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ADAPTIVE WARPED KERNEL ESTIMATORS

GAËLLE CHAGNYA ∗

Abstract. In this work, we develop a method of adaptive nonparametric estimation, based on
"warped" kernels. The aim is to estimate a real-valued function s from a sample of random couples
(X,Y ). We deal with transformed data (Φ(X), Y ), with Φ a one-to-one function, to build a collec-
tion of kernel estimators. The data-driven bandwidth selection is done with a method inspired by
Goldenshluger and Lepski (2011). The method permits to handle various problems such as addi-
tive and multiplicative regression, conditional density estimation, hazard rate estimation based on
randomly right censored data, and cumulative distribution function estimation from current-status
data. The interest is threefold. First, the squared-bias/variance trade-o� is automatically realized.
Next, non-asymptotic risk bounds are derived. Last, the estimator is easily computed thanks to its
simple expression: a short simulation study is presented.

Keywords: Adaptive estimator. Censored data. Bandwidth selection. Nonparametric estimation.
Regression. Warped kernel.

AMS Subject Classi�cation 2010: 62G05; 62G08; 62N02.

1. Introduction

Let (X,Y ) be a couple of real random variables, and (Xi, Yi)i=1,...,n an i.i.d. sample drawn as
(X,Y ). The main goal of nonparametric estimation is to recover an unknown function s, linked
with (X,Y ), such as the regression function, from the data. Among the huge variety of methods
that have been investigated, the use of transformed data (FX(Xi), Yi), with FX the cumulative
distribution function (c.d.f.) ofX, has received attention in the past decades. In this context or with
similar tools, both kernel and projection estimators have been studied in random design regression
estimation (Yang 1981, Stute 1984, Kerkyacharian and Picard 2004, Akritas 2005, Pham Ngoc
2009, Kulik and Raimondo 2009, Mammen et al. 2012, Chagny 2013a), conditional density or c.d.f
estimation (Stute 1986, Mehra et al. 2000, Chagny 2013c), for the white noise model (Chesneau
2007) or to deal with dependent data (Chesneau and Willer 2012). However, to our knowledge, few
papers focus on the problem of adaptivity of such "warped estimators". The aim of the present
work is twofold: �rst, we want to show that a warping kernel device can be applied to various
estimation problems, including survival analysis models (see examples below). Secondly, we address
the problem of bandwidth selection, with the intention of providing an adaptive "warped" estimator,
which satis�es nonasymptotic risk bounds.

The basic idea, which motivates the study of warped kernel estimators introduced by Yang
(1981), can be �rst explained in the classical regression framework. Here, the target function is the
conditional expectation, s : x 7→ E[Y |X = x] i.e.

(1) s(x) =
1

fX(x)

∫
R
yf(X,Y )(x, y)dy,
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2 ADAPTIVE WARPED KERNEL ESTIMATORS

when a density f(X,Y ) for the couple (X,Y ) exists, and where fX is the marginal density of the
design X. Historical kernel methods were initiated by Nadaraya (1964) and Watson (1964). The
famous estimator named after them is built as the ratio of a kernel estimator of the product sfX
divided by a kernel estimator of the density fX :

s̃NW : x 7→
1
n

∑n
i=1 YiKh(x−Xi)

1
n

∑n
i=1Kh(x−Xi)

,

where Kh : x 7→ K(x/h)/h, for h > 0, and K : R → R such that
∫
RK(x)dx = 1. Adaptive

estimation then requires the automatic selection of the bandwidth h, and the ratio form of the
estimate suggests that two such parameters should be selected: one for the numerator, and one
for the denominator. From the theoretical point of view, there is no reason to choose the same.
Nevertheless, nonasymptotic results such as oracle-inequality are di�cult to derive for an estimator
de�ned with two di�erent data-driven smoothing parameters. See Penskaya (1995) for a thorough
study of the ratio-form estimators. Moreover, when the design X is very irregular (for example
when a "hole" occurs in the data), a ratio may lead to instability (see Pham Ngoc 2009). The
warped kernel estimators introduced by Yang (1981) and Stute (1984) avoid the ratio-form. Indeed

denote by F̂n the empirical c.d.f. of the Xi's and let

(2) ŝh =
1

n

n∑
i=1

YiKh (FX(x)− FX(Xi)) , or ŝh =
1

n

n∑
i=1

YiKh

(
F̂n(x)− F̂n(Xi)

)
,

depending on whether the c.d.f. FX is known or not. The following equality (see (8)) holds:

E [Y Kh (u− FX(X))] = Kh ⋆ (s ◦ F−1
X )(u),

where ⋆ is the convolution product and ◦ is the composition symbol. Thus, the �rst estimator of

(2) can be viewed as ŝh = ̂s ◦ F−1
X ◦ FX . The main advantage is that its expression involves one

bandwidth h only.
In this paper, we generalize the warping strategy to various functional estimation problems: as

a �rst extension of (1), we propose to recover functions s of the form

(3) s(x) =
1

ϕ(x)

∫
θ(y)f(X,Y )(x, y)dy,

for θ : R → R, and ϕ : R → R+\{0}. In this case, the warping device brings into play the
transformation (Φ(X), Y ) of the data, with Φ′ = ϕ. The form (3) covers the additive regression
model described above, by setting Φ = FX , and θ(y) = y. But it also permits to deal with the

simpli�ed heteroskedastic model Y =
√
s(X)ε, where ε is an unobserved noise, centered, with

variance equals to 1. In this case, Φ = FX , and θ(y) = y2.
In several examples however, the couple (X,Y ) does not admit a density, butX admits a marginal

density. Then (3) can be extended and the target function s takes the form:

(4) s(x) =
fX(x)

ϕ(x)
E[θ(Y )|X = x].

This allows to handle two classical settings in survival analysis: the interval censoring case 1, and
right censored data. In the interval censoring model, case 1, the target function is s(x) = P(Z ≤ x),
where Z is a survival time, which is not observed, and we only know a current status at the observed
time X of examination. We also know Y = 1Z≤X , which indicates whether Z occurs before X or
not. We refer to Jewell and van der Laan (2004) for a review of the estimation methods in this
setting (see also van de Geer 1993 for maximum likelihood estimation), and more recently to Ma and
Kosorok (2006), Brunel and Comte (2009) or Plancade (2013) for investigations including adaptivity.
In right-censored data, the function of interest at time x is the hazard rate function, that is the
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risk of death at time x, given that the patient is alive until x. This model has been studied by
Tanner and Wong (1983), Müller and Wang (1994) and Patil (1993), among all. Adaptive results
are available for projection-type estimators (see Brunel and Comte 2005, 2008, Reynaud-Bouret
2006 or Akakpo and Durot 2010), but to our knowledge not for kernel estimators.

The paper is organized as follows. We present in Section 2 the estimation method, detail the
examples illustrating the relevance of the introduction of a general target function s de�ned by
(4). We also study the global risk of the warped kernel estimators with �xed bandwidths. Section
3 is devoted to adaptive estimation: we de�ne a data-driven choice of the bandwidth, inspired
by Goldenshluger and Lepski (2011) which allows to derive nonasymptotic results for the adaptive
estimators. Oracle-type inequalities are provided for the M.I.S.E., and convergence rates are deduced
under regularity assumptions. Sections 2 and 3 both deal with the case of known deformation Φ
and with the case of an estimated deformation. In Section 4, the method is illustrated through
numerical simulations. Proofs are gathered in Section 5. The supplementary material Chagny
(2013b) is available for further details about technical computations.

2. Estimation method

2.1. Warped kernel strategy. Consider a sample (Xi, Yi)i=1,...,n of i.i.d. random couples with
values in A×B, where A is an open interval of R and B a Borel subset of R. We assume that Xi has
a marginal density fX and we aim at recovering a function s : A→ R linked with the distribution of
(Xi, Yi). To estimate s, we replace the explanatory variable Xi by Φ(Xi), where Φ : A→ Φ(A) ⊂ R
is one-to-one and absolutely continuous. The data (Φ(Xi), Yi)i=1,...,n are called the warped sample
with deformation function Φ. The sets A,B,Φ(A) are supposed to be given. The target function
can be written as:

(5) s(x) = g ◦ Φ(x) = g(Φ(x)), with g : Φ(A) → R.

We �rst estimate the auxiliary function g = s◦Φ−1 with Φ−1 the inverse function of Φ. In the general
case, Φ is unknown and we must estimate it also. Let K be a function such that

∫
RK(u)du = 1

and set Kh : u 7→ K(u/h)/h, for h > 0. We de�ne, for u ∈ Φ(A),

(6) ĝh(u) =
1

n

n∑
i=1

θ(Yi)Kh

(
u− Φ̂n(Xi)

)
,

where θ : R → R is a given function, Φ̂n is an empirical counterpart for Φ, and for x ∈ A

(7) ŝh(x) = ĝh ◦ Φ̂n(x) =
1

n

n∑
i=1

θ(Yi)Kh

(
Φ̂n(x)− Φ̂n(Xi)

)
.

The following equality is the cornerstone of the method and justi�es the introduction of (6). If θ
satis�es E|θ(Y )Kh(u− Φ(X)| <∞, for all u ∈ Φ(A),

(8) E [θ(Y )Kh(u− Φ(X)] = Kh ⋆
(
g1Φ(A)

)
(u) := gh(u),

where ⋆ is the convolution product. It shows that ĝh is an empirical version of gh and thus ŝh in
(7) suits well to estimate s. Let us give examples covered by the above framework.

Example 1 (standard random design regression with additive error term): we observe
(Xi, Yi) with Yi = s(Xi)+εi, (εi)i=1,...,n is independent of (Xi)i=1,...,n, E[ε2i ] <∞ and E[εi] = 0. We
choose Φ(x) = FX(x), the cumulative distribution function (c.d.f. in the sequel) of X and assume
that Φ : A→ Φ(A) is invertible.
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Example 2 (Heteroskedastic model): Yi = σ(Xi)εi, (εi)i=1,...,n independent of (Xi)i=1,...,n,
E[ε2i ] = 1, E[εi] = 0, Φ(x) = FX(x), with Φ : A→ Φ(A) invertible. Here s(x) = σ2(x) = E[Y 2

i |Xi =
x].

Example 3 (Interval censoring, Case 1): the observation is (Xi, Yi) where Yi = 1Zi≤Xi ,
Zi, Xi ≥ 0 are independent event occurence times, Yi indicates whether Zi (the time of interest)
occurs before Xi (the so-called �examination time�) or not and Zi is not observed. The target
function is s(x) = P(Zi ≤ x) = E[Yi|Xi = x]. We choose Φ = FX .

Example 4 (Hazard rate estimation from right censored-data): the observation isXi = Zi∧
Ci, Yi = 1Zi≤Ci , where Zi and Ci are not observed and independent, Zi ≥ 0 is a lifetime and Ci ≥ 0
is a censoring time. The function s of interest is the hazard rate function s(x) = fZ(x)/(1−FZ(x)),
where fZ (resp. FZ) is the density (resp. the c.d.f.) of Z. This function satis�es

(9) s(x) =
fX(x)

1− FX(x)
E[Y |X = x].

In this case, we assume FX(x) < 1 for all x ≥ 0, and take Φ(x) =
∫ x
0 (1− FX(t))dt.

We now de�ne the estimator Φ̂ of the warping function Φ. Instead of estimating Φ with the
whole sample (Xi)i=1,...,n, we assume that another sample (X−i)i=1,...,n, independent of the Xi's,
but distributed like them, is available. Thus, we set

Φ̂n(x) =

{
F̂n(x)(Examples 1-3),∫ x
0

(
1− F̂n(t)

)
dt(Example 4) where F̂n(x) =

1
n

∑n
i=1 1X−i≤x.

The introduction of the second sample of variable X is an artefact of the theory: it only allows to
avoid dependency problems in the proof of the results, which are technical and cumbersome enough
(see the supplementary material Chagny 2013b). This �trick� is also standard in others studies of
warped methods (see Kerkyacharian and Picard 2004 or Kulik and Raimondo 2009 e.g.). Using a
single sample would have required totally di�erent statistic and probabilistic tools. However, we
have obviously used only one sample to compute the estimator in the simulation study, see Section
4 (otherwise the comparison with other methods would not have been fair).

Hereafter, we also denote by g̃h the pseudo-estimators de�ned by choosing Φ̂ = Φ in (6). We
coherently set s̃h = g̃h ◦Φ. They can be used when Φ is known. The theoretical results are the same
for s̃h and ŝh, up to further technicalities due to the plug-in of an empirical version for Φ. The paper
mainly focuses on the proofs of the results for s̃ since they are representative of the statistical and
probabilistic tools which are required. Complete proofs are available in the supplementary material
Chagny (2013b).

2.2. Risk of the �xed bandwidth estimator. In this section, we study the global properties
of ŝh as an estimate of s on A, with a �xed bandwidth h. The quadratic risk weighted by the
derivative ϕ of the warping function Φ is the natural criterion in our setting. Let us introduce, for
a measurable function t on A,

(10) ∥t∥2ϕ =

∫
A
t2(x)ϕ(x)dx,

and denote by L2(A,ϕ) the space of functions t for which the quantity (10) exists and is �nite. We
also use the corresponding scalar product ⟨., .⟩ϕ. For t1, t2 belonging to L2(A,ϕ), we have

∥t1 ◦ Φ∥ϕ = ∥t1∥L2(Φ(A)), ⟨t1 ◦ Φ, t2 ◦ Φ⟩ϕ = ⟨t1, t2⟩Φ(A),
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where ∥t1∥2L2(Φ(A)) =
∫
Φ(A) t

2
1(x)dx and ⟨., .⟩Φ(A) denotes the usual scalar product on L2(Φ(A)).

Therefore,
∥s̃h − s∥2ϕ = ∥g̃h − g∥2L2(Φ(A)).

When K belongs to L2(R) and E[θ2(Y1)] < ∞, the following bias-variance decomposition of the
risk holds (recall that gh is de�ned in (8)),

(11) E
[
∥s̃h − s∥2ϕ

]
≤ ∥g − gh∥2L2(Φ(A)) +

1

nh
E
[
θ2(Y1)

]
∥K∥2L2(R).

This inequality holds if s ∈ L2(A,ϕ), a property which is satis�ed if s is bounded on A. This is the
case for Examples 1-3, as ϕ = fX . In Example 4, we can check that s ∈ L2(A,ϕ) for all classical
distributions for C and Z used in survival analysis (such as exponential, Weibull, Gamma...). The
general condition to be checked in this example is

∫
A f

2
X(x)/(1− FX(x))dx <∞.

The challenge in the general case comes from the plug-in of the empirical Φ̂n. Though natural,
it necessitates lengthy and cumbersome technicalities. This explains why it is not often considered
in the literature of warped estimators (see e.g. Pham Ngoc 2009 or Chesneau 2007). The following
assumptions are required.

(H1') The function s is continuously derivable on A.
(H2') The kernel K is twice continuously derivable, with bounded derivatives K ′ and K ′′ on R.
(H3') The set A can be written A = (0, τ) with �nite τ > 0, in Example 4.

Assumption (H1') is somehow restrictive but required for integration by parts (see Section C.3. in
Chagny (2013b)). Assumption (H2') permits to use Taylor formulas to deal with the di�erence

Kh(u − Φ̂n(Xi)) −Kh(u − Φ(Xi)). This is not a problem as we choose the kernel in practice. We

also add (H3'), which is needed to control the di�erence Φ̂n − Φ̂ in Example 4 (see Section B. in
Chagny (2013b)). Thanks to technical computations, we obtain the analogous of (11) for ŝh, under
mild assumptions. A sketch of the proof is given in Section 5.2. The details are provided in Chagny
(2013b).

Proposition 1. Assume (H1'), and (H2'), and also (H3') for Example 4. If moreover h ≥ Cn−1/5

(C a purely numerical constant), there exists c > 0 such that

(12) E
[
∥ŝh − s∥2ϕ

]
≤ 5 ∥g − gh∥2L2(Φ(A)) +

c

nh
.

3. Adaptive estimation

As usual, we must choose a bandwidth h which realizes the best compromise between the squared-
bias and the variance terms (see (11) and (12)). The choice should be data-driven. For this, we use
a method described in Goldenshluger and Lepski (2011), and show that this leads to oracle-type
inequalities and adaptive optimal estimators (in the sense of Goldenshluger and Lepski 2011). We
begin with the case of known warping function Φ, which permits to develop the theoretical tools in
a simpler way and to derive the results with few assumptions and short proofs.

3.1. Case of known Φ.

3.1.1. Data-driven choice of the bandwidth. We consider the collection (s̃h)h∈Hn , where Hn is a
�nite collection of bandwidths, with cardinality depending on n and properties precised below
(Assumptions (H2)-(H3)). We introduce the auxiliary estimators, involving two kernels,

s̃h,h′(x) = g̃h,h′(Φ(x)) with g̃h,h′ = Kh′ ⋆
(
g̃h1Φ(A)

)
.

For a numerical constant κ > 0 to be precised later on (see Section 4.1 below), we de�ne, for h ∈ Hn,

(13) V (h) = κ
(
1 + ∥K∥2L1(R)

)
∥K∥2L2(R)E

[
θ2(Y1)

] 1

nh
.
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Next, we set

(14) A(h) = max
h′∈Hn

{
∥s̃h,h′ − s̃h′∥2ϕ − V (h′)

}
+
,

which is an estimation of the squared-bias term (see Lemma 4). Note that ∥s̃h,h′ − s̃h′∥2ϕ = ∥g̃h,h′ −
g̃h′∥2. Lastly, the adaptive estimator is de�ned in the following way:

(15) s̃ = s̃h̃ with h̃ = arg min
h∈Hn

{A(h) + V (h)} .

The selected bandwidth h̃ is data-driven. In V (h), the expectation E[θ2(Y1)] can be replaced by
the corresponding empirical mean (see Brunel and Comte 2005, proof of Theorem 3.4 p.465). In
Examples 3-4, it can be replaced by 1, its upper-bound.

3.1.2. Results. We consider the following assumptions:

(H1) The function s is bounded. Denote by ∥s∥L∞(A) its sup-norm.

(H2) There exist α0 > 0 and a constant k0 ≥ 0 such that
∑
h∈Hn

1

h
≤ k0n

α0 .

(H3) For all κ0 > 0, there exists C0 > 0, such that
∑
h∈Hn

exp
(
−κ0
h

)
≤ C0.

(H4) The kernel K is of order l, i.e. for all j ∈ {1, . . . , l + 1}, the function x 7→ xjK(x) is
integrable, and for 1 ≤ j ≤ l,

∫
R x

jK(x)dx = 0.

Assumption (H1) is required to obtain Theorem 2 below. Nevertheless the value ∥s∥L∞(A) is not
needed to compute the estimator (see (15)). This assumption holds in Example 3 (s ≤ 1 in this
case), and in Example 4, for instance when Z has exponential or Gamma distribution. Assumptions
(H2)-(H3) mean that the bandwidth collection should not be too large. For instance, the following
classical collections satisfy these assumptions:

(1) Hn,1 =
{
k−1, k = 1, . . . , χ(n)

}
with α0 = 2, χ(n) = n or α0 = 1, χ(n) =

√
n.

(2) Hn,2 =
{
2−k, k = 1, . . . , [ln(n)/ ln(2)]

}
, with α0 = 1.

Assumption (H4) is required only to deduce convergence rate from the main nonasymptotic result.
We need a moment assumption linked with (H2):

(H5) With α0 given by (H2), there exists p > 2α0, such that E[|θ(Y )− E[θ(Y )|X]|2+p] <∞.

If θ is bounded, (H5) evidently holds. In Examples 1 and 2, (H5) is a moment assumption on the
noise which is usual in regression settings. It includes e.g. the case of Gaussian regression (when
the noise ε is a Gaussian variable), under Assumption (H1). Notice also that the smaller α0, the
less restrictive the integrability constraint p on the noise moments.
We prove the following oracle-type inequality:

Theorem 2. We assume that (H1)-(H3) hold in Examples 1-4, and additionally that (H5) is ful�lled
for Examples 1-2. Then there exist two constants c1 > 0 and c2 > 0, such that:

(16) E
[
∥s̃− s∥2ϕ

]
≤ c1 min

h∈Hn

{
∥s− sh∥2ϕ +

E
[
θ2(Y1)

]
∥K∥2L2(R)

nh

}
+
c2
n
,

with sh = gh ◦ Φ and s̃ de�ned by (15). The constant c1 only depends on ∥K∥L1(R).

The constant c2 depends on ∥s∥L∞(A), ∥K∥L1(R) and ∥K∥L2(R) in Examples 3-4, and also on the

moment of ε and E[s2(X1)] for Examples 1-2. The adaptive estimator s̃ automatically makes the
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squared-bias/variance compromise. The selected bandwidth h̃ is performing as well as the unknown
oracle:

h∗ := arg min
h∈Hn

E[∥s̃h − s∥2ϕ].

up to the multiplicative constant c1 and up to a remainding term of order 1/n, which is negligible.
The interest of Inequality (16) is that it is nonasymptotic. Moreover, contrary to usual kernel
estimation results, Assumption (H4) is not needed. This is one of the advantages of the bandwidth
selection method. Inequality (16) proves that the estimator s̃ is optimal in the oracle sense.

To deduce convergence rates, smoothness classes must be considered to quantify the bias term.
De�ne the Hölder class with order β > 0 and constant L > 0 by

H(β, L) =
{
t : R → R, t(⌊β⌋) exists, ∀x, x′ ∈ B,

∣∣∣t(⌊β⌋)(x)− t(⌊β⌋)(x′)
∣∣∣ ≤ L|x− x′|β−⌊β⌋

}
,

where ⌊β⌋ is the largest integer less than β. We also need the Nikol'skii class of functions:

N2(β, L) =

{
t : R → R, t(⌊β⌋) exists, ∀x ∈ R,

∫
R

(
t(⌊β⌋)(x′ + x)− t(⌊β⌋)(x′)

)2
dx′ ≤ L2|x|2β−2⌊β⌋

}
We can now deduce from Theorem 2 the convergence rate of the risk, under regularity assumptions
for the auxiliary function g.

Corollary 1. Let ḡ = g1ϕ(A) on R. Assume that

• ḡ belongs to the Hölder class H(β, L), with ḡ(0) = g̃(1) in Examples 1-3,
• ḡ belongs to the Nikol'skii class N2(β, L) in Example 4.

Assume (H4) with l = ⌊β⌋. Then, under the assumptions of Theorem 2,

(17) E
[
∥s̃− s∥2ϕ

]
≤ Cn

− 2β
2β+1 ,

where C is a constant which does not depend on n and β.

In Examples 1-3, Φ(A) = (0; 1) and the Hölder condition is enough. In Example 4, Φ(A) = R+ and
we need the Nikol'skii condition. Both spaces are standard in kernel estimation, see e.g. Tsybakov
(2009) and Goldenshluger and Lepski (2011).
We recover the classical optimal rates in nonparametric estimation. Note however that our regularity
assumptions are set on g and not s, as long as we do not consider speci�c warped spaces de�ned
in Kerkyacharian and Picard (2004). The rate (17) is known to be optimal in the minimax sense
for the estimation problems we consider (e.g., see Korostelëv and Tsybakov 1993 for regression
estimation, Huber and MacGibbon 2004 for hazard rate, and Plancade 2013 for c.d.f. estimation
with current-status data), if the two functions have the same regularity parameter.

Remark 1. We have strong conditions on g at the boundary of the support [0; 1], in Examples 1-3.
This is nevertheless well-known in kernel estimation, which are rarely �free of boundary e�ects�.
This also explains why we restrict the estimation interval for the simulation study, by using the
quantiles of the observations Xi (see Section 4). Notice that we may apply recent methods which
provide boundary corrections in kernel estimation (see Karunamuni and Alberts 2005 and Bertin
and Klutchniko� 2011 for example), but this is beyond the scope of this paper. Moreover, the
comparison against adaptive smoothing splines, which have no such problem of boundary already
give good results in practice, see Section 4 below.

3.2. General case of unknown Φ. We use the plug-in device of Φ̂n in the de�nition of the quanti-
ties (13) and (14) to introduce a criterion like (15) which is fully data-driven in the general case of un-
known warped function. To limit the technicalities, we focus on one of the following bandwidth col-
lection Hn: Hn,1 = {k−1, k = 1, . . . , [(n/ ln(n))1/5]} or Hn,2 = {2−k, k = 1, . . . , [ln(n)/(6 ln(2))]}.
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The selection of an estimator in the collection (ŝh)h∈Hn,l
, l = 1, 2, is done with

(18) ĥ = arg min
h∈Hn,l

{
Â(h) + 2V̂ (h)

}
,

with

(19) Â(h) = max
h′∈Hn

{
∥ĝh,h′ − ĝh′∥2L2(Φ(A)) − V̂ (h′)

}
+
,

and V̂ (h) = κ′ ln2(n)/nh, where, κ′ is a purely numerical constant given by the proofs (see Chagny

2013b, Section D) and tuned in practice (see Remark 2). Finally, we de�ne ŝ = ŝĥ ◦ Φ̂n. The
following result is the equivalent to Theorem 2.

Theorem 3. We assume that (H1), (H1')-(H2') hold in Examples 1-4, and additionally that (H5)
is ful�lled for Examples 1-2 (with α0 = 1), and (H3') for Example 4. Then there exist two constants
c′1, c

′
2 > 0, such that, for n large enough,

(20) E
[
∥ŝ− s∥2ϕ

]
≤ c′1 min

h∈Hn,l

{
∥s− sh∥2ϕ +

ln2(n)

nh

}
+
c′2
n
,

with sh = gh ◦ Φ, and for l = 1, 2.

The proof of Theorem 3, which follows the same scheme than the one of Theorem 2, is provided
in the supplementary material Chagny (2013b). The values of the constants are speci�ed in the

proof. They depend on K and s, but neither on n, nor on the bandwidth h. The term V̂ in the
de�nition (18) of the criterion deserves some comments. It can be compared to the �penalty� V
de�ned in the toy case of known Φ in (13). The order of magnitude is not exactly the same: here,

we have an extra-logarithmic factor. It is due to the substitution of Φ̂n to Φ, and plays a technical
role in the proof but it gives what is usually called a nearly optimal bound. Note that it does not
depend on E[θ2(Y1)], contrary to (13).

4. Illustration

To illustrate the procedure, we only focus on two of the four examples: the additive regression
(Example 1), and the estimation of c.d.f. under interval censoring case I (Example 3). As we cannot
reasonably pretend to compare our method with all the adaptive estimators of the literature, we
choose to concentrate on the comparison with adaptive least-squares (LS in the sequel) estimators.

4.1. Implementation of the warped-kernel estimators. The theoretical study allows the
choice of several kernels and bandwidth collections. For practical purpose, we consider the Gaussian

kernel, K : x 7→ e−x2/2/
√
2π, which satis�es Assumption (H4) with l = 1. It has the advantage of

having simple convolution-products:

(21) ∀h, h′ > 0, Kh ⋆ Kh′ = K√
h2+h′2 .

The experiment is conducted with the dyadic collection Hn,2 de�ned above. The larger collection
Hn,1 has also been tested: since it does not really improve the results but increases the computation
time, we only keep the other collection. Besides, the simulations are performed in the case of
unknown Φ. Therefore in Examples 1 and 3, the estimator is

ŝ : x 7→ 1

n

n∑
i=1

θ(Yi)Kĥ(F̂n(x)− F̂n(Xi)),

with F̂n the empirical c.d.f. of the Xi's. Then, the estimation procedure can be decomposed in
some steps:
• Simulate a data sample (Xi, Yi), i = 1, . . . , n, �tting Example 1 or 3.
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• Compute V̂ (h) and Â(h) for each h ∈ Hn,1. For V̂ (h), we set κ′ = 0.05 in Example 1, and κ′ = 0.3

in Example 3 (see Remark 2 below). For Â(h), thanks to (21), the auxiliary estimates are easily
computed: ŝh,h′ = ŝ√h2+h′2 . The L2−norm is then approximated by a Riemann sum:

∥ĝh,h′ − ĝh′∥2L2(Φ(A)) ≈
1

N

N∑
k=1

(
ĝh,h′(uk)− ĝh′(uk)

)2
,

where N = 50, and (uk)k are grid points evenly distributed across (0; 1).

• Select ĥ such that Â(h) + 2V̂ (h) is minimum.
• Compute ŝĥ.

Remark 2. The computation of the selection criterion (18) requires a value for κ′. A lower bound
for its theoretical value is provided by the proof: it is very pessimistic due to rough upper-bounds
(for the sake of clarity), and obviously useless in practice, like in most model selection devices. We
have carried out a large number of simulations to tune it, prior to the comparison with the other
estimates. We have plotted the quadratic risk in function of κ′ for various models and we have chosen
one of the �rst values leading simultaneously to a reasonable risk and a reasonable complexity of the
selected bandwidth. Such procedure is classical, and required whatever the chosen selection device
(see e.g. Sansonnet 2013 for a similar tuning method in wavelet thresholding, or Chagny 2013a for
details of tuning in model selection).

4.2. Example 1: additive regression. We compare the warped kernel method (WK) with the
adaptive estimator studied in Baraud (2002). It is a projection estimator, developed in an or-
thogonal basis of L2(A), and built with a penalized least-squares contrast. The experiment is
carried out with the Matlab toolbox FY3P, written by Yves Rozenholc, and available on his web
page http://www.math-info.univ-paris5.fr/∼rozen/YR/Softwares/Softwares.html. A regu-
lar piecewise polynomial basis is used, with degrees chosen in an adaptive way. Since the kernel
we choose has only one vanishing moment, the comparison is fair if we consider polynomials with
degrees equal to or less than 1. We denote by LS1 the resulting estimator. However, as shown below,
we will see that the warped-kernel generally outperforms the least-square, even if we use polynomials
with degree at most 2 (LS2). We also experiment the Fourier basis for the least-squares estimator,
but the results are not as good as the polynomial basis. Thus, we do not mention the values of the
risks.

The procedure is applied for di�erent regression functions, design and noise. The main goal is
to illustrate the sensibility of the estimation to the underlying design distribution. Its in�uence
is explored through four distributions: two classical ones, U[0;1], the uniform distribution on the
interval [0; 1], and N (0.5, 0.01), a Gaussian distribution (with mean 0.5 and variance 0.01); and two
distributions which are more original (more irregular), γ(4, 0.08), the Gamma distribution, with
parameters 4 and 0.08 (0.08 is the scale parameter), and BN a bimodal Gaussian distribution, with
density x 7→ c(exp(−200(x− 0.05)2) + exp(−200(x− 0.95)2)) (c is a constant adjusted to obtain a
density function).

We focus on the three following regression functions

s1 : x 7→ x(x− 1)(x− 0.6)
s2 : x 7→ − exp(−200(x− 0.1)2)− exp(−200(x− 0.9)2) + 1
s3 : x 7→ cos(4πx) + exp(−x2)

The �rst two functions satisfy the �periodicity� assumptions of Corollary 1, while we choose the
function s3 to show that our procedure also leads to satisfactory results if the assumption does not
hold. The choice of the function s2 combined with the design BN leads to a data set which presents
a "hole" (see Figure 2 (a)).
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Figure 1. Estimation in Example 1, with true regression function s3, design distribution

U(0;1), and n = 1000. (a) points: data (Xi, Yi)i, thick line: true function s3. (b)-(c)-(d)

beams of 20 estimators built from i.i.d. sample (thin lines) and true function (thick line):

warped kernel estimators (subplot (b)), least-squares estimator in piecewise polynomial

bases with degree at most 1 (subplot (c)) or 2 (subplot (d)).

We also test the sensibility of the method to the noise distribution: contrary to the underlying
design distribution, it does not seem to a�ect the results. Thus, we present the simulation study
for a Gaussian centered noise, with variance σ2. The value of σ is chosen in such a way that the
signal-to-noise ratio (the ratio of the variance of the signal Var(s(X1)) over the variance of the noise
Var(ε1)) approximately equals 2.

Beams of estimators (WK, LS1, and LS2) are presented in Figures 1 and 2, with the generated
data-sets and the function to estimate. Precisely, Figure 1 shows a regular case: all the methods
estimate correctly the signal. Figure 2 depicts the case where a hole occurs in the design density: the
estimator built with warped kernel behaves still correctly, even if the data are very inhomogeneous,
while the estimator LS1, with which the comparison is fair, failed to detect the hole.

A study of the risk is reported in Tables 1 and 2, for the sample sizes n = 60, 200, 500 and
1000. The MISE is obtained by averaging the following approximations of the ISE values, for
j ∈ {1, . . . , J = 200}, computed with J sample replications:

ISEj =
b− a

N

N∑
k=1

(s̃(xk)− s(xk))
2 ,

where s̃ stands for one of the estimators, b is the quantile of order 95% of the Xi and a is the
quantile of order 5%. The (xk)k=1,...,N are the sample points falling in [a; b]. Tables 1 and 2 display
the values computed for our method WK, and for the estimators LS1 and/or LS2: for the regression
functions s1 and s2 (Table 1), the warped-kernel strategy always leads to smaller risk values than
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Figure 2. Estimation in Example 1, with true regression function s2, design distribution

BN , and n = 1000. (a) points: data (Xi, Yi)i, thick line: true function s2. (b)-(c)-(d) beams

of 20 estimators built from i.i.d. sample (thin lines) and true function (thick line): warped

kernel estimators (subplot (b)), least-squares estimator in piecewise polynomial bases with

degree at most 1 (subplot (c)) or 2 (subplot (d)).

LS1. Thus, we only mention the risks of the estimator LS2: even if the comparison is quite unfair
(following the theoretical results, see the explanations above), the WK and the LS2 estimators are
comparable in terms of performance and in 56% of the examples, the risks of the warped-kernel
estimator are smaller than the ones of LS2 estimator. For the third function (Table 2), our method
still outperforms the least-squares estimate in polynomial basis of degree at most 1, whatever the
design distribution is. The comparison with least-squares in polynomial basis with degree at most 2
leads to mixed results even if the values for both estimators are in the same range. Our estimators
still behaves correctly (compared to LS1, see also Figure 1), but not as well as for the �rst two
functions. Considering the de�nition of s3, the equality s3(a) = s3(b), required for the theoretical
convergence rate does not hold, which may explain the result.

To conclude, if both methods LS2 and WK lead to comparable risks, it remains that our procedure
have some advantages, compared to adaptive least-squares methods. First it is easier to implement,
since it does not require any matrix inversion (compared to any LS strategy, see Baraud 2002). Then,
keeping in mind that the comparison is fair when choosing piecewise polynomials with degree at
most 1, the risk values are always smaller for the warped-kernel estimates, in the studied examples.
Finally, we are able to recover a signal even with an irregular design, while the least-squares methods
fail in that case.

4.3. Example 3: Interval censoring, case 1. The same comparison is carried out for the esti-
mation of the c.d.f. under interval censoring. The adaptive least-squares estimate is provided by
Brunel and Comte (2009), and the same Matlab toolbox is used for its implementation: recall that
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s X σ n = 60 200 500 1000 Method

s1 U[0;1]

√
.0006 0.0889 0.0218 0.0169 0.0167 WK

0.0856 0.0397 0.0256 0.0229 LS2
γ(4, 0.08) 5.10−5 0.0052 0.0033 0.0004 0.0003 WK

0.0097 0.004 0.0017 0.0012 LS2
N (0.5, 0.01) 0.011 0.0049 0.0020 0.0008 0.0005 WK

0.0020 0.0012 0.0010 0.0008 LS2
BN 0.022 0.524 0.422 0.267 0.205 WK

0.166 0.054 0.038 0.029 LS2

s2 U[0;1] 0.17 16.35 6.791 3.51 0.837 WK
33.212 2.058 0.691 0.407 LS2

γ(4, 0.08) 0.08 1.885 0.354 0.204 0.147 WK
4.047 0.801 0.552 0.429 LS2

N (0.5, 0.01) 0.01 0.0619 0.0186 0.0079 0.0006 WK
0.0078 0.0014 0.0001 0.0001 LS2

BN 0.18 12.052 5.279 1.698 1.041 WK
52.668 11.009 5.817 1.215 LS2

Table 1. Values of MISE ×1000 averaged over 200 samples, for the estimators of the

regression function (Example 1), built with the warped kernel method (WK) or the least-

squares methods, with piecewise polynomials of degree at most 2 (LS2).

s X σ n = 60 200 500 1000 Method

s3 U[0;1] 0.35 0.2803 0.1055 0.0463 0.0275 WK
1.2506 0.4530 0.1261 0.0571 LS1
0.3107 0.0748 0.0420 0.0332 LS2

γ(4, 0.08) 0.44 0.1962 0.0628 0.0387 0.0331 WK
0.4126 0.1334 0.0481 0.0373 LS1
0.2321 0.0555 0.0206 0.0086 LS2

N (0.5, 0.01) 0.44 0.0634 0.0245 0.0128 0.0861 WK
0.1045 0.0396 0.0210 0.0108 LS1
0.0375 0.0139 0.0103 0.0064 LS2

BN 0.32 0.4438 0.1362 0.0949 0.0793 WK
1.8253 0.5879 0.1721 0.1232 LS1
0.6666 0.3038 0.0949 0.0457 LS2

Table 2. Values of MISE ×10 averaged over 200 samples, for the estimators of the regres-

sion function (Example 1), built with the warped kernel method (WK) or the least-squares

methods, with piecewise polynomials of degree at most 1 or 2 (LS1 or LS2).
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Figure 3. Estimation in Example 3, in model M7, and n = 1000. (a)-(b)-(c) beams of 20

estimators built from i.i.d. sample (thin lines) and true function (thick line): warped kernel

estimators (subplot (a)), least-squares estimator in piecewise polynomial bases with degree

at most 1 (subplot (b)) or 2 (subplot (c)).

the target function can be seen as a regression function: s(x) = P(Z ≤ x) = E[1Z≤x|X = x]. To
make the comparison foreseeable, the estimation set A is calibrated as it is done in Brunel and
Comte (2009), such that most of the data belong to this interval. Di�erent models are considered
for generating the data. We shorten "follows the distribution" by the symbol "∼".

• M1: X ∼ U[0;1], and Z ∼ U[0;1], A = (0; 1) (for instance, the target function is FZ : x 7→ x),
• M2: X ∼ U[0;1], and Z ∼ χ2(1) (Chi-squared distribution with 1 degree of freedom), A =
(0; 1),

• M3: X ∼ E(1) (exponential distribution with mean 1), and Z ∼ χ2(1), A = (0; 1.2),
• M4: X ∼ β(4, 6) (Beta distribution of parameter (4,6)), Z ∼ β(4, 8), A = (0; 0.5),
• M5: X ∼ β(4, 6), Z ∼ E(10) (exponential distribution with mean 0.1), A = (0; 0.5),
• M6: X ∼ γ(4, 0.08), Z ∼ E(10), A = (0, 0.5),
• M7: X ∼ E(0.1), Z ∼ γ(4, 3), A = (1; 23).

All these models allow to investigate thoroughly the sensibility of the method to the distribution
of the examination time X, and to the range of the estimation interval. The �rst two models and
the fourth were also used by Brunel and Comte (2009). Since the design is uniform in two of these
examples, and also supported by the set (0; 1) in the other, we choose to explore what happens when
it is not the case: in models M5, M6 and M7, the estimation interval is either smaller (M5-M6) or
much larger (M7) than (0; 1). Model M3 is choosen to have a design which is not uniform.

Figure 3 shows the smoothness of warped-kernel estimates compared to the reconstruction ob-
tained with least-squares method. The di�erence between the estimators is also investigated by
computing the MISE for the di�erent models. Table 3 reveals that the warped-kernel estimates
can advantageously be used as soon as the design Xi has not a uniform distribution: it always
outperforms the least-squares estimators in these cases, whatever the estimation support is, and
whatever the chosen distributions are. When the design is uniform, the warped-kernel strategy also
leads to acceptable results but is a little less interesting (however still simpler to implement than
LS methods): since FX(x) = x, one can clearly understand that it is not useful to warp the data.
However, recall that FX is unknown in practice, thus we cannot assure beforehand that the warping
of the data is useless.

The practical advantages of our method are thus de�nitely to permit to deal with various design
distributions (even very irregular ones), and thus to be stable to several data sets in di�erent
estimation settings (c.d.f. of current status data or regression estimation).

5. Proofs
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Model X Z [a;b] n = 60 200 500 1000 Method

1 U[0;1] U[0;1] [0; 1] 2.41 1.125 0.975 0.533 WK
0.63 0.111 0.056 0.024 LS2

2 U[0;1] χ2(1) [0; 1] 1.558 0.804 0.57 0.415 WK
1.602 0.44 0.244 0.13 LS2

3 E(1) χ2(1) [0; 1.2] 1.285 0.614 0.243 0.247 WK
2.385 0.893 0.651 0.365 LS2

4 B(4, 6) B(4, 8) [0; 0.5] 0.423 0.236 0.09 0.094 WK
0.449 0.271 0.117 0.105 LS2

5 B(4, 6) E(10) [0; 0.5] 0.388 0.229 0.119 0.103 WK
0.467 0.261 0.13 0.095 LS2

6 γ(4, 0.08) E(10) [0; 0.5] 0.424 0.166 0.102 0.069 WK
0.698 0.286 0.162 0.095 LS2

7 E(0.1) γ(4, 3) [1; 23] 14.955 5.145 3.973 2.113 WK
19.825 11.797 9.738 5.898 LS2

Table 3. Values of MISE ×100 averaged over 100 samples, for the estimators of the c.d.f.

from current status data (Example 3) built with the warped kernel method (WK) or the

least-squares methods, with piecewise polynomials of degree at most 1 or 2 (LS1 or LS2).

5.1. Proof of Inequality (8). We have:

E [θ(Y )Kh(u− Φ(X))] = E [E [θ(Y )|X]Kh(u− Φ(X))] ,

=

∫
A
Kh(u− Φ(x))E [θ(Y )|X = x] fX(x)dx.

We set u′ = Φ(x), thus du′ = ϕ(x)dx. Therefore,

E [θ(Y )Kh(u− Φ(X))] =

∫
Φ(A)

Kh(u− u′)E
[
θ(Y )|X = Φ−1(u)

]
fX
(
Φ−1(u)

) du

ϕ ◦ Φ−1(u)
,

=

∫
Φ(A)

Kh(u− u′)s ◦ Φ−1(u)du.

2

5.2. Sketch of the proof of Proposition 5.2. We need to specify the notation. The goal is to

study the risk of ŝh, h ∈ Hn de�ned when Φ is unknown. We denote it by ŝΦ̂n,Φ̂n

h . We have

ŝΦ̂n,Φ̂n

h = ĝΦ̂n
h ◦ Φ̂n, with ĝ

Φ̂n
h (u) =

1

n

n∑
i=1

θ(Yi)Kh

(
u− Φ̂n(Xi)

)
.

Moreover, s̃h is denoted by ŝΦ,Φ
h = ĝΦh ◦ Φ with ĝΦh (u) = (1/n)

∑n
i=1 θ(Yi)Kh(u − Φ(Xi)) = g̃h(u)

previously introduced. Coherently, we also set ŝΦ̂n,Φ
h = ĝΦ̂n

h ◦Φ. The following decomposition, which
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permits to come down to the study of s̃, is the key of the proof:
∥∥∥ŝΦ̂n,Φ̂n

h − s
∥∥∥2
ϕ
≤ 5

∑3
l=0 T

h
l , with

T h
0 =

∥∥∥ŝΦ,Φ
h − sh

∥∥∥2
ϕ
+
∥∥sΦh − s

∥∥2
ϕ
,

T h
1 =

∥∥∥ŝΦ̂n,Φ
h − ŝΦ,Φ

h − E
[
ŝΦ̂n,Φ
h − ŝΦ,Φ

h |(X−i)
]∥∥∥2

ϕ
,

T h
2 =

∥∥∥ŝΦ̂n,Φ̂n

h − ŝΦ̂n,Φ
h − E

[
ŝΦ̂n,Φ̂n

h − ŝΦ̂n,Φ
h |(X−i)

]∥∥∥2
ϕ
,

T h
3 =

∥∥∥E [ŝΦ̂n,Φ̂n

h − ŝΦ,Φ
h |(X−i)

]∥∥∥2
ϕ
,

where E[Z|(X−i)] is the conditional expectation of a variable Z given the sample (X−i)i=1,...,n. The

term T h
0 has been bounded in Inequality (11). For the three others, the challenge is to prove that

they are bounded by a quantity with order of magnitude 1/(nh).
Notice also that the same splitting is required to prove Theorem 3. All the details are given in

Chagny (2013b).

5.3. Proof of Theorem 2. The proof is representative of the one of Theorem 3, which is thus
deferred to the supplementary Chagny (2013b). Let h ∈ Hn be �xed. We start with the following
decomposition for the loss of the estimator s̃ = s̃h̃:

∥∥s̃h̃ − s
∥∥2
ϕ

=
∥∥g̃h̃ − g

∥∥2
L2(Φ(A))

,

≤ 3
∥∥∥g̃h̃ − g̃h,h̃

∥∥∥2
L2(Φ(A))

+ 3
∥∥∥g̃h,h̃ − g̃h

∥∥∥2
L2(Φ(A))

+ 3 ∥g̃h − g∥2L2(Φ(A)) .

The de�nitions of A(h) and A(h̃) enable us to write, using the de�nition of h̃,

3
∥∥∥g̃h̃ − g̃h,h̃

∥∥∥2
L2(Φ(A))

+ 3
∥∥∥g̃h,h̃ − g̃h

∥∥∥2
L2(Φ(A))

≤ 3
(
A(h) + V

(
h̃
))

+ 3
(
A
(
h̃
)
+ V (h)

)
,

≤ 6 (A(h) + V (h)) ,

Besides, applying also (11), we obtain

(22) E
[∥∥s̃h̃ − s

∥∥2
ϕ

]
≤ 6E [A(h)] + 6V (h) +

E[θ2(Y1)]∥K∥2L2(R)

nh
+ 3∥gh − g∥2L2(Φ(A)).

Therefore, the remainding part of the proof follows from the lemma hereafter.

Lemma 4. Let h ∈ Hn be �xed. Under the assumptions of Theorem 2, there exist constants C1, C2

such that,

(23) E [A(h)] ≤ C1∥gh − g∥2L2(Φ(A)) +
C2

n
,

where the constant C1 only depends on ∥K∥L1(R).

Applying Inequality (23) in (22) implies (16) by taking the in�mum over h ∈ Hn. This ends the
proof of Theorem 2.

2
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5.4. Proof of Lemma 4. To study A(h), we introduce the auxiliary quantities gh,h′ := Kh′ ⋆
(gh1Φ(A)) = Kh′ ⋆ ((Kh ⋆ g1Φ(A))1Φ(A)), for any h

′ ∈ Hn, and we �rst split

∥s̃h,h′ − s̃h′∥2ϕ = ∥g̃h,h′ − g̃h′∥2L2(Φ(A)) ≤ 3
(
Ta + Tb + ∥g̃h′ − gh′∥2L2(Φ(A))

)
,(24)

where
Ta = ∥g̃h,h′ − gh,h′∥2L2(Φ(A)), Tb = ∥gh,h′ − gh′∥2L2(Φ(A)).

The �rst term can be bounded as follows.

Ta ≤
∥∥Kh ⋆

(
g̃h′1Φ(A) − gh′1Φ(A)

)∥∥2
L2(R) ,

≤ ∥K∥2L1(R)
∥∥g̃h′1Φ(A) − gh′1Φ(A)

∥∥2
L2(R) = ∥K∥2L1(R) ∥g̃h′ − gh′∥2L2(Φ(A)) ,

as ∥u⋆v∥L2(R) ≤ ∥u∥L1(R)∥v∥L2(R) (Young convolution inequality). In the same way, Tb ≤ ∥Kh′∥2L1(R)∥gh−
g∥2L2(Φ(A)). Therefore, Decomposition (24) becomes:

∥s̃h,h′ − s̃h′∥2ϕ ≤ 3∥K∥2L1(R)∥g − gh∥2L2(Φ(A)) + 3(1 + ∥K∥2L1(R)) ∥g̃h′ − gh′∥2L2(Φ(A)) .

Now, we get back to the de�nition of A(h) given by (14):

A(h) ≤ 3 ∥K∥2L1(R)∥g − gh∥2L2(Φ(A))(25)

+3(1 + ∥K∥2L1(R)) max
h′∈Hn

(
∥g̃h′ − gh′∥2L2(Φ(A)) −

V (h′)

3(1 + ∥K∥2
L1(R))

)
+

.

We can note that ∥g̃h′ − gh′∥L2(Φ(A)) = supt∈S̄(0,1)⟨g̃h′ − gh′ , t⟩Φ(A), with S̄(0, 1) a dense countable

subset of S̃(0, 1) = {t ∈ L1(Φ(A)) ∩ L2(Φ(A)), ∥t∥L2(Φ(A)) = 1} (thanks to the separability of

L2(R), such a set exists. Now,

⟨g̃h′ − gh′ , t⟩Φ(A) =
1

n

n∑
i=1

∫
Φ(A)

{θ(Yi)Kh′ (u− Φ(Xi))− E [θ(Yi)Kh′ (u− Φ(Xi))]} t(u)du

= νn,h′(t),

where νn,h′ is an empirical process. Thus, thanks to (25), it remains to bound the deviations of
supt∈S̄(0,1) ν

2
n,h′(t). First, we have

E

[
max
h′∈Hn

(
sup

t∈S̄(0,1)
ν2n,h′(t)−

V (h′)

3(1 + ∥K∥2
L1(R))

)
+

]

≤
∑

h′∈Hn

E

[(
sup

t∈S̄(0,1)
ν2n,h′(t)−

V (h′)

3(1 + ∥K∥2
L1(R))

)
+

]
.

Then, the conclusion results from the following lemma:

Lemma 5. Under the assumptions of Theorem 2, there exists a constant C such that,∑
h∈Hn

E

[(
sup

t∈S̄(0,1)
ν2n,h(t)− Ṽ (h)

)
+

]
≤ C

n
,

with Ṽ (h) = δ′∥K∥L2(R)E[θ(Y1)2]/(nh) for a numerical δ′ > 0.

We choose the constant κ involved in the de�nition of V such that Ṽ (h) ≤ V (h)(1+∥K∥2L1(R))/3.

Thus, the proof is complete.

2
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5.5. Proof of Lemma 5. We write the empirical process

νn,h(t) =
1

n

n∑
i=1

ψt,h(Xi, Yi)− E [ψt,h(Xi, Yi)] ,(26)

with ψt,h(Xi, Yi) = θ(Yi)

∫
Φ(A)

Kh (u− Φ(Xi)) t(u)du.

The guiding idea is to apply the Talagrand Inequality, in its version given in Klein and Rio (2005).
We will use the notations used in Lemma 5 of Lacour (2008) (p.812). If θ is bounded, this inequality
can be applied. Otherwise, we have to introduce a truncation.

5.5.1. Example 1. Recall that Φ = FX and Φ(A) = [0; 1]. We split the process νn,h into three parts,

writing νn,h = ν
(1)
n,h + ν

(2,1)
n,h + ν

(2,2)
n,h , with, for l = 1, (2, 1), (2, 2),

ν
(l)
n,h =

1

n

n∑
i=1

φ
(l)
t,h(Zi)− E

[
φ
(l)
t,h(Zi)

]
,

Zi = Xi or (Xi, εi), and

φ
(1)
t,h : x 7→ s(x)

∫ 1
0 Kh(u− FX(x))t(u)du,

φ
(2,1)
t,h : (x, ε) 7→ ε1|ε|≤κn

∫ 1
0 Kh(u− FX(x))t(u)du,

φ
(2,2)
t,h : (x, ε) 7→ ε1|ε|>κn

∫ 1
0 Kh(u− FX(x))t(u)du,

where we de�ne, for a constant c which will be speci�ed below,

(27) κn = c

√
n

ln(n)
.

We apply Talagrand's Inequality to the �rst two bounded empirical processes, and bound roughly
the last one. Thus, we split:∑

h∈Hn

E

[(
sup

t∈S̄(0,1)
ν2n,h(t)− Ṽ (h)

)
+

]
≤ 3

∑
h∈Hn

{
E

[(
sup

t∈S̄(0,1)

(
ν
(1)
n,h(t)

)2
− Ṽ1(h)

3

)
+

]
(28)

+E

[(
sup

t∈S̄(0,1)

(
ν
(2,1)
n,h (t)

)2
− Ṽ2(h)

3

)
+

]

+ E

[
sup

t∈S̄(0,1)

(
ν
(2,2)
n,h (t)

)2]}
,

with the decomposition Ṽ (h) = Ṽ1(h) + Ṽ2(h), and, denoting by δ′′ = δ′/2,

Ṽ1(h) = 3δ′′
∥K∥2L2(R)E

[
s2(X1)

]
nh

, and Ṽ2(h) = 3δ′′
∥K∥2L2(R)E

[
ε21
]

nh
.

Actually, recall that we have E[θ2(Y1)] = E[Y 2
1 ] = E[s2(X1)] + E[ε21] here.

We now show that each of the three terms of the right hand-side of (28) is upper-bounded by a
quantity of order 1/n. This will end the proof.

• First term of (28).

Let us begin with ν
(1)
n,h. To do so, we compute H(1),M (1) and v(1), involved in Lemma 5 of Lacour

(2008) (p.812).
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• For M (1), let t ∈ S̄(0, 1) and x ∈ A be �xed:∣∣∣φ(1)
t,h(x)

∣∣∣ ≤ |s(x)|
∫ 1

0
|Kh(u− FX(x))t(u)| du ≤ |s(x)|∥Kh∥L2(R)∥t∥L2(Φ(A)),

= |s(x)|
∥K∥L2(R)√

h
≤ ∥s∥L∞(A)

∥K∥L2(R)√
h

:=M (1).

• For H(1), notice that

ν
(1)
n,h(t) = ⟨d̂h − gh, t⟩Φ(A), with d̂h =

1

n

n∑
i=1

s(Xi)Kh (.− FX(Xi)) .

Thus, thanks to the Young convolution inequality, we obtain,

E

[
sup

t∈S̄(0,1)

(
ν
(1)
n,h(t)

)2]
= E

[∥∥∥d̂h − gh

∥∥∥2
L2([0;1])

]
,

=

∫ 1

0
Var

(
d̂h(u)

)
du, since gh(u) = E

[
d̂h(u)

]
,

≤
∫ 1

0

1

n
E
[
s2(X1)K

2
h (u− FX(X1))

]
du.

Then, we use the same computation as the one done to bound the variance term in the proof
of (11), and set (H(1))2 = ∥K∥2L2(R)E[s

2(X1)]/(nh).

• For v(1), we also �x t ∈ S̄(0, 1). Hereafter, we set Ǩh(u) = Kh(−u). First,

Var
(
φ
(1)
t,h(X1)

)
≤ E

[(
φ
(1)
t,h(X1)

)2]
≤ ∥s∥2L∞(A)E

[(∫ 1

0
Kh(u− FX(X1))t(u)du

)2
]
,

and the expectation can be written

E

[(∫ 1

0
Kh(u− FX(X1))t(u)du

)2
]

= E
[(
Ǩh ∗

(
t1[0;1]

))2
(FX(X1))

]
,

=

∫ 1

0

(
Ǩh ∗

(
t1[0;1]

))2
(u)du ≤

∥∥Ǩh ∗
(
t1[0;1]

)∥∥2
L2(R) ,

≤
∥∥Ǩh

∥∥2
L1(R) ∥t1[0;1]∥

2
L2(R) =

∥∥Ǩh

∥∥2
L1(R) ∥t∥

2
L2([0;1]),

thanks to the Young convolution inequality. Therefore,

Var
(
φ
(1)
t,h(X1)

)
≤ ∥s∥L∞(A)∥K∥2L1(R) := v(1).

Then, Talagrand's Inequality gives, for δ > 0,

E

[(
sup

t∈S̄(0,1)

(
ν
(1)
n,h(t)

)2
− 2(1 + 2δ)

(
H(1)

)2)
+

]
≤ k1

{
1

n
exp

(
−k2

1

h

)
+

1

n2h
exp

(
−k3

√
n
)}

,

where k1, k2, k3 are three constants which depend on E[s2(X1)], ∥s∥L∞(A), ∥K∥L1(R) and ∥K∥L2(R).
Assumptions (H2)-(H3) lead to∑

h∈Hn

E

[(
sup

t∈S̄(0,1)

(
ν
(1)
n,h(t)

)2
− 2(1 + 2δ)∥K∥2L2(R)E[s

2(X1)]
1

nh

)
+

]
≤ C

n
,

with C a constant (which also depends on the previous quantities).
• Second term of (28).
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For the second empirical process ν
(2,1)
n,h , the sketch of the proof is the same: similarly, we compute

the quantities involved in the Talagrand Inequality,

M (2) = κn∥K∥L2(R)
1√
h
, H(2) = ∥K∥L2(R)

(
E[ε21]

)1/2 1√
nh
, v(2) = ∥K∥2L1(R)E[ε

2
1],

and we obtain, by Lemma 5 of Lacour (2008) (p.812), for δ > 0,

E

[(
sup

t∈S̄(0,1)

(
ν
(2,1)
n,h (t)

)2
− 2(1 + 2δ)

(
H(2)

)2)
+

]
≤ k1

{
1

n
exp

(
−k2

1

h

)
+

κ2n
n2h

exp

(
−k3

√
n

κn

)}
,

where k1, k2, k3 are three constants which depend on E[ε21], ∥K∥L1(R) and ∥K∥L2(R). The �rst term
of the right hand-side is like above. With the de�nition (27) of κn, the sum over h ∈ Hn of the
second term of the upper bound can be written∑

h∈Hn

κ2n
n2h

exp

(
−k3

√
n

κn

)
=

c2

n1+k3/c ln2(n)

∑
h∈Hn

1

h
.

Consequently, using Assumptions (H2)-(H3) and choosing c in the de�nition of κn such that c ≤
k3/α0, we also obtain for a constant C,

∑
h∈Hn

E

[(
sup

t∈S̄(0,1)

(
ν
(2,1)
n,h (t)

)2
− 2(1 + 2δ)∥K∥2L2(R)E[ε

2
1]

1

nh

)
+

]
≤ C

n
.

• Third term of (28).

The last empirical process is ν
(2,2)
n,h (t) =

∫ 1
0 t(u)ψ(u)du, with

ψ(u) =
1

n

n∑
i=1

εi1{|εi|>κn}Kh (u− FX(Xi))− E
[
εi1{|εi|>κn}Kh (u− FX(Xi))

]
.

It is not bounded. Nevertheless, we use the Cauchy-Schwarz Inequality, and the equality ∥t∥L2(Φ(A)) =

1, for t ∈ S̄(0, 1)

E

[
sup

t∈S̃(0,1)

(
ν
(2,2)
n,h (t)

)2]
≤ E

[∫ 1

0
ψ2(u)du

]
,

≤ 1

n
E
[
ε211{|ε1|>κn}

]
E
[∫ 1

0
K2

h (u− FX(X1)) du

]
,

≤
∥K∥2L2(R)

nh
E
[
ε211{|ε1|>κn}

]
≤

∥K∥2L2(R)κ
−p
n

nh
E
[
ε2+p
1

]
.

Thus, there exists a constant k1 which depends on ∥K∥L2(R) and E[ε2+p
1 ],

∑
h∈Hn

E

[
sup

t∈S̄(0,1)

(
ν
(2,2)
n,h (t)

)2]
≤ k1

κ−p
n

n

∑
h∈Hn

1

h
= c1κ

−p ln
p(n)

n1+p/2

∑
h∈Hn

1

h
.

The conclusion comes from Assumptions (H2)-(H3), and the choice of p ≥ 2α0.

2
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5.5.2. Examples 2-4. For the multiplicative regression model (Example 2), we split the process into

two terms: νn,h = ν
(1)
n,h + ν

(2)
n,h, with

ν
(1)
n,h(t) =

1

n

n∑
i=1

{
σ2(Xi)ε

2
i1{|εi|≤κn}

∫ 1

0
Kh (u− FX(Xi)) t(u)du

−E
[
σ2(Xi)ε

2
i1{|εi|≤κn}

∫ 1
0 Kh (u− FX(Xi)) t(u)du

]}
,

ν
(2)
n,h(t) =

1

n

n∑
i=1

{
σ2(Xi)ε

2
i1{|εi|>κn}

∫ 1

0
Kh (u− FX(Xi)) t(u)du

−E
[
σ2(Xi)ε

2
i1{|εi|>κn}

∫ 1
0 Kh (u− FX(Xi)) t(u)du

]}
,

where κn is still a constant for the proof, which equals
√
c

√
n

ln(n) and c > 0 is obtained by the

computations, like in Example 1. We exactly recover the framework of this previous example: the

deviations of the process ν
(1)
n,h are bounded thanks to Talagrand's Inequality of Lemma 5 of Lacour

(2008) (p.812), and the second one is bounded in the same way as the process ν
(2,2)
n,h of the additive

regression setting.

For Examples 3-4, there is no point in splitting the process (26), since it is already bounded
(recall that θ(Y1) is bounded by 1). Thus, we apply the concentration inequality.

Recall that Φ(A) = R+. In both of these cases, the quantity M1 involved in the assumptions of

the Talagrand Inequality (Lemma 5 of Lacour 2008, p.812) equals M1 = ∥K∥L2(R)/
√
h. Moreover,

H2 can be chosen as the upper-bound of the variance term of the estimator g̃h, that is H2 =
∥K∥L2(R)/nh. Finally, v equals ∥K∥L1(R) for Example 3, and ∥g∥L∞(R+)∥K∥L1(R) for Example 4.

As an example, let us detail the computation of v in Example 4. Recall that X = C ∧ Z,
Y = 1Z≤C , s is the hazard rate, and the warping Φ is the function x 7→

∫ x
0 (1 − FX(t))dt. Thus,

denoting by fC (respectively fZ) a density of the variable C (respectively Z), and FC (respectively
FZ) its c.d.f.,

Var (ψt,h(X1, Y1)) ≤ E
[
(ψt,h(X1, Y1))

2
]
= E

[
Y1

(∫
R+

Kh(u
′ − Φ(X1))t(u

′)du′
)2
]
,

=

∫
R+×R

1z≤c

(∫
R+

Kh(u
′ − Φ(z))t(u′)du′

)2

fC(c)fZ(z)dzdc,

=

∫
R+

(∫
R+

Kh(u
′ − Φ(z))t(u′)du′

)2

fZ(z) (1− FC) (z)dz.

We set z = Φ−1(u). The integral becomes

∫
R+

(∫
R+

Kh(u
′ − Φ(z))t(u′)du′

)2

fZ(z) (1− FC) (z)dz

=

∫
R+

(∫
R+

Kh(u
′ − u)t(u′)du′

)2

fZ ◦ Φ−1(u) (1− FC) ◦ Φ−1(u)
du

((1− FX) ◦ Φ−1(u))
.
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Thanks to the same arguments as the ones used to prove (8) in Section 5.1, we obtain:

Var (φt,h(X1, Y1)) ≤
∫
R+

g(u)

(∫
R+

Kh(u
′ − u)t(u′)du′

)2

du,

=

∫
R+

g(u)
(
Kh ∗

(
t1R+

)
(u)
)2
du ≤ ∥g∥L∞(R+)

∥∥Ǩh ∗
(
t1R+

)∥∥
L2(R) ,

≤ ∥g∥L∞(R+)

∥∥Ǩh

∥∥
L1(R)

∥∥(t1R+

)∥∥
L2(R) = ∥g∥L∞(R+) ∥K∥L1(R) := v.

Once we have the three quantities, we easily apply the Talagrand Inequality and the proof is
complete by using Assumptions (H2)-(H3), like above (see the computations in Example 1).

2

5.6. Proof of Corollary 1. We must bound the bias term of the right hand-side of Inequality (16)
(Theorem 2). Actually, if we prove that

∥s− sh∥2ϕ ≤ Ch2β,

where C is a constant, then the proof of the Corollary will be completed by computing the minimum
which is involved in (16). By de�nition,

∥s− sh∥2ϕ = ∥g − gh∥2L2(Φ(A)) =

∫
Φ(A)

(gh(u)− g(u))2 du.

We distinguish two cases in the sequel, depending on the considered examples.
Then we distinguish two cases:

5.6.1. Examples 1-3. Here, Φ(A) = (0; 1). We start with the de�nition of gh: for u ∈ Φ(A),

gh(u) =
1

h

∫ 1

0
g(u′)K

(
u− u′

h

)
du′ =

∫ u
h

u−1
h

g(u− hz)K(z)dz,

=

∫ u
h

u−1
h

ḡ(u− hz)K(z)dz =

∫
R
ḡ(u− hz)K(z)dz.

Thus, since
∫
RK(u)du = 1,

ḡh(u)− g(u) =

∫
R
K(z)ḡ(u− hz)dz − ḡ(u) =

∫
R
K(z) [ḡ(u− hz)− ḡ(u)] dz.(29)

We use a Taylor-Lagrange formula for ḡ: for u ∈ (0; 1), and z ∈ R, there exists θ ∈ (0; 1) such that

ḡ(u− hz)− g(u) = −hzḡ′(u) + (−hz)2

2!
ḡ′′(u) + · · ·+ (−hz)l−1

(l − 1)!
ḡ(l−1)(u) +

(−hz)l

l!
ḡ(l)(u− θhz),

with l = ⌊β⌋. With Assumption (Kl), we obtain

∥s− sh∥2ϕ ≤

(∫
z∈R

|K(z)| |hz|
l

l!

{∫ 1

u=0

{
ḡ(l)(u− θhz)− ḡ(l)(u)

}2
du

}1/2

dz

)2

.

Since ḡ belongs to the Hölder space H(β, L),[∫ 1

u=0

{
ḡ(l)(u− θhz)− ḡ(l)(u)

}2
du

]1/2
≤

[∫ 1

u=0
L2(θhu)2(β−l)du

]1/2
,

= L|hz|β−l,

which enables us to conclude.

2
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5.6.2. Example 4. Here, Φ(A) = R+. Similarly, we �rst obtain Equality (29). Then, the idea is the
same as in Examples 1-3, but since we integrate over an unbounded subset, we choose an integrated
remainding term in the Taylor formula:

ḡ(u−hz)−ḡ(u) = −hzḡ′(u)+(−hz)2

2!
ḡ′′(u)+· · ·+(−hz)l−1

(l − 1)!
ḡ(l−1)(u)+

(−hz)l

(l − 1)!

∫ 1

0
(1−θ)l−1ḡ(l)(u−θhz)dθ.

The reasoning is then the same as in density estimation (see Tsybakov 2009 for details).
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