
HAL Id: hal-00715184
https://hal.science/hal-00715184v3

Preprint submitted on 18 Jun 2013 (v3), last revised 31 Jan 2014 (v4)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Adaptive warped kernel estimators
Gaëlle Chagny

To cite this version:

Gaëlle Chagny. Adaptive warped kernel estimators. 2013. �hal-00715184v3�

https://hal.science/hal-00715184v3
https://hal.archives-ouvertes.fr


ADAPTIVE WARPED KERNEL ESTIMATORSGAËLLE CHAGNYA ∗Abstrat. In this work, we develop a method of adaptive nonparametri estimation, basedon "warped" kernels. The aim is to estimate a real-valued funtion s from a sample of randomouples (X,Y ). We deal with transformed data (Φ(X), Y ), with Φ a one-to-one funtion, tobuild a olletion of kernel estimators. The data-driven seletion of the best bandwidth is donewith a method inspired by Goldenshluger and Lepski (2011). The method permits to handlevarious problems suh as additive and multipliative regression, onditional density estimation,hazard rate estimation based on randomly right ensored data, and umulative distributionfuntion estimation from urrent-status data. The interest is threefold. First, the squared-bias/variane trade-o� is automatially realized. Next, non-asymptoti risk bounds are derived.Last, the estimator is easily omputed thanks to its simple expression: a short simulation studyis presented.Keywords: Adaptive estimator. Censored data. Bandwidth seletion. Nonparametri estima-tion. Regression. Warped kernel.AMS Subjet Classi�ation 2010: 62G05; 62G08; 62N02.1. IntrodutionLet (X,Y ) be a ouple of real random variables, and (Xi, Yi)i=1,...,n an i.i.d. sample drawnas (X,Y ). The main goal of nonparametri estimation is to reover an unknown funtion s,linked with (X,Y ), suh as the regression funtion, from the data. Among the huge varietyof methods that have been investigated, the use of transformed data (FX(Xi), Yi), with FXthe umulative distribution funtion (.d.f.) of X, has reeived attention in the past deades.In this ontext, both kernel and projetion estimators have been studied in random designregression estimation (Yang 1981, Stute 1984, Kerkyaharian and Piard 2004, Pham Ngo 2009,Kulik and Raimondo 2009, Chagny 2013), onditional density or .d.f estimation (Stute 1986,Mehra et al. 2000, Chagny 2012), for the white noise model (Chesneau 2007) or to deal withdependent data (Chesneau and Willer 2012). However, to our knowledge, few papers fous on theproblem of adaptivity of suh "warped estimators". The aim of the present work is twofold: �rst,we want to show that a warping kernel devie an be applied to various estimation problems,inluding survival analysis models (see examples below). Seondly, we address the problem ofbandwidth seletion, with the intention of providing an adaptive "warped" estimator, whihsatis�es nonasymptoti risk bounds.The basi idea, whih motivates the study of warped kernel estimators introdued by Yang(1981), an be �rst explained in the lassial regression framework. Here, the target funtion isthe onditional expetation, s : x 7→ E[Y |X = x] i.e.(1) s(x) =
1

fX(x)

∫

R

yf(X,Y )(x, y)dy,
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2 ADAPTIVE WARPED KERNEL ESTIMATORSwhen a density f(X,Y ) for the ouple (X,Y ) exists, and where fX is the marginal density of thedesign X. Historial kernel methods were initiated by Nadaraya (1964) and Watson (1964). Thefamous estimator named after them is built as the ratio of a kernel estimator of the produt sfXdivided by a kernel estimator of the density fX :
s̃NW : x 7→

1
n

∑n
i=1 YiKh(x−Xi)

1
n

∑n
i=1Kh(x−Xi)

,where Kh : x 7→ K(x/h)/h, for h > 0, and K : R → R suh that ∫
R
K(x)dx = 1. Adaptiveestimation then requires the automati seletion of the bandwidth h, and the ratio form of theestimate suggests that two suh parameters should be seleted: one for the numerator, andone for the denominator. From the theoretial point of view, there is no reason to hoose thesame. Nevertheless, nonasymptoti results suh as orale-inequality are di�ult to derive for anestimator de�ned with two di�erent data-driven smoothing parameters. See Penskaya (1995) fora thorough study of the ratio-form estimators. Moreover, when the design X is very irregular(for example when a "hole" ours in the data), a ratio may lead to instability (see Pham Ngo2009). The warped kernel estimators introdued by Yang (1981) and Stute (1984) avoid theratio-form. Indeed denote by F̂n the empirial .d.f. of the Xi's and let(2) ŝh =

1

n

n∑

i=1

YiKh (FX(x)− FX(Xi)) , or ŝh =
1

n

n∑

i=1

YiKh

(

F̂n(x)− F̂n(Xi)
)

,depending on whether the .d.f. FX is known or not. The following equality (see Proposition 1)holds:
E [Y Kh (u− FX(X))] = Kh ⋆ (s ◦ F−1

X )(u),where ⋆ is the onvolution produt and ◦ is the omposition symbol. Thus, the �rst estimatorof (2) an be viewed as ŝh = ̂s ◦ F−1
X ◦ FX . The main advantage is that its expression involvesone bandwidth h only.In this paper, we generalize the warping strategy to various funtional estimation problems:as a �rst extension of (1), we propose to reover funtions s of the form(3) s(x) =

1

φ(x)

∫

θ(y)f(X,Y )(x, y)dy,for θ : R → R, and φ : R → R+\{0}. In this ase, the warping devie brings into play thetransformation (Φ(X), Y ) of the data, with Φ′ = φ. The form (3) overs the additive regressionmodel desribed above, by setting Φ = FX , and θ(y) = y. But it also permits to deal with thesimpli�ed heteroskedasti model Y =
√

s(X)ε, where ε is an unobserved noise, entered, withvariane equals to 1. In this ase, Φ = FX , and θ(y) = y2.In several examples however, the ouple (X,Y ) does not admit a density, but X admits amarginal density. Then (3) an be extended and the target funtion s takes the form:(4) s(x) =
fX(x)

φ(x)
E[θ(Y )|X = x].This allows to handle two lassial settings in survival analysis: the interval ensoring ase1, and right ensored data. In the interval ensoring model, ase 1, the target funtion is

s(x) = P(Z ≤ x), where Z is a survival time, whih is not observed, and we only know a urrentstatus at the observed time X of examination. We also know Y = 1Z≤X , whih indiateswhether Z ours before X or not. We refer to Jewell and van der Laan (2004) for a reviewof the estimation methods in this setting (see also van de Geer 1993 for maximum likelihoodestimation)� and more reently to Ma and Kosorok (2006), Brunel and Comte (2009) or Planade



ADAPTIVE WARPED KERNEL ESTIMATORS 3(2013) for investigations inluding adaptivity. In right-ensored data, the funtion of interest attime x is the hazard rate funtion, that is the risk of death at time x, given that the patientis alive until x. This model has been studied by Tanner and Wong (1983), Müller and Wang(1994) and Patil (1993), among all. Adaptive results are available for projetion-type estimators(see Brunel and Comte 2005, 2008, Reynaud-Bouret 2006 or Akakpo and Durot 2010), but toour knowledge not for kernel estimators.The paper is organized as follows. We present in Setion 2 the estimation method, detailthe examples illustrating the relevane of the introdution of a general target funtion s de�nedby (4). We also study the global risk of the warped kernel estimators with �xed bandwidths.Setion 3 is devoted to adaptive estimation: we de�ne a data-driven hoie of the bandwidth,inspired by Goldenshluger and Lepski (2011) whih allows to derive nonasymptoti results forthe adaptive estimators. Orale-type inequalities are provided for the M.I.S.E., and onvergenerates are dedued under regularity assumptions. Setions 2 and 3 deal with the ase of knowndeformation Φ. Setion 4 disusses brie�y the ase of unknown Φ, for whih details are given inAppendix 1 (Setion 7). In Setion 5, the method is illustrated through numerial simulations.Proofs are gathered in Setion 6. Finally, a more general proof of the main result is given inAppendix 2 (Setion 8), under slightly di�erent assumptions.2. Estimation method2.1. Warped kernel strategy. Consider a sample (Xi, Yi)i=1,...,n of i.i.d. random ouples withvalues in A × B, where A is an open interval of R and B a Borel subset of R. We assume that
Xi has a marginal density fX and we aim at reovering a funtion s : A → R linked with thedistribution of (Xi, Yi). To estimate s, we replae the explanatory variable Xi by Φ(Xi), where
Φ : A → Φ(A) ⊂ R is one-to-one and absolutely ontinuous. The data (Φ(Xi), Yi)i=1,...,n arealled the warped sample with deformation funtion Φ. The sets A,B,Φ(A) are supposed to begiven. The target funtion an be written as:(5) s(x) = g ◦ Φ(x) = g(Φ(x)), with g : Φ(A) → R.We �rst estimate the auxiliary funtion g = s ◦ Φ−1 with Φ−1 the inverse funtion of Φ. Inthe general ase, Φ is unknown and we must estimate it also. Let K be a funtion suh that
∫

R
K(u)du = 1 and set Kh : u 7→ K(u/h)/h, for h > 0. We de�ne, for u ∈ Φ(A),(6) ĝh(u) =

1

n

n∑

i=1

θ(Yi)Kh

(

u− Φ̂(Xi)
)

,where θ : R → R is a given funtion, Φ̂ is an empirial ounterpart for Φ, and for x ∈ A(7) ŝh(x) = ĝh ◦ Φ̂(x) =
1

n

n∑

i=1

θ(Yi)Kh

(

Φ̂(x)− Φ̂(Xi)
)

.Let us give examples overed by the above framework. They are sum up in Table 1, with theorresponding estimators.Example 1 (Additive random design regression): we observe (Xi, Yi) with Yi = s(Xi)+εi,
(εi)i=1,...,n is independent of (Xi)i=1,...,n, E[ε2i ] < ∞ and E[εi] = 0. We hoose Φ(x) = FX(x),the umulative distribution funtion (.d.f. in the sequel) of X and assume that Φ : A → Φ(A)is invertible.



4 ADAPTIVE WARPED KERNEL ESTIMATORSExample s Φ ŝh1 Y = s(X) + ε s FX
1

n

n∑

i=1

YiKh(FX(x)− FX(Xi))2 Y = σ(X)ε σ2 FX
1

n

n∑

i=1

Y 2
i Kh(FX (x)− FX(Xi))3 (X,1Z≤X ) FZ FX

1

n

n∑

i=1

1Zi≤Xi
Kh(FX(x)− FX(Xi))4 (X = Z ∧ C,1Z≤C)

fZ
1− FZ

Φ(x) =

∫ x

0
(1− FX(t))dt

1

n

n∑

i=1

1Zi≤Ci
Kh(Φ(x)− Φ(Xi))Table 1. Summary of the studied examples and of the "warping" funtion usedin eah ase.Example 2 (Heteroskedasti model): Yi = σ(Xi)εi, (εi)i=1,...,n independent of (Xi)i=1,...,n,

E[ε2i ] = 1, E[εi] = 0, Φ(x) = FX(x), with Φ : A → Φ(A) invertible. Here s(x) = σ2(x) =
E[Y 2

i |Xi = x].Example 3 (Interval ensoring, Case 1): the observation is (Xi, Yi) where Yi = 1Zi≤Xi
,

Zi,Xi ≥ 0 are independent event ourene times, Yi indiates whether Zi (the time of interest)ours before Xi (the so-alled �examination time�) or not and Zi is not observed. The targetfuntion is s(x) = P(Zi ≤ x) = E[Yi|Xi = x]. We hoose Φ = FX .Example 4 (Hazard rate estimation from right ensored-data): the observation is Xi =
Zi ∧ Ci, Yi = 1Zi≤Ci

, where Zi and Ci are not observed and independent, Zi ≥ 0 is a lifetimeand Ci ≥ 0 is a ensoring time. The funtion s of interest is the hazard rate funtion s(x) =
fZ(x)/(1 − FZ(x)), where fZ (resp. FZ) is the density (resp. the .d.f.) of Z. This funtionsatis�es(8) s(x) =

fX(x)

1− FX(x)
E[Y |X = x],a relation whih is proved in Setion 6.1. In this ase, we assume FX(t) < 1 for all t ≥ 0, andtake Φ(x) =

∫ x
0 (1− FX(t))dt.The following equality is the ornerstone of the method and justi�es the introdution of (6):Proposition 1. Let (X,Y ) be a random ouple with values in A×B ⊂ R2. Assume that X has adensity fX and let Φ : A→ Φ(A) be a one-to-one absolutely ontinuous funtion. Let s : A→ Rde�ned by (4) and g = s ◦Φ−1. Then, if θ satis�es E|θ(Y )Kh(u−Φ(X)| <∞, for all u ∈ Φ(A),(9) E [θ(Y )Kh(u− Φ(X)] = Kh ⋆

(
g1Φ(A)

)
(u) := gh(u),



ADAPTIVE WARPED KERNEL ESTIMATORS 5where ⋆ is the onvolution produt.Equality (9) shows that ĝh, de�ned by (6) is an empirial version of gh and thus ŝh in (7) suitswell to estimate s.Hereafter, for the sake of larity, we assume that Φ is known: thus we hoose Φ̂ = Φ in (6)and (7). In Setion 4, we disuss the ase of an unknown deformation Φ. The theoretial resultsare the same, up to further tehnialities due to the plug-in of an empirial version for Φ.2.2. Risk of the �xed bandwidth estimator. In this setion, we study the global propertiesof ŝh as an estimate of s on A, with a �xed bandwidth h. The quadrati risk weighted by thederivative φ of the warping funtion Φ is the natural riterion in our setting. Let us introdue,for a measurable funtion t on A,(10) ‖t‖2φ =

∫

A
t2(x)φ(x)dx,and denote by L2(A,φ) the spae of funtions t for whih the quantity (10) exists and is �nite.We also use the orresponding salar produt 〈., .〉φ. For t1, t2 belonging to L2(A,φ), we have

‖t1 ◦ Φ‖φ = ‖t1‖L2(Φ(A)), 〈t1 ◦Φ, t2 ◦Φ〉φ = 〈t1, t2〉Φ(A),where ‖t1‖2L2(Φ(A)) =
∫

Φ(A) t
2
1(x)dx and 〈., .〉Φ(A) denotes the usual salar produt on L2(Φ(A)).Therefore,

‖ŝh − s‖2φ = ‖ĝh − g‖2L2(Φ(A)).The following bias-variane deomposition of the risk holds:Proposition 2. Let K belong to L2(R). Assume that s belongs to L2(A,φ), and that E[θ2(Y1)] <
∞. Then (reall that gh is de�ned in (9)),(11) E

[
‖ŝh − s‖2φ

]
≤ ‖g − gh‖2L2(Φ(A)) +

1

nh
E
[
θ2(Y1)

]
‖K‖2L2(R).If s is bounded on A, s ∈ L2(A,φ). This is the ase for Examples 1-3, as φ = fX . In Example4, we an hek that s ∈ L2(A,φ) for all lassial distributions for C and Z used in survivalanalysis (suh as exponential, Weibull, Gamma...). The general ondition to be heked in thisexample is ∫A f2X(x)/(1 − FX(x))dx <∞.3. Adaptive estimation3.1. Data-driven hoie of the bandwidth. As usual, we must hoose a bandwidth h whihrealizes the best ompromise between the squared-bias and the variane terms (see Proposition 2).Moreover, we need to de�ne a data-driven hoie of the bandwidth. For this, we use a methoddesribed in Goldenshluger and Lepski (2011). Let Hn be a �nite olletion of bandwidths,with ardinality depending on n and properties preised below (Assumptions (H2)-(H3)). Weintrodue the auxiliary estimators, involving two kernels,

ŝh,h′(x) = ĝh,h′(Φ(x)) with ĝh,h′ = Kh′ ⋆
(
ĝh1Φ(A)

)
.For a numerial onstant κ > 0 to be preised later on (see Setion 5.1 below), we de�ne, for

h ∈ Hn,(12) V (h) = κ
(

1 + ‖K‖2L1(R)

)

‖K‖2L2(R)E
[
θ2(Y1)

] 1

nh
.



6 ADAPTIVE WARPED KERNEL ESTIMATORSNext, we set(13) A(h) = max
h′∈Hn

{
‖ŝh,h′ − ŝh′‖2φ − V (h′)

}

+
,whih is an estimation of the squared-bias term (see Lemma 4). Note that ‖ŝh,h′ − ŝh′‖2φ =

‖ĝh,h′ − ĝh′‖2. Lastly, the adaptive estimator is de�ned in the following way:(14) ŝ = ŝĥ with ĥ = arg min
h∈Hn

{A(h) + V (h)} .The seleted bandwidth ĥ is data-driven. In V (h), the expetation E[θ2(Y1)] an be replaed bythe orresponding empirial mean (see Brunel and Comte 2005, proof of Theorem 3.4 p.465). InExamples 3-4, it an be replaed by 1, its upper-bound.3.2. Results. We onsider the following assumptions:(H1) The funtion s is bounded. Denote by ‖s‖L∞(A) its sup-norm.(H2) There exist α0 > 0 and a onstant k0 ≥ 0 suh that ∑
h∈Hn

1

h
≤ k0n

α0 .(H3) For all κ0 > 0, there exists C0 > 0, suh that ∑
h∈Hn

exp
(

−κ0
h

)

≤ C0.(H4) The kernel K is of order l, i.e. for all j ∈ {1, . . . , l + 1}, the funtion x 7→ xjK(x) isintegrable, and for 1 ≤ j ≤ l, ∫
R
xjK(x)dx = 0.Assumption (H1) is required to obtain Theorem 3 below. Nevertheless the value ‖s‖L∞(A) is notneeded to ompute the estimator (see (14)). This assumption holds in Example 3 (s ≤ 1 in thisase), and in Example 4, for instane when Z has exponential or Gamma distribution. Assump-tions (H2)-(H3) mean that the bandwidth olletion should not be too large. For instane, thefollowing lassial olletions satisfy these assumptions:(1) Hn,1 =

{
k−1, k = 1, . . . , χ(n)

} with α0 = 2, χ(n) = n or α0 = 1, χ(n) = √
n.(2) Hn,2 =

{
2−k, k = 1, . . . , [ln(n)/ ln(2)]

}, with α0 = 1.Assumption (H4) is required only to dedue onvergene rate from the main nonasymptotiresult. We need a moment assumption linked with (H2):(H5) With α0 given by (H2), there exists p > 2α0, suh that E[|θ(Y )− E[θ(Y )|X]|2+p] <∞.If θ is bounded, (H5) evidently holds. In Examples 1 and 2, (H5) is a moment assumption on thenoise whih is usual in regression settings. Notie also that the smaller α0, the less restritivethe integrability onstraint p on the noise moments.We prove the following orale-type inequality:Theorem 3. We assume that (H1)-(H3) hold in Examples 1-4, and additionally that (H5) isful�lled for Examples 1-2. Then there exist two onstants c1 > 0 and c2 > 0, suh that:(15) E

[

‖ŝ− s‖2φ
]

≤ c1 min
h∈Hn

{

‖s− sh‖2φ +
E
[
θ2(Y1)

]
‖K‖2L2(R)

nh

}

+
c2
n
,with sh = gh ◦Φ and ŝ de�ned by (14). The onstant c1 depends only on ‖K‖L1(R).The onstant c2 depends on ‖s‖L∞(A), ‖K‖L1(R) and ‖K‖L2(R) in Examples 3-4, and also on themoment of ε and E[s2(X1)] for Examples 1-2. The adaptive estimator ŝ automatially makes



ADAPTIVE WARPED KERNEL ESTIMATORS 7the squared-bias/variane ompromise. The seleted bandwidth ĥ is performing as well as theunknown orale:
h̃ := arg min

h∈Hn

E[‖s− ŝh‖2φ].up to the multipliative onstant c1 and up to a remainding term of order 1/n, whih is negligible.The interest of Inequality (15) is that it is nonasymptoti. Moreover, ontrary to usual kernel es-timation results, Assumption (H4) is not needed. This is one of the advantages of the bandwidthseletion method.To dedue onvergene rates, smoothness lasses must be de�ned to quantify the bias term.De�ne the Hölder lass with order β > 0 and onstant L > 0 by
H(β,L) =

{

t : R → R, t(⌊β⌋) exists, ∀x, x′ ∈ R,
∣
∣
∣t(⌊β⌋)(x)− t(⌊β⌋)(x′)

∣
∣
∣ ≤ L|x− x′|β−⌊β⌋

}

,where ⌊β⌋ is the largest integer less than β. We also need the Nikol'skii lass of funtions:
N2(β,L) =

{

t : R → R, t(⌊β⌋) exists, ∀x ∈ R,

∫

R

(

t(⌊β⌋)(x′ + x)− t(⌊β⌋)(x′)
)2
dx′ ≤ L2|x|2β−2⌊β⌋

}We an now dedue from Theorem 3 the onvergene rate of the risk, under regularity assump-tions for the auxiliary funtion g.Corollary 1. Let g̃ = g1φ(A) on R. Assume that
• g̃ belongs to the Hölder lass H(β,L), with g̃(0) = g̃(1) in Examples 1-3,
• g̃ belongs to the Nikol'skii lass N2(β,L) in Example 4.Assume (H4) with l = ⌊β⌋. Then, under the assumptions of Theorem 3,(16) E

[

‖ŝ− s‖2φ
]

≤ Cn
− 2β

2β+1 ,where C is a onstant whih does not depend on n and β.In Examples 1-3, Φ(A) = (0; 1) and the Hölder ondition is enough. In Example 4, Φ(A) = R+and we need the Nikol'skii ondition. Both spaes are standard in kernel estimation, see e.g.Tsybakov (2009) and Goldenshluger and Lepski (2011).We reover the lassial optimal rates in nonparametri estimation. Note however that ourregularity assumptions are set on g and not s, as long as we do not onsider spei� warpedspaes de�ned in Kerkyaharian and Piard (2004).Remark 1. We have strong onditions on g at the boundary of the support [0; 1], in Examples1-3. This is nevertheless well-known in kernel estimation, whih are rarely �free of boundarye�ets�. This also explains why we restrit the estimation interval for the simulation study, byusing the quantiles of the observations Xi (see Setion 5). Notie that we may apply reentmethods whih provide boundary orretions in kernel estimation (see Karunamuni and Alberts2005 and Bertin and Kluthniko� 2011 for example), but this is beyond the sope of this paper.4. The general ase of unknown ΦUp to now we have onsidered the ase of a known "warping" funtion Φ. This is also theframework of e.g. Pham Ngo (2009) or Chesneau (2007). It allows to derive the main result withfew assumptions and short proofs. To deal with the general ase, we use a plug-in devie. Let F̂nbe the empirial .d.f. of X. We estimate Φ by Φ̂(x) = F̂n(x) for Examples 1-3, and by Φ̂(x) =
∫ x
0

(

1− F̂n(t)
)

dt for Example 4. Now ĝh is given by (6). To de�ne ĥ, we replae ‖ŝh,h′− ŝh′‖2φ by
‖ĝh,h′ − ĝh′‖2 in A(h) (see (13)). Theorem 3 holds under stronger assumptions on the bandwidth



8 ADAPTIVE WARPED KERNEL ESTIMATORSolletion Hn. However the proof requires lengthy and umbersome tehnialities. To deal withthe di�erene Φ̂− Φ, we use the deviation inequality of Dvoretzky et al. (1956): for any λ > 0,
P

(

sup
x∈R

∣
∣
∣F̂n(x)− FX(x)

∣
∣
∣ ≥ λ

)

≤ K exp
(
−2nλ2

)
,with K an universal onstant. Details are also given in Chagny (2012, 2013) for regressionand onditional density estimation using warped bases, whih require analogous arguments.Moreover, a non adaptive bound for the risk is proved in the appendix, Setion 7, as an exampleof the required tools. 5. IllustrationTo illustrate the proedure, we only fous on two of the four examples: the additive regression(Example 1), and the estimation of .d.f. under interval ensoring ase I (Example 3). Aswe annot reasonably pretend to ompare our method with all the adaptive estimators of theliterature, we hoose to onentrate on the omparison with adaptive least-squares (LS in thesequel) estimators.5.1. Implementation of the warped-kernel estimators. The theoretial study allows thehoie of several kernels and bandwidth olletions. For pratial purpose, we onsider theGaussian kernel, K : x 7→ e−x2/2/

√
2π, whih satis�es Assumption (K1). It has the advantageof having simple onvolution-produts:(17) ∀h, h′ > 0, Kh ⋆ Kh′ = K√

h2+h′2 .The experiment is onduted with the dyadi olletion Hn,2 de�ned above. The larger olle-tion Hn,1 has also been tested: sine it does not really improve the results but inreases theomputation time, we only keep the other olletion. Besides, the simulations are performed inthe ase of unknown Φ. Therefore in Examples 1 and 3, the estimator is
ŝ : x 7→ 1

n

n∑

i=1

θ(Yi)Kĥ(F̂n(x)− F̂n(Xi)),with F̂n the empirial .d.f. of the Xi's. Then, the estimation proedure an be deomposed insome steps:
• Simulate a data sample (Xi, Yi), i = 1, . . . , n, �tting Example 1 or 3.
• Compute V (h) and A(h) for eah h ∈ Hn,1.- For V (h): its omputation require a value for κ (see (12)). A lower bound for its theoretialvalue is provided by the proof: it is very pessimisti due to rough upper-bounds (for the sake oflarity). A pratial alibration is required, like in most model seletion devies. Sine lassialtehniques suh as the slope heuristi are not urrently well developed for the Goldenshluger-Lepki method, we adjust κ on simulations, prior to the omparison with the other estimates. Weset κ = 0.05 in Example 1, and κ = 0.3 in Example 3.- For A(h): thanks to (17), the auxiliary estimates are easily omputed: ŝh,h′ = ŝ√h2+h′2 . The
L2−norm is then approximated by a Riemann sum:

‖ĝh,h′ − ĝh′‖2L2(Φ(A)) ≈
1

N

N∑

k=1

(
ĝh,h′(uk)− ĝh′(uk)

)2
,where N = 50, and (uk)k are grid points evenly distributed aross (0; 1).

• Selet ĥ suh that A(h) + V (h) is minimum.
• Compute ŝĥ.



ADAPTIVE WARPED KERNEL ESTIMATORS 95.2. Example 1: additive regression. We ompare the warped kernel method (WK) with theadaptive estimator studied in Baraud (2002). It is a projetion estimator, developed in an orthog-onal basis of L2(A), and built with a penalized least-squares ontrast. The experiment is arriedout with the Matlab toolbox FY3P, written by Yves Rozenhol, and available on his web pagehttp://www.math-info.univ-paris5.fr/∼rozen/YR/Softwares/Softwares.html. A regularpieewise polynomial basis is used, with degrees hosen in an adaptive way. Sine the kernelwe hoose has only one vanishing moment, the omparison is fair if we onsider polynomialswith degrees equal to or less than 1. We denote by LS1 the resulting estimator. However, asshown below, we will see that the warped-kernel generally outperforms the least-square, even ifwe use polynomials with degree at most 2 (LS2). We also experiment the Fourier basis for theleast-squares estimator, but the results are not as good as the polynomial basis. Thus, we donot mention the values of the risks.The proedure is applied for di�erent regression funtions, design and noise. The main goal isto illustrate the sensibility of the estimation to the underlying design distribution. Its in�ueneis explored through four distributions: two lassial ones, U[0;1], the uniform distribution on theinterval [0; 1], and N (0.5, 0.01), a Gaussian distribution (with mean 0.5 and variane 0.01); andtwo distributions whih are more original (more irregular), γ(4, 0.08), the Gamma distribution,with parameters 4 and 0.08 (0.08 is the sale parameter), and BN a bimodal Gaussian distribu-tion, with density x 7→ c(exp(−200(x−0.05)2)+exp(−200(x−0.95)2)) (c is a onstant adjustedto obtain a density funtion).We fous on the three following regression funtions
s1 : x 7→ x(x− 1)(x− 0.6)
s2 : x 7→ − exp(−200(x − 0.1)2)− exp(−200(x − 0.9)2) + 1
s3 : x 7→ cos(4πx) + exp(−x2)The �rst two funtions satisfy the �periodiity� assumptions of Corollary 1, while we hoose thefuntion s3 to show that our proedure also leads to satisfatory results if the assumption doesnot hold. The hoie of the funtion s2 ombined with the design BN leads to a data set whihpresents a "hole" (see Figure 2 (a)).We also test the sensibility of the method to the noise distribution: ontrary to the underlyingdesign distribution, it does not seem to a�et the results. Thus, we present the simulation studyfor a Gaussian entered noise, with variane σ2. The value of σ is hosen in suh a way that thesignal-to-noise ratio (the ratio of the variane of the signal Var(s(X1)) over the variane of thenoise Var(ε1)) approximately equals 2.Beams of estimators (WK, LS1, and LS2) are presented in Figures 1 and 2, with the generateddata-sets and the funtion to estimate. Preisely, Figure 1 shows a regular ase: all the meth-ods estimate orretly the signal. Figure 2 depits the ase where a hole ours in the designdensity: the estimator built with warped kernel behaves still orretly, even if the data are veryinhomogeneous, while the estimator LS1, with whih the omparison is fair, failed to detet thehole.A study of the risk is reported in Tables 2 and 3, for the sample sizes n = 60, 200, 500 and

1000. The MISE is obtained by averaging the following approximations of the ISE values, for
j ∈ {1, . . . , J = 200}, omputed with J sample repliations:

ISEj =
b− a

N

N∑

k=1

(s̃(xk)− s(xk))
2 ,
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() (d)Figure 1. Estimation in Example 1, with true regression funtion s3, design distribu-tion U(0;1), and n = 1000. (a) points: data (Xi, Yi)i, thik line: true funtion s3. (b)-()-(d) beams of 20 estimators built from i.i.d. sample (thin lines) versus true funtion(thik line): warped kernel estimators (subplot (b)), least-squares estimator in pieewisepolynomial bases with degree at most 1 (subplot ()) or 2 (subplot (d)).where s̃ stands for one of the estimators, b is the quantile of order 95% of the Xi and a is thequantile of order 5%. The (xk)k=1,...,N are the sample points falling in [a; b]. Tables 2 and 3display the values omputed for our method WK, and for the estimators LS1 and/or LS2: for theregression funtions s1 and s2 (Table 2), the warped-kernel strategy always leads to smaller riskvalues than LS1. Thus, we only mention the risks of the estimator LS2: even if the omparisonis quite unfair (following the theoretial results, see the explanations above), the WK and theLS2 estimators are omparable in terms of performane and in 56% of the examples, the risks ofthe warped-kernel estimator are smaller than the ones of LS2 estimator. For the third funtion(Table 3), our method still outperforms the least-squares estimate in polynomial basis of degreeat most 1, whatever the design distribution is. The omparison with least-squares in polynomialbasis with degree at most 2 leads to mixed results even if the values for both estimators are in thesame range. Our estimators still behaves orretly (ompared to LS1, see also Figure 1), but notas well as for the �rst two funtions. Considering the de�nition of s3, the equality s3(a) = s3(b),required for the theoretial onvergene rate does not hold, whih may explain the result.To onlude, if both methods LS2 and WK lead to omparable risks, it remains that ourproedure have some advantages, ompared to adaptive least-squares methods. First it is easierto implement, sine it does not require any matrix inversion (ompared to any LS strategy,see Baraud 2002). Then, keeping in mind that the omparison is fair when hoosing pieewisepolynomials with degree at most 1, the risk values are always smaller for the warped-kernel



ADAPTIVE WARPED KERNEL ESTIMATORS 11
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0

0.5

1

1.5

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.5

1

1.5

(a) (b)
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0

0.5

1

1.5

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.5

1

1.5

() (d)Figure 2. Estimation in Example 1, with true regression funtion s2, design distribu-tion BN , and n = 1000. (a) points: data (Xi, Yi)i, thik line: true funtion s2. (b)-()-(d) beams of 20 estimators built from i.i.d. sample (thin lines) versus true funtion(thik line): warped kernel estimators (subplot (b)), least-squares estimator in pieewisepolynomial bases with degree at most 1 (subplot ()) or 2 (subplot (d)).estimates, in the studied examples. Finally, we are able to reover a signal even with an irregulardesign, while the least-squares methods fail in that ase.5.3. Example 3: Interval ensoring, ase 1. The same omparison is arried out for theestimation of the .d.f. under interval ensoring. The adaptive least-squares estimate is providedby Brunel and Comte (2009), and the same Matlab toolbox is used for its implementation: reallthat the target funtion an be seen as a regression funtion: s(x) = P(Z ≤ x) = E[1Z≤x|X = x].To make the omparison foreseeable, the estimation set A is alibrated as it is done in Brunel andComte (2009), suh that most of the data belong to this interval. Di�erent models are onsideredfor generating the data. We shorten "follows the distribution" by the symbol "∼".
• M1: X ∼ U[0;1], and Z ∼ U[0;1], A = (0; 1) (for instane, the target funtion is FZ : x 7→
x),

• M2: X ∼ U[0;1], and Z ∼ χ2(1) (Chi-squared distribution with 1 degree of freedom),
A = (0; 1),

• M3: X ∼ E(1) (exponential distribution with mean 1), and Z ∼ χ2(1), A = (0; 1.2),
• M4: X ∼ β(4, 6) (Beta distribution of parameter (4,6)), Z ∼ β(4, 8), A = (0; 0.5),
• M5: X ∼ β(4, 6), Z ∼ E(10) (exponential distribution with mean 0.1), A = (0; 0.5),
• M6: X ∼ γ(4, 0.08), Z ∼ E(10), A = (0, 0.5),
• M7: X ∼ E(0.1), Z ∼ γ(4, 3), A = (1; 23).
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s X σ n = 60 200 500 1000 Method
s1 U[0;1]

√
.0006 0.0889 0.0218 0.0169 0.0167 WK0.0856 0.0397 0.0256 0.0229 LS2

γ(4, 0.08) 5.10−5 0.0052 0.0033 0.0004 0.0003 WK0.0097 0.004 0.0017 0.0012 LS2
N (0.5, 0.01) 0.011 0.0049 0.0020 0.0008 0.0005 WK0.0020 0.0012 0.0010 0.0008 LS2
BN 0.022 0.524 0.422 0.267 0.205 WK0.166 0.054 0.038 0.029 LS2

s2 U[0;1] 0.17 16.35 6.791 3.51 0.837 WK33.212 2.058 0.691 0.407 LS2
γ(4, 0.08) 0.08 1.885 0.354 0.204 0.147 WK4.047 0.801 0.552 0.429 LS2
N (0.5, 0.01) 0.01 0.0619 0.0186 0.0079 0.0006 WK0.0078 0.0014 0.0001 0.0001 LS2
BN 0.18 12.052 5.279 1.698 1.041 WK52.668 11.009 5.817 1.215 LS2Table 2. Values of MISE ×1000 averaged over 200 samples, for the estimators of theregression funtion (Example 1), built with the warped kernel method (WK) or theleast-squares methods, with pieewise polynomials of degree at most 2 (LS2).

All these models allow to investigate thoroughly the sensibility of the method to the distributionof the examination time X, and to the range of the estimation interval. The �rst two modelsand the fourth were also used by Brunel and Comte (2009). Sine the design is uniform in twoof these examples, and also supported by the set (0; 1) in the other, we hoose to explore whathappens when it is not the ase: in models M5, M6 and M7, the estimation interval is eithersmaller (M5-M6) or muh larger (M7) than (0; 1). Model M3 is hoosen to have a design whihis not uniform.Figure 3 shows the smoothness of warped-kernel estimates ompared to the reonstrutionobtained with least-squares method. The di�erene between the estimators is also investigatedby omputing the MISE for the di�erent models. Table 4 reveals that the warped-kernel estimatesan advantageously be used as soon as the design Xi has not a uniform distribution: it alwaysoutperforms the least-squares estimators in these ases, whatever the estimation support is, andwhatever the hosen distributions are. When the design is uniform, the warped-kernel strategyalso leads to aeptable results but is a little less interesting (however still simpler to implementthan LS methods): sine FX(x) = x, one an learly understand that it is not useful to warp thedata. However, reall that FX is unknown in pratie, thus we annot assure beforehand thatthe warping of the data is useless.
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s X σ n = 60 200 500 1000 Method
s3 U[0;1] 0.35 0.2803 0.1055 0.0463 0.0275 WK1.2506 0.4530 0.1261 0.0571 LS10.3107 0.0748 0.0420 0.0332 LS2

γ(4, 0.08) 0.44 0.1962 0.0628 0.0387 0.0331 WK0.4126 0.1334 0.0481 0.0373 LS10.2321 0.0555 0.0206 0.0086 LS2
N (0.5, 0.01) 0.44 0.0634 0.0245 0.0128 0.0861 WK0.1045 0.0396 0.0210 0.0108 LS10.0375 0.0139 0.0103 0.0064 LS2
BN 0.32 0.4438 0.1362 0.0949 0.0793 WK1.8253 0.5879 0.1721 0.1232 LS10.6666 0.3038 0.0949 0.0457 LS2Table 3. Values of MISE ×10 averaged over 200 samples, for the estimators of theregression funtion (Example 1), built with the warped kernel method (WK) or theleast-squares methods, with pieewise polynomials of degree at most 1 or 2 (LS1 or LS2).
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(a) (b) ()Figure 3. Estimation in Example 3, in model M7, and n = 1000. (a)-(b)-() beamsof 20 estimators built from i.i.d. sample (thin lines) versus true funtion (thik line):warped kernel estimators (subplot (a)), least-squares estimator in pieewise polynomialbases with degree at most 1 (subplot (b)) or 2 (subplot ()).The pratial advantages of our method are thus de�nitely to permit to deal with variousdesign distributions (even very irregular ones), and thus to be stable to several data sets indi�erent estimation settings (.d.f. of urrent status data or regression estimation).6. Proofs6.1. Proof of Equality (8). Equality (8) omes down to ompute a onditional expetation:preisely, we prove that
E [Y |X = x] =

fZ(x)

fX(x)

1− FX(x)

1− FZ(x)
.



14 ADAPTIVE WARPED KERNEL ESTIMATORSModel X Z [a;b℄ n = 60 200 500 1000 Method1 U[0;1] U[0;1] [0; 1] 2.41 1.125 0.975 0.533 WK0.63 0.111 0.056 0.024 LS22 U[0;1] χ2(1) [0; 1] 1.558 0.804 0.57 0.415 WK1.602 0.44 0.244 0.13 LS23 E(1) χ2(1) [0; 1.2] 1.285 0.614 0.243 0.247 WK2.385 0.893 0.651 0.365 LS24 B(4, 6) B(4, 8) [0; 0.5] 0.423 0.236 0.09 0.094 WK0.449 0.271 0.117 0.105 LS25 B(4, 6) E(10) [0; 0.5] 0.388 0.229 0.119 0.103 WK0.467 0.261 0.13 0.095 LS26 γ(4, 0.08) E(10) [0; 0.5] 0.424 0.166 0.102 0.069 WK0.698 0.286 0.162 0.095 LS27 E(0.1) γ(4, 3) [1; 23] 14.955 5.145 3.973 2.113 WK19.825 11.797 9.738 5.898 LS2Table 4. Values of MISE ×100 averaged over 100 samples, for the estimators of the.d.f. from urrent status data (Example 3) built with the warped kernel method (WK)or the least-squares methods, with pieewise polynomials of degree at most 1 or 2 (LS1or LS2).To do so, let H be a test funtion. Reall that X = Z ∧C, Y = 1Z≤C , and denote by fZ (resp.
fC) the density of Z (resp. C). We ompute

E [Y H(X)] = E [1Z≤CH(Z)] =

∫

R2
+

1z≤cH(z)fZ(z)fC(c)dzdc,

=

∫

R+

(1− FC(z))H(z)fZ(z)dz =

∫

R+

fZ(z)

fX(z)

1− FX(z)

1− FZ(z)
H(z)fX(z)dz,taking into aount the equality 1− FX = (1− FZ)(1− FC). Thus, we identify E[Y |X].

✷6.2. Proof of Proposition 1. We have:
E [θ(Y )Kh(u− Φ(X))] = E [E [θ(Y )|X]Kh(u− Φ(X))] ,

=

∫

A
Kh(u− Φ(x))E [θ(Y )|X = x] fX(x)dx.



ADAPTIVE WARPED KERNEL ESTIMATORS 15We set u′ = Φ(x), thus du′ = φ(x)dx. Therefore,
E [θ(Y )Kh(u− Φ(X))] =

∫

Φ(A)
Kh(u− u′)E

[
θ(Y )|X = Φ−1(u)

]
fX
(
Φ−1(u)

) du

φ ◦ Φ−1(u)
,

=

∫

Φ(A)
Kh(u− u′)s ◦ Φ−1(u)du.

✷6.3. Proof of Proposition 2. The following lassial bias-variane deomposition holds:
E
[
‖ŝh − s‖2φ

]
= ‖g − gh‖2L2(Φ(A)) + E

[

‖gh − ĝh‖2L2(Φ(A))

]

,sine, thanks to (9), E[ĝh(u)] = gh(u). We bound the variane term as follows:
E

[

‖gh − ĝh‖2L2(Φ(A))

]

= E

[
∫

Φ(A)
(ĝh(u)− E [ĝh(u)])

2 du

]

=

∫

Φ(A)
Var (ĝh(u)) du,and for eah u ∈ Φ(A),Var (ĝh(u)) =

1

n
Var (θ(Y1)Kh (u− Φ(X1))) ≤

1

n
E
[
θ2(Y1)K

2
h (u−Φ(X1))

]
.Therefore, by integrating with respet to u, we get

E

[

‖gh − ĝh‖2L2(Φ(A))

]

≤ E
[
θ2(Y1)

]
‖K‖2L2(R)

1

nh
.6.4. Proof of Theorem 3. Let h ∈ Hn be �xed. We start with the following deompositionfor the loss of the estimator s̃ = ŝĥ:

∥
∥ŝĥ − s

∥
∥2

φ
=

∥
∥ĝĥ − g

∥
∥2

L2(Φ(A))
,

≤ 3
∥
∥
∥ĝĥ − ĝh,ĥ

∥
∥
∥

2

L2(Φ(A))
+ 3

∥
∥
∥ĝh,ĥ − ĝh

∥
∥
∥

2

L2(Φ(A))
+ 3 ‖ĝh − g‖2L2(Φ(A)) .The de�nitions of A(h) and A(ĥ) enable us to write, using the de�nition of ĥ,

3
∥
∥
∥ĝĥ − ĝh,ĥ

∥
∥
∥

2

L2(Φ(A))
+ 3

∥
∥
∥ĝh,ĥ − ĝh

∥
∥
∥

2

L2(Φ(A))
≤ 3

(

A(h) + V
(

ĥ
))

+ 3
(

A
(

ĥ
)

+ V (h)
)

,

≤ 6 (A(h) + V (h)) ,Besides, applying also Proposition 2, we obtain(18) E

[∥
∥ŝĥ − s

∥
∥2

φ

]

≤ 6E [A(h)] + 6V (h) +
E[θ2(Y1)]‖K‖2L2(R)

nh
+ 3‖gh − g‖2L2(Φ(A)).Therefore, the remainding part of the proof follows from the lemma hereafter.Lemma 4. Let h ∈ Hn be �xed. Under the assumptions of Theorem 3, there exist onstants

C1, C2 suh that,(19) E [A(h)] ≤ C1‖gh − g‖2L2(Φ(A)) +
C2

n
,where the onstant C1 only depends on ‖K‖L1(R).Applying Inequality (19) in (18) implies (15) by taking the in�mum over h ∈ Hn. This endsthe proof of Theorem 3.

✷



16 ADAPTIVE WARPED KERNEL ESTIMATORS6.5. Proof of Lemma 4. To study A(h), we introdue the auxiliary quantities gh,h′ := Kh′ ⋆
(gh1Φ(A)) = Kh′ ⋆ ((Kh ⋆ g1Φ(A))1Φ(A)), for any h′ ∈ Hn, and we �rst split

‖ŝh,h′ − ŝh′‖2φ = ‖ĝh,h′ − ĝh′‖2L2(Φ(A)) ≤ 3
(

Ta + Tb + ‖ĝh′ − gh′‖2L2(Φ(A))

)

,(20)where
Ta = ‖ĝh,h′ − gh,h′‖2L2(Φ(A)), Tb = ‖gh,h′ − gh′‖2L2(Φ(A)).The �rst term an be bounded as follows, using Lemma 8, with p = 2, q = 1, and r = 2:

Ta ≤
∥
∥Kh ⋆

(
ĝh′1Φ(A) − gh′1Φ(A)

)∥
∥2

L2(R)
,

≤ ‖K‖2L1(R)

∥
∥ĝh′1Φ(A) − gh′1Φ(A)

∥
∥2

L2(R)
= ‖K‖2L1(R) ‖ĝh′ − gh′‖2L2(Φ(A)) .In the same way, Tb ≤ ‖Kh′‖2L1(R)‖gh − g‖2L2(Φ(A)). Therefore, Deomposition (20) beomes:

‖ŝh,h′ − ŝh′‖2fX ≤ 3‖K‖2L1(R)‖g − gh‖2L2(Φ(A)) + 3(1 + ‖K‖2L1(R)) ‖ĝh′ − gh′‖2L2(Φ(A)) .Now, we get bak to the de�nition of A(h) given by (13):
A(h) ≤ 3 ‖K‖2L1(R)‖g − gh‖2L2(Φ(A))(21)

+3(1 + ‖K‖2L1(R)) max
h′∈Hn

(

‖ĝh′ − gh′‖2L2(Φ(A)) −
V (h′)

3(1 + ‖K‖2
L1(R)

)

)

+

.We apply Lemma 7: ‖ĝh′ − gh′‖L2(Φ(A)) = supt∈S̄(0,1)〈ĝh′ − gh′ , t〉Φ(A), with S̄(0, 1) a denseountable subset of S̃(0, 1) = {t ∈ L1(Φ(A)) ∩ L2(Φ(A)), ‖t‖L2(Φ(A)) = 1}. Now,
〈ĝh′ − gh′ , t〉Φ(A) =

1

n

n∑

i=1

∫

Φ(A)
{θ(Yi)Kh′ (u− Φ(Xi))− E [θ(Yi)Kh′ (u− Φ(Xi))]} t(u)du

= νn,h′(t),where νn,h′ is an empirial proess. Thus, thanks to (21), it remains to bound the deviations of
supt∈S̄(0,1) ν

2
n,h′(t). First, we have

E

[

max
h′∈Hn

(

sup
t∈S̄(0,1)

ν2n,h′(t)− V (h′)

3(1 + ‖K‖2
L1(R)

)

)

+

]

≤
∑

h′∈Hn

E

[(

sup
t∈S̄(0,1)

ν2n,h′(t)− V (h′)

3(1 + ‖K‖2
L1(R)

)

)

+

]

.Then, the onlusion results from the following lemma:Lemma 5. Under the assumptions of Theorem 3, there exists a onstant C suh that,
∑

h∈Hn

E

[(

sup
t∈S̄(0,1)

ν2n,h(t)− Ṽ (h)

)

+

]

≤ C

n
,with Ṽ (h) = δ′‖K‖L2(R)E[θ(Y1)

2]/(nh) for a numerial δ′ > 0.We hoose the onstant κ involved in the de�nition of V suh that Ṽ (h) ≤ V (h)(1+‖K‖2L1(R))/3.Thus, the proof is omplete.
✷



ADAPTIVE WARPED KERNEL ESTIMATORS 176.6. Proof of Lemma 5. We write the empirial proess
νn,h(t) =

1

n

n∑

i=1

ψt,h(Xi, Yi)− E [ψt,h(Xi, Yi)] ,(22) with ψt,h(Xi, Yi) = θ(Yi)

∫

Φ(A)
Kh (u− FX(Xi)) t(u)du.The guiding idea is to apply Talagrand's Inequality (Lemma 6). If θ is bounded, this inequalityan be applied. Otherwise, we have to introdue a trunation.6.6.1. Example 1. Reall that Φ = FX and Φ(A) = [0; 1]. We split the proess νn,h into threeparts, writing νn,h = ν

(1)
n,h + ν

(2,1)
n,h + ν

(2,2)
n,h , with, for l = 1, (2, 1), (2, 2),

ν
(l)
n,h =

1

n

n∑

i=1

ϕ
(l)
t,h(Zi)− E

[

ϕ
(l)
t,h(Zi)

]

,

Zi = Xi or (Xi, εi), and
ϕ
(1)
t,h : x 7→ s(x)

∫ 1
0 Kh(u− FX(x))t(u)du,

ϕ
(2,1)
t,h : (x, ε) 7→ ε1|ε|≤κn

∫ 1
0 Kh(u− FX(x))t(u)du,

ϕ
(2,2)
t,h : (x, ε) 7→ ε1|ε|>κn

∫ 1
0 Kh(u− FX(x))t(u)du,where we de�ne, for a onstant c whih will be spei�ed below,(23) κn = c

√
nln(n) .We apply Talagrand's Inequality to the �rst two bounded empirial proesses, and bound roughlythe last one. Thus, we split:

∑

h∈Hn

E

[(

sup
t∈S̄(0,1)

ν2n,h(t)− Ṽ (h)

)

+

]

≤ 3
∑

h∈Hn

{

E

[(

sup
t∈S̄(0,1)

(

ν
(1)
n,h(t)

)2
− Ṽ1(h)

3

)

+

](24)
+E

[(

sup
t∈S̄(0,1)

(

ν
(2,1)
n,h (t)

)2
− Ṽ2(h)

3

)

+

]

+ E

[

sup
t∈S̄(0,1)

(

ν
(2,2)
n,h (t)

)2
]}

,with the deomposition Ṽ (h) = Ṽ1(h) + Ṽ2(h), and, denoting by δ′′ = δ′/2,
Ṽ1(h) = 3δ′′

‖K‖2L2(R)E
[
s2(X1)

]

nh
, and Ṽ2(h) = 3δ′′

‖K‖2L2(R)E
[
ε21
]

nh
.Atually, reall that we have E[θ2(Y1)] = E[Y 2

1 ] = E[s2(X1)] + E[ε21] here.We now show that eah of the three terms of the right hand-side of (24) is upper-bounded bya quantity of order 1/n. This will end the proof.
• First term of (24).Let us begin with ν(1)n,h. To do so, we ompute H(1), M (1) and v(1), involved in Lemma 6.
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• For M (1), let t ∈ S̄(0, 1) and x ∈ A be �xed:
∣
∣
∣ϕ

(1)
t,h(x)

∣
∣
∣ ≤ |s(x)|

∫ 1

0
|Kh(u− FX(x))t(u)| du ≤ |s(x)|‖Kh‖L2(R)‖t‖L2(Φ(A)),

= |s(x)|
‖K‖L2(R)√

h
≤ ‖s‖L∞(A)

‖K‖L2(R)√
h

:=M (1).

• For H(1), notie that
ν
(1)
n,h(t) = 〈d̂h − gh, t〉Φ(A), with d̂h =

1

n

n∑

i=1

s(Xi)Kh (.− FX(Xi)) .Thus, thanks to Lemma 7, we obtain,
E

[

sup
t∈S̄(0,1)

(

ν
(1)
n,h(t)

)2
]

= E

[∥
∥
∥d̂h − gh

∥
∥
∥

2

L2([0;1])

]

,

=

∫ 1

0
Var(d̂h(u)) du, sine gh(u) = E

[

d̂h(u)
]

,

≤
∫ 1

0

1

n
E
[
s2(X1)K

2
h (u− FX(X1))

]
du.Then, we use the same omputation as the one done to bound the variane term in theproof of Proposition 2, and set (H(1))2 = ‖K‖2L2(R)E[s

2(X1)]/(nh).
• For v(1), we also �x t ∈ S̄(0, 1). Hereafter, we set Ǩh(u) = Kh(−u). First,Var(ϕ(1)

t,h(X1)
)

≤ E

[(

ϕ
(1)
t,h(X1)

)2
]

≤ ‖s‖2L∞(A)E

[(∫ 1

0
Kh(u− FX(X1))t(u)du

)2
]

,and the expetation an be written
E

[(∫ 1

0
Kh(u− FX(X1))t(u)du

)2
]

= E

[(
Ǩh ∗

(
t1[0;1]

))2
(FX(X1))

]

,

=

∫ 1

0

(
Ǩh ∗

(
t1[0;1]

))2
(u)du ≤

∥
∥Ǩh ∗

(
t1[0;1]

)∥
∥
2

L2(R)
,

≤
∥
∥Ǩh

∥
∥
2

L1(R)
‖t1[0;1]‖2L2(R) =

∥
∥Ǩh

∥
∥
2

L1(R)
‖t‖2L2([0;1]),thanks to Lemma 8. Therefore,Var(ϕ(1)

t,h(X1)
)

≤ ‖s‖L∞(A)‖K‖2L1(R) := v(1).Then, Lemma 6 gives, for δ > 0,
E

[(

sup
t∈S̄(0,1)

(

ν
(1)
n,h(t)

)2
− 2(1 + 2δ)

(

H(1)
)2
)

+

]

≤ k1

{
1

n
exp

(

−k2
1

h

)

+
1

n2h
exp

(
−k3

√
n
)
}

,where k1, k2, k3 are three onstants whih depend on E[s2(X1)], ‖s‖L∞(A), ‖K‖L1(R) and ‖K‖L2(R).Assumptions (H2)-(H3) lead to
∑

h∈Hn

E

[(

sup
t∈S̄(0,1)

(

ν
(1)
n,h(t)

)2
− 2(1 + 2δ)‖K‖2L2(R)E[s

2(X1)]
1

nh

)

+

]

≤ C

n
,with C a onstant (whih also depends on the previous quantities).



ADAPTIVE WARPED KERNEL ESTIMATORS 19
• Seond term of (24).For the seond empirial proess ν(2,1)n,h , the sketh of the proof is the same: similarly, weompute the quantities involved in the Talagrand Inequality,

M (2) = κn‖K‖L2(R)
1√
h
, H(2) = ‖K‖L2(R)

(
E[ε21]

)1/2 1√
nh
, v(2) = ‖K‖2L1(R)E[ε

2
1],and we obtain, by Lemma 6, for δ > 0,

E

[(

sup
t∈S̄(0,1)

(

ν
(2,1)
n,h (t)

)2
− 2(1 + 2δ)

(

H(2)
)2
)

+

]

≤ k1

{
1

n
exp

(

−k2
1

h

)

+
κ2n
n2h

exp

(

−k3
√
n

κn

)}

,where k1, k2, k3 are three onstants whih depend on E[ε21], ‖K‖L1(R) and ‖K‖L2(R). The �rstterm of the right hand-side is like above. With the de�nition (23) of κn, the sum over h ∈ Hn ofthe seond term of the upper bound an be written
∑

h∈Hn

κ2n
n2h

exp

(

−k3
√
n

κn

)

=
c2

n1+k3/c ln2(n)

∑

h∈Hn

1

h
.Consequently, using Assumptions (H2)-(H3) and hoosing c in the de�nition of κn suh that

c ≤ k3/α0, we also obtain for a onstant C,
∑

h∈Hn

E

[(

sup
t∈S̄(0,1)

(

ν
(2,1)
n,h (t)

)2
− 2(1 + 2δ)‖K‖2L2(R)E[ε

2
1]

1

nh

)

+

]

≤ C

n
.

• Third term of (24).The last empirial proess is ν(2,2)n,h (t) =
∫ 1
0 t(u)ψ(u)du, with

ψ(u) =
1

n

n∑

i=1

εi1{|εi|>κn}Kh (u− FX(Xi))− E
[
εi1{|εi|>κn}Kh (u− FX(Xi))

]
.It is not bounded. Nevertheless, we use the Cauhy-Shwarz Inequality, and the equality

‖t‖L2(Φ(A)) = 1, for t ∈ S̄(0, 1)

E

[

sup
t∈S̃(0,1)

(

ν
(2,2)
n,h (t)

)2
]

≤ E

[∫ 1

0
ψ2(u)du

]

,

≤ 1

n
E
[
ε211{|ε1|>κn}

]
E

[∫ 1

0
K2

h (u− FX(X1)) du

]

,

≤
‖K‖2L2(R)

nh
E
[
ε211{|ε1|>κn}

]
≤

‖K‖2L2(R)κ
−p
n

nh
E

[

ε2+p
1

]

.Thus, there exists a onstant k1 whih depends on ‖K‖L2(R) and E[ε2+p
1 ],

∑

h∈Hn

E

[

sup
t∈S̄(0,1)

(

ν
(2,2)
n,h (t)

)2
]

≤ k1
κ−p
n

n

∑

h∈Hn

1

h
= c1κ

−p ln
p(n)

n1+p/2

∑

h∈Hn

1

h
.The onlusion omes from Assumptions (H2)-(H3), and the hoie of p ≥ 2α0.

✷



20 ADAPTIVE WARPED KERNEL ESTIMATORS6.6.2. Examples 2-4. For the multipliative regression model (Example 2), we split the proessinto two terms: νn,h = ν
(1)
n,h + ν

(2)
n,h, with

ν
(1)
n,h(t) =

1

n

n∑

i=1

{

σ2(Xi)ε
2
i 1{|εi|≤κn}

∫ 1

0
Kh (u− FX(Xi)) t(u)du

−E

[

σ2(Xi)ε
2
i 1{|εi|≤κn}

∫ 1
0 Kh (u− FX(Xi)) t(u)du

]}

,

ν
(2)
n,h(t) =

1

n

n∑

i=1

{

σ2(Xi)ε
2
i 1{|εi|>κn}

∫ 1

0
Kh (u− FX(Xi)) t(u)du

−E

[

σ2(Xi)ε
2
i 1{|εi|>κn}

∫ 1
0 Kh (u− FX(Xi)) t(u)du

]}

,where κn is still a onstant for the proof, whih equals √c √
n

ln(n) and c > 0 is obtained by theomputations, like in Example 1. We exatly reover the framework of this previous example:the deviations of the proess ν(1)n,h are bounded thanks to Talagrand's Inequality of Lemma 6,and the seond one is bounded in the same way as the proess ν(2,2)n,h of the additive regressionsetting.For Examples 3-4, there is no point in splitting the proess (22), sine it is already bounded(reall that θ(Y1) is bounded by 1). Thus, we apply the onentration inequality.Reall that Φ(A) = R+. In both of these ases, the quantity M1 involved in the assumptionsof Lemma 6 equals M1 = ‖K‖L2(R)/
√
h. Moreover, H2 an be hosen as the upper-bound of thevariane term of the estimator ĝh, that is H2 = ‖K‖L2(R)/nh. Finally, v equals ‖K‖L1(R) forExample 3, and ‖g‖L∞(R+)‖K‖L1(R) for Example 4.As an example, let us detail the omputation of v in Example 4. Reall that X = C ∧ Z,

Y = 1Z≤C , s is the hazard rate, and the warping Φ is the funtion x 7→
∫ x
0 (1 − FX(t))dt.Thus, denoting by fC (respetively fZ) a density of the variable C (respetively Z), and FC(respetively FZ) its .d.f.,Var (ψt,h(X1, Y1)) ≤ E

[

(ψt,h(X1, Y1))
2
]

= E

[

Y1

(∫

R+

Kh(u
′ − Φ(X1))t(u

′)du′
)2
]

,

=

∫

R+×R

1z≤c

(∫

R+

Kh(u
′ − Φ(z))t(u′)du′

)2

fC(c)fZ(z)dzdc,

=

∫

R+

(∫

R+

Kh(u
′ − Φ(z))t(u′)du′

)2

fZ(z) (1− FC) (z)dz.We set z = Φ−1(u). The integral beomes
∫

R+

(∫

R+

Kh(u
′ − Φ(z))t(u′)du′

)2

fZ(z) (1− FC) (z)dz

=

∫

R+

(∫

R+

Kh(u
′ − u)t(u′)du′

)2

fZ ◦ Φ−1(u) (1− FC) ◦ Φ−1(u)
du

((1 − FX) ◦ Φ−1(u))
.



ADAPTIVE WARPED KERNEL ESTIMATORS 21Thanks to the same arguments as the ones used to prove Proposition 1 in Setion 6.2, we obtain:Var (ϕt,h(X1, Y1)) ≤
∫

R+

g(u)

(∫

R+

Kh(u
′ − u)t(u′)du′

)2

du,

=

∫

R+

g(u)
(
Kh ∗

(
t1R+

)
(u)
)2
du ≤ ‖g‖L∞(R+)

∥
∥Ǩh ∗

(
t1R+

)∥
∥
L2(R)

,

≤ ‖g‖L∞(R+)

∥
∥Ǩh

∥
∥
L1(R)

∥
∥
(
t1R+

)∥
∥
L2(R)

= ‖g‖L∞(R+) ‖K‖L1(R) := v.One we have the three quantities, we easily apply Lemma 6 and the proof is omplete by usingAssumptions (H2)-(H3), like above (see the omputations in Example 1).
✷6.7. Proof of Corollary 1. We must bound the bias term of the right hand-side of Inequality(15) (Theorem 3). Atually, if we prove that

‖s− sh‖2φ ≤ Ch2β ,where C is a onstant, then the proof of the Corollary will be ompleted by omputing theminimum whih is involved in (15). By de�nition,
‖s− sh‖2φ = ‖g − gh‖2L2(Φ(A)) =

∫

Φ(A)
(gh(u)− g(u))2 du.We distinguish two ases in the sequel, depending on the onsidered examples.6.7.1. Examples 1-3. Here, Φ(A) = (0; 1). We start with the de�nition of gh: for u ∈ Φ(A),

gh(u) =
1

h

∫ 1

0
g(u′)K

(
u− u′

h

)

du′ =
∫ u

h

u−1

h

g(u− hz)K(z)dz,

=

∫ u
h

u−1

h

g̃(u− hz)K(z)dz =

∫

R

g̃(u− hz)K(z)dz.Thus, sine ∫
R
K(u)du = 1,

g̃h(u)− g(u) =

∫

R

K(z)g̃(u− hz)dz − g̃(u) =

∫

R

K(z) [g̃(u− hz)− g̃(u)] dz.(25)We use a Taylor-Lagrange formula for g̃: for u ∈ (0; 1), and z ∈ R, there exists θ ∈ (0; 1) suhthat
g̃(u− hz)− g(u) = −hzg̃′(u) + (−hz)2

2!
g̃′′(u) + · · ·+ (−hz)l−1

(l − 1)!
g̃(l−1)(u) +

(−hz)l
l!

g̃(l)(u− θhz),with l = ⌊β⌋. With Assumption (Kl), we obtain
‖s− sh‖2φ ≤

(
∫

z∈R
|K(z)| |hz|

l

l!

{∫ 1

u=0

{

g̃(l)(u− θhz)− g̃(l)(u)
}2
du

}1/2

dz

)2

.Sine g̃ belongs to the Hölder spae H(β,L),
[∫ 1

u=0

{

g̃(l)(u− θhz)− g̃(l)(u)
}2
du

]1/2

≤
[∫ 1

u=0
L2(θhu)2(β−l)du

]1/2

,

= L|hz|β−l,whih enables us to onlude.
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✷6.7.2. Example 4. Here, Φ(A) = R+. Similarly, we �rst obtain Equality (25). Then, the idea isthe same as in Examples 1-3, but sine we integrate over an unbounded subset, we hoose anintegrated remainding term in the Taylor formula:

g̃(u− hz)− g̃(u) = −hzg̃′(u) + (−hz)2
2!

g̃′′(u) + · · · + (−hz)l−1

(l − 1)!
g̃(l−1)(u)

+
(−hz)l
(l − 1)!

∫ 1

0
(1− θ)l−1g̃(l)(u− θhz)dθ.The reasoning is then the same as in density estimation (see Tsybakov 2009 for details).

✷6.8. Useful tools. We reall lassial results. The �rst one is a powerful onentration inequal-ity, whih permits to ontrol the deviations of the supremum of an empirial proess.Lemma 6. [Talagrand's Inequality℄ Let ξ1, . . . , ξn be i.i.d. random variables, and de�ne νn(r) =
1
n

∑n
i=1 r(ξi)−E[r(ξi)], for r belonging to a ountable lass R of real-valued measurable funtions.Then, for δ > 0, there exist three onstants cl, l = 1, 2, 3, suh that

E

[(

sup
r∈R

(νn (r))
2 − c(δ)H2

)

+

]

≤ c1

{
v

n
exp

(

−c2δ
nH2

v

)

+
M2

1

C2(δ)n2
exp

(

−c3C(δ)
√
δ
nH

M1

)}

,with, C(δ) = (
√
1 + δ − 1) ∧ 1, c(δ) = 2(1 + 2δ) and
sup
r∈R

‖r‖∞ ≤M1, E [sup
r∈R

|νn(r)|
]

≤ H, and sup
r∈R

Var (r (ξ1)) ≤ v.Inequality (6) is a lassial onsequene of the Talagrand Inequality given in Klein and Rio(2005): see for example Lemma 5 (page 812) in Laour (2008).Then, we state a lemma whih will allow us to replae a L2−norm by the supremum of anempirial proess.Lemma 7. Let B be a borelian subset of R. Denote by S̃B(0, 1) the set of funtions t ∈ L2(B)suh that ‖t‖L2(B) = 1. Then, for any funtion v ∈ L2(B),
‖v‖L2(B) = sup

t∈S̃B(0,1)

〈v, t〉B .Moreover, the supremum over S̃B(0, 1) equals the supremum over a ountable subset S̄B(0, 1) of
S̃B(0, 1).Proof of Lemma 7. The Cauhy-Shwarz Inequality leads to

sup
t∈S̃B(0,1)

〈v, t〉B ≤ sup
t∈S̃B(0,1)

‖v‖L2(B)‖t‖L2(B) = ‖v‖L2(B).Besides, if we set t = v/‖v‖L2(B), then t belongs to S̃B(0, 1), and 〈t, v〉B = ‖v‖L2(B). This endsthe proof of the equality. Finally, we an replae S̃B(0, 1) by one of its dense ountable subset:suh a set exists thanks to the separability of L2(R).
✷



ADAPTIVE WARPED KERNEL ESTIMATORS 23Finally, we reall a useful and standard property of the onvolution produt.Lemma 8. [Young Inequality℄ Let p, q ∈ [1;∞[ suh that 1/p + 1/q ≥ 1. If u ∈ Lp(R) and
v ∈ Lq(R), then the onvolution produt u⋆v exists. Moreover, if r is de�ned by 1/r = 1/p+1/q−1then u ⋆ v ∈ Lr(R) and

‖u ⋆ v‖Lr(R) ≤ ‖u‖Lp(R)‖v‖Lq(R).7. Appendix 1: additional materials and results for the general ase ofunknown ΦIn this setion, we give some details about the general ase of an unknown transformation Φ.7.1. Notations. For the sake of larity, we begin with an overview of the notations. The warpingfuntions Φ and their estimator Φ̂n are de�ned in Table 5, for x ∈ A, with F̂n is the empirialounterpart for FX . But instead of estimating FX with the whole sample (Xi)i=1,...,n, we assumethat another sample (X−i)i=1,...,n, independent of the Xi's, but distributed like them, is available.Thus, we set
F̂n : x 7→ 1

n

n∑

i=1

1X−i≤x.The introdution of the seond sample of variable X is an artefat of the theory: it only allowsto avoid dependeny problems in the proof of the results, whih are tehnial and umbersomeenough (see below). Using a single sample would have required totally di�erent statisti andprobabilisti tools. However, we have obviously used only one sample to ompute the estimatorin the simulation study, see Setion 5 (otherwise the omparison with other methods would nothave been fair).
Φ(x) Φ̂n(x)Examples 1-3 FX(x) F̂n(x)Example 4 ∫ x

0
(1− FX(t)) dt

∫ x

0

(

1− F̂n(t)
)

dtTable 5. The warping funtions and their estimatorsLet us now reall the following de�nitions of the estimators we will studied in this setion: for
h > 0,(26) ŝh = ĝh ◦ Φ̂n, with ĝh : u 7→ 1

n

n∑

i=1

θ(Yi)Kh

(

u− Φ̂n(Xi)
)

.We aim at providing an upper bound for the risk of this estimator. The main hallenge ofthe plug-in devie is to bound the di�erene Φ̂n − Φ, in order to ome down to the risk of theestimator with known Φ, bounded in Proposition 2.



24 ADAPTIVE WARPED KERNEL ESTIMATORS7.2. Properties of Φ and Φ̂n. We introdue in this setion properties and deviation inequalitieswhih will be repeatedly used in the proof of Proposition 11.First, we set Ui = FX(X−i), for i ∈ {1, . . . , n} and denote by Ûn the empirial .d.f related tothe sample (Ui)1≤i≤n. Reall �rst that Ui has a uniform distribution on the interval (0; 1) and that
F̂n ◦ F−1

X = Ûn. The variable supu∈R

∣
∣
∣Ûn(u)− u

∣
∣
∣, whih will be denoted by ‖Ûn − id‖L∞(R), hasthe same distribution as supx∈A

∣
∣
∣F̂n(x)− FX(x)

∣
∣
∣ := ‖F̂n − FX‖L∞(R). The following deviationresult is known as the Dvoretzky-Kiefer-Wolfowitz Inequality (see Dvoretzky et al. (1956)):Proposition 9. There exists a onstant C > 0, suh that, for any integer n ≥ 1, and all λ > 0,

P

(

‖Ûn − id‖L∞(R) ≥ λ
)

≤ C exp
(
−2nλ2

)
.By integration, we dedue the following bounds:Corollary 2. For any p ∈ N\{0}, there exists a onstant Cp > 0 suh that

E

[∥
∥
∥Ûn − id

∥
∥
∥

p

L∞(R)

]

≤ Cp

np/2
.Proposition 9 and Corollary 2 are su�ient to handle the ase Φ = FX , Φ̂n = F̂n (Examples1-3). In Example 4, reall that the deformation is Φ(x) =
∫ x
0 (1 − FX(t))dt. We assume thatthe support A an be written A = (0; τ) with �nite τ (still in Example 4). Before studyingthe deviations of its empirial ounterpart, we �rst state the following equalities, whih will beuseful, even though simple:Lemma 10. Denote by Φ(x) =

∫ x
0 (1−FX(t))dt, x ∈ (0; τ), and Φ′ = φ. The funtion Φ satis�es(1) Φ(x) =

∫ τ

0
(y ∧ x)fX(y)dy, x ∈ (0; τ),(2) E[X] =

∫ τ
0 φ(x)dx.Proof of Lemma 10(1) Fix x ∈ (0; τ), and ompute
Φ(x) =

∫ x

0
P(X > t)dt =

∫ x

0

(∫ τ

0
1y>tfX(y)dy

)

dt,

=

∫ τ

0
fX(y)

(∫ x

0
1y>tdt

)

dy =

∫ τ

0
fX(y) (y ∧ x) dy.(2) To reover the expetation of X, we ompute

∫ τ

0
φ(x)dx =

∫ τ

0
(1− FX(x)) dx =

∫ τ

0

(∫ ∞

x
fX(t)dt

)

dx,

=

∫ ∞

0
fX(t)

∫ τ

0
1t>xdxdt =

∫ ∞

0
fX(t)tdt = E[X].

✷Now, onsider the estimator Φ̂n =
∫ x
0 (1−F̂n(t))dt. It an also be written Φ̂n(x) =

1
n

∑n
i=1X−i∧

x. Thus it has no bias for the estimation of Φ (see the �rst point of Lemma 10). Moreover, as-suming that A = (0; τ) with �nite τ > 0 (still in Example 4) permits to write,(27) sup
x∈(0;τ)

∣
∣
∣Φ̂n(x)− Φ(x)

∣
∣
∣ ≤ τ sup

x∈R+

∣
∣
∣F̂n(x)− FX(x)

∣
∣
∣ .



ADAPTIVE WARPED KERNEL ESTIMATORS 25Thus, Proposition 9 and Corollary 2 are also useful to bound Φ̂n − Φ in Example 4.To standardize the notations in the proofs below, we �nally set τ = 1 when Φ = FX and Φ̂n = F̂n,that is in Examples 1-3. Therefore, Inequality (27) holds whatever Φ is.7.3. Result. Before stating the result, we introdue new assumptions:(H1') the funtion s is ontinuously derivable on A.(H2') the kernel K is twie ontinuously derivable, with bounded derivatives K ′ and K ′′ on R.Assumption (H1') is somehow restritive but required for integration by parts (see Setion 7.4.3).Assumption (H2') permits to use Taylor formulas to deal with the di�erene Kh(u− Φ̂n(Xi))−
Kh(u− Φ(Xi)). This is not a problem as we hoose the kernel in pratie.We now illustrate how the plug-in devie suits well to reover the funtion s by providing anupper bound for the risk of ŝh.Proposition 11. Assume (H1') and (H2'). Assume also that A = (0; τ) with τ <∞ for Example4. Then, there exist three onstants c1, c2 and c3 suh that(28) E

[

‖ŝh − s‖2φ
]

≤ 5 ‖g − gh‖2L2(Φ(A)) + c1
1

nh
+ c2

1

n2h4
+ c3

1

n2h6
.If moreover h > n−1/5, there exists c > 0 suh that(29) E

[

‖ŝh − s‖2φ
]

≤ 5 ‖g − gh‖2L2(Φ(A)) + c
1

nh
.Notie that the additional assumption A = (0; τ) with τ <∞ is needed to ontrol the di�erene

Φ̂n− Φ̂ in Example 4 (see Setion above). Inequality (29) is immediatly dedued from (28) withthe additional assumption h > n−1/4. It shows that the same result as Proposition 2 holdswhen the warping funtion Φ is unknown, under mild assumptions. The main adaptive result(Theorem 3) in this general framework an then be dedued from this bound.7.4. Proof of Proposition 11.7.4.1. Main part of the proof of Proposition 11. Let us speify the notations of this setion. Ourgoal is to study the risk of ŝ de�ned by (26): we denote it by ŝΦ̂n,Φ̂n . We have
ŝΦ̂n,Φ̂n = ĝΦ̂n

h ◦ Φ̂n, with ĝΦ̂n

h (u) =
1

n

n∑

i=1

θ(Yi)Kh

(

u− Φ̂n(Xi)
)Moreover, ŝΦ,Φ = ĝΦh ◦ Φ with ĝΦh (u) = (1/n)

∑n
i=1 θ(Yi)Kh(u− Φ(Xi)) is the estimator studiedin the main part of the paper. Coherently, we also introdue ŝΦ̂n,Φ = ĝΦ̂n

h ◦ Φ. The followingdeomposition is the key of the proof:
‖ŝh − s‖2φ ≤ 5

3∑

l=0

T h
l ,with

T h
0 =

∥
∥
∥ŝ

Φ,Φ
h − sh

∥
∥
∥

2

φ
+
∥
∥sΦh − s

∥
∥2

φ
,

T h
1 =

∥
∥
∥ŝ

Φ̂n,Φ
h − ŝΦ,Φ

h − E

[

ŝΦ̂n,Φ
h − ŝΦ,Φ

h |(X−i)
]∥
∥
∥

2

φ
,

T h
2 =

∥
∥
∥ŝ

Φ̂n,Φ̂n

h − ŝΦ̂n,Φ
h − E

[

ŝΦ̂n,Φ̂n

h − ŝΦ̂n,Φ
h |(X−i)

]∥
∥
∥

2

φ
,

T h
3 =

∥
∥
∥E

[

ŝΦ̂n,Φ̂n

h − ŝΦ,Φ
h |(X−i)

]∥
∥
∥

2

φ
,



26 ADAPTIVE WARPED KERNEL ESTIMATORSwhere E[Z|(X−i)] is the onditional expetation of a variable Z given the sample (X−i)i=1,...,n.The term T h
0 has been bounded in Proposition 2. For the three others, we set the followinglemmas, whih end the proof.Lemma 12. Under the assumptions of Proposition 11,

E

[

T h
l

]

≤ κ1E
[
θ2(Y1)

]
‖K ′‖L∞(R)C2

1

n2h4
,with κ1 = 1 in Examples 1-3, κ1 = τ2E[X] in Example 4, and C2 de�ned by Proposition 2.Lemma 13. Under the assumptions of Proposition 11,

E

[

T h
3

]

≤ κ

nh
+ 16κ1E

[
θ2(Y1)

] ∥
∥K ′′∥∥2

L∞(R)
C4

1

n2h6
.with κ1 = τ2E[X] and

κ =







12 ‖K‖2L2(R)

(

2C2‖s‖2L∞(A) + 2 ‖s‖2φ +
(
1
4 + 3C2

)
‖s′‖2L2(A)

) (Examples 1-3),
‖K‖2L2(R)

(

‖s‖2L∞(A)(E[X
2
−1] + 2C2τ

2)

+‖s′‖2L1(A)(E[X
2
−1] + C2τ

2) + E[X−1]‖s‖2L2(A)

) (Example 4).Remark 2. To prove Lemma 12, Assumption (H1') is not required and Assumption (H2') anbe weakened: it is su�ient to assume that the kernel K is ontinuously derivable, with boundedderivative K ′.
✷7.4.2. Proof of Lemma 12. The �rst term to bound is

T h
1 =

∫

A

(

ĝΦ̂n

h ◦ Φ(x)− ĝΦh ◦ Φ(x)− E

[

ĝΦ̂n

h ◦Φ(x)− ĝΦh ◦Φ(x) |(X−i)
])2

φ(x)dx,and its onditional expetation is
E

[

T h
1 |(X−i)

]

=

∫

A
Var(ĝΦ̂n

h (Φ(x))− ĝΦh (Φ(x)) |(X−i)
)

φ(x)dx.For any x ∈ A, we omputeVar(ĝΦ̂n

h (Φ(x))− ĝΦh (Φ(x)) |(X−i)
)

= Var( 1

n

n∑

i=1

θ(Yi)
{

Kh

(

Φ(x)− Φ̂n(Xi)
)

−Kh (Φ(x)− Φ(Xi))
}

|(X−i)

)

,

=
1

n
Var(θ(Y1){Kh

(

Φ(x)− Φ̂n(X1)
)

−Kh (Φ(x)− Φ(X1))
}

|(X−i)
)

,

≤ 1

nh2
E



θ2(Y1)

{

K

(

Φ(x)− Φ̂n(X1)

h

)

−K

(
Φ(x)− Φ(X1)

h

)}2

|(X−i)



 .The mean value theorem for the kernel K between to real numbers a and b leads to:
|K(b)−K(a)| ≤ ‖K ′‖L∞(R)|b− a|.By hoosing a = (Φ(x)− Φ̂n(X1))/h and b = (Φ(x)− Φ(X1))/h, we obtain
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h (Φ(x))− ĝΦh (Φ(x)) |(X−i)
)

≤ 1

nh2
E




θ

2(Y1)‖K ′‖2L∞(R)

{

Φ(Xi)− Φ̂n(Xi)
}2

h2
|(X−i)




 ,

≤ 1

nh4
‖K ′‖2L∞(R)

∥
∥
∥Φ̂n − Φ

∥
∥
∥

2

L∞(A)
E
[
θ2(Y1) |(X−i)

]
,

=
1

nh4
‖K ′‖2L∞(R)

∥
∥
∥Φ̂n − Φ

∥
∥
∥

2

L∞(A)
E
[
θ2(Y1)

]
.Thus,

E

[

T h
1 |(X−i)

]

≤ 1

nh4

∫

A
φ(x)dx‖K ′‖2L∞(R)

∥
∥
∥Φ̂n − Φ

∥
∥
∥

2

L∞(A)
E
[
θ2(Y1)

]
,and onsequently

E

[

T h
1

]

≤ 1

nh4

∫

A
φ(x)dx‖K ′‖2L∞(R)E

[∥
∥
∥Φ̂n − Φ

∥
∥
∥

2

L∞(A)

]

E
[
θ2(Y1)

]
.With Inequalities (27) and (2) suessively, we obtain

E

[

T h
1

]

≤ τ2C2

n2h4
E
[
θ2(Y1)

]
∫

A
φ(x)dx‖K ′‖2L∞(R).To onlude, it remains to ompute ∫A φ(x)dx: it equals 1 in Examples 1-3 and E[X] in Example4 (see Lemma 10).To deal with the seond term, we �rst write

T h
2 =

∫

A

(

ĝΦ̂n

h ◦ Φ̂n(x)− ĝΦ̂n

h ◦ Φ(x)− E

[

ĝΦ̂n

h ◦ Φ̂n(x)− ĝΦ̂n

h ◦ Φ(x) |(X−i)
])2

φ(x)dx.We now argue as for T h
1 :

E

[

T h
2 |(X−i)

]

=

∫

A
Var(ĝΦ̂n

h ◦ Φ̂n(x)− ĝΦ̂n

h (Φ(x)) |(X−i)
)

φ(x)dx,

≤
∫

A

1

nh2
E

[

θ2(Y1)

{

K

(

Φ̂n(x)− Φ̂n(X1)

h

)

−K
(

Φ(x)− Φ̂n(X1)

h

)}2

|(X−i)



φ(x)dx,

≤
∫

A

1

nh2
E




θ

2(Y1)‖K ′‖2L∞(R)

{

Φ̂n(x)−Φ(x)
}2

h2
|(X−i)




φ(x)dx,

≤
∫

A
φ(x)dx

1

nh4
E
[
θ2(Y1)

]
‖K ′‖L∞(R)

∥
∥
∥Φ̂n − Φ

∥
∥
∥

2

L∞(A)
.The onlusion is the same as for the �rst term.

✷



28 ADAPTIVE WARPED KERNEL ESTIMATORS7.4.3. Proof of Lemma 13. We have
T h
3 = E

[∫

A

(

ŝΦ̂n,Φ̂n(x)− ŝΦ,Φ(x)
)2
φ(x)dx |(X−i)

]

,

=

∫

A

(

E

[

1

nh

n∑

i=1

θ(Yi)

{

K

(

Φ̂n(x)− Φ̂n(Xi)

h

)

−K

(
Φ(x)− Φ(Xi)

h

)}

|(X−i)

])2

φ(x)dx,

=

∫

A

(

E

[

1

h
θ(Y1)

{

K

(

Φ̂n(x)− Φ̂n(X1)

h

)

−K

(
Φ(x)− Φ(X1)

h

)}

|(X−i)

])2

φ(x)dx,sine (Xi, Yi)i are i.i.d. given the sample (X−i)i. We apply the Taylor formula with Lagrangeform for the remainder term K: for b = (Φ̂n(x) − Φ̂n(X1))/h and a = (Φ(x)− Φ(X1))/h, thereexists α̂n,x,h between a and b suh that
K(b)−K(a) = (b− a)K ′(a) + (b− a)2

K ′′ (α̂n,x,h)

2
.This leads to the deomposition T h

3 ≤ 2T h
3,1 + 2T h

3,2, with
T h
3,1 =

∫

A

(

E

[

1

h
θ(Y1)

{

Φ̂n(x)− Φ̂n(X1)− Φ(x) + Φ(X1)

h

× K ′
(
Φ(x)− Φ(X1)

h

)}

|(X−i)

])2

φ(x)dx,

T h
3,2 =

∫

A




E





1

h
θ(Y1)







(

Φ̂n(x)− Φ̂n(X1)− Φ(x) + Φ(X1)
)2

h2
K ′′ (α̂n,x,h)







|(X−i)











2

φ(x)dx.We now bound eah of the terms.
• Upper-bound for T

h
3,1.Let us begin with the splitting T h

3,1 ≤ 2T h
3,1,1 + 2T h

3,1,2, where
T h
3,1,1 =

∫

A



E




1

h
θ(Y1)







(

Φ̂n(x)−Φ(x)
)

h
K ′
(
Φ(x)−Φ(X1)

h

)





|(X−i)









2

φ(x)dx,

T h
3,1,2 =

∫

A



E




1

h
θ(Y1)







(

Φ̂n(X1)− Φ(X1)
)

h
K ′
(
Φ(x)− Φ(X1)

h

)





|(X−i)









2

φ(x)dx.

⋆ Upper-bound for T
h
3,1,1.We have

T h
3,1,1 =

1

h2

∫

A





(

Φ̂n(x)− Φ(x)
)

h2
E

[

θ(Y1)K
′
(
Φ(x)− Φ(X1)

h

)

|(X−i)

]




2

φ(x)dx,

=
1

h2

∫

A

(

Φ̂n(x)− Φ(x)
)2

h2

(

E

[

θ(Y1)K
′
(
Φ(x)− Φ(X1)

h

)])2

φ(x)dx.



ADAPTIVE WARPED KERNEL ESTIMATORS 29We now need a slightly di�erent version of Proposition 1. We replae Kh(u − Φ(X)) by anyfuntion t ◦Φ(X) suh that the expetation exists, in the proof of Setion 6.2, to obtain:(30) E [θ(Y1)t ◦Φ(X1)] =

∫

Φ(A)
t(u′)g(u′)du′ =

∫

A
t(Φ(x′))s(x′)φ(x′)dx′,where the last inequality is the onsequene of the hange of variable x = Φ−1(x′). Here, with

t = K ′((Φ(x)− Φ(X1))/h), (30) leads to
T h
3,1,1 =

1

h2

∫

A

(

Φ̂n(x)− Φ(x)
)2
(∫

A

1

h
K ′
(
Φ(x)− Φ(x′)

h

)

s(x′)φ(x′)dx′
)2

φ(x)dx,

≤ 1

h2

∫

A

∥
∥
∥Φ̂n − Φ

∥
∥
∥

2

L∞(A)

(∫

A

1

h
K ′
(
Φ(x)− Φ(x′)

h

)

s(x′)φ(x′)dx′
)2

φ(x)dx,We anew apply Inequalities (27) and (2), whih give
E

[

T h
3,1,1

]

≤ τ2C2

nh2

∫

A
(Jx)

2 φ(x)dx, with Jx =

∫

A

1

h
K ′
(
Φ(x)− Φ(x′)

h

)

s(x′)φ(x′)dx′.We now disuss two ases, depending on the value of Φ(A) (see Table 5).- Example 1-3 (Φ(A) = (0; 1)). By the hanges of variables u = Φ(x) and u′ = Φ(x′),the last inequality an be written
E

[

T h
3,1,1

]

≤ C2

nh2

∫

(0;1)
(Iu)

2 du, ave Iu =

∫

(0;1)

1

h
K ′
(
u− u′

h

)

g(u′)du′.An integration by parts permits to ompute Iu (s, and thus g are assumed to be ontin-uously derivable):
Iu =

[

−g(u′)K
(
u− u′

h

)]1

0

+

∫

(0;1)
K

(
u− u′

h

)

g′(u′)du′,

= −g(1)K
(
u− 1

h

)

+ g(0)K
(u

h

)

+

∫

(0;1)
K

(
u− u′

h

)

g′(u′)du′.
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E

[

T h
3,1,1

]

≤ C2

nh2

∫

(0;1)

(

−g(1)K
(
u− 1

h

)

+ g(0)K
(u

h

)

+

∫

(0;1)
K

(
u− u′

h

)

g′(u′)du′
)2

du,

=
C2

nh

∫

(0;h)

(

−g(1)K
(

v − 1

h

)

+ g(0)K (v) +

∫

(0;1)
K

(

v − u′

h

)

g′(u′)du′
)2

du,

≤ 3C2

nh

{

g2(1)

∫

(0;1)
K2

(

v − 1

h

)

dv + g2(0)

∫

(0;1)
K2(v)dv

+

∫

(0;1)

(
g′(u′)

)2
du′
∫

(0;1)

(
∫

(0;1)
K2

(

v − u′

h

)

du′
)

dv

}

,

≤ 3

C2nh

{

g2(1)‖K‖2L2(R) + g2(0)‖K‖2L2(R) +

∫

(0;1)

(
g′(u′)

)2
du′‖K‖2L2(R)

}

,

≤ 3C2

4nh

(

2‖g‖2L∞((0;1)) + ‖g′‖2L2((0;1))

)

‖K‖2L2(R),

≤ 3C2

4nh

(

2‖s‖2L∞(A) + ‖s′‖2L2(A)

)

‖K‖2L2(R)- Example 4 (A = (0; τ)). We also integrate by parts:
Jx =

[

−s(x′)K
(
Φ(x)− Φ(x′)

h

)]τ

0

+

∫ τ

0
s′(x′)K

(
Φ(x)− Φ(x′)

h

)

dx′,

= −s(τ)K
(
Φ(x)− Φ(τ)

h

)

+ s(0)K

(
Φ(x)

h

)

+

∫ τ

0
s′(x′)K

(
Φ(x)−Φ(x′)

h

)

dx′.With similar omputations as in the previous examples, but with variables x and x′ inthe integrals,
E

[

T h
3,1,1

]

≤ 3C2τ
2

nh2

{

s2(τ)

∫ τ

0
K2

(
Φ(x)− Φ(τ)

h

)

φ(x)dx

+s2(0)

∫ τ

0
K2

(
Φ(x)

h

)

φ(x)dx+

∫ τ

0

(∫ τ

0
s′(x′)K

(
Φ(x)− Φ(x′)

h

)

dx′
)2

φ(x)dx

}

.There are three terms to bound. First,
s2(τ)

∫ τ

0
K2

(
Φ(x)− Φ(τ)

h

)

φ(x)dx ≤ ‖s‖2L∞(A)‖K‖2L2(R),

s2(0)

∫ τ

0
K2

(
Φ(x)

h

)

φ(x)dx ≤ ‖s‖2L∞(A)‖K‖2L2(R).For the most ompliated term, we apply the generalized Minkowski Inequality (seeLemma 1.1 p.13 in Tsybakov 2009):
∫ τ

0

(∫ τ

0
s′(x′)K

(
Φ(x)− Φ(x′)

h

)

dx′
)2

φ(x)dx

≤
[
∫ τ

0
|s′(x′)|

(∫ τ

0
K2

(
Φ(x)− Φ(x′)

h

)

φ(x)dx

)1/2

dx′
]2

.
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(∫ τ

0
K2

(
Φ(x)− Φ(x′)

h

)

φ(x)dx

)1/2

=

(
∫ Φ(τ)

0
K2

(
u− Φ(x′)

h

)

du

)1/2

,

=

(
∫ Φ(τ)/h

0
K2

(

v − Φ(x′)
h

)

hdv

)1/2

,

≤
√
h‖K‖L2(R),and therefore

∫ τ

0

(∫ τ

0
s′(x′)K

(
Φ(x)− Φ(x′)

h

)

dx′
)2

φ(x)dx ≤ h‖K‖2L2(R)

[∫ τ

0
s′(x′)dx′

]2

,

≤ h‖K‖2L2(R)‖s′‖2L1(A).At the end,
E

[

T h
3,1,1

]

≤ 3C2τ
2

nh
‖K‖2L2(R)

{

2‖s‖2L∞(A) + ‖s′‖2L1(A)

}

.Finally, whatever the example we onsider, we have shown that(31) E

[

T h
3,1,1

]

≤ 3C2τ
2

nh
‖K‖2L2(R)

{

2‖s‖2L∞(A) + Cs

}

,with Cs = ‖s′‖2L2(A) (Examples 1-3), and Cs = ‖s′‖2L1(A) (Example 4).
⋆ Upper-bound for T

h
3,1,2.Reall �rst the de�nition of this term:

T h
3,1,2 =

∫

A



E




1

h
θ(Y1)







(

Φ̂n(X1)− Φ(X1)
)

h
K ′
(
Φ(x)− Φ(X1)

h

)





|(X−i)









2

φ(x)dx.By using that Φ̂n is measurable with respet to the sample (X−i)i, and by notiing that the Xi'sand Yi's are independent of (X−i)i, we an derive a onditional version of (30): for any funtion
t for whih the expetation exists,

E

[

θ(Y1)t
(

Φ̂n(X1),Φ(X1)
)

|(X−i)
]

=

∫

A
t
(

Φ̂n(x
′),Φ(x′)

)

s(x′)φ(x′)dx′.This leads to
T h
3,1,2 =

1

h2

∫

A





∫

A

(

Φ̂n(x
′)− Φ(x′)

)

h
K ′
(
Φ(x)− Φ(x′)

h

)

s(x′)φ(x′)dx′





2

φ(x)dx.Now, Φ̂n(x
′) is an empirial mean of variables with expetation Φ(x′):

• If Φ̂n is the empirial .d.f, it is the mean of 1X−i≤x′ , with expetation FX(x′),
• If Φ̂n(x) =

∫ x
0 (1−F̂n(t))dt, it is the mean of X−i∧x′, with expetation Φ(x′) (see Lemma10).



32 ADAPTIVE WARPED KERNEL ESTIMATORSThus, we have
E

[

T h
3,1,2

]

=
1

h2

∫

A
Var( 1

n

n∑

i=1

∫

A
Ti,x′

1

h
K ′
(
Φ(x)− Φ(x′)

h

)

s(x′)φ(x′)dx′
)

φ(x)dx,where Ti,x′ = 1X−i≤x′ for Examples 1-3, and Ti,x′ = X−i ∧ x′ for Example 4 (see Table 5 andLemma 10). Then,
E

[

T h
3,1,2

]

=
1

nh2

∫

A
Var(∫

A
T1,x′

1

h
K ′
(
Φ(x)− Φ(x′)

h

)

s(x′)φ(x′)dx′
)

φ(x)dx,

=
1

nh2

∫

A
E

[(∫

A

(
T1,x′ − E [T1,x]

) 1

h
K ′
(
Φ(x)− Φ(x′)

h

)

s(x′)φ(x′)dx′
)2
]

φ(x)dx.We must now separate the two ases, depending on the de�nition of T1,x.- Examples 1-3.We set u = Φ(x) and u′ = Φ(x′) in the integrals. With FX(X−1) = U1, the lastinequality beomes
E

[

T h
3,1,2

]

≤ 1

nh2

∫

(0;1)
E

[

(IU1,u)
2
]

du,with IU1,u =

∫ 1

0
(1U1≤u′ − u) g(u′)

1

h
K ′
(
u− u′

h

)

du′.An integration by parts leads to:
IU1,u =

∫ 1

U1

g(u′)
1

h
K ′
(
u− u′

h

)

du′ −
∫ 1

0
u′g(u′)

1

h
K ′
(
u− u′

h

)

du′,

=

[

−g(u′)K
(
u− u′

h

)]1

U1

+

∫ 1

U1

g′(u′)K

(
u− u′

h

)

du′ +

[

u′g(u′)K

(
u− u′

h

)]1

0

−
∫ 1

0

[
g(u′) + u′g′(u′)

]
K

(
u− u′

h

)

du′,

= g(U1)K

(
u− U1

h

)

+

∫ 1

0
g′(u′)K

(
u− u′

h

)

1U1≤u′du′

−
∫ 1

0

[
g(u′) + u′g′(u′)

]
K

(
u− u′

h

)

du′,

= g(U1)K

(
u− U1

h

)

+

∫ 1

0
g′(u′)K

(
u− u′

h

)
(
1U1≤u′ − u′

)
du′

−
∫ 1

0
g(u′)K

(
u− u′

h

)

du′.It follows that E[T h
3,1,2] ≤ 3/(nh2){E[T h

3,1,2,1] + E[T h
3,1,2,2] + E[T h

3,1,2,3]}, with
T h
3,1,2,1 =

∫ 1

0

(

g(U1)K

(
u− U1

h

))2

du,

T h
3,1,2,2 =

∫ 1

0

(∫ 1

0
g′(u′)K

(
u− u′

h

)
(
1U1≤u′ − u′

)
du′
)2

du,

T h
3,1,2,3 =

∫ 1

0

(∫ 1

0
g(u′)K

(
u− u′

h

)

du′
)2

du.



ADAPTIVE WARPED KERNEL ESTIMATORS 33We now show that the expetations of these three terms are roughly of size h. The mainargument is that h‖Kh‖L2(R) = ‖K‖L2(R). Preisely, for the �rst term,
E

[

T h
3,1,2,1

]

=

∫ 1

0

∫ 1

0
g2(u′)K2

(
u− u′

h

)

du′du,

≤
∫ 1

0
g2(u′)h ‖K‖2L2(R) du

′ = h ‖K‖2L2(R) ‖g‖2L2((0;1)) .The seond term is bounded by,
E

[

T h
3,1,2,2

]

≤
∫ 1

0
E

[∫ 1

0
K2

(
u− u′

h

)
(
1U1≤u′ − u′

)2 (
g′(u′)

)2
du′
]

du,

=

∫ 1

0

∫ 1

0
K2

(
u− u′

h

)

u′(1− u′)
(
g′(u′)

)2
du′du,

≤ 1

4

∫ 1

0

(∫ 1

0
K2

(
u− u′

h

)

du

)
(
g′(u′)

)2
du′,

≤ h
1

4
‖K‖2L2(R)

∥
∥g′
∥
∥2

L2((0;1))
.Finally, the same method leads to

E

[

T h
3,1,2,2

]

≤
∫ 1

0

∫ 1

0
g2(u′)K2

(
u− u′

h

)

du′du ≤ h ‖K‖2L2(R) ‖g‖2L2((0;1)) .We have proved that
E

[

T h
3,1,2

]

≤ 3

nh
‖K‖2L2(R)

(

2 ‖g‖2L2((0;1)) +
1

4

∥
∥g′
∥
∥2

L2((0;1))

)

,

=
3

nh
‖K‖2L2(R)

(

2 ‖s‖2φ +
1

4

∥
∥s′
∥
∥2

L2(A)

)

.We gather this inequality with (31):
E

[

T h
3,1

]

≤ 6

nh
‖K‖2L2(R)

(

2C2‖s‖2L∞(A) + 2 ‖s‖2φ +

(
1

4
+ 3C2

)
∥
∥s′
∥
∥2

L2(A)

)

.- Example 4.The term to bound is
E

[

T h
3,1,2

]

=
1

nh2

∫ τ

0
Var(∫ τ

0
X−1 ∧ x′

1

h
K ′
(
Φ(x)− Φ(x′)

h

)

s(x′)φ(x′)dx′
)

φ(x)dx,

≤ 1

nh2

∫ τ

0
E















∫ τ

0
X−1 ∧ x′

1

h
K ′
(
Φ(x)−Φ(x′)

h

)

s(x′)φ(x′)dx′

︸ ︷︷ ︸

Jx








2





φ(x)dx.We an split Jx into two terms: Jx = Jx,1 + Jx,2, with

Jx,1 =

∫ τ

0
x′1x′≤X−1

1

h
K ′
(
Φ(x)− Φ(x′)

h

)

s(x′)φ(x′)dx′,

Jx,2 = X−1

∫ τ

0
1x′>X−1

1

h
K ′
(
Φ(x)− Φ(x′)

h

)

s(x′)φ(x′)dx′.



34 ADAPTIVE WARPED KERNEL ESTIMATORSWe integrate Jx,1 by parts:
Jx,1 =

∫ X−1

0
x′s(x′)

1

h
K ′
(
Φ(x)− Φ(x′)

h

)

φ(x′)dx′,

=

[

−x′s(x′)K
(
Φ(x)− Φ(x′)

h

)]X−1

0

+

∫ X−1

0

[
x′s(x′)

]′
K

(
Φ(x)− Φ(x′)

h

)

dx′,

= −X−1s(X−1)K

(
Φ(x)− Φ(X−1)

h

)

+

∫ X−1

0

[
s(x′) + x′s′(x′)

]
K

(
Φ(x)− Φ(x′)

h

)

dx′,and ompute similarly Jx,2,
Jx,2 = X−1

∫ τ

X−1

s(x′)
1

h
K ′
(
Φ(x)− Φ(x′)

h

)

φ(x′)dx′,

= X−1

[

−s(x′)K
(
Φ(x)− Φ(x′)

h

)]τ

X−1

+X−1

∫ τ

X−1

s′(x′)K

(
Φ(x)− Φ(x′)

h

)

dx′,

= X−1s(X−1)K

(
Φ(x)− Φ(X−1)

h

)

−X−1s(τ)K

(
Φ(x)− Φ(τ)

h

)

+X−1

∫ τ

X−1

s′(x′)K

(
Φ(x)− Φ(x′)

h

)

dx′.We add the two results:
Jx = −X−1s(τ)K

(
Φ(x)− Φ(τ)

h

)

+

∫ τ

0

(
1x′>X−1

X−1 + x′1x′≤X−1

)
s′(x′)K

(
Φ(x)− Φ(x′)

h

)

dx′

+

∫ X−1

0
s(x′)K

(
Φ(x)−Φ(x′)

h

)

dx′,

= −X−1s(τ)K

(
Φ(x)− Φ(τ)

h

)

+

∫ τ

0
X−1 ∧ x′s′(x′)K

(
Φ(x)−Φ(x′)

h

)

dx′

+

∫ X−1

0
s(x′)K

(
Φ(x)−Φ(x′)

h

)

dx′.It follows that
E

[

T h
3,1,2

]

=
1

nh2

∫ τ

0
E
[
J2
x

]
φ(x)dx ≤ 3

nh2

(

E

[

T h
3,1,2,1

]

+ E

[

T h
3,1,2,2

]

+ E

[

T h
3,1,2,3

])with
T h
3,1,2,1 =

∫ τ

0
X2

−1s
2(τ)K2

(
Φ(x)− Φ(τ)

h

)

φ(x)dx,

T h
3,1,2,2 =

∫ τ

0

(∫ τ

0
X−1 ∧ x′s′(x′)K

(
Φ(x)− Φ(x′)

h

)

dx′
)2

φ(x)dx,

T h
3,1,2,3 =

∫ τ

0

(∫ X−1

0
s(x′)K

(
Φ(x)− Φ(x′)

h

)

dx′
)2

φ(x)dx.



ADAPTIVE WARPED KERNEL ESTIMATORS 35For the �rst term
E

[

T h
3,1,2,1

]

= E
[
X2

−1

]
s2(τ)

∫ τ

0
K2

(
Φ(x)− Φ(τ)

h

)

φ(x)dx,

= E
[
X2

−1

]
s2(τ)

∫ Φ(τ)

0
K2

(
u− Φ(τ)

h

)

du,

= hE
[
X2

−1

]
s2(τ)

∫ Φ(τ)/h

0
K2

(

v − Φ(τ)

h

)

dv,

≤ hE
[
X2

−1

]
‖s‖2L∞(A)‖K‖2L2(R).For the seond, we apply the generalized Minkowski Inequality (see Lemma 1.1, p.13 inTsybakov 2009),

E

[

T h
3,1,2,2

]

= E

[
∫ τ

0

(∫ τ

0
X−1 ∧ x′s′(x′)K

(
Φ(x)− Φ(x′)

h

)

dx′
)2

φ(x)dx

]

,

≤ E





{
∫ τ

0

(∫ τ

0

(
X−1 ∧ x′s′(x′)

)2
K2

(
Φ(x)− Φ(x′)

h

)

φ(x)dx

)1/2

dx

}2


 ,

= E





{
∫ τ

0
X−1 ∧ x′|s′(x′)|

(∫ τ

0
K2

(
Φ(x)− Φ(x′)

h

)

φ(x)dx

)1/2

dx

}2


 ,

≤ E
[
X2

−1

]
{∫ τ

0
|s′(x′)|

√
h‖K‖L2(R)dx

′
}2

,

= hE
[
X2

−1

]
‖K‖L2(R)‖s′‖2L1(A).And �nally,

E

[

T h
3,1,2,3

]

=

∫ τ

0
E

[(∫ X−1

0
s(x′)K

(
Φ(x)− Φ(x′)

h

)

dx′
)2
]

φ(x)dx,

≤ E

[

X−1

∫ τ

0

∫ X−1

0
s2(x′)K2

(
Φ(x)− Φ(x′)

h

)

dx′φ(x)dx

]

,

≤ E [X−1]

∫ τ

0

∫ τ

0
s2(x′)K2

(
Φ(x)− Φ(x′)

h

)

dx′φ(x)dx,

≤ hE [X−1] ‖K‖2L2(R)‖s‖2L2(A).At the end,
E

[

T h
3,1,2

]

≤ 3

nh
‖K‖2L2(R)

(

E
[
X2

−1

]
‖s‖2L∞(A) + E

[
X2

−1

]
‖s′‖2L1(A) + E [X−1] ‖s‖2L2(A)

)

.We gather this inequality with (31), like for the �rst three examples:
E

[

T h
3,1

]

≤ 6

nh
‖K‖2L2(R)

(

‖s‖2L∞(A)(E[X
2
−1] + 2C2τ

2)

+‖s′‖2L1(A)(E[X
2
−1] + C2τ

2) + E[X−1]‖s‖2L2(A)

)

.The upper-bound of T h
3,1 is thus ompleted in eah of the examples.

• Upper-bound for T
h
3,2.



36 ADAPTIVE WARPED KERNEL ESTIMATORSWe again split the term: T h
3,2 ≤ 4T h

3,2,1 + 4T h
3,2,2, with

T h
3,2,1 =

∫

A




E





1

h
θ(Y1)







(

Φ̂n(x)− Φ(x)
)2

h2
K ′′ (α̂n,x,h)







|(X−i)











2

φ(x)dx,

T h
3,2,2 =

∫

A




E





1

h
θ(Y1)







(

Φ̂n(X1)− Φ(X1)
)2

h2
K ′′ (α̂n,x,h)







|(X−i)











2

φ(x)dx.The two terms an be bounded in the same way. We detail the omputation for the �rst one:
T h
3,2,1 ≤ 1

h6

∫

A
E

[

θ2(Y1)

{(

Φ̂n(x)− Φ(x)
)4 (

K ′′ (α̂n,x,h)
)2
}

|(X−i)

]

φ(x)dx,

≤ 1

h6

∫

A
E
[
θ2(Y1) |(X−i)

]
∥
∥
∥Φ̂n − Φ

∥
∥
∥

4

L∞(A)

∥
∥K ′′∥∥2

L∞(R)
φ(x)dx,

=
1

h6

∫

A
φ(x)dxE

[
θ2(Y1)

]
∥
∥
∥Φ̂n − Φ

∥
∥
∥

4

L∞(A)

∥
∥K ′′∥∥2

L∞(R)
.The onlusion is analogous as the one of the proof of Lemma 12 (see Setion 7.4.2). We obtain

E

[

T h
3,2,1

]

≤ κ1E
[
θ2(Y1)

] ∥
∥K ′′∥∥2

L∞(R)
C4

1

n2h6
,where κ1 = 1 for Examples 1-3, and κ1 = τ4E[X] in Example 4. The same bound holds for

T h
3,2,2. At the end,

E

[

T h
3,2

]

≤ 8κ1E
[
θ2(Y1)

] ∥
∥K ′′∥∥2

L∞(R)
C4

1

n2h6
.

✷8. Appendix 2: generalization of the proof of Lemma 58.1. Objetive. Reall that Lemma 5 gives a bound of size 1/n for
E

[(

sup
t∈S̄(0,1)

ν2n,h(t)− Ṽ (h)

)

+

]

,with, for any t ∈ S̄(0, 1) (a subset of S̃(0, 1) = {t ∈ L1(Φ(A)) ∩ L2(Φ(A)), ‖t‖L2(Φ(A)) = 1})
νn,h(t) =

1

n

n∑

i=1

∫

Φ(A)
{θ(Yi)Kh′ (u− Φ(Xi))− E [θ(Yi)Kh′ (u− Φ(Xi))]} t(u)du,and where Ṽ (h) = δ′‖K‖L2(R)E[θ(Y1)

2]/(nh) for a numerial δ′ > 0. We have provided in Setion6.6.1 a proof whih depends on the di�erent onsidered examples, mainly under Assumption (H1)(s is bounded). The aim of this setion is to show that a general proof is possible with (H1)replaed by the following slightly stronger assumption:(H1bis) (i) The onditional expetation E[θ(Y )|X] is bounded,(ii) The ratio fX/φ is bounded.To see that (H1bis) is more restritive than (H1), one must reall that the target funtion s anbe de�ned by (4): s = (fX/φ)E[θ(Y )|X].Notie that Assumption (i) is automatially ful�lled in Example 3-4, sine θ(Y ) = Y , with Ybounded by 1. Moreover, if Φ = FX , the ratio fX/φ equals 1 and (ii) is satis�ed.



ADAPTIVE WARPED KERNEL ESTIMATORS 37Under (H1bis), we give a proof whih embraes Examples 1-4 and moreover, permits to handleall the statistial settings overed by the formula (4). In the sequel, s0(X) := E[θ(Y )|X].8.2. Generalized proof. We begin with the following splitting of the empirial proess: νn,h =

ν
(1b)
n,h + ν

(2,1b)
n,h + ν

(2,2b)
n,h , where ν(l)n,h has the form
ν
(l)
n,h(t) =

1

n

n∑

i=1

ξ
(l)
t,h − E

[

ξ
(l)
t,h

]

, l ∈ {(1b), (2, 1b), (2, 2b)},with, for κbn = cb
√
n/ ln(n) (cb > 0),

ξ
(1b)
t,h (Xi) = s0(Xi)

∫

Φ(A)
Kh′ (u− Φ(Xi)) t(u)du,

ξ
(2,1b)
t,h (Xi, Yi) = (θ(Yi)− s0(Xi)) 1|θ(Yi)−s0(Xi)|≤κb

n

∫

Φ(A)
Kh′ (u− Φ(Xi)) t(u)du,

ξ
(2,2b)
t,h (Xi, Yi) = (θ(Yi)− s0(Xi)) 1|θ(Yi)−s0(Xi)|>κb

n

∫

Φ(A)
Kh′ (u− Φ(Xi)) t(u)du.The guideline is to apply the Talagrand Inequality (Lemma 6) to bound the �rst two empirialproesses ν(1b)n,h and ν(2,1b)n,h , and bound the third one roughly. Details an be found in the threefollowing setions, in whih we often refer to Setion 6.6.1, sine the omputations are similar.Finally, gathering the three upper bounds of size 1/n (up to onstant) permits to omplete theproof of Lemma 5.Remark 3. Clearly, if θ is bounded, the proof an be greatly simpli�ed, sine there is no usein splitting the empirial proess in this ase. However, we hoose to give the most generalformulation.8.2.1. Upper-bound for ν(1b)n,h . To apply the onentration results of Lemma 6, we �rst need toompute appropriate values for the bounds M (1b)

1 , H(1b) and v(1b). The omputation for the�rst quantity is totally similar to the one done for M (1)
1 in Setion 6.6.1, and leads to M (1b)

1 =

‖s0‖L∞(A)‖K‖L2(R)

√
h. In an analogous way, we �rst obtain

E

[

sup
t∈S̄(0,1)

(

ν
(1b)
n,h (t)

)2
]

≤ ‖K‖2L2(R)

E[s20(X1)]

nh
.But, E[s20(X1)] = E[E[θ(Y1)|X1]

2] ≤ E[θ2(Y1)]. Thus, we set (H(1b)
1 )2 = E[θ2(Y1)]‖K‖2L2(R)/nh.Finally, v(1b) is a bound for the following variane:Var(ξ(1)t,h (X1)

)

≤ E



s20(X1)

(
∫

Φ(A)
Kh(u− Φ(X1))t(u)du

)2


 ,

≤ ‖s0‖2L∞(A)E





(
∫

Φ(A)
Kh(u−Φ(X1))t(u)du

)2


 .
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E





(
∫

Φ(A)
Kh(u− Φ(X1))t(u)du

)2


 = E

[(
Ǩh ⋆ t1Φ(A)

)2
(Φ(X1))

]

,

=

∫

A

(
Ǩh ⋆ t1Φ(A)

)2
(Φ(x)) fX(x)dx,

≤
∥
∥
∥
∥

fX
φ

∥
∥
∥
∥
L∞(A)

∫

A

(
Ǩh ⋆ t1Φ(A)

)2
(Φ(x))φ(x)dx,thanks to Assumption (H1bis) (ii). The hange of variables u = Φ(x) leads to

E





(
∫

Φ(A)
Kh(u− Φ(Xi))t(u)du

)2


 ≤
∥
∥
∥
∥

fX
φ

∥
∥
∥
∥
L∞(A)

∫

Φ(A)

(
Ǩh ⋆ t1Φ(A)

)2
(u)du,

=

∥
∥
∥
∥

fX
φ

∥
∥
∥
∥
L∞(A)

∥
∥Ǩh ⋆ t1Φ(A)

∥
∥
L2(R)

.(32)We end the omputation in the same way as previously (see v(1), Setion 6.6.1), and then
v(1b) = ‖fX/φ‖L∞(A)‖K‖L1(R). Now, applying the Talagrand Inequality is straightforward, and,like in Setion 6.6.1, thanks to Assumptions (H2)-(H3), we obtain

∑

h∈Hn

E

[(

sup
t∈S̄(0,1)

(

ν
(1b)
n,h (t)

)2
− 2(1 + 2δ)‖K‖2L2(R)E[θ

2(X1)]
1

nh

)

+

]

≤ C

n
.8.2.2. Upper-bound for ν(2,1b)n,h . We also preise the quantities whih permit to apply the onen-tration result. Their omputations are also inspired by Setion 6.6.1, and preisely by the boundfor ν(2,1)n,h . To begin, we hoose M (2b)

1 = κbn‖K‖L2(R)

√
h. For H(2b), similarly to H(2), we �rstobtain

E

[

sup
t∈S̄(0,1)

(

ν
(1)
n,h(t)

)2
]

≤ 1

n
E

[

(θ(Y1)− s0(X1))
2
∫

Φ(A)
K2

h(u−Φ(X1))du

]But, ∫Φ(A)K
2
h(u− Φ(X1))du ≤ ‖Kh‖2L2(R), and(33) E

[

(θ(Y1)− s0(X1))
2
]

= E [Var(θ(Y1)|X1)] ≤ E[θ2(Y1)].Therefore, we set (H(2b)
1 )2 = E[θ2(Y1)]‖K‖2L2(R)/nh. Finally,Var(ξ(2,1b)t,h (X1, Y1)
)

≤ E



(θ(Y1)− s0(X1))
2

(
∫

Φ(A)
Kh(u− Φ(Xi))t(u)du

)2


 ,

= E



E

[

(θ(Y1)− s0(X1))
2 |X1

]
(
∫

Φ(A)
Kh(u− Φ(Xi))t(u)du

)2


 ,

≤ E



E[θ2(Y1)]

(
∫

Φ(A)
Kh(u− Φ(Xi))t(u)du

)2


 ,



ADAPTIVE WARPED KERNEL ESTIMATORS 39by using (33). It remains to reall that (32) holds, to set v(2b) = E[θ2(Y1)]‖K‖L1(R).One again, the existene and size of these three quantities justify that we obtain
∑

h∈Hn

E

[(

sup
t∈S̄(0,1)

(

ν
(2,1b)
n,h (t)

)2
− 2(1 + 2δ)‖K‖2L2(R)E[θ

2(X1)]
1

nh

)

+

]

≤ C

n
.8.2.3. Upper-bound for ν(2,2b)n,h . We exatly follow the same line as for ν(2,2)n,h (see Setion 6.6.1) towrite

E

[

sup
t∈S̃(0,1)

(

ν
(2,2b)
n,h (t)

)2
]

≤ 1

n
E

[

(θ(Y1)− s0(X1))
2
1{|θ(Y1)−s0(X1)|>κb

n}

∫

Φ(A)
K2

h (u− Φ(X1)) du

]

,

≤
‖K‖L2(R)

nh
E

[

(θ(Y1)− s0(X1))
2
1{|θ(Y1)−s0(X1)|>κb

n}
]

,

≤ ‖K‖L2(R)
(κbn)

−p

nh
E

[

|θ(Y1)− s0(X1)|2+p
]

,with p de�ned by (H5). As previously, the way to onlude an be found in Setion 6.6.1,
∑

h∈Hn

E

[

sup
t∈S̄(0,1)

(

ν
(2,2b)
n,h (t)

)2
]

≤ C

n
.
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