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Introduction

Let (X, Y ) be a couple of real random variables, and (X i , Y i ) i=1,...,n an i.i.d. sample drawn as (X, Y ). The main goal of nonparametric estimation is to recover an unknown function s, linked with (X, Y ), such as the regression function, from the data. Among the huge variety of methods that have been investigated, the use of transformed data (F X (X i ), Y i ), with F X the cumulative distribution function (c.d.f.) of X, has received attention in the past decades. In this context or with similar tools, both kernel and projection estimators have been studied in random design regression estimation [START_REF] Yang | Linear functions of concomitants of order statistics with application to nonparametric estimation of a regression function[END_REF][START_REF] Stute | Asymptotic normality of nearest neighbor regression function estimates[END_REF][START_REF] Kerkyacharian | Regression in random design and warped wavelets[END_REF][START_REF] Akritas | Reverse windows in nonparametric regression[END_REF][START_REF] Pham Ngoc | Regression in random design and Bayesian warped wavelets estimators[END_REF][START_REF] Kulik | Wavelet regression in random design with heteroscedastic dependent errors[END_REF][START_REF] Mammen | Nonparametric regression with nonparametrically generated covariates[END_REF], Chagny 2013a), conditional density or c.d.f estimation [START_REF] Stute | Conditional empirical processes[END_REF][START_REF] Mehra | Laws of iterated logarithm and related asymptotics for estimators of conditional density and mode[END_REF][START_REF] Chagny | Warped bases for conditional density estimation[END_REF]), for the white noise model [START_REF] Chesneau | A maxiset approach of a Gaussian noise model[END_REF] or to deal with dependent data [START_REF] Chesneau | Estimation of a cumulative distribution function under interval censoring "case 1" via warped wavelets[END_REF]. However, to our knowledge, few papers focus on the problem of adaptivity of such "warped estimators". The aim of the present work is twofold: rst, we want to show that a warping kernel device can be applied to various estimation problems, including survival analysis models (see examples below). Secondly, we address the problem of bandwidth selection, with the intention of providing an adaptive "warped" estimator, which satises nonasymptotic risk bounds.

The basic idea, which motivates the study of warped kernel estimators introduced by [START_REF] Yang | Linear functions of concomitants of order statistics with application to nonparametric estimation of a regression function[END_REF], can be rst explained in the classical regression framework. Here, the target function is the conditional expectation, s : x → E[Y |X = x] i.e.

(1)

s(x) = 1 f X (x) ∫ R yf (X,Y ) (x, y)dy,
when a density f (X,Y ) for the couple (X, Y ) exists, and where f X is the marginal density of the design X. Historical kernel methods were initiated by [START_REF] Nadaraya | On estimating regression[END_REF] and [START_REF] Watson | Smooth regression analysis[END_REF]. The famous estimator named after them is built as the ratio of a kernel estimator of the product sf X divided by a kernel estimator of the density f X :

sNW : x → 1 n ∑ n i=1 Y i K h (x -X i ) 1 n ∑ n i=1 K h (x -X i )
,

where K h : x → K(x/h)/h, for h > 0, and K : R → R such that ∫ R K(x)dx = 1. Adaptive estimation then requires the automatic selection of the bandwidth h, and the ratio form of the estimate suggests that two such parameters should be selected: one for the numerator, and one for the denominator. From the theoretical point of view, there is no reason to choose the same.

Nevertheless, nonasymptotic results such as oracle-inequality are dicult to derive for an estimator dened with two dierent data-driven smoothing parameters. See [START_REF] Penskaya | Mean square consistent estimation of a ratio[END_REF] for a thorough study of the ratio-form estimators. Moreover, when the design X is very irregular (for example when a "hole" occurs in the data), a ratio may lead to instability (see Pham Ngoc 2009). The warped kernel estimators introduced by [START_REF] Yang | Linear functions of concomitants of order statistics with application to nonparametric estimation of a regression function[END_REF] and [START_REF] Stute | Asymptotic normality of nearest neighbor regression function estimates[END_REF] avoid the ratio-form. Indeed denote by Fn the empirical c.d.f. of the X i 's and let

(2) ŝh = 1 n n ∑ i=1 Y i K h (F X (x) -F X (X i )) , or ŝh = 1 n n ∑ i=1 Y i K h ( Fn (x) -Fn (X i ) ) ,
depending on whether the c.d.f. F X is known or not. The following equality (see ( 8)) holds:

E [Y K h (u -F X (X))] = K h ⋆ (s • F -1 X )(u)
, where ⋆ is the convolution product and • is the composition symbol. Thus, the rst estimator of (2) can be viewed as ŝh = s • F -1 X • F X . The main advantage is that its expression involves one bandwidth h only.

In this paper, we generalize the warping strategy to various functional estimation problems: as a rst extension of (1), we propose to recover functions s of the form (3)

s(x) = 1 ϕ(x) ∫ θ(y)f (X,Y ) (x, y)dy,
for θ : R → R, and ϕ : R → R + \{0}. In this case, the warping device brings into play the transformation (Φ(X), Y ) of the data, with Φ ′ = ϕ. The form (3) covers the additive regression model described above, by setting Φ = F X , and θ(y) = y. But it also permits to deal with the simplied heteroskedastic model Y = √ s(X)ε, where ε is an unobserved noise, centered, with variance equals to 1. In this case, Φ = F X , and θ(y) = y 2 .

In several examples however, the couple (X, Y ) does not admit a density, but X admits a marginal density. Then (3) can be extended and the target function s takes the form:

(4) s(x) = f X (x) ϕ(x) E[θ(Y )|X = x].
This allows to handle two classical settings in survival analysis: the interval censoring case 1, and right censored data. In the interval censoring model, case 1, the target function is s(x) = P(Z ≤ x), where Z is a survival time, which is not observed, and we only know a current status at the observed time X of examination. We also know Y = 1 Z≤X , which indicates whether Z occurs before X or not. We refer to Jewell and van der Laan (2004) for a review of the estimation methods in this setting (see also van de Geer 1993 for maximum likelihood estimation), and more recently to [START_REF] Ma | Adaptive penalized M -estimation with current status data[END_REF], [START_REF] Brunel | Cumulative distribution function estimation under interval censoring case 1[END_REF] or [START_REF] Plancade | Adaptive estimation of the conditional cumulative distribution function from current status data[END_REF] for investigations including adaptivity.

In right-censored data, the function of interest at time x is the hazard rate function, that is the risk of death at time x, given that the patient is alive until x. This model has been studied by [START_REF] Tanner | The estimation of the hazard function from randomly censored data by the kernel method[END_REF], [START_REF] Müller | Hazard rate estimation under random censoring with varying kernels and bandwidths[END_REF] and [START_REF] Patil | Bandwidth choice for nonparametric hazard rate estimation[END_REF], among all. Adaptive results are available for projection-type estimators (see [START_REF] Brunel | Penalized contrast estimation of density and hazard rate with censored data[END_REF][START_REF] Lacour | Adaptive estimation of the transition density of a particular hidden Markov chain[END_REF][START_REF] Reynaud-Bouret | Penalized projection estimators of the Aalen multiplicative intensity[END_REF][START_REF] Akakpo | Histogram selection for possibly censored data[END_REF], but to our knowledge not for kernel estimators.

The paper is organized as follows. We present in Section 2 the estimation method, detail the examples illustrating the relevance of the introduction of a general target function s dened by (4). We also study the global risk of the warped kernel estimators with xed bandwidths. Section 3 is devoted to adaptive estimation: we dene a data-driven choice of the bandwidth, inspired by [START_REF] Goldenshluger | Bandwidth selection in kernel density estimation: oracle inequalities and adaptive minimax optimality[END_REF] which allows to derive nonasymptotic results for the adaptive estimators. Oracle-type inequalities are provided for the M.I.S.E., and convergence rates are deduced under regularity assumptions. Sections 2 and 3 both deal with the case of known deformation Φ and with the case of an estimated deformation. In Section 4, the method is illustrated through numerical simulations. Proofs are gathered in Section 5. A is an open interval of R and B a Borel subset of R. We assume that X i has a marginal density f X and we aim at recovering a function s : A → R linked with the distribution of (X i , Y i ). To estimate s, we replace the explanatory variable X i by Φ(X i ), where Φ : A → Φ(A) ⊂ R is one-to-one and absolutely continuous. The data (Φ(X i ), Y i ) i=1,...,n are called the warped sample with deformation function Φ. The sets A, B, Φ(A) are supposed to be given. The target function can be written as:

(5)

s(x) = g • Φ(x) = g(Φ(x)), with g : Φ(A) → R.
We rst estimate the auxiliary function g = s•Φ -1 with Φ -1 the inverse function of Φ. In the general case, Φ is unknown and we must estimate it also. Let K be a function such that ∫ R K(u)du = 1 and set K h : u → K(u/h)/h, for h > 0. We dene, for u ∈ Φ(A),

(6) ĝh (u) = 1 n n ∑ i=1 θ(Y i )K h ( u -Φn (X i )
) ,

where θ : R → R is a given function, Φn is an empirical counterpart for Φ, and for x ∈ A

(7) ŝh (x) = ĝh • Φn (x) = 1 n n ∑ i=1 θ(Y i )K h ( Φn (x) -Φn (X i ) ) .
The following equality is the cornerstone of the method and justies the introduction of (6

). If θ satises E|θ(Y )K h (u -Φ(X)| < ∞, for all u ∈ Φ(A), (8) 
E [θ(Y )K h (u -Φ(X)] = K h ⋆ ( g1 Φ(A) ) (u) := g h (u),
where ⋆ is the convolution product. It shows that ĝh is an empirical version of g h and thus ŝh in (7) suits well to estimate s. Let us give examples covered by the above framework.

Example 1 (standard random design regression with additive error term): we observe

(X i , Y i ) with Y i = s(X i ) + ε i , (ε i ) i=1,...,n is independent of (X i ) i=1,...,n , E[ε 2 i ] < ∞ and E[ε i ] = 0. We choose Φ(x) = F X (x), the cumulative distribution function (c.d.f. in the sequel) of X and assume that Φ : A → Φ(A) is invertible. Example 2 (Heteroskedastic model): Y i = σ(X i )ε i , (ε i ) i=1,...,n independent of (X i ) i=1,...,n , E[ε 2 i ] = 1, E[ε i ] = 0, Φ(x) = F X (x), with Φ : A → Φ(A) invertible. Here s(x) = σ 2 (x) = E[Y 2 i |X i = x].
Example 3 (Interval censoring, Case 1): the observation is

(X i , Y i ) where Y i = 1 Z i ≤X i ,
Z i , X i ≥ 0 are independent event occurence times, Y i indicates whether Z i (the time of interest) occurs before X i (the so-called examination time) or not and Z i is not observed. The target function is s

(x) = P(Z i ≤ x) = E[Y i |X i = x]. We choose Φ = F X .
Example 4 (Hazard rate estimation from right censored-data): the observation is

X i = Z i ∧ C i , Y i = 1 Z i ≤C i
, where Z i and C i are not observed and independent, Z i ≥ 0 is a lifetime and C i ≥ 0 is a censoring time. The function s of interest is the hazard rate function s

(x) = f Z (x)/(1 -F Z (x)),
where f Z (resp. F Z ) is the density (resp. the c.d.f.) of Z. This function satises ( 9)

s(x) = f X (x) 1 -F X (x) E[Y |X = x].
In this case, we assume F X (x) < 1 for all x ≥ 0, and take Φ(x) = ∫ x 0 (1 -F X (t))dt.

We now dene the estimator Φ of the warping function Φ. Instead of estimating Φ with the whole sample (X i ) i=1,...,n , we assume that another sample (X -i ) i=1,...,n , independent of the X i 's, but distributed like them, is available. Thus, we set

Φn (x) = { Fn (x)(Examples 1-3), ∫ x 0 ( 1 -Fn (t) ) dt(Example 4) where Fn (x) = 1 n ∑ n i=1 1 X -i ≤x .
The introduction of the second sample of variable X is an artefact of the theory: it only allows to avoid dependency problems in the proof of the results, which are technical and cumbersome enough (see the supplementary material Chagny 2013b). This trick is also standard in others studies of warped methods (see [START_REF] Kerkyacharian | Regression in random design and warped wavelets[END_REF] or Kulik and Raimondo 2009 e.g.). Using a single sample would have required totally dierent statistic and probabilistic tools. However, we have obviously used only one sample to compute the estimator in the simulation study, see Section 4 (otherwise the comparison with other methods would not have been fair).

Hereafter, we also denote by gh the pseudo-estimators dened by choosing Φ = Φ in (6). We coherently set sh = gh • Φ. They can be used when Φ is known. The theoretical results are the same for sh and ŝh , up to further technicalities due to the plug-in of an empirical version for Φ. The paper mainly focuses on the proofs of the results for s since they are representative of the statistical and probabilistic tools which are required. Complete proofs are available in the supplementary material Chagny (2013b).

2.2. Risk of the xed bandwidth estimator. In this section, we study the global properties of ŝh as an estimate of s on A, with a xed bandwidth h. The quadratic risk weighted by the derivative ϕ of the warping function Φ is the natural criterion in our setting. Let us introduce, for a measurable function t on A, (10)

∥t∥ 2 ϕ = ∫ A t 2 (x)ϕ(x)dx,
and denote by L 2 (A, ϕ) the space of functions t for which the quantity (10) exists and is nite. We also use the corresponding scalar product ⟨., .⟩ ϕ . For t 1 , t 2 belonging to L 2 (A, ϕ), we have

∥t 1 • Φ∥ ϕ = ∥t 1 ∥ L 2 (Φ(A)) , ⟨t 1 • Φ, t 2 • Φ⟩ ϕ = ⟨t 1 , t 2 ⟩ Φ(A) ,
where ∥t 1 ∥ 2 L 2 (Φ(A)) = ∫ Φ(A) t 2 1 (x)dx and ⟨., .⟩ Φ(A) denotes the usual scalar product on L 2 (Φ(A)).

Therefore,

∥s h -s∥ 2 ϕ = ∥g h -g∥ 2 L 2 (Φ(A)
) . When K belongs to L 2 (R) and E[θ 2 (Y 1 )] < ∞, the following bias-variance decomposition of the risk holds (recall that g h is dened in (8)), ( 11)

E [ ∥s h -s∥ 2 ϕ ] ≤ ∥g -g h ∥ 2 L 2 (Φ(A)) + 1 nh E [ θ 2 (Y 1 ) ] ∥K∥ 2 L 2 (R) .
This inequality holds if s ∈ L 2 (A, ϕ), a property which is satised if s is bounded on A. This is the case for Examples 1-3, as ϕ = f X . In Example 4, we can check that s ∈ L 2 (A, ϕ) for all classical distributions for C and Z used in survival analysis (such as exponential, Weibull, Gamma...). The general condition to be checked in this example is

∫ A f 2 X (x)/(1 -F X (x))dx < ∞.
The challenge in the general case comes from the plug-in of the empirical Φn . Though natural, it necessitates lengthy and cumbersome technicalities. This explains why it is not often considered in the literature of warped estimators (see e.g. Pham Ngoc 2009 or [START_REF] Chesneau | A maxiset approach of a Gaussian noise model[END_REF]. The following assumptions are required.

(H1') The function s is continuously derivable on A. (H2') The kernel K is twice continuously derivable, with bounded derivatives K ′ and K ′′ on R. (H3') The set A can be written A = (0, τ ) with nite τ > 0, in Example 4. Assumption (H1') is somehow restrictive but required for integration by parts (see Section C.3. in [START_REF] Chagny | Supplementary material for adaptive warped kernel estimator[END_REF]). Assumption (H2') permits to use Taylor formulas to deal with the dierence

K h (u -Φn (X i )) -K h (u -Φ(X i ))
. This is not a problem as we choose the kernel in practice. We also add (H3'), which is needed to control the dierence Φn -Φ in Example 4 (see Section B. in [START_REF] Chagny | Supplementary material for adaptive warped kernel estimator[END_REF]). Thanks to technical computations, we obtain the analogous of (11) for ŝh , under mild assumptions. A sketch of the proof is given in Section 5.2. The details are provided in Chagny (2013b).

Proposition 1. Assume (H1'), and (H2'), and also (H3') for Example 4. If moreover h ≥ Cn -1/5 (C a purely numerical constant), there exists c > 0 such that

(12) E [ ∥ŝ h -s∥ 2 ϕ ] ≤ 5 ∥g -g h ∥ 2 L 2 (Φ(A)) + c nh .

Adaptive estimation

As usual, we must choose a bandwidth h which realizes the best compromise between the squaredbias and the variance terms (see ( 11) and ( 12)). The choice should be data-driven. For this, we use a method described in [START_REF] Goldenshluger | Bandwidth selection in kernel density estimation: oracle inequalities and adaptive minimax optimality[END_REF], and show that this leads to oracle-type inequalities and adaptive optimal estimators (in the sense of Goldenshluger and Lepski 2011). We begin with the case of known warping function Φ, which permits to develop the theoretical tools in a simpler way and to derive the results with few assumptions and short proofs.

3.1. Case of known Φ.

3.1.1. Data-driven choice of the bandwidth. We consider the collection (s h ) h∈Hn , where H n is a nite collection of bandwidths, with cardinality depending on n and properties precised below (Assumptions (H2)-( H3)). We introduce the auxiliary estimators, involving two kernels,

sh,h ′ (x) = gh,h ′ (Φ(x)) with gh,h ′ = K h ′ ⋆ ( gh 1 Φ(A)
) .

For a numerical constant κ > 0 to be precised later on (see Section 4.1 below), we dene, for h ∈ H n , ( 13)

V (h) = κ ( 1 + ∥K∥ 2 L 1 (R) ) ∥K∥ 2 L 2 (R) E [ θ 2 (Y 1 ) ] 1 nh .
Next, we set ( 14)

A(h) = max h ′ ∈Hn { ∥s h,h ′ -sh ′ ∥ 2 ϕ -V (h ′ ) } + ,
which is an estimation of the squared-bias term (see Lemma 4). Note that ∥s h,h ′ -sh ′ ∥ 2 ϕ = ∥g h,h ′gh ′ ∥ 2 . Lastly, the adaptive estimator is dened in the following way:

(15) s = sh with h = arg min h∈Hn {A(h) + V (h)} .
The selected bandwidth h is data-driven. In V (h), the expectation E[θ 2 (Y 1 )] can be replaced by the corresponding empirical mean (see Brunel and Comte 2005, proof of Theorem 3.4 p.465). In Examples 3-4, it can be replaced by 1, its upper-bound.

3.1.2. Results. We consider the following assumptions:

(H1) The function s is bounded. Denote by ∥s∥ L ∞ (A) its sup-norm.

(H2) There exist α 0 > 0 and a constant k 0 ≥ 0 such that

∑ h∈Hn 1 h ≤ k 0 n α 0 . (H3) For all κ 0 > 0, there exists C 0 > 0, such that ∑ h∈Hn exp ( - κ 0 h ) ≤ C 0 .
(H4) The kernel K is of order l, i.e. for all j ∈ {1, . . . , l + 1}, the function x → x j K(x) is integrable, and for 1 H1) is required to obtain Theorem 2 below. Nevertheless the value ∥s∥ L ∞ (A) is not needed to compute the estimator (see ( 15)). This assumption holds in Example 3 (s ≤ 1 in this case), and in Example 4, for instance when Z has exponential or Gamma distribution. Assumptions (H2)-(H3) mean that the bandwidth collection should not be too large. For instance, the following classical collections satisfy these assumptions:

≤ j ≤ l, ∫ R x j K(x)dx = 0. Assumption (
(1)

H n,1 = { k -1 , k = 1, . . . , χ(n) } with α 0 = 2, χ(n) = n or α 0 = 1, χ(n) = √ n. (2) H n,2 = { 2 -k , k = 1, . . . , [ln(n)/ ln(2)] } , with α 0 = 1.
Assumption (H4) is required only to deduce convergence rate from the main nonasymptotic result.

We need a moment assumption linked with (H2):

(H5) With α 0 given by (H2), there exists p > 2α 0 , such that

E[|θ(Y ) -E[θ(Y )|X]| 2+p ] < ∞.
If θ is bounded, (H5) evidently holds. In Examples 1 and 2, (H5) is a moment assumption on the noise which is usual in regression settings. It includes e.g. the case of Gaussian regression (when the noise ε is a Gaussian variable), under Assumption (H1). Notice also that the smaller α 0 , the less restrictive the integrability constraint p on the noise moments.

We prove the following oracle-type inequality:

Theorem 2. We assume that (H1)-(H3) hold in Examples 1-4, and additionally that (H5) is fullled for Examples 1-2. Then there exist two constants c 1 > 0 and c 2 > 0, such that:

(16) E [ ∥s -s∥ 2 ϕ ] ≤ c 1 min h∈Hn { ∥s -s h ∥ 2 ϕ + E [ θ 2 (Y 1 ) ] ∥K∥ 2 L 2 (R) nh } + c 2 n ,
with s h = g h • Φ and s dened by ( 15). The constant c 1 only depends on ∥K∥ L 1 (R) .

The constant c 2 depends on ∥s∥ L ∞ (A) , ∥K∥ L 1 (R) and ∥K∥ L 2 (R) in Examples 3-4, and also on the moment of ε and E[s 2 (X 1 )] for Examples 1-2. The adaptive estimator s automatically makes the squared-bias/variance compromise. The selected bandwidth h is performing as well as the unknown oracle:

h * := arg min h∈Hn E[∥s h -s∥ 2 ϕ ].
up to the multiplicative constant c 1 and up to a remainding term of order 1/n, which is negligible.

The interest of Inequality ( 16) is that it is nonasymptotic. Moreover, contrary to usual kernel estimation results, Assumption (H4) is not needed. This is one of the advantages of the bandwidth selection method. Inequality ( 16) proves that the estimator s is optimal in the oracle sense.

To deduce convergence rates, smoothness classes must be considered to quantify the bias term.

Dene the Hölder class with order β > 0 and constant L > 0 by

H(β, L) = { t : R → R, t (⌊β⌋) exists, ∀x, x ′ ∈ B, t (⌊β⌋) (x) -t (⌊β⌋) (x ′ ) ≤ L|x -x ′ | β-⌊β⌋ } ,
where ⌊β⌋ is the largest integer less than β. We also need the Nikol'skii class of functions:

N 2 (β, L) = { t : R → R, t (⌊β⌋) exists, ∀x ∈ R, ∫ R ( t (⌊β⌋) (x ′ + x) -t (⌊β⌋) (x ′ ) ) 2 dx ′ ≤ L 2 |x| 2β-2⌊β⌋

}

We can now deduce from Theorem 2 the convergence rate of the risk, under regularity assumptions for the auxiliary function g.

Corollary 1. Let ḡ = g1 ϕ(A) on R. Assume that • ḡ belongs to the Hölder class H(β, L), with ḡ(0) = g(1) in Examples 1-3, • ḡ belongs to the Nikol'skii class N 2 (β, L) in Example 4. Assume (H4) with l = ⌊β⌋. Then, under the assumptions of Theorem 2, (17) E [ ∥s -s∥ 2 ϕ ] ≤ Cn -2β 2β+1 ,
where C is a constant which does not depend on n and β.

In Examples 1-3, Φ(A) = (0; 1) and the Hölder condition is enough. In Example 4, Φ(A) = R + and we need the Nikol'skii condition. Both spaces are standard in kernel estimation, see e.g. [START_REF] Tsybakov | Introduction to nonparametric estimation[END_REF] and [START_REF] Goldenshluger | Bandwidth selection in kernel density estimation: oracle inequalities and adaptive minimax optimality[END_REF].

We recover the classical optimal rates in nonparametric estimation. Note however that our regularity assumptions are set on g and not s, as long as we do not consider specic warped spaces dened in [START_REF] Kerkyacharian | Regression in random design and warped wavelets[END_REF]. The rate ( 17) is known to be optimal in the minimax sense for the estimation problems we consider (e.g., see [START_REF] Korostelëv | Minimax theory of image reconstruction[END_REF] for regression estimation, Huber and MacGibbon 2004 for hazard rate, and Plancade 2013 for c.d.f. estimation with current-status data), if the two functions have the same regularity parameter.

Remark 1. We have strong conditions on g at the boundary of the support [0; 1], in Examples 1-3. This is nevertheless well-known in kernel estimation, which are rarely free of boundary eects.

This also explains why we restrict the estimation interval for the simulation study, by using the quantiles of the observations X i (see Section 4). Notice that we may apply recent methods which provide boundary corrections in kernel estimation (see Karunamuni and Alberts 2005 and Bertin and Klutchniko 2011 for example), but this is beyond the scope of this paper. Moreover, the comparison against adaptive smoothing splines, which have no such problem of boundary already give good results in practice, see Section 4 below.

3.2. General case of unknown Φ. We use the plug-in device of Φn in the denition of the quantities ( 13) and ( 14) to introduce a criterion like (15) which is fully data-driven in the general case of unknown warped function. To limit the technicalities, we focus on one of the following bandwidth col-

lection H n : H n,1 = {k -1 , k = 1, . . . , [(n/ ln(n)) 1/5 ]} or H n,2 = {2 -k , k = 1, . . . , [ln(n)/(6 ln(2))]}.
The selection of an estimator in the collection (ŝ h ) h∈H n,l , l = 1, 2, is done with (18) ĥ = arg min 

h∈H n,l { A(h) + 2 V (h) } , with (19) 
A(h) = max h ′ ∈Hn { ∥ĝ h,h ′ -ĝh ′ ∥ 2 L 2 (Φ(A)) -V (h ′ ) } + , and V (h) = κ ′ ln 2 (n)/nh,
E [ ∥ŝ -s∥ 2 ϕ ] ≤ c ′ 1 min h∈H n,l { ∥s -s h ∥ 2 ϕ + ln 2 (n) nh } + c ′ 2 n ,
with s h = g h • Φ, and for l = 1, 2.

The proof of Theorem 3, which follows the same scheme than the one of Theorem 2, is provided in the supplementary material [START_REF] Chagny | Supplementary material for adaptive warped kernel estimator[END_REF]. The values of the constants are specied in the proof. They depend on K and s, but neither on n, nor on the bandwidth h. The term V in the denition ( 18) of the criterion deserves some comments. It can be compared to the penalty V dened in the toy case of known Φ in (13). The order of magnitude is not exactly the same: here, we have an extra-logarithmic factor. It is due to the substitution of Φn to Φ, and plays a technical role in the proof but it gives what is usually called a nearly optimal bound. Note that it does not depend on E[θ 2 (Y 1 )], contrary to (13).

Illustration

To illustrate the procedure, we only focus on two of the four examples: the additive regression (Example 1), and the estimation of c.d.f. under interval censoring case I (Example 3). As we cannot reasonably pretend to compare our method with all the adaptive estimators of the literature, we choose to concentrate on the comparison with adaptive least-squares (LS in the sequel) estimators.

4.1. Implementation of the warped-kernel estimators. The theoretical study allows the choice of several kernels and bandwidth collections. For practical purpose, we consider the Gaussian kernel, K : x → e -x 2 /2 / √ 2π, which satises Assumption (H4) with l = 1. It has the advantage of having simple convolution-products:

(21) ∀h, h ′ > 0, K h ⋆ K h ′ = K √ h 2 +h ′2 .
The experiment is conducted with the dyadic collection H n,2 dened above. The larger collection H n,1 has also been tested: since it does not really improve the results but increases the computation time, we only keep the other collection. Besides, the simulations are performed in the case of unknown Φ. Therefore in Examples 1 and 3, the estimator is

ŝ : x → 1 n n ∑ i=1 θ(Y i )K ĥ( Fn (x) -Fn (X i )),
with Fn the empirical c.d.f. of the X i 's. Then, the estimation procedure can be decomposed in some steps:

• Simulate a data sample (X i , Y i ), i = 1, . . . , n, tting Example 1 or 3.

• Compute V (h) and A(h) for each h ∈ H n,1 . For V (h), we set κ ′ = 0.05 in Example 1, and κ ′ = 0.3 in Example 3 (see Remark 2 below). For A(h), thanks to (21), the auxiliary estimates are easily computed: ŝh,h ′ = ŝ√ h 2 +h ′2 . The L 2 -norm is then approximated by a Riemann sum:

∥ĝ h,h ′ -ĝh ′ ∥ 2 L 2 (Φ(A)) ≈ 1 N N ∑ k=1 ( ĝh,h ′ (u k ) -ĝh ′ (u k ) ) 2 ,
where N = 50, and (u k ) k are grid points evenly distributed across (0; 1).

• Select ĥ such that A(h)

+ 2 V (h) is minimum. • Compute ŝĥ .
Remark 2. The computation of the selection criterion (18) requires a value for κ ′ . A lower bound for its theoretical value is provided by the proof: it is very pessimistic due to rough upper-bounds (for the sake of clarity), and obviously useless in practice, like in most model selection devices. We have carried out a large number of simulations to tune it, prior to the comparison with the other estimates. We have plotted the quadratic risk in function of κ ′ for various models and we have chosen one of the rst values leading simultaneously to a reasonable risk and a reasonable complexity of the selected bandwidth. Such procedure is classical, and required whatever the chosen selection device (see e.g. [START_REF] Sansonnet | Wavelet thresholding estimation in a poissonian interactions model with application to genomic data[END_REF] for a similar tuning method in wavelet thresholding, or Chagny 2013a for details of tuning in model selection).

4.2. Example 1: additive regression. We compare the warped kernel method (WK) with the adaptive estimator studied in [START_REF] Baraud | Model selection for regression on a random design[END_REF]. It is a projection estimator, developed in an orthogonal basis of L 2 (A), and built with a penalized least-squares contrast. The experiment is carried out with the Matlab toolbox FY3P, written by Yves Rozenholc, and available on his web page http://www.math-info.univ-paris5.fr/∼rozen/YR/Softwares/Softwares.html. A regular piecewise polynomial basis is used, with degrees chosen in an adaptive way. Since the kernel we choose has only one vanishing moment, the comparison is fair if we consider polynomials with degrees equal to or less than 1. We denote by LS1 the resulting estimator. However, as shown below, we will see that the warped-kernel generally outperforms the least-square, even if we use polynomials with degree at most 2 (LS2). We also experiment the Fourier basis for the least-squares estimator, but the results are not as good as the polynomial basis. Thus, we do not mention the values of the risks.

The procedure is applied for dierent regression functions, design and noise. The main goal is to illustrate the sensibility of the estimation to the underlying design distribution. Its inuence is explored through four distributions: two classical ones, U [0;1] , the uniform distribution on the interval [0; 1], and N (0.5, 0.01), a Gaussian distribution (with mean 0.5 and variance 0.01); and two distributions which are more original (more irregular), γ(4, 0.08), the Gamma distribution, with parameters 4 and 0.08 (0.08 is the scale parameter), and BN a bimodal Gaussian distribution, with density x → c(exp(-200(x -0.05) 2 ) + exp(-200(x -0.95) 2 )) (c is a constant adjusted to obtain a density function).

We focus on the three following regression functions

s 1 : x → x(x -1)(x -0.6) s 2 : x → -exp(-200(x -0.1) 2 ) -exp(-200(x -0.9) 2 ) + 1 s 3 : x → cos(4πx) + exp(-x 2 )
The rst two functions satisfy the periodicity assumptions of Corollary 1, while we choose the function s 3 to show that our procedure also leads to satisfactory results if the assumption does not hold. The choice of the function s 2 combined with the design BN leads to a data set which presents a "hole" (see Figure 2 (a)). We also test the sensibility of the method to the noise distribution: contrary to the underlying design distribution, it does not seem to aect the results. Thus, we present the simulation study for a Gaussian centered noise, with variance σ 2 . The value of σ is chosen in such a way that the signal-to-noise ratio (the ratio of the variance of the signal Var(s(X 1 )) over the variance of the noise Var(ε 1 )) approximately equals 2.

Beams of estimators (WK, LS1, and LS2) are presented in Figures 1 and2, with the generated data-sets and the function to estimate. Precisely, Figure 1 shows a regular case: all the methods estimate correctly the signal. Figure 2 depicts the case where a hole occurs in the design density: the estimator built with warped kernel behaves still correctly, even if the data are very inhomogeneous, while the estimator LS1, with which the comparison is fair, failed to detect the hole.

A study of the risk is reported in Tables 1 and2, for the sample sizes n = 60, 200, 500 and 1000. The MISE is obtained by averaging the following approximations of the ISE values, for j ∈ {1, . . . , J = 200}, computed with J sample replications:

ISE j = b -a N N ∑ k=1 (s(x k ) -s(x k )) 2 ,
where s stands for one of the estimators, b is the quantile of order 95% of the X i and a is the quantile of order 5%. The (x k ) k=1,...,N are the sample points falling in [a; b]. Tables 1 and2 display the values computed for our method WK, and for the estimators LS1 and/or LS2: for the regression functions s 1 and s 2 (Table 1), the warped-kernel strategy always leads to smaller risk values than LS1. Thus, we only mention the risks of the estimator LS2: even if the comparison is quite unfair (following the theoretical results, see the explanations above), the WK and the LS2 estimators are comparable in terms of performance and in 56% of the examples, the risks of the warped-kernel estimator are smaller than the ones of LS2 estimator. For the third function (Table 2), our method still outperforms the least-squares estimate in polynomial basis of degree at most 1, whatever the design distribution is. The comparison with least-squares in polynomial basis with degree at most 2 leads to mixed results even if the values for both estimators are in the same range. Our estimators still behaves correctly (compared to LS1, see also Figure 1), but not as well as for the rst two functions. Considering the denition of s 3 , the equality s 3 (a) = s 3 (b), required for the theoretical convergence rate does not hold, which may explain the result.

To conclude, if both methods LS2 and WK lead to comparable risks, it remains that our procedure have some advantages, compared to adaptive least-squares methods. First it is easier to implement, since it does not require any matrix inversion (compared to any LS strategy, see [START_REF] Baraud | Model selection for regression on a random design[END_REF]. Then, keeping in mind that the comparison is fair when choosing piecewise polynomials with degree at most 1, the risk values are always smaller for the warped-kernel estimates, in the studied examples.

Finally, we are able to recover a signal even with an irregular design, while the least-squares methods fail in that case. the target function can be seen as a regression function:

s(x) = P(Z ≤ x) = E[1 Z≤x |X = x].
To make the comparison foreseeable, the estimation set A is calibrated as it is done in [START_REF] Brunel | Cumulative distribution function estimation under interval censoring case 1[END_REF], such that most of the data belong to this interval. Dierent models are considered for generating the data. We shorten "follows the distribution" by the symbol "∼".

• M1: X ∼ U [0;1] , and Z ∼ U [0;1] , A = (0; 1) (for instance, the target function is F Z : x → x), • M2: X ∼ U [0;1]
, and Z ∼ χ 2 (1) (Chi-squared distribution with 1 degree of freedom), A = (0; 1), • M3: X ∼ E(1) (exponential distribution with mean 1), and Z ∼ χ 2 (1), A = (0; 1.2), • M4: X ∼ β(4, 6) (Beta distribution of parameter (4,6)), Z ∼ β(4, 8), A = (0; 0.5), • M5: X ∼ β(4, 6), Z ∼ E(10) (exponential distribution with mean 0.1), A = (0; 0.5), • M6: X ∼ γ(4, 0.08), Z ∼ E(10), A = (0, 0.5),

• M7: X ∼ E(0.1), Z ∼ γ(4, 3), A = (1; 23).

All these models allow to investigate thoroughly the sensibility of the method to the distribution of the examination time X, and to the range of the estimation interval. The rst two models and the fourth were also used by [START_REF] Brunel | Cumulative distribution function estimation under interval censoring case 1[END_REF]. Since the design is uniform in two of these examples, and also supported by the set (0; 1) in the other, we choose to explore what happens when it is not the case: in models M5, M6 and M7, the estimation interval is either smaller (M5-M6) or much larger (M7) than (0; 1). Model M3 is choosen to have a design which is not uniform.

Figure 3 shows the smoothness of warped-kernel estimates compared to the reconstruction obtained with least-squares method. The dierence between the estimators is also investigated by computing the MISE for the dierent models. Table 3 reveals that the warped-kernel estimates can advantageously be used as soon as the design X i has not a uniform distribution: it always outperforms the least-squares estimators in these cases, whatever the estimation support is, and whatever the chosen distributions are. When the design is uniform, the warped-kernel strategy also leads to acceptable results but is a little less interesting (however still simpler to implement than LS methods): since F X (x) = x, one can clearly understand that it is not useful to warp the data. However, recall that F X is unknown in practice, thus we cannot assure beforehand that the warping of the data is useless.

The practical advantages of our method are thus denitely to permit to deal with various design distributions (even very irregular ones), and thus to be stable to several data sets in dierent estimation settings (c.d.f. of current status data or regression estimation).

Proofs

Model X Z from current status data (Example 3) built with the warped kernel method (WK) or the least-squares methods, with piecewise polynomials of degree at most 1 or 2 (LS1 or LS2).

U [0;1] U [0;1] [0; 1] 2.
5.1. Proof of Inequality (8). We have:

E [θ(Y )K h (u -Φ(X))] = E [E [θ(Y )|X] K h (u -Φ(X))] , = ∫ A K h (u -Φ(x))E [θ(Y )|X = x] f X (x)dx. We set u ′ = Φ(x), thus du ′ = ϕ(x)dx. Therefore, E [θ(Y )K h (u -Φ(X))] = ∫ Φ(A) K h (u -u ′ )E [ θ(Y )|X = Φ -1 (u) ] f X ( Φ -1 (u) ) du ϕ • Φ -1 (u) , = ∫ Φ(A) K h (u -u ′ )s • Φ -1 (u)du.
2 5.2. Sketch of the proof of Proposition 5.2. We need to specify the notation. The goal is to study the risk of ŝh , h ∈ H n dened when Φ is unknown. We denote it by ŝΦ n, Φn h . We have

ŝΦ n, Φn h = ĝ Φn h • Φn , with ĝ Φn h (u) = 1 n n ∑ i=1 θ(Y i )K h ( u -Φn (X i )
) .

Moreover, sh is denoted by ŝΦ,Φ

h = ĝΦ h • Φ with ĝΦ h (u) = (1/n) ∑ n i=1 θ(Y i )K h (u -Φ(X i )) = gh (u)
previously introduced. Coherently, we also set

ŝΦ n,Φ h = ĝ Φn h • Φ.
The following decomposition, which permits to come down to the study of s, is the key of the proof:

ŝΦ n, Φn h -s 2 ϕ ≤ 5 ∑ 3 l=0 T h l , with T h 0 = ŝΦ,Φ h -s h 2 ϕ + s Φ h -s 2 ϕ , T h 1 = ŝΦ n,Φ h -ŝΦ,Φ h -E [ ŝΦ n,Φ h -ŝΦ,Φ h |(X -i ) ] 2 ϕ , T h 2 = ŝΦ n, Φn h - ŝΦ n,Φ h -E [ ŝΦ n, Φn h - ŝΦ n,Φ h |(X -i ) ] 2 ϕ , T h 3 = E [ ŝΦ n, Φn h -ŝΦ,Φ h |(X -i ) ] 2 ϕ ,
where E[Z|(X -i )] is the conditional expectation of a variable Z given the sample (X -i ) i=1,...,n . The term T h 0 has been bounded in Inequality (11). For the three others, the challenge is to prove that they are bounded by a quantity with order of magnitude 1/(nh).

Notice also that the same splitting is required to prove Theorem 3. All the details are given in Chagny (2013b).

5.3. Proof of Theorem 2. The proof is representative of the one of Theorem 3, which is thus deferred to the supplementary [START_REF] Chagny | Supplementary material for adaptive warped kernel estimator[END_REF]. Let h ∈ H n be xed. We start with the following decomposition for the loss of the estimator s = sh :

sh -s

2 ϕ = gh -g 2 L 2 (Φ(A)) , ≤ 3 gh -gh, h 2 L 2 (Φ(A)) + 3 gh, h -gh 2 L 2 (Φ(A)) + 3 ∥g h -g∥ 2 L 2 (Φ(A)) .
The denitions of A(h) and A( h) enable us to write, using the denition of h,

3 gh -gh, h 2 L 2 (Φ(A)) + 3 gh, h -gh 2 L 2 (Φ(A)) ≤ 3 ( A(h) + V ( h)) + 3 ( A ( h) + V (h) ) , ≤ 6 (A(h) + V (h)) ,
Besides, applying also (11), we obtain

(22) E [ sh -s 2 ϕ ] ≤ 6E [A(h)] + 6V (h) + E[θ 2 (Y 1 )]∥K∥ 2 L 2 (R) nh + 3∥g h -g∥ 2 L 2 (Φ(A)) .
Therefore, the remainding part of the proof follows from the lemma hereafter.

Lemma 4. 

E [A(h)] ≤ C 1 ∥g h -g∥ 2 L 2 (Φ(A)) + C 2 n ,
where the constant C 1 only depends on ∥K∥ L 1 (R) .

Applying Inequality ( 23) in ( 22) implies ( 16) by taking the inmum over h ∈ H n . This ends the proof of Theorem 2.

2 5.4. Proof of Lemma 4. To study A(h), we introduce the auxiliary quantities g h,h

′ := K h ′ ⋆ (g h 1 Φ(A) ) = K h ′ ⋆ ((K h ⋆ g1 Φ(A) )1 Φ(A)
), for any h ′ ∈ H n , and we rst split

∥s h,h ′ -sh ′ ∥ 2 ϕ = ∥g h,h ′ -gh ′ ∥ 2 L 2 (Φ(A)) ≤ 3 ( T a + T b + ∥g h ′ -g h ′ ∥ 2 L 2 (Φ(A))
) ,

(

) 24 
where

T a = ∥g h,h ′ -g h,h ′ ∥ 2 L 2 (Φ(A)) , T b = ∥g h,h ′ -g h ′ ∥ 2 L 2 (Φ(A)) .
The rst term can be bounded as follows.

T a ≤ K h ⋆ ( gh ′ 1 Φ(A) -g h ′ 1 Φ(A) ) 2 L 2 (R) , ≤ ∥K∥ 2 L 1 (R) gh ′ 1 Φ(A) -g h ′ 1 Φ(A) 2 L 2 (R) = ∥K∥ 2 L 1 (R) ∥g h ′ -g h ′ ∥ 2 L 2 (Φ(A)) , as ∥u⋆v∥ L 2 (R) ≤ ∥u∥ L 1 (R) ∥v∥ L 2 (R) (Young convolution inequality). In the same way, T b ≤ ∥K h ′ ∥ 2 L 1 (R) ∥g h - g∥ 2 L 2 (Φ(A))
. Therefore, Decomposition (24) becomes:

∥s h,h ′ -sh ′ ∥ 2 ϕ ≤ 3∥K∥ 2 L 1 (R) ∥g -g h ∥ 2 L 2 (Φ(A)) + 3(1 + ∥K∥ 2 L 1 (R) ) ∥g h ′ -g h ′ ∥ 2 L 2 (Φ(A))
.

Now, we get back to the denition of A(h) given by ( 14):

A(h) ≤ 3 ∥K∥ 2 L 1 (R) ∥g -g h ∥ 2 L 2 (Φ(A)) (25) +3(1 + ∥K∥ 2 L 1 (R) ) max h ′ ∈Hn ( ∥g h ′ -g h ′ ∥ 2 L 2 (Φ(A)) - V (h ′ ) 3(1 + ∥K∥ 2 L 1 (R) ) ) + . We can note that ∥g h ′ -g h ′ ∥ L 2 (Φ(A)) = sup t∈ S(0,1) ⟨g h ′ -g h ′ , t⟩ Φ(A)
, with S(0, 1) a dense countable subset of S(0, 1) = {t ∈ L 1 (Φ(A)) ∩ L 2 (Φ(A)), ∥t∥ L 2 (Φ(A)) = 1} (thanks to the separability of L 2 (R), such a set exists. Now,

⟨g h ′ -g h ′ , t⟩ Φ(A) = 1 n n ∑ i=1 ∫ Φ(A) {θ(Y i )K h ′ (u -Φ(X i )) -E [θ(Y i )K h ′ (u -Φ(X i ))]} t(u)du = ν n,h ′ (t),
where ν n,h ′ is an empirical process. Thus, thanks to (25), it remains to bound the deviations of sup t∈ S(0,1) ν 2 n,h ′ (t). First, we have

E [ max h ′ ∈Hn ( sup t∈ S(0,1) ν 2 n,h ′ (t) - V (h ′ ) 3(1 + ∥K∥ 2 L 1 (R) ) ) + ] ≤ ∑ h ′ ∈Hn E [( sup t∈ S(0,1) ν 2 n,h ′ (t) - V (h ′ ) 3(1 + ∥K∥ 2 L 1 (R) ) ) + ]
.

Then, the conclusion results from the following lemma:

Lemma 5. Under the assumptions of Theorem 2, there exists a constant C such that,

∑ h∈Hn E [( sup t∈ S(0,1) ν 2 n,h (t) -Ṽ (h) ) + ] ≤ C n , with Ṽ (h) = δ ′ ∥K∥ L 2 (R) E[θ(Y 1 ) 2 ]/(nh) for a numerical δ ′ > 0.
We choose the constant κ involved in the denition of V such that Ṽ (h

) ≤ V (h)(1 + ∥K∥ 2 L 1 (R) )/3.
Thus, the proof is complete.

5.5. Proof of Lemma 5. We write the empirical process

ν n,h (t) = 1 n n ∑ i=1 ψ t,h (X i , Y i ) -E [ψ t,h (X i , Y i )] , ( 26 
) with ψ t,h (X i , Y i ) = θ(Y i ) ∫ Φ(A) K h (u -Φ(X i )) t(u)du.
The guiding idea is to apply the Talagrand Inequality, in its version given in [START_REF] Klein | Concentration around the mean for maxima of empirical processes[END_REF].

We will use the notations used in Lemma 5 of Lacour (2008) (p.812). If θ is bounded, this inequality can be applied. Otherwise, we have to introduce a truncation.

5.5.1. Example 1. Recall that Φ = F X and Φ(A) = [0; 1]. We split the process ν n,h into three parts, writing ν n,h = ν

(1)

n,h + ν (2,1) n,h + ν (2,2)
n,h , with, for l = 1, (2, 1), (2, 2),

ν (l) n,h = 1 n n ∑ i=1 φ (l) t,h (Z i ) -E [ φ (l) t,h (Z i ) ] , Z i = X i or (X i , ε i ), and φ (1) t,h : x → s(x) ∫ 1 0 K h (u -F X (x))t(u)du, φ (2,1) t,h : (x, ε) → ε1 |ε|≤κn ∫ 1 0 K h (u -F X (x))t(u)du, φ (2,2) t,h : (x, ε) → ε1 |ε|>κn ∫ 1 0 K h (u -F X (x))t(u)
du, where we dene, for a constant c which will be specied below, ( 27)

κ n = c √ n ln(n)
.

We apply Talagrand's Inequality to the rst two bounded empirical processes, and bound roughly the last one. Thus, we split:

∑ h∈Hn E [( sup t∈ S(0,1) ν 2 n,h (t) -Ṽ (h) ) + ] ≤ 3 ∑ h∈Hn { E [( sup t∈ S(0,1) ( ν (1) n,h (t) ) 2 - Ṽ1 (h) 3 ) + ] (28) +E [( sup t∈ S(0,1) ( ν (2,1) n,h (t) ) 2 - Ṽ2 (h) 
3

) + ] + E [ sup t∈ S(0,1) ( ν (2,2) n,h (t) ) 2 ]}
, with the decomposition Ṽ (h) = Ṽ1 (h) + Ṽ2 (h), and, denoting by

δ ′′ = δ ′ /2, Ṽ1 (h) = 3δ ′′ ∥K∥ 2 L 2 (R) E [ s 2 (X 1 ) ] nh , and Ṽ2 (h) = 3δ ′′ ∥K∥ 2 L 2 (R) E [ ε 2 1 ] nh .
Actually, recall that we have E

[θ 2 (Y 1 )] = E[Y 2 1 ] = E[s 2 (X 1 )] + E[ε 2 1 ] here.
We now show that each of the three terms of the right hand-side of ( 28) is upper-bounded by a quantity of order 1/n. This will end the proof.

• First term of (28).

Let us begin with ν

(1) n,h . To do so, we compute H (1) , M (1) and v (1) , involved in Lemma 5 of Lacour (2008) (p.812).

• For M (1) , let t ∈ S(0, 1) and x ∈ A be xed:

φ (1) t,h (x) ≤ |s(x)| ∫ 1 0 |K h (u -F X (x))t(u)| du ≤ |s(x)|∥K h ∥ L 2 (R) ∥t∥ L 2 (Φ(A)) , = |s(x)| ∥K∥ L 2 (R) √ h ≤ ∥s∥ L ∞ (A) ∥K∥ L 2 (R) √ h := M (1) . • For H (1) , notice that ν (1) n,h (t) = ⟨ dh -g h , t⟩ Φ(A) , with dh = 1 n n ∑ i=1 s(X i )K h (. -F X (X i )) .
Thus, thanks to the Young convolution inequality, we obtain,

E [ sup t∈ S(0,1) ( ν (1) n,h (t) ) 2 ] = E [ dh -g h 2 L 2 ([0;1]) ] , = ∫ 1 0 Var ( dh (u) ) du, since g h (u) = E [ dh (u) ] , ≤ ∫ 1 0 1 n E [ s 2 (X 1 )K 2 h (u -F X (X 1 )) ] du.
Then, we use the same computation as the one done to bound the variance term in the proof of ( 11), and set (H

(1) ) 2 = ∥K∥ 2 L 2 (R) E[s 2 (X 1 )]/(nh). • For v (1) , we also x t ∈ S(0, 1). Hereafter, we set Ǩh (u) = K h (-u). First, Var ( φ (1) t,h (X 1 ) ) ≤ E [ ( φ (1) t,h (X 1 ) ) 2 ] ≤ ∥s∥ 2 L ∞ (A) E [ (∫ 1 0 K h (u -F X (X 1 ))t(u)du ) 2 ] ,
and the expectation can be written

E [ (∫ 1 0 K h (u -F X (X 1 ))t(u)du ) 2 ] = E [ ( Ǩh * ( t1 [0;1] )) 2 (F X (X 1 )) ] , = ∫ 1 0 ( Ǩh * ( t1 [0;1] )) 2 (u)du ≤ Ǩh * ( t1 [0;1] ) 2 L 2 (R) , ≤ Ǩh 2 L 1 (R) ∥t1 [0;1] ∥ 2 L 2 (R) = Ǩh 2 L 1 (R) ∥t∥ 2 L 2 ([0;1]) ,
thanks to the Young convolution inequality. Therefore,

Var

( φ

(1) t,h (X 1 ) ) ≤ ∥s∥ L ∞ (A) ∥K∥ 2 L 1 (R) := v (1) .
Then, Talagrand's Inequality gives, for δ > 0,

E [( sup t∈ S(0,1) ( ν (1) n,h (t) ) 2 -2(1 + 2δ) ( H (1) ) 2 ) + ] ≤ k 1 { 1 n exp ( -k 2 1 h ) + 1 n 2 h exp ( -k 3 √ n ) } ,
where k 1 , k 2 , k 3 are three constants which depend on E

[s 2 (X 1 )], ∥s∥ L ∞ (A) , ∥K∥ L 1 (R) and ∥K∥ L 2 (R) . Assumptions (H2)-(H3) lead to ∑ h∈Hn E [( sup t∈ S(0,1) ( ν (1) n,h (t) ) 2 -2(1 + 2δ)∥K∥ 2 L 2 (R) E[s 2 (X 1 )] 1 nh ) + ] ≤ C n ,
with C a constant (which also depends on the previous quantities).

• Second term of (28).

For the second empirical process ν

(2,1) n,h , the sketch of the proof is the same: similarly, we compute the quantities involved in the Talagrand Inequality,

M (2) = κ n ∥K∥ L 2 (R) 1 √ h , H (2) = ∥K∥ L 2 (R) ( E[ε 2 1 ] ) 1/2 1 √ nh , v (2) = ∥K∥ 2 L 1 (R) E[ε 2 1 ],
and we obtain, by Lemma 5 of [START_REF] Lacour | Adaptive estimation of the transition density of a particular hidden Markov chain[END_REF] 

(p.812), for δ > 0, E [( sup t∈ S(0,1) ( ν (2,1) n,h (t) ) 2 -2(1 + 2δ) ( H (2) ) 2 ) + ] ≤ k 1 { 1 n exp ( -k 2 1 h ) + κ 2 n n 2 h exp ( -k 3 √ n κ n )} ,
where k 1 , k 2 , k 3 are three constants which depend on E[ε 2 1 ], ∥K∥ L 1 (R) and ∥K∥ L 2 (R) . The rst term of the right hand-side is like above. With the denition (27) of κ n , the sum over h ∈ H n of the second term of the upper bound can be written

∑ h∈Hn κ 2 n n 2 h exp ( -k 3 √ n κ n ) = c 2 n 1+k 3 /c ln 2 (n) ∑ h∈Hn 1 h .
Consequently, using Assumptions (H2)-(H3) and choosing c in the denition of κ n such that c ≤ k 3 /α 0 , we also obtain for a constant C,

∑ h∈Hn E [( sup t∈ S(0,1) ( ν (2,1) n,h (t) ) 2 -2(1 + 2δ)∥K∥ 2 L 2 (R) E[ε 2 1 ] 1 nh ) + ] ≤ C n .
• Third term of (28).

The last empirical process is ν

(2,2) n,h (t) = ∫ 1 0 t(u)ψ(u)du, with ψ(u) = 1 n n ∑ i=1 ε i 1 {|ε i |>κn} K h (u -F X (X i )) -E [ ε i 1 {|ε i |>κn} K h (u -F X (X i ))
] .

It is not bounded. Nevertheless, we use the Cauchy-Schwarz Inequality, and the equality ∥t∥ L 2 (Φ(A)) = 1, for t ∈ S(0, 1)

E [ sup t∈ S(0,1) ( ν (2,2) n,h (t) ) 2 ] ≤ E [∫ 1 0 ψ 2 (u)du ] , ≤ 1 n E [ ε 2 1 1 {|ε 1 |>κn} ] E [∫ 1 0 K 2 h (u -F X (X 1 )) du ] , ≤ ∥K∥ 2 L 2 (R) nh E [ ε 2 1 1 {|ε 1 |>κn} ] ≤ ∥K∥ 2 L 2 (R) κ -p n nh E [ ε 2+p 1 ] .
Thus, there exists a constant k 1 which depends on ∥K∥ L 2 (R) and E[ε 

∑ i=1 { σ 2 (X i )ε 2 i 1 {|ε i |≤κn} ∫ 1 0 K h (u -F X (X i )) t(u)du -E [ σ 2 (X i )ε 2 i 1 {|ε i |≤κn} ∫ 1 0 K h (u -F X (X i )) t(u)du ]} , ν (2) n,h (t) = 1 n n ∑ i=1 { σ 2 (X i )ε 2 i 1 {|ε i |>κn} ∫ 1 0 K h (u -F X (X i )) t(u)du -E [ σ 2 (X i )ε 2 i 1 {|ε i |>κn} ∫ 1 0 K h (u -F X (X i )) t(u)du ]} ,
where κ n is still a constant for the proof, which equals √ c

√ n ln(n) and c > 0 is obtained by the computations, like in Example 1. We exactly recover the framework of this previous example: the deviations of the process ν

(1) n,h are bounded thanks to Talagrand's Inequality of Lemma 5 of Lacour (2008) (p.812), and the second one is bounded in the same way as the process ν

(2,2) n,h of the additive regression setting.

For Examples 3-4, there is no point in splitting the process (26), since it is already bounded (recall that θ(Y 1 ) is bounded by 1). Thus, we apply the concentration inequality.

Recall that Φ(A) = R + . In both of these cases, the quantity M 1 involved in the assumptions of the Talagrand Inequality (Lemma 5 of Lacour 2008, p.812) equals M 1 = ∥K∥ L 2 (R) / √ h. Moreover, H 2 can be chosen as the upper-bound of the variance term of the estimator gh , that is H 2 = ∥K∥ L 2 (R) /nh. Finally, v equals ∥K∥ L 1 (R) for Example 3, and ∥g∥ L ∞ (R + ) ∥K∥ L 1 (R) for Example 4.

As an example, let us detail the computation of v in Example 4. Recall that X = C ∧ Z, Y = 1 Z≤C , s is the hazard rate, and the warping Φ is the function x → ∫ x 0 (1 -F X (t))dt. Thus, denoting by f C (respectively f Z ) a density of the variable C (respectively Z), and F C (respectively F Z ) its c.d.f.,

Var (ψ t,h (X 1 , Y 1 )) ≤ E [ (ψ t,h (X 1 , Y 1 )) 2 ] = E [ Y 1 (∫ R + K h (u ′ -Φ(X 1 ))t(u ′ )du ′ ) 2 ] , = ∫ R + ×R 1 z≤c (∫ R + K h (u ′ -Φ(z))t(u ′ )du ′ ) 2 f C (c)f Z (z)dzdc, = ∫ R + (∫ R + K h (u ′ -Φ(z))t(u ′ )du ′ ) 2 f Z (z) (1 -F C ) (z)dz.
We set z = Φ -1 (u). The integral becomes

∫ R + (∫ R + K h (u ′ -Φ(z))t(u ′ )du ′ ) 2 f Z (z) (1 -F C ) (z)dz = ∫ R + (∫ R + K h (u ′ -u)t(u ′ )du ′ ) 2 f Z • Φ -1 (u) (1 -F C ) • Φ -1 (u) du ((1 -F X ) • Φ -1 (u))
.

Thanks to the same arguments as the ones used to prove (8) in Section 5.1, we obtain:

Var (φ t,h (X 1 , Y 1 )) ≤ ∫ R + g(u) (∫ R + K h (u ′ -u)t(u ′ )du ′ ) 2 du, = ∫ R + g(u) ( K h * ( t1 R + ) (u) ) 2 du ≤ ∥g∥ L ∞ (R + ) Ǩh * ( t1 R + ) L 2 (R) , ≤ ∥g∥ L ∞ (R + ) Ǩh L 1 (R) ( t1 R + ) L 2 (R) = ∥g∥ L ∞ (R + ) ∥K∥ L 1 (R) := v.
Once we have the three quantities, we easily apply the Talagrand Inequality and the proof is complete by using Assumptions (H2)-(H3), like above (see the computations in Example 1).

2 5.6. Proof of Corollary 1. We must bound the bias term of the right hand-side of Inequality ( 16) (Theorem 2). Actually, if we prove that ∥s -s h ∥ 2 ϕ ≤ Ch 2β , where C is a constant, then the proof of the Corollary will be completed by computing the minimum which is involved in (16). By denition, ∥s -

s h ∥ 2 ϕ = ∥g -g h ∥ 2 L 2 (Φ(A)) = ∫ Φ(A)
(g h (u) -g(u)) 2 du.

We distinguish two cases in the sequel, depending on the considered examples.

Then we distinguish two cases: 5.6.1. Examples 1-3. Here, Φ(A) = (0; 1). We start with the denition of g h : for u ∈ Φ(A), 

Figure 1 .

 1 Figure 1. Estimation in Example 1, with true regression function s 3 , design distribution U (0;1) , and n = 1000. (a) points: data (X i , Y i ) i , thick line: true function s 3 . (b)-(c)-(d) beams of 20 estimators built from i.i.d. sample (thin lines) and true function (thick line): warped kernel estimators (subplot (b)), least-squares estimator in piecewise polynomial bases with degree at most 1 (subplot (c)) or 2 (subplot (d)).

Figure 2 .

 2 Figure 2. Estimation in Example 1, with true regression function s 2 , design distribution BN , and n = 1000. (a) points: data (X i , Y i ) i , thick line: true function s 2 . (b)-(c)-(d) beams of 20 estimators built from i.i.d. sample (thin lines) and true function (thick line): warped kernel estimators (subplot (b)), least-squares estimator in piecewise polynomial bases with degree at most 1 (subplot (c)) or 2 (subplot (d)).

Figure 3 .

 3 Figure 3. Estimation in Example 3, in model M7, and n = 1000. (a)-(b)-(c) beams of 20 estimators built from i.i.d. sample (thin lines) and true function (thick line): warped kernel estimators (subplot (a)), least-squares estimator in piecewise polynomial bases with degree at most 1 (subplot (b)) or 2 (subplot (c)).

=

  )ḡ(u -hz)dz -ḡ(u) = ∫ R K(z) [ḡ(u -hz) -ḡ(u)] dz. (29)We use a Taylor-Lagrange formula for ḡ: for u ∈ (0; 1), and z ∈ R, there exists θ ∈ (0; 1) such that ḡ(u -hz) -g(u) = -hzḡ ′ (uu -θhz), with l = ⌊β⌋. With Assumption (K l ), we obtain ∥s -s h ∥ 2 L|hz| β-l , which enables us to conclude.

  2

  where, κ ′ is a purely numerical constant given by the proofs (see Chagny 2013b, Section D) and tuned in practice (see Remark 2). Finally, we dene ŝ = ŝĥ • Φn . The following result is the equivalent to Theorem 2.

	Theorem 3. We assume that (H1), (H1')-(H2') hold in Examples 1-4, and additionally that (H5)
	is fullled for Examples 1-2 (with α 0 = 1), and (H3') for Example 4. Then there exist two constants
	c ′ 1 , c ′ 2 > 0, such that, for n large enough,
	(20)

Table 1 .

 1 Values of MISE ×1000 averaged over 200 samples, for the estimators of the

	s X	σ	n = 60	200	500	1000	Method
	s 1 U [0;1]	√ .0006 0.0889 0.0218 0.0169 0.0167 WK
			0.0856 0.0397 0.0256 0.0229 LS2
	γ(4, 0.08)	5.10 -5 0.0052 0.0033 0.0004 0.0003 WK
			0.0097	0.004	0.0017 0.0012 LS2
	N (0.5, 0.01) 0.011	0.0049 0.0020 0.0008 0.0005 WK
			0.0020 0.0012 0.0010 0.0008 LS2
	BN	0.022	0.524	0.422	0.267	0.205	WK
			0.166	0.054	0.038	0.029	LS2
	s 2 U [0;1]	0.17	16.35	6.791	3.51	0.837	WK
			33.212	2.058	0.691	0.407	LS2
	γ(4, 0.08)	0.08	1.885	0.354	0.204	0.147	WK
			4.047	0.801	0.552	0.429	LS2
	N (0.5, 0.01) 0.01	0.0619 0.0186 0.0079 0.0006 WK
			0.0078 0.0014 0.0001 0.0001 LS2
	BN	0.18	12.052	5.279	1.698	1.041	WK
			52.668 11.009	5.817	1.215	LS2
	regression function (Example 1), built with the warped kernel method (WK) or the least-
	squares methods, with piecewise polynomials of degree at most 2 (LS2).
	s X	σ	n = 60	200	500	1000	Method
	s 3 U [0;1]	0.35 0.2803 0.1055 0.0463 0.0275 WK
			1.2506 0.4530 0.1261 0.0571 LS1
			0.3107 0.0748 0.0420 0.0332 LS2
	γ(4, 0.08)	0.44 0.1962 0.0628 0.0387 0.0331 WK
			0.4126 0.1334 0.0481 0.0373 LS1
			0.2321 0.0555 0.0206 0.0086 LS2
	N (0.5, 0.01) 0.44 0.0634 0.0245 0.0128 0.0861 WK
			0.1045 0.0396 0.0210 0.0108 LS1
			0.0375 0.0139 0.0103 0.0064 LS2
	BN	0.32 0.4438 0.1362 0.0949 0.0793 WK
			1.8253 0.5879 0.1721 0.1232 LS1
			0.6666 0.3038 0.0949 0.0457 LS2

4.3. Example 3: Interval censoring, case 1. The same comparison is carried out for the estimation of the c.d.f. under interval censoring. The adaptive least-squares estimate is provided by

[START_REF] Brunel | Cumulative distribution function estimation under interval censoring case 1[END_REF]

, and the same Matlab toolbox is used for its implementation: recall that

Table 2 .

 2 Values of MISE ×10 averaged over 200 samples, for the estimators of the regres-

sion function (Example 1), built with the warped kernel method (WK) or the least-squares methods, with piecewise polynomials of degree at most 1 or 2 (LS1 or LS2).

Table 3 .

 3 Values of MISE ×100 averaged over 100 samples, for the estimators of the c.d.f.

  Let h ∈ H n be xed. Under the assumptions of Theorem 2, there exist constants C 1 , C 2

	such that,
	(23)

  .5.2. Examples 2-4. For the multiplicative regression model (Example 2), we split the process into two terms: ν n,h = ν

			(1) n,h + ν	(2) n,h , with						
	ν	(1) n,h (t) =	n 1	n								
															2+p 1 ],
	∑ h∈Hn	E	[ t∈ S(0,1) sup	(	ν	(2,2) n,h (t) ) 2	]	≤ k 1	κ -p n n	∑ h∈Hn	1 h	= c 1 κ -p ln p (n) n 1+p/2	∑ h∈Hn	1 h	.
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The conclusion comes from Assumptions (H2)-(H3), and the choice of p ≥ 2α 0 .2

5.6.2. Example 4. Here, Φ(A) = R + . Similarly, we rst obtain Equality (29). Then, the idea is the same as in Examples 1-3, but since we integrate over an unbounded subset, we choose an integrated remainding term in the Taylor formula:

The reasoning is then the same as in density estimation (see [START_REF] Tsybakov | Introduction to nonparametric estimation[END_REF] for details).
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