(lnn)3)1/2 and (2.2) that

P
(

|β̂j,k − βj,k| ≥ κρn/2
)

≤ C

(

exp

(

−C κ2ρ2nn

1 + κρnmM

)

+
n1/2

ρn(lnn)3/2
n exp(−cm)

)

≤ C

(

exp

(

−C κ2 lnn

1 + κ(lnn/n)1/2u lnn(n/(lnn)3)1/2

)

+ n exp(−cu lnn)
)

≤ C
(

n−Cκ2/(1+κu) + n1−cu
)

.

Taking κ and u large enough, we obtain

P
(

|β̂j,k − βj,k| ≥ κρn/2
)

≤ C
1

n4
.

This ends the proof of Proposition 6.3.

�
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6.2 Proof of Theorem 5.1

Proof of Theorem 5.1. Since F ∈ L2([0, 1]), we can write

F (x) =
2τ−1
∑

k=0

ατ,kφτ,k(G(x)) +
∞
∑

j=τ

2j−1
∑

k=0

βj,kψj,k(G(x)), x ∈ [0, 1],

where ατ,k =
∫ 1

0
F (G−1(x))φτ,k(x)dx and βj,k =

∫ 1

0
F (G−1(x))ψj,k(x)dx.

We have, for any x ∈ [0, 1],

F̂ (x)− F (x)

=
2τ−1
∑

k=0

(α̂τ,k − ατ,k)φτ,k(G(x)) +

j1
∑

j=τ

2j−1
∑

k=0

(

β̂j,k1{|β̂j,k|≥κρn} − βj,k

)

ψj,k(G(x))

−
∞
∑

j=j1+1

2j−1
∑

k=0

βj,kψj,k(G(x)).

We now need the following lemma which is an immediate consequence of [14, Lemma 2]
and the Minkowski inequality.

Lemma 6.2 ([14]) Suppose that (2.3) holds. Then, for any sequences (uj,k) ∈ ℓ2(N
2)

and any integers j0 and j1 such that j1 > j0 ≥ τ , there exists a constant C > 0 such that

∫ 1

0





j1
∑

j=j0

2j−1
∑

k=0

uj,kψj,k(G(x))





2

dx ≤ C







j1
∑

j=j0

2j/2





2j−1
∑

k=0

u2j,kwj,k





1/2






2

,

where wj,k is defined by (3.2).

It follows from Lemma 6.2 and the Cauchy-Schwarz inequality that

E

(
∫ 1

0

(

F̂ (x)− F (x)
)2

dx

)

≤ C(F+G+H), (6.9)

where

F = 2τ
2τ−1
∑

k=0

E
(

(α̂τ,k − ατ,k)
2)wτ,k,

G =







j1
∑

j=τ

2j/2





2j−1
∑

k=0

E

(

(

β̂j,k1{|β̂j,k|≥κρn} − βj,k

)2
)

wj,k





1/2






2

and

H =







∞
∑

j=j1+1

2j/2





2j−1
∑

k=0

β2
j,kwj,k





1/2






2

.

Using Proposition 6.1 and
∑2τ−1

k=0 wτ,k = 1, we obtain

F ≤ C
1

n

2τ−1
∑

k=0

wτ,k ≤ C
1

n
≤ C

(

lnn

n

)2s/(2s+1)

. (6.10)
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Since F ∈ Bw
s,∞(M), we have

H ≤ C

(

∞
∑

j=j1+1

2−js

)2

≤ C2−2j1s ≤ C

(

(lnn)3

n

)2s

≤ C

(

lnn

n

)2s/(2s+1)

. (6.11)

Let us now bound the term G. Observe that

G ≤ C(G1 +G2 +G3 +G4), (6.12)

where

G1 =







j1
∑

j=τ

2j/2





2j−1
∑

k=0

E

(

(

β̂j,k − βj,k

)2

1{|β̂j,k|≥κρn}1{|βj,k|<κρn/2}
)

wj,k





1/2






2

,

G2 =







j1
∑

j=τ

2j/2





2j−1
∑

k=0

E

(

(

β̂j,k − βj,k

)2

1{|β̂j,k|≥κρn}1{|βj,k|≥κρn/2}
)

wj,k





1/2






2

,

G3 =







j1
∑

j=τ

2j/2





2j−1
∑

k=0

E
(

β2
j,k1{|β̂j,k|<κρn}1{|βj,k|≥2κρn}

)

wj,k





1/2






2

and

G4 =







j1
∑

j=τ

2j/2





2j−1
∑

k=0

E
(

β2
j,k1{|β̂j,k|<κρn}1{|βj,k|<2κρn}

)

wj,k





1/2






2

.

Upper bounds for G1 +G3. Note that

{

|β̂j,k| < κρn, |βj,k| ≥ 2κρn

}

⊆
{

|β̂j,k − βj,k| > κρn/2
}

,

{

|β̂j,k| ≥ κρn, |βj,k| < κρn/2
}

⊆
{

|β̂j,k − βj,k| > κρn/2
}

and
{

|β̂j,k| < κρn, |βj,k| ≥ 2κρn

}

⊆
{

|βj,k| ≤ 2|β̂j,k − βj,k|
}

.

So

G1 +G3 ≤ C







j1
∑

j=τ

2j/2





2j−1
∑

k=0

E

(

(

β̂j,k − βj,k

)2

1{|β̂j,k−βj,k|>κρn/2}
)

wj,k





1/2






2

.



18

It follows from the Cauchy-Schwarz inequality, Proposition 6.2, Proposition 6.3 and 2j ≤
2j1 ≤ n that

E

(

(

β̂j,k − βj,k

)2

1{|β̂j,k−βj,k|>κρn/2}
)

≤
(

E

(

(

β̂j,k − βj,k

)4
))1/2

(

P
(

|β̂j,k − βj,k| > κρn/2
))1/2

≤ C

(

2j
1

n

)1/2(
1

n4

)1/2

≤ C
1

n2
.

Since
∑2j−1

k=0 wj,k = 1, we have

G1 +G3 ≤ C
1

n2







j1
∑

j=τ

2j/2





2j−1
∑

k=0

wj,k





1/2






2

= C
1

n2

(

j1
∑

j=τ

2j/2

)2

≤ C
1

n2
2j1 ≤ C

1

n
≤ C

(

lnn

n

)2s/(2s+1)

. (6.13)

Upper bound for G2. Using again Proposition 6.2, we obtain

E

(

(

β̂j,k − βj,k

)2
)

≤ C
1

n
≤ C

lnn

n
.

Hence

G2 ≤ C
lnn

n







j1
∑

j=τ

2j/2





2j−1
∑

k=0

1{|βj,k|>κρn/2}wj,k





1/2






2

.

Let j2 be the integer defined by

1

2

( n

lnn

)1/(2s+1)

< 2j2 ≤
( n

lnn

)1/(2s+1)

. (6.14)

We have

G2 ≤ C(G2,1 +G2,2),

where

G2,1 =
lnn

n







j2
∑

j=τ

2j/2





2j−1
∑

k=0

1{|βj,k|>κρn/2}wj,k





1/2






2

and

G2,2 =
lnn

n







j1
∑

j=j2+1

2j/2





2j−1
∑

k=0

1{|βj,k|>κρn/2}wj,k





1/2






2

.
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Using 1{|βj,k|>κρn/2} ≤ 1 and
∑2j−1

k=0 wj,k = 1,

G2,1 ≤ C
lnn

n







j2
∑

j=τ

2j/2





2j−1
∑

k=0

wj,k





1/2






2

= C
lnn

n

(

j2
∑

j=τ

2j/2

)2

≤ C
lnn

n
2j2 ≤ C

(

lnn

n

)2s/(2s+1)

and, since F ∈ Bw
s,∞(M),

G2,2 ≤ C
lnn

nρ2n







j1
∑

j=j2+1

2j/2





2j−1
∑

k=0

β2
j,kwj,k





1/2






2

≤ C

(

j1
∑

j=j2+1

2−js

)2

≤ C2−2j2s ≤ C

(

lnn

n

)2s/(2s+1)

.

So

G2 ≤ C

(

lnn

n

)2s/(2s+1)

. (6.15)

Upper bound for G4. We have

G4 ≤







j1
∑

j=τ

2j/2





2j−1
∑

k=0

β2
j,k1{|βj,k|<2κρn}wj,k





1/2






2

.

Let j2 be the integer (6.14). Then

G4 ≤ C(G4,1 +G4,2),

where

G4,1 =







j2
∑

j=τ

2j/2





2j−1
∑

k=0

β2
j,k1{|βj,k|<2κρn}wj,k





1/2






2

and

G4,2 =







j1
∑

j=j2+1

2j/2





2j−1
∑

k=0

β2
j,k1{|βj,k|<2κρn}wj,k





1/2






2

.

Using β2
j,k1{|βj,k|<2κρn} ≤ Cρ2n and

∑2j−1
k=0 wj,k = 1, we have

G4,1 ≤ Cρ2n







j2
∑

j=τ

2j/2





2j−1
∑

k=0

wj,k





1/2






2

= C
lnn

n

(

j2
∑

j=τ

2j/2

)2

≤ C
lnn

n
2j2 ≤ C

(

lnn

n

)2s/(2s+1)

.
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Since F ∈ Bw
s,∞(M), we have

G4,2 ≤







j1
∑

j=j2+1

2j/2





2j−1
∑

k=0

β2
j,kwj,k





1/2






2

≤
(

j1
∑

j=j2+1

2−js

)2

≤ C2−2j2s ≤ C

(

lnn

n

)2s/(2s+1)

.

So

G4 ≤ C

(

lnn

n

)2s/(2s+1)

. (6.16)

It follows from (6.12), (6.13), (6.15) and (6.16) that

G ≤ C

(

lnn

n

)2s/(2s+1)

. (6.17)

Combining (6.9), (6.10), (6.11) and (6.17), we have

E

(
∫ 1

0

(

F̂ (x)− F (x)
)2

dx

)

≤ C

(

lnn

n

)2s/(2s+1)

.

The proof of Theorem 5.1 is complete.

�
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