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NONPARAMETRIC WARPED KERNEL ESTIMATORSGAËLLE CHAGNYA ∗Abstrat. In this work, we propose a general method of adaptive nonparametri estimation,based on warped kernels. The aim is to estimate a real-valued funtion s from a sample ofrandom variables (X, Y ). We �rst deal with the auxiliary funtion g = s◦φX , for a bijetive map
φX depending on the distribution of the variable X: we onsider a olletion of kernel estimatesbuilt with the warped data (φX(X), Y ). The data-driven seletion of the best bandwidth isdone with a model seletion devie in the spirit of Goldenshluger and Lepski (2011). This leadsto an estimator ĝ for the funtion g, whih is then warped to estimate the target funtion s by
ŝ = ĝ ◦ φ̂X where φ̂X is an estimate for φX . The interest is twofold. From the pratial point ofview, the estimator an be omputed easily and fastly, thanks to its simple expliit expression.From the theoretial point of view, the squared-bias/variane trade-o� is realized: we derivenon-asymptoti risk bounds. This general method permits to handle various problems suh asadditive and multipliative regression, onditional density estimation, hazard rate estimationbased on randomly right ensored data, and umulative distribution funtion estimation fromurrent-status data.Keywords: Adaptive estimator. Censored data. Bandwidth seletion. Nonparametri estima-tion. Regression. Warped kernel.AMS Subjet Classi�ation 2010: 62G05; 62G08; 62N02.July 20121. Introdution1.1. Motivation. Additive regression is one of the most studied model in nonparametri estima-tion. A huge variety of methods have been investigated, sine the �rst kernel strategies initiatedby Nadaraya (1964) and Watson (1964). Powerful tehniques now enable to build estimators,whih have adaptive properties in the sense that their Mean Integrated Squared Error (M.I.S.E.)automatially reahes the best possible rate assoiated with the unknown underlying smoothnessof the regression funtion.Moreover, the estimators built in this framework, from kernel to least-squares, are soureof inspiration for several other funtional estimation problems, suh as multipliative regres-sion, onditional density estimation, hazard rate estimation based on randomly right ensoreddata, and umulative distribution funtion estimation from urrent-status data: the questionof building estimators in the spirit of reweighted Nadaraya-Watson funtions, or based on theminimization of regression-type riteria has reeived a lot of attention in the past deades.The goal of this artile is to propose a uni�ed approah for funtional estimation, whih enjoysgood adaptive theoretial performanes, low omputational omplexity, and whih permits toover simultaneously all the aforementioned estimation problems. Therefore, the framework is

∗ Corresponding author. Email: gaelle.hagny�parisdesartes.fr
ALaboratoire MAP5 (UMR CNRS 8145), Université Paris Desartes, Sorbonne Paris Cité, Frane.1



2 NONPARAMETRIC WARPED KERNEL ESTIMATORSvery general: we aim at reovering a real-valued funtion s on a borelian subset A of R or R
2,from a data sample of observations distributed like a ouple of real random variables (X,Y ).The main basi idea is to investigate thoroughly what we will all a "warping" method,following examples introdued suessively by Yang (1981), Stute (1984, 1986) and more reentlyKerkyaharian and Piard (2004): we �rst build a olletion of warped-kernel estimators. Then,we address the problem of bandwidth seletion by taking into aount the reent Goldenshluger-Lepski method (shortened by the "GL" method from now on), detailed in Goldenshluger andLepski (2011): we provide a totally data-driven proedure.1.2. Examples overed by the general framework. To be more preise, we provide severalexamples illustrating the relevane of the general setting: we detail the ouple (X,Y ) and thetarget funtion s whih an be handled with the warped-kernel strategy. We also mentionnonparametri methods already studied in related problem. As we annot reasonably make areview of all nonparametri estimation, we essentially fous on adaptive methods, in the sensethat they do not require prior knowledge about the smoothness of the estimated funtion.Hereafter, we assume that the variableX takes values in A, while we denote by B the analogousset for Y . Besides, X is supposed to have a density fX with respet to the Lebesgue measure.We �rst present two lassial regression frameworks, before introduing two estimation prob-lems based on lifetimes that an only be partly observed.In the �rst two examples, we assume that A is an interval: A = (a; b), with −∞ ≤ a < b ≤ ∞,and that the density fX does not vanish on its support A.Example E1: Additive random design regression. The funtion s to be estimated is theonditional expetation of Y given a value for X. Thus, we an write Y = s(X) + ε, where ε isa entered, square-integrable random variable, independent of X.Example E2: Multipliative regression. Here, we write Y = σ(X)ε, and the target funtion

s is the volatility funtion σ2. The assumptions are the following: ε is a entered random variable,independent of X, whih satis�es E[ε2] = 1 and E[ε4] <∞.These estimation frameworks, mainly the additive one, are a famous subjet of interest, andadaptive estimation is well developed. Autoregressive models are the setting the most related toExample E2. Historial methods are kernel strategies, initiated by Nadaraya (1964) and Watson(1964) (Example E1). Reall that their estimator is built as the ratio of a kernel estimator ofthe produt sfX divided by a kernel estimator of the density fX . The data-driven hoie of thebandwidth, leading to adaptive estimators, is for example studied more aurately by Fan andGijbels (1992) (Example E1), Härdle and Tsybakov (1997) (Examples E1 and E2), and Neumann(1994) (Example E2) who provide asymptoti results, for methods also sometimes involving loalpolynomials.At the same time, the expansion of s onto orthogonal bases has been used: among manyauthors, we an quote Golubev and Nussbaum (1992) for spline bases, Antoniadis et al. (1997)(Example E1) and Ho�mann (1999) (Example E2) for wavelet bases, and Efromovih (1999)(Fourier basis). Nonasymptoti risk bounds are �rst derived for this kind of estimates, usually bymodel seletion, via the minimization of a penalized least-squares riterion (see Wegkamp 2003,Baraud 2002, and Birgé 2004 for Example E1, and Comte and Rozenhol 2002 for Example E2).Among the aforementioned works, the ratio form of kernel estimates may be seen as a draw-bak, sine it an be instable when a "hole" ours in the data. Moreover, two bandwidths must



NONPARAMETRIC WARPED KERNEL ESTIMATORS 3be seleted, one for the numerator and one for the denominator (from the theoretial point ofview, there are no reason to hoose the same bandwidths). The reent Goldenshluger-Lepskimethod has only been investigated reently by Chihignoud (2011a,b), for spei� frameworks(uniform design in additive regression, deterministi design and uniform noise in multipliativeregression). Moreover, least-squares ontrasts provide expliit estimators under a matrix invert-ibility requirement (most of the time impliitly).This motivates the investigation of "warping" methods to build estimators whih satisfy pow-erful nonasymptoti risk bounds while being simple to implement.For the third and fourth examples, related to reliability and survival analysis, X is a lifetime,and thus, A is equal to R+. Let also Z be a positive random variable of interest, whih isunobserved.Example E3: Interval ensoring, Case 1. In this ase, the ouple (X,Y ) is known asurrent-status data. The only knowledge about the survival time of interest Z is its urrentstatus at time of examination X. Thus, Y = 1Z≤X indiates whether Z ours before X or not.Suh data naturally arise in infetious disease study for example, when the time Z of infetionis unobserved, and a test is arried out at time X. The funtion s of interest is the umulativedistribution funtion of Z: s = FZ . Hereafter, we assume that fX is positive on its support
A = R+.In this model, not many investigations are onerned with adaptivity, sine it is the unusualoptimal rate of onvergene (n−1/3) that has diverted attention for the last deades. Thus,most results are devoted to the Non-Parametri Maximum Likelihood Estimator (NPMLE) (seeGroeneboom and Wellner 1992; van de Geer 1993; Groeneboom 1995; Hudgens et al. 2007, forintane). Birgé (1999) built an histogram estimator, whih is very simple but not adaptive.A review is provided by Jewell and van der Laan (2004). Adaptivity has been more reentlydisussed by Ma and Kosorok (2006), who seleted the regularity parameter of the NPMLE andof a least-squares estimator, and by Brunel and Comte (2009) or Planade (2011), who onsideredmodel seletion devies to hoose regression-type estimators whih also require a matrix inversion.Example E4: Hazard rate estimation from right ensored-data. Here, X is the minimumof the variable of interest Z and of a ensoring time C, whih is a nonnegative random variable(like Z), supposed to be independent of the lifetime Z. We also know whether Z is ensoredor not. Then, we have X = C ∧ Z, and Y = 1Z≤C . Right ensoring ours when individuals,inluded in a linial trial, are not observed until the end, for instane. The funtion s of interestis the hazard rate funtion:

s(x) =
fZ(x)

1 − FZ(x)whih is the risk of death at time x, given that the patient is alive until x (also, this is thederivative of the log-survival funtion). We assume both that FZ(x) < 1 and FC(x) < 1 for all
x ∈ A = R+.We reasonably annot quote all the estimators and results provided by the previous stud-ies. Let us only reall that a lot of estimators use the well-known Kaplan-Meier estimate ofthe survival funtion (Kaplan and Meier, 1958), some others are based on the estimation ofthe umulative hazard with the Nelson-Aalen funtion (Nelson, 1972), and others use a di�er-ent deomposition of s, using the "subdensity" funtion. Di�erent methods are proposed foreah approah: kernel methods, with asymptoti results (Tanner and Wong, 1983; Müller andWang, 1994; Patil, 1993), orthogonal-serie deomposition and model seletion, leading both to



4 NONPARAMETRIC WARPED KERNEL ESTIMATORSnonasymptoti and asymptoti risk bounds (Antoniadis et al., 1999; Brunel and Comte, 2005,2008; Reynaud-Bouret, 2006; Akakpo and Durot, 2010).A summary of these four frameworks an be found in Table 1. Finally, we extend at the end ofthe paper the method to a last example: the estimation of a onditional density, an example ofbivariate funtional estimation problem. The spei�al setting and referenes will be disussedlater.1.3. The "warping" method. Let us present the sketh of the method brie�y. Our goal is toestimate the real-valued funtion s on the set A, from n ouples of observations (Xi, Yi)i∈{1,...,n},distributed like (X,Y ) aording to Examples E1 to E4 previously desribed. We aim at provid-ing adaptive kernel estimators in eah of the previous framework, with simple expression.To do so, we �rst onsider an auxiliary funtion g de�ned by(1) g = s ◦ φ−1
X : φX(A) → R,where φ−1

X is the inverse of a funtion φX , whih is alled the "warping" funtion, and dependson the example:
• for Examples E1, E2, and E3, φX is the umulative distribution funtion (.d.f.) of thevariable X. Sine we assume that the density fX is stritly nonnegative on A, φX admitsan inverse and φX(A) = (0; 1).
• for Example E4, we onsider for φX a funtion denoted by φ, whih is a primitive ofthe survival funtion 1 − FX , that is to say φ : x 7→

∫ x
0 (1 − FX(t))dt. We also assume

FX(t) < 1 for all t ≥ 0, thus φ admits an inverse too and φX(A) = R+.These hoies will be justi�ed below, see Identity (3).In a �rst step, we will build a olletion of lassial kernel estimators for the auxiliary funtion
g. In a seond step, we will selet ĝ, one of these kernel estimators, using the reent GL method,developed for density estimation initially (see Goldenshluger and Lepski 2011). Finally, aordingto De�nition (1), we will de�ne an estimator for the target s by

ŝ = ĝ ◦ φX or ŝ = ĝ ◦ φ̂X ,where φ̂X is an empirial ounterpart for φX , sine φX is unknown, in general.This warping devie, whih we sum up in Table 1, has already been used in the regressionframework (namely Example E1) by Stute (1984) who studied more auratly the kernel esti-mator of Yang (1981), and more reently by Kerkyaharian and Piard (2004) and Pham Ngo(2009), who adapted this to projetion estimation.The novelty of our ontribution lies in the ombination of the warping strategy and the GLmethod, to deal with several estimation settings simultaneously: our building estimators allows usto derive nonasymptoti adaptive results. Orale-type inequalities are provided for the M.I.S.E.,and onvergene rates are dedued under regularity assumptions on the funtion g. Moreover,the simple expression of the estimates enables us to implement them easily, and to illustrate thetheoretial results with promising simulation experiments.Hereafter, for the sake of larity, we fous on the ase of known .d.f. FX , like in Pham Ngo(2009): the ase of an unknown .d.f. FX requires further tehnialities, only due to the naturalplug-in of an empirial version for φX , even if the theoretial results are similar. It has also beenwidely detailed in Chagny (2011, 2012), for warped-bases estimators of a regression funtion andof a onditional density respetively. Therefore, in the sequel, we prefer to onentrate on thewide range of examples whih are overed by the method, from lassial regression frameworks



NONPARAMETRIC WARPED KERNEL ESTIMATORS 5Example Target funtion φXE1 Y = s(X) + ε s FXE2 Y = σ(X)ε σ2 FXE3 (X,1Z≤X) FZ FXE4 (X = Z ∧ C,1Z≤C) fZ

1−FZ
φ : x 7→

∫ x
0 (1 − FX(t))dtTable 1. Summary of the studied examples and of the "warping" funtion usedin eah ase.to bivariate funtional estimation (onditional density), getting also through survival analysisproblems.1.4. Organization of the paper. We present in Setion 2 the notations, the olletion of kernelestimators and the data-driven bandwidth seletion leading to a unique estimator. In Setion 3,we investigate the performane of this estimator: we study its global risk, state our main resultsand omment them. Setion 4 is devoted to a short simulation study, to illustrate the methodin the Examples E1 and E4. We provide in Setion 5 an extension of the method to onditionaldensity estimation. Finally, the proofs are gathered in Setion 6.2. A general method of estimation2.1. Notations. Throughout the artile, we onsider funtions whih are integrable with respetto the Lebesgue measure or to a weighted Lebesgue measure. For 0 < p ≤ ∞, we denote by

Lp(B) the set of the real-valued and measurable funtions t on a borelian subset B ⊂ R, suhthat the (quasi-)norm
‖t‖Lp(B) =

{

∫

B |t(u)|pdu if 0 < p ≤ ∞
supu∈B |t(u)| if p = ∞is �nite. If p = 2, 〈., .〉B is the usual salar produt of the Hilbert spae L2(B). The following

L2− norm will also be useful, sine it is the natural loss funtion of the problem:(2) ‖t‖φ′

X
=

∫

A
t2(x)φ′X(x)dx,and L2(A,φ′X ) is the spae of funtions t for whih the quantity (2) exists and is �nite. Thisnorm leads to another orresponding salar produt 〈., .〉φ′

X
. Notie besides that the followinglinks hold between this spae and the lassial L2−spae previously de�ned: if t1, t2 belongs to

L2(A,φ′X), we ompute, using F ′
X = fX ,

‖t1 ◦ φX‖φ′

X
= ‖t1‖L2(φX (A)), 〈t1 ◦ φX , t2 ◦ φX〉φ′

X
= 〈t1, t2〉φX(A).The onvolution produt of two funtions t1 and t2 is t1 ⋆ t2 : x 7→
∫

R
t1(x− x′)t2(x′)dx′. Last,the notation x+, for a real number x, means max(x, 0).



6 NONPARAMETRIC WARPED KERNEL ESTIMATORSHereafter, K is a kernel, that is a funtion suh that ∫
R
K(u)du = 1, and is assumed to belongto L2(R). We also denote by Hn a �nite olletion of nonnegative real numbers, the so-alledbandwidths. Its ardinality may depend on the sample size n. Classially, for eah h ∈ Hn, Kh isthe funtion u 7→ K(u/h)/h. We easily get ∫

R
Kh(u)du = 1, ‖Kh‖L1(R) = ‖K‖L1(R), and �nally

‖Kh‖L2(R) = ‖K‖L2(R)/h.2.2. Colletion of warped kernel estimators. Throughout the setion, we �x a bandwidth
h ∈ Hn. We �rst deal with the transformed data (φX(Xi), Yi)i∈{1,...,n}, to estimate the auxiliaryfuntion g de�ned by (1). The ornerstone of the method is that for all u ∈ φX(A),

E [θ(Y )Kh(u− φX(X)] = Kh ⋆
(

g1φX(A)

)

(u),(3) with θ(Y ) =

{

Y for Examples E1, E3, and E4,
Y 2 for Example E2.This identity explains the hoies of the warping funtion φX , introdued in Setion 1.3. Forinstane, let us prove it in Example E4. The proof of Equality (3) for the other ases is postponedto Setion 6.1. We start with

E [Y Kh(u− φX(X))] = E [1Z≤CKh(u− φ(Z ∧C)] = E [1Z≤CKh(u− φ(Z)] ,

=

∫

R+×R+

1z≤cKh (u− φ(z)) fC(c)fZ(z)dzdc,

=

∫

R+

Kh (u− φ(z)) fZ(z)

(
∫

R

1x≤cfC(c)dc

)

dz,

=

∫

R+

Kh (u− φ(z)) fZ(z) (1 − FC(z)) dz.Then, we set u′ = φ(z). The integral beomes
E [Y Kh(u− φX(X))] =

∫

R+

Kh

(

u− u′
)

fZ ◦ φ−1(u′) (1 − FC) ◦ φ−1(u′)
du′

(1 − FX) ◦ φ−1(u′)
.Sine Z and C are independent, (1 − FX) = (1 − FC)(1 − FZ), and onsequently

E [Y Kh(u− φX(X))] =

∫

R+

Kh

(

u− u′
)

fZ ◦ φ−1(u′)
du′

(1 − FZ) ◦ φ−1(u′)
,

=

∫

R+

Kh

(

u− u′
)

s ◦ φ−1(u′)du′,

=

∫

R+

Kh

(

u− u′
)

g(u′)du′,

= Kh ⋆
(

g1R+

)

(u).A onsequene of Equality (3) is that we de�ne a natural estimator for g by
∀u ∈ φX(A), ĝh(u) =

1

n

n
∑

i=1

θ(Yi)Kh (u− φX(Xi)) .Sine the target funtion s an be written as s = g ◦ φX , we also set ŝh = ĝh ◦ φX . At thisstage of the proedure, the interest lies in the simple expression of the estimators ŝh, h ∈ Hn: itinvolves no ratio, one kernel only, and thus only one bandwidth to selet.



NONPARAMETRIC WARPED KERNEL ESTIMATORS 72.3. Bandwidth automati-seletion. A olletion of estimators (ŝh)h∈Hn
is available now,and lassially, the next question is the hoie of the bandwidth. As well as being data-driven, theseletion should lead to an adaptive estimator: thus our problem is to build a statistial proedurethat requires no prior knowledge on s but whose risk behaves almost like the minimum of therisk of the estimators in the olletion, that is to say almost as the orale bandwidth(4) h̃ := arg min

h∈Hn

E[‖s− ŝh‖2
φ′

X
].In fat, the quadrati risk weighted by the derivative of the warping funtion φX is the naturalriterion in our setting. Therefore, it requires that the funtion s belongs to L2(A,φ′X), and weassume it from now on:

• for Examples E1 to E3, φ′X = fX , and this ondition is ful�lled as soon as s is boundedon the set A,
• for Example E4, where φ′X is the survival funtion of the variable Z, we an hek thatthe integrability ondition on s is veri�ed for all lassial distributions for C and Z insurvival analysis (suh as exponential, Weibull, Gamma...).In order to explain what ould be a "good" seletion, we evaluate the performane of ŝh foreah h, by giving an upper-bound for its weighted risk, that is for the lassial quadrati risk of

g: E[‖ŝh − s‖2
φ′

X
] = E[‖ĝh − g‖2

L2(φX(A))]. For that purpose, we introdue the approximation of gby the kernel Kh, gh = Kh ⋆ (g1φX (A)). It is �rst well known that
E

[

‖ŝh − s‖2
φ′

X

]

= ‖g − gh‖2
L2(φX(A)) + E

[

‖gh − ĝh‖2
L2(φX(A))

]

,(5)sine E[ĝh(u)] = gh(u), thanks to (3). If the �rst term in the right-hand side of (5) dereaseswhen h goes to zero, the opposite holds for the seond term: in fat, we bound it as follows:
E

[

‖gh − ĝh‖2
L2(φX(A))

]

= E

[

∫

φX(A)
(ĝh(u) − E [ĝh(u)])2 du

]

=

∫

φX(A)
Var (ĝh(u)) du,and for eah u ∈ φX(A),Var (ĝh(u)) =

1

n
Var (θ(Y1)Kh (u− φX(X1))) ≤

1

n
E
[

θ2(Y1)K
2
h (u− φX(X1))

]

.Therefore, the variane-term grows when h dereases:
E

[

‖gh − ĝh‖2
L2(φX(A))

]

≤ E
[

θ2(Y1)
]

‖K‖2
L2(R)

1

nh
.Thus, we reover that hoosing a bandwidth h whih realizes a good ompromise between theapproximation term and the estimation (or variane) term leads to an estimator with small risk.This aim an be ahieved with the observed data only, with a method desribed in Goldensh-luger and Lepski (2011). The idea is the following: if the bias and the variane term are unknown(sine they depend on the unknown s), we replae them by empirial versions. We de�ne �rst(6) ∀h ∈ Hn, V (h) = κ

(

1 + ‖K‖2
L1(R)

)

‖K‖2
L2(R)E

[

θ2(Y1)
] 1

nh
,whih orresponds to the upper-bound for the variane term. The onstant κ is purely numerial,and its value will be spei�ed in the proofs. Then, with a remark already used by Devroye



8 NONPARAMETRIC WARPED KERNEL ESTIMATORSExample s φX ŝ(x)E1 Y = s(X) + ε s FX
1

n

n
∑

i=1

YiKĥ(FX(x) − FX(Xi))E2 Y = σ(X)ε σ2 FX
1

n

n
∑

i=1

Y 2
i Kĥ(FX (x) − FX(Xi))E3 (X,1Z≤X ) FZ FX

1

n

n
∑

i=1

1Zi≤Xi
Kĥ(FX(x) − FX(Xi))E4 (X = Z ∧ C,1Z≤C) fZ

1−FZ
φ

1

n

n
∑

i=1

1Zi≤Ci
Kĥ(φ(x) − φ(Xi))Table 2. Summary of the estimators in the four studied statistial examples,desribed in Setion 1.2(1989), we introdue the auxiliary estimators involving two kernels: ĝh,h′ = Kh′ ⋆ (ĝh1φX(A)),and, aordingly, ŝh,h′ = ĝh,h′ ◦ φX . We set(7) ∀h ∈ Hn, A(h) = max

h′∈Hn

{

‖ŝh,h′ − ŝh′‖2
φ′

X
− V (h′)

}

+
.It is shown in the proof that A has the same order as the bias-term (see Lemma 6). Then theseleted bandwidth ĥ and the orresponding warped kernel estimator are(8) ĥ = arg min

h∈Hn

{A(h) + V (h)} , ŝ = ŝĥ.The formula of the estimators orresponding to eah onsidered example are summarized in Table2. Let us highlight the fat that the seleted bandwidth ĥ does not depend on the funtion s tobe estimated: it is totally data-driven. Atually, in Examples E3 and E4, E[θ2(Y1)] is boundedby 1, and an be replaed by 1 in the de�nition of V . For the two other examples (additive andmultipliative regression), this expetation an easily be replaed in pratie and theory by theorresponding empirial mean (see Brunel and Comte 2005, proof of Theorem 3.4 p.465).3. Theoretial results3.1. Assumptions and smoothness lasses. Now we are in position to state the result on-erning the adaptive estimators built in the four examples.To set nonasymptoti risk bound, we require only one or two assumptions, depending on theexample we onsider: one about the bandwidth olletion, whih should not be too large and onewhih is onerned with the distribution of the errors in the two regression settings (ExamplesE1 and E2).



NONPARAMETRIC WARPED KERNEL ESTIMATORS 9Assumption (Bα0):(i) For any onstant κ0 > 0, there exists C0 > 0, suh that ∑
h∈Hn

exp
(

−κ0

h

)

≤ C0(κ0),(ii) There exists α0 > 0 suh that ∑
h∈Hn

1

h
≤ k0n

α0 , for a onstant k0 ≥ 0.Assumption (Mp): With α0 �xed by Assumption (Bα0),(i) There exists p > 2α0, suh that E[|ε1|2+p] <∞,(ii) There exists p > 4α0, suh that E[|ε1|4+p] <∞.Remark 1. Classial olletions of bandwidths satisfy Assumption (Bα0). For instane:(1) Hn,1 =
{

k−1, k = 1, . . . , ϕ(n)
}, for whih Assumption (B2) is ful�lled if ϕ(n) = n, or

(B1) if ϕ(n) =
√
n.(2) Hn,2 =

{

2−k, k = 1, . . . , [ln(n)/ ln(2)]
}, for whih Assumption (B1) is ful�lled.Notie also that the smaller α0 in Assumption (Bα0), the less restritive the integrability on-straint p on the noise moments in Assumption (Mp).To dedue rates of onvergene from the nonasymptoti results, we will require the followingadditional assumption.Assumption (Kl): The kernel K is of order l, that is to say, for all j ∈ {1, . . . , l + 1}, thefuntion x 7→ xjK(x) is integrable, and for 1 ≤ j ≤ l, ∫

R
xjK(x)dx = 0.Moreover, for onvergene rates, smoothness lasses must be de�ned to quantify the bias termof the deomposition (5): ‖gh−g‖2. For estimation in Examples E1 to E3, we onsider funtions

t belonging to Hölder lasses on an interval B, denoted by H(β,L,B), β,L > 0: this means that
t admits derivatives up to order [β] (where [β] is the largest integer less than β), and(9) ∀x, x′ ∈ B,

∣

∣

∣
t[β](x) − t[β](x′)

∣

∣

∣
≤ L|x− x′|β−[β].This property is relevant for the bound on the integrated bias on ompat sets, but not on R+as required for Example E4. The funtional spaes assoiated to this ase are Nikol'skii lassesof funtions, N2(β,L): a funtion t : R 7→ R belongs to N2(β,L), if its admits derivatives up toorder [β] and

∀x ∈ R,
∥

∥

∥
τxt

[β] − t[β]
∥

∥

∥

L2(R)
≤ L|x|β−[β],where τx is the translation operator by x. Both of these spaes are standard in kernel estimation:see Tsybakov (2009), Goldenshluger and Lepski (2011), and also Nikol′ski�� (1975) for instane.3.2. Risk bounds. We an prove the following result.Theorem 1. Assumption (Bα0) is supposed to be ful�lled, for an α0 > 0 and also Assumption

(Mp) for Examples E1 and E2. We also assume that the funtion s is bounded on the set A.Then there exist three onstants cl, l = 1, 2, 3, suh that the following inequality holds for theestimator ŝ de�ned by (8):(10) E

[

‖ŝ− s‖2
φ′

X

]

≤ min
h∈Hn

{

c1 ‖s− sh‖2
φ′

X
+ c2

E
[

θ2(Y1)
]

‖K‖2
L2(R)

nh

}

+
c3
n
.The two onstants c1 and c2 depend only on ‖K‖L1(R), and c3 depends on ‖s‖L∞(A), ‖K‖L1(R)and ‖K‖L2(R) in Examples E3 and E4, and also on E[ε21], E[ε2+p

1 ] and E[s2(X1)] for Example E1or on E[ε41], E[ε4+p
1 ] and E[σ4(X1)] for Example E2.



10 NONPARAMETRIC WARPED KERNEL ESTIMATORSLet us omment and disuss the result.
• About the meaning of Inequality (10). It is an orale-type inequality: the seletedbandwidth ĥ is performing as well as the unknown orale (4), up to some multipliativeonstants c1 and c2, and up to a remainding term of order 1/n, whih is negligible.Atually, it follows from (10) that the adaptive estimators ŝ, in Examples E1 to E4,automatially make the squared-bias/variane ompromise.
• About the assumptions of Theorem 1. The result holds for any sample size nand thus, is nonasymptoti. There is no assumption on the approximation properties ofthe kernel K, that is no assumption on its regularity and moments, ontrary to mostof asymptoti results for kernel estimators. This is the strength of the GL method, inthe simple way we apply it. Espeially in Example E1 (additive regression), the riskbound an thus be onsidered as an improvement of the results of Stute (1986), whoprovides asymptoti normality for a warped kernel estimate, with well-hosen kernel andbandsequene (but not adaptive).
• About the ase of unknown φX . The previous method is applied in the generalframework of unknown φX (that is to say the ase of unknown FX) by using a naturalplug-in devie: the .d.f. FX an be replaed by its empirial ounterpart in all our-renes. Obviously, the adaptive result is the same, under stronger assumptions on thebandwidth olletion Hn. However the proof in this ase requires muh more tehni-alities than it may seem. Therefore we fous on the theoretial ase of known FX , toonentrate on the wide range of examples that the method overs. The substitution hasalready been widely detailed for regression estimation and onditional density estimationusing warped bases: we refer the reader to Chagny (2011, 2012).The "orale-approah" also leads to onvergene rate for the risk, under regularity assumptionsfor the auxiliary funtion g.Corollary 1. Let β and L be two nonnegative numbers. Assume that the funtion g satis�es

g(0) = g(1), and de�ne g̃ = g1[0;1] on R. Consider that g̃ belongs to Hölder lass H(β,L), inExamples E1 to E3, or to Nikol'skii spae N2(β,L) in Example E4. Assume that (Kl) for l = [β],and (Bα0), for an α0 > 0, holds. Assume also that (Mp) is ful�lled for Examples E1 and E2.Then,(11) E

[

‖ŝ− s‖2
φ′

X

]

≤ Cn
− 2β

2β+1 ,where C is a onstant whih does not depend on n and β.We reover the lassial optimal rate in nonparametri estimation. Notie that the bounds (10)and (11) we provide are global ones: they hold for the MISE, with global bandwidth seletion.Here, adaptation has no prie: the rate of onvergene is the one found for the bias term, withoutdata-driven seletion of the bandwidth, just by minimizing the right-hand side of (5). On theontrary, it is well known that adaptation osts a logarithm fator for pointwise seletion. Thisexplains why we fous on global seletion, whih is su�ient for our purpose (as it is shown inthe previous theorem, and in the simulation study below).4. IllustrationTo illustrate the proedure, we fous only on two of the four examples: the lassial additiveregression (Example E1), and the estimation of .d.f. under interval ensoring ase I. In eahase, we propose to ompare the warped kernel strategy, whih we denote by WK in this setion,



NONPARAMETRIC WARPED KERNEL ESTIMATORS 11with another adaptive method: a regression type one, based on the minimization of a penalizedleast-squares ontrast. We denote it by LS.4.1. Implementation of the warped-kernel estimators. The theoretial study allows thehoie of several kernels and bandwidth olletion. For pratial purpose, we onsider the Gauss-ian kernel, K : x 7→ e−x2/2/
√

2π, whih satis�es Assumption (K1). It has the advantage of havingsimple onvolution-produts:(12) ∀h, h′ > 0, Kh ⋆ Kh′ = K√
h2+h′2 .The experiment is onduted with the dyadi olletion Hn,2 de�ned by Remark 1. Notie thatthe larger olletion Hn,1 has also been tested: sine it does not really improve the results butinreases the omputation time, we only keep the other olletion. Besides, the simulations areperformed in the general ase of unknown φX , whih equals FX in Examples E1 and E3. Wereplae eah of its ourrenes by the empirial .d.f. F̂n = (1/n)

∑n
i=1 1[Xi;∞[. Therefore, theestimator is

ŝ : x 7→ 1

n

n
∑

i=1

θ(Yi)Kĥ(F̂n(x) − F̂n(Xi)).Then, the estimation proedure an be deomposed in some steps:
• Simulate a data sample (Xi, Yi), i = 1, . . . , n, �tting Example E1 or E3.
• Compute V (h) and A(h) for eah h ∈ Hn,1.

• For V (h): we have alibrated the numerial κ involved in (6). A lower bound for itstheoretial value is provided by the proof. However, we keep in mind that this value isvery pessimisti due to rough upper-bounds (for the sake of larity). Thus, a pratialalibration is required, like in most model seletion devies. Sine lassial tehniquessuh as the slope heuristi are not urrently well developped for the GL method, weadjust κ prior to the omparison with the other estimates: we look at the quadrati riskwith respet to the value of κ, and hoose one of the values leading to reasonable risk.
• For A(h): thanks to (12), the auxiliary estimates are easily omputed: ŝh,h′ = ŝ√h2+h′2 .The L2−norm is then approximated by a Riemann sum:

‖ŝh,h′ − ŝh′‖2
φ′

X
= ‖ĝh,h′ − ĝh′‖2

L2(φX(A)) ≈
1

K

K
∑

k=1

(

ĝh,h′(uk) − ĝh′(uk)
)2
,where K = 50, and (uk)k are grid points evenly distributed aross φX(A).

• Selet ĥ suh that A(h) + V (h) is minimum.
• Compute ŝĥ.4.2. Example E1: additive regression. We ompare the warped kernel method (WK) withthe strategy from Baraud (2002): the model seletion devie is designed with a penalized least-squares ontrast, leading to an adaptive projetion estimator, developed in an orthogonal basis of
L2(A). The experiment is arried out with the Matlab toolbox FY3P, written by Yves Rozenhol,and available on his web page http://www.math-info.univ-paris5.fr/ rozen/. We hoose a regularpieewise polynomial basis, with degrees hosen in an adaptive way. Sine we use a kernel withonly one vanishing moment, the omparison is fair if we onsider polynomials with degrees equalto or less than 1, so that the bias of the least-squares estimator has the same order than the oneof the warped-kernel estimate. We denote by LS1 the resulting estimator. However, as shownbelow, we will see that the warped-kernel generally outperforms the least-square, even if we usepolynomials with degree at most 2 (LS2). We also experiment the Fourier basis, but the resultsare not as good as the polynomial basis. Thus, we do not mention the values.
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(a) (b) () (d)Figure 1. Estimation in Example E1, with true regression funtion s3, designdistribution γ(4, 0.08), and n = 1000. (a) points: data (Xi, Yi)i, thik line: truefuntion s3. (b)-()-(d) beams of 20 estimators built from i.i.d. sample (thin lines)versus true funtion (thik line): warped kernel estimators (subplot (b)), least-squares estimator in pieewise polynomial bases with degree at most 1 (subplot()) or 2 (subplot (d)).The proedure is applied for di�erent regression funtions, design and noise. We fous on thethree following regression funtions
s1 : x 7→ x(x− 1)(x− 0.6)
s2 : x 7→ − exp(−200(x − 0.1)2) − exp(−200(x − 0.9)2) + 1
s3 : x 7→ cos(4πx) + exp(−x2)The in�uene of the design is explored through four distributions:

• U[0;1], the uniform distribution on the interval [0; 1],
• γ(4, 0.08), the Gamma distribution, with parameters 4 and 0.08 (0.08 is the sale param-eter),
• N (0.5, 0.01), the Gaussian distribution with mean 0.5 and variane 0.01,
• BN a bimodal Gaussian distribution, with density x 7→ c(exp(−200(x − 0.05)2) +

exp(−200(x − 0.95)2)) (c is a onstant adjusted to obtain a density funtion).We also test the sensibility of the method to the noise distribution: ontrary to the underlyingdesign distribution, it does not seem to a�et the results. Thus, we present the simulation fora Gaussian entered noise, with variane σ2. We take into aount the signal-to-noise ratio:therefore, the value of σ is hosen in eah model suh that the ratio of the variane of the signal(Var(s(X1))) over the variane of the noise (Var(ε1)) approximately equals 2.Figures 1 and 2 plot the generated data-sets and the funtion to estimate, and illustrate thevisual quality of the reonstrution: beams of estimators (WK, LS1, and LS2) are presented.Figure 1 shows a regular ase, while Figure 2 aims at depiting the ase where a hole oursin the design density: the estimator built with warped kernel behaves still orretly, even if thedata are very inhomogeneous.We also perform a study of the risk whih is reported in Table 3, for the sample size n =
60, 200, 500 and 1000. The MISE riterion is retained. To be more preise, it is omputed over
J sample repliations, and the quadrati norm is approximated as follows:

MISEj =
b− a

N

N
∑

k=1

(s̃(xk) − s(xk))
2 ,where s̃ stands for one of the estimators, b is the quantile of order 95% of the Xi and a is thequantile of order 5%. The (xk)k=1,...,N are the sample points falling in [a; b]. Finally, the valuesdisplayed in Table 3 are the mean of the previous values for j ∈ {1, . . . , J = 200}. In 56% of the
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(a) (b) () (d)Figure 2. Estimation in Example E1, with true regression funtion s2, designdistribution BN , and n = 1000. (a) points: data (Xi, Yi)i, thik line: truefuntion s2. (b)-()-(d) beams of 20 estimators built from i.i.d. sample (thin lines)versus true funtion (thik line): warped kernel estimators (subplot (b)), least-squares estimator in pieewise polynomial bases with degree at most 1 (subplot()) or 2 (subplot (d)).examples, the risks of the warped-kernel estimator are smaller than the ones of the least-squaresestimator, in pieewise polynomials basis with degrees at most 2 (LS2). Besides, if we onsiderthe omparison with LS1, whih is more fair as explained above, the WK estimators give betterresults in 77% of the ases.4.3. Example E3: Interval ensoring, ase 1. The same omparison is arried out for theestimation of the .d.f. under interval ensoring. The adaptive least-squares estimate is providedby Brunel and Comte (2009), and the same Matlab toolbox is used for its implementation: infat, in this statistial model, reall that the target funtion an be seen as a regression funtion:
s(x) = P(Z ≤ x) = E[1Z≤x|X = x] = E[Y |X].We onsider di�erent models for generating the data. We have alibrated the estimation set
A, suh that most of the data belong to this interval, as it is done in Brunel and Comte (2009).We shorten "follow the distribution" by the symbol "∼".

• M1: X ∼ U[0;1], and Z ∼ U[0;1], A = [0; 1] (for instane, the target funtion is FZ : x 7→ x),
• M2: X ∼ U[0;1], and Z ∼ χ2(1) (Chi-squared distribution with 1 degree of freedom),
A = [0; 1],

• M3: X ∼ E(1) (exponential distribution with mean 1), and Z ∼ χ2(1), A = [0; 1.2],
• M4: X ∼ β(4, 6) (Beta distribution of parameter (4,6)), Z ∼ β(4, 8), A = [0; 0.5],
• M5: X ∼ β(4, 6), Z ∼ E(10) (exponential distribution with mean 0.1), A = [0; 0.5],
• M6: X ∼ γ(4, 0.08), Z ∼ E(10), A = [0, 0.5],
• M7: X ∼ E(0.1), Z ∼ γ(4, 3), A = [1; 23].The �rst two models, and the fourth, were also used by Brunel and Comte (2009). All thesemodels allow us to investigate thoroughly the sensibility of the method to the distribution of theexamination time X, and to the range of the estimation interval.Figure 3 shows the smoothness of warped-kernel estimates. We also explore the di�erenebetween the estimators by omputing the MISE for the di�erent models. Table 4 reveals thatthe warped-kernel estimates an advantageously be used as soon as the design Xi has not auniform distribution: it always outperform the least-squares estimators in these ases.To onlude, these results must be put into perspetives: for Example E1 as muh as Exam-ple E3, more lasses of funtions and models should be studied to on�rm the interest of thewarped-kernel strategy, but it is beyond the sope of the paper. We just aim at illustrating thatour estimators an stand omparison with other adaptive methods, in various models from the
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s X σ n= 60 200 500 1000 Method
s1 U[0;1]

√
.0006 0.3719 0.1341 0.1957 0.2454 WK0.3892 0.1293 0.0681 0.0446 LS2

γ(4, 0.08) 5.10−5 0.0052 0.0033 0.0004 0.0003 WK0.0097 0.004 0.0017 0.0012 LS2
N (0.5, 0.01) 0.011 0.0049 0.0020 0.0008 0.0005 WK0.0020 0.0012 0.0010 0.0008 LS2
BN 0.022 0.524 0.422 0.267 0.205 WK0.166 0.054 0.038 0.029 LS2

s2 U[0;1] 0.17 16.35 6.791 3.51 0.837 WK33.212 2.058 0.691 0.407 LS2
γ(4, 0.08) 0.08 1.885 0.354 0.204 0.147 WK4.047 0.801 0.552 0.429 LS2
N (0.5, 0.01) 0.01 0.0619 0.0186 0.0079 0.0006 WK0.0078 0.0014 0.0001 0.0001 LS2
BN 0.18 12.052 5.279 1.698 1.041 WK52.668 11.009 5.817 1.215 LS2

s3 U[0;1] 0.35 28.03 10.55 4.63 2.747 WK125.055 45.298 12.607 5.713 LS131.073 7.477 4.199 3.319 LS2
γ(4, 0.08) 0.44 19.615 6.283 3.869 3.309 WK41.261 13.34 4.808 3.727 LS123.213 5.549 2.059 0.86 LS2
N (0.5, 0.01) 0.44 6.341 2.452 1.28 0.861 WK10.453 3.961 2.098 1.078 LS13.753 1.386 1.028 0.644 LS2
BN 0.32 44.381 13.618 9.637 7.928 WK182.525 58.787 24.229 12.317 LS166.663 30.377 8.521 4.574 LS2Table 3. Values of MISE ×1000 averaged over 200 samples, for the estimatorsof the regression funtion (Example E1), built with the warped kernel method(WK) or the least-squares methods, with pieewise polynomials of degree at most1 or 2 (LS1 or LS2).
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(a) (b) ()Figure 3. Estimation in Example E3, in model M7, and n = 1000. (a)-(b)-()beams of 20 estimators built from i.i.d. sample (thin lines) versus true funtion(thik line): warped kernel estimators (subplot (a)), least-squares estimator inpieewise polynomial bases with degree at most 1 (subplot (b)) or 2 (subplot ()).Model X Z [a;b℄ n= 60 200 500 1000 Method1 U[0;1] U[0;1] [0; 1] 2.41 1.125 0.975 0.533 WK0.63 0.111 0.056 0.024 LS22 U[0;1] χ2(1) [0; 1] 1.558 0.804 0.57 0.415 WK1.602 0.44 0.244 0.13 LS23 E(1) χ2(1) [0; 1.2] 1.285 0.614 0.243 0.247 WK2.385 0.893 0.651 0.365 LS24 B(4, 6) B(4, 8) [0; 0.5] 0.423 0.236 0.09 0.094 WK0.449 0.271 0.117 0.105 LS25 B(4, 6) E(10) [0; 0.5] 0.388 0.229 0.119 0.103 WK0.467 0.261 0.13 0.095 LS26 γ(4, 0.08) E(10) [0; 0.5] 0.424 0.166 0.102 0.069 WK0.698 0.286 0.162 0.095 LS27 E(0.1) γ(4, 3) [1; 23] 14.955 5.145 3.973 2.113 WK19.825 11.797 9.738 5.898 LS2Table 4. Values of MISE ×100 averaged over 100 samples, for the estimators ofthe .d.f. from urrent status data (Example E3) built with the warped kernelmethod (WK) or the least-squares methods, with pieewise polynomials of degreeat most 1 or 2 (LS1 or LS2).lassial regression model to some estimation settings with ensored data, while being simpleand fast to implement.



16 NONPARAMETRIC WARPED KERNEL ESTIMATORS5. Extension to the estimation of a onditional density5.1. Presentation. From now on, we onsider an extension of warped-kernel strategy to esti-mate a bivariate funtion, the onditional density. Assume again that we observe pairs (Xi, Yi)i∈{1,...,n}of real random variables suh as (X,Y ), and denote by f(X,Y ) a joint density of the ouple. Therelationship between the preditor X and the response Y an be thoroughly desribed by theonditional density,
∀(x, y) ∈ A×B, π(x, y) =

f(X,Y )(x, y)

fX(x)by assuming that fX does not vanish on A.Kernel estimators for π have been widely studied: typially, Nadaraya-Watson type estimates,suh as "double-kernel" ratio estimators, with ross-validation methods to selet bandwidthsare studied from the asymptoti point of view (onvergene rates and asymptoti normality areshown): among others, see Hyndman et al. (1996), Hyndman and Yao (2002), De Gooijer andZerom (2003) or Fan and Yim (2004).We propose to adopt again in this setion a nonasymptoti setting, and to build a warped-kernel estimate for the onditional density π, whih satis�es adaptive properties, like the reentestimates proposed by Brunel et al. (2007), Efromovih (2010), Akakpo and Laour (2011), orCohen and Le Penne (2011), while having a simple expression.To adapt the previous method, we only warp the �rst oordinate of π, by using the .d.f. FXof the design X as warping funtion:(13) g(cd) : (u, y) ∈ [0; 1] ×B 7→ π
(

F−1
X (u), y

)is the new auxiliary funtion to be estimated �rst. Let us introdue some notations. We onsidertwo kernel funtions K(1) and K(2), whih are supposed to be squared-integrable on R. Fromthis point, H(cd)
n denotes a set of bandwidth ouples (h1, h2) ∈ (R∗

+)2. We set again K(l)
hl

: x 7→
K(l)(x/hl)/hl (l = 1, 2), and denote by K(u, y) = K

(1)
h1

⊗K
(2)
h2

(u, y) the produt K(1)
h1

(u)K
(2)
h2

(y),for all real numbers u and y. The funtional spaes and orresponding norm are also adapted tothe bivariate setting, with the warping funtion φX equal to FX . Partiularly, t ∈ L2(A×B, fX)means
‖t‖2

fX
:=

∫

R2

t(x, y)fX(x)dxdy <∞.Finally, in this bivariate framework, the assumption (Bα0) beomes:Assumption (B
(cd)
α0 ):(i) For any onstant κ0 > 0, there exists C0 > 0, suh that ∑

(h1,h2)∈Hn

exp

(

− κ0

h1h2

)

≤

C0(κ0),(ii) There exists α0 > 0 suh that ∑
h∈Hn

1

h1h2
≤ k0n

α0 , for a onstant k0 ≥ 0.5.2. Estimation and performane. The ornerstone of the method in this new setting is toremark that the auxiliary g(cd) de�ned by (13) is the density of the transformed data (FX(X), Y ).Thus, a olletion of kernel estimators for g(cd) is
∀(h1, h2) ∈ H(cd)

n , ĝ
(cd)
h1,h2

: (u, y) 7→ 1

n

n
∑

i=1

K
(1)
h1

(u− FX(Xi))K
(2)
h2

(y − Yi) ,



NONPARAMETRIC WARPED KERNEL ESTIMATORS 17and the analogous olletion for π is (π̂h1,h2)(h1,h2)∈H(cd)
n

, with π̂h1,h2(x, y) = ĝ
(cd)
h1,h2

(FX(x), y).Stute (1986) studied similar estimators for a onditional distribution funtion. More reently, thisolletion has already been onsidered by Mehra et al. (2000), who ompared it asymptotiallyto lassial Nadaraya-Watson estimates.The novelty whih must be underlined here is the GL seletion of the best bandwidths (ĥ1, ĥ2):we set, in the same way as (6) and (7):
∀(h1, h2) ∈ H(cd)

n ,











V (cd)(h1, h2) = δ′(1 + ‖K‖2
L1(R))

‖K‖L2(R2)

nh1h2
,

A(cd)(h1, h2) = max
(h′

1,h′

2)∈Hn

{

‖ĝ(h1,h2),(h′

1,h′

2)
− ĝh′

1,h′

2
‖2 − V (cd)(h′1, h

′
2)
}

+
,with

ĝ(h1,h2),(h′

1,h′

2)
: (u, y) 7→ K

(1)
h′

1
⊗K

(2)
h′

2
⋆
(

ĝh1,h21[0;1]×A2

)

(u, y).To realize the bias-variane ompromize, we de�ne:
(ĥ1, ĥ2) = arg min

(h1,h2)∈H(cd)
n

{A(cd)(h1, h2) + V (cd)(h1, h2)}.We now set the orale-type inequality, onerning the seleted estimator π̂ĥ1,ĥ2
.Theorem 2. Assume that π is bounded, and that Assumption (B(cd)

α0 ) holds for the olletion
H(cd)

n . Then, there exists three onstants κl, l = 1, 2, 3 suh that(14) E

[

∥

∥

∥
π̂ĥ1,ĥ2

− π
∥

∥

∥

2

fX

]

≤ min
(h1,h2)∈H(cd)

n

{

c1

∥

∥

∥
g(cd) − g

(cd)
h1,h2

∥

∥

∥

2

fX

+ c2
‖K(1) ×K(2)‖2

L2(R2)

nh1h2

}

+
c3
n
,where g(cd)

h1,h2
= (K

(1)
h1

⊗ Kh2) ⋆ (g(cd)
1[0;1]×B), and where the κl depend on ‖K(1) × K(2)‖L1(R2)(l = 1, 2, 3) and κ3 additionally depends on ‖g(cd)‖L∞([0;1]×B).Therefore, the warped kernel strategy ould be suessfully adapted to a bivariate framework.The ruial hoie of the bandwidth is performed automatially: thanks to the GL method,the optimal trade-o� is reahed. Therefore, we extend the results of Mehra et al. (2000) aboutwarped kernel onditional density estimator.Moreover, it should be mentioned that the estimator admits a simple expression, and an beonsequently implemented with low omplexity, like in the four univariate examples.Finally, Inequality (14) an be used for derivation of adaptive optimal rates for onditionaldensity estimation. For that purpose, we need to assume that the kernels K(1) and K(2) havevanishing moment property (suh as Assumption (Kl)), and the onvergene rate is establishedover anisotropi Hölder lasses (de�ned for example in Setion 2.4 of Comte and Laour 2011).We do not detail this, sine the main goal of this setion is to show the adaptation of warped-basesstrategy to establish nonasymptoti bound for onditional density estimation.6. ProofsWe start with some useful results. The �rst one is a powerful onentration inequality, whihpermits to ontrol the deviations of the supremum of an empirial proess.Lemma 3. [Talagrand's Inequality℄ Let ξ1, . . . , ξn be i.i.d. random variables, and de�ne νn(r) =

1
n

∑n
i=1 r(ξi)−E[r(ξi)], for r belonging to a ountable lass R of real-valued measurable funtions.



18 NONPARAMETRIC WARPED KERNEL ESTIMATORSThen, for δ > 0, there exist three onstants cl, l = 1, 2, 3, suh that
E

[

(

sup
r∈R

(νn (r))2 − c(δ)H2

)

+

]

≤ c1

{

v

n
exp

(

−c2δ
nH2

v

)

+
M2

1

C2(δ)n2
exp

(

−c3C(δ)
√
δ
nH

M1

)}

,with, C(δ) = (
√

1 + δ − 1) ∧ 1, c(δ) = 2(1 + 2δ) and
sup
r∈R

‖r‖∞ ≤M1, E

[

sup
r∈R

|νn(r)|
]

≤ H, and sup
r∈R

Var (r (ξ1)) ≤ v.Inequality (3) is a lassial onsequene of the Talagrand Inequality given in Klein and Rio(2005): see for example Lemma 5 (page 812) in Laour (2008).Then, we state a lemma whih will allow us to replae a L2−norm by the supremum of anempirial proess.Lemma 4. Let B be a borelian subset of R (or R
2). Denote by S̃B(0, 1) the set of funtions

t ∈ L1(B) ∩ L2(B) suh that ‖t‖L2(B) = 1. Then, for any funtion v ∈ L1(B) ∩ L2(B),
‖v‖L2(B) = sup

t∈S̃B(0,1)

〈v, t〉B .Moreover, the supremum over S̃B(0, 1) equals the supremum over a ountable subset S̄B(0, 1) of
S̃B(0, 1).Proof of Lemma 4. The Cauhy-Shwarz Inequality leads to

sup
t∈S̃B(0,1)

〈v, t〉B ≤ sup
t∈S̃B(0,1)

‖v‖L2(B)‖t‖L2(B) = ‖v‖L2(B).Besides, if we set t = v/‖v‖L2(B), then t belongs to S̃B(0, 1), and 〈t, v〉B = ‖v‖L2(B). This endsthe proof of the equality. Finally, we an replae S̃B(0, 1) by one of its dense ountable subset:suh a set exists thanks to the separability of L2(R) (or L2(R2)).
✷Finally, we reall a useful and standard property of the onvolution produt.Lemma 5. [Young Inequality℄ Let p, q ∈ [1;∞[ suh that 1/p + 1/q ≥ 1. If u ∈ Lp(R) and

v ∈ Lq(R), then the onvolution produt u⋆v exists. Moreover, if r is de�ned by 1/r = 1/p+1/q−1then u ⋆ v ∈ Lr(R) and
‖u ⋆ v‖Lr(R) ≤ ‖u‖Lp(R)‖v‖Lq(R).6.1. Proof of Equality (3). We ompute E[θ(Y )Kh(u−φX(X))], for u ∈ φX(A), in ExamplesE1 to E3. Reall that we deal with Example E4 in Setion 2.2 diretly.

• Example E1. Sine Y = s(X) + ε, X and ε are independent, and ε is entered,
E [Y Kh(u− FX(X))] = E [s(X)Kh (u− FX(X))] ,

=

∫

A
s(x)Kh(u− FX(x))fX(x)dx,

=

∫ 1

0
g(u′)Kh(u− u′)du′ = Kh ⋆ g1[0;1](u),by setting u′ = FX(x) in the integral.
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• Example E2. The omputations are similar, with the spei� properties or Example E2:

E
[

Y 2Kh(u− FX(X))
]

= E
[

ε2
]

E
[

σ2(X)Kh (u− FX(X))
]

,

=

∫

A
σ2(x)Kh(u− FX(x))fX(x)dx,

=

∫ 1

0
g(u′)Kh(u− u′)du′ = Kh ⋆

(

g1[0;1]

)

(u).

• Example E3. Here, we obtain
E [Y Kh(u− FX(X))] = E [1Z≤XKh (u− FX(X))] ,

=

∫

A×R

1z≤xKh (u− FX(x)) fX(x)fZ(z)dxdz,

=

∫

A
Kh (u− FX(x)) fX(x)

(
∫

R

1z≤xfZ(z)dz

)

dx,

=

∫

A
Kh (u− FX(x)) fX(x)FZ(x)dx,

=

∫ 1

0
Kh

(

u− u′
)

FZ ◦ F−1
X (u′)du′ =

∫ 1

0
Kh

(

u− u′
)

g(u′)du′,

= Kh ⋆
(

g1[0;1]

)

(u).The proof of Equality (3) is thus ompleted.
✷6.2. Proof of Theorem 1. Let h ∈ Hn be �xed. We begin with the following deompositionfor the loss of the estimator s̃ = ŝĥ:

∥

∥ŝĥ − s
∥

∥

2

φ′

X

=
∥

∥ĝĥ − g
∥

∥

2

L2(φX(A))
,

≤ 3
∥

∥

∥
ĝĥ − ĝh,ĥ

∥

∥

∥

2

L2(φX(A))
+ 3

∥

∥

∥
ĝh,ĥ − ĝh

∥

∥

∥

2

L2(φX(A))
+ 3 ‖ĝh − g‖2

L2(φX(A)) .The de�nitions of A(h) and A(ĥ) enable to write,
3
∥

∥

∥
ĝĥ − ĝh,ĥ

∥

∥

∥

2

L2(φX(A))
+ 3

∥

∥

∥
ĝh,ĥ − ĝh

∥

∥

∥

2

L2(φX(A))
≤ 3

(

A(h) + V
(

ĥ
))

+ 3
(

A
(

ĥ
)

+ V (h)
)

,

≤ 6 (A(h) + V (h)) ,by using the de�nition of ĥ. Besides, we have already studied the bias-variane deompositionof ĝh (see the beginning of Setion 2.3):
E

[

‖ĝh − g‖2
L2(φX (A))

]

≤
E[θ2(Y1)]‖K‖2

L2(R)

nh
+ ‖gh − g‖2

L2(φX(A)).Thus,(15) E

[

∥

∥ŝĥ − s
∥

∥

2

φ′

X

]

≤ 6E [A(h)] + 6V (h) +
E[θ2(Y1)]‖K‖2

L2(R)

nh
+ 3‖gh − g‖2

L2(φX(A)).Therefore, the remainding part of the proof follows from the lemma hereafter.



20 NONPARAMETRIC WARPED KERNEL ESTIMATORSLemma 6. Let h ∈ Hn be �xed. Under the assumptions of Theorem 1, there exist a onstant
C1 whih depends on ‖K‖L1(R), and a onstant C2 whih depends on ‖s‖L∞(A), ‖K‖L1(R) and
‖K‖L2(R) in Examples E3 and E4, and also on E[ε21], E[ε2+p

1 ] and E[s2(X1)] in Example E1 oron E[ε41], E[ε4+p
1 ] and E[σ4(X1)] in Example E2, suh that,(16) E [A(h)] ≤ C1‖gh − g‖2

L2(φX(A)) +
C2

n
.Applying Inequality (16) in (15) implies (10) by taking the in�mum over h ∈ Hn. This endsthe proof of Theorem 1.

✷6.3. Proof of Lemma 6. To study A(h), we introdue the auxiliary quantities gh,h′ := Kh′ ⋆
(gh1φX(A)) = Kh′ ⋆ ((Kh ⋆ g1φX(A))1φX (A)), for any h′ ∈ Hn, and we �rst split

‖ŝh,h′ − ŝh′‖2
fX

= ‖ĝh,h′ − ĝh′‖2
L2(φX(A)) ≤ 3

(

Ta + Tb + ‖ĝh′ − gh′‖2
L2(φX (A))

)

,(17)where
Ta = ‖ĝh,h′ − gh,h′‖2

L2(φX (A)), Tb = ‖gh,h′ − gh′‖2
L2(φX(A)).The �rst term an be bounded as follows, using Lemma 5, with p = 2, q = 1, and r = 2:

Ta ≤
∥

∥Kh ⋆
(

ĝh′1φX(A) − gh′1φX(A)

)∥

∥

2

L2(R)
,

≤ ‖K‖2
L1(R)

∥

∥ĝh′1φX(A) − gh′1φX(A)

∥

∥

2

L2(R)

= ‖K‖2
L1(R) ‖ĝh′ − gh′‖2

L2(φX(A)) .In the same way,
Tb ≤ ‖Kh′‖2

L1(R) ‖gh − g‖2
L2(φX(A)) .Therefore, deomposition (17) beomes:

‖ŝh,h′ − ŝh′‖2
fX

≤ 3‖K‖2
L1(R)‖g − gh‖2

L2(φX(A)) + 3(1 + ‖K‖2
L1(R)) ‖ĝh′ − gh′‖2

L2(φX (A)) .Now, we get bak to the de�nition of A(h) given by (7):
A(h) ≤ 3 ‖K‖2

L1(R)‖g − gh‖2
L2(φX(A))(18)

+3(1 + ‖K‖2
L1(R)) max

h′∈Hn

(

‖ĝh′ − gh′‖2
L2(φX(A)) −

V (h′)

3(1 + ‖K‖2
L1(R)

)

)

+

.We apply Lemma 4:
‖ĝh′ − gh′‖L2(φX(A)) = sup

t∈S̄(0,1)

〈ĝh′ − gh′ , t〉φX (A),with S̄(0, 1) a dense ountable subset of S̃(0, 1) = {t ∈ L1(φX(A)) ∩ L2(φX(A)), ‖t‖L2(φX(A)) =
1}. Now,
〈ĝh′ − gh′ , t〉φX (A) =

1

n

n
∑

i=1

∫

φX(A)
{θ(Yi)Kh′ (u− FX(Xi)) − E [θ(Yi)Kh′ (u− FX(Xi))]} t(u)du

= νn,h′(t),



NONPARAMETRIC WARPED KERNEL ESTIMATORS 21where νn,h′ is an empirial proess. Thus, thanks to (18), it remains to bound the deviations of
supt∈S̄(0,1) ν

2
n,h′(t). First, we have

E

[

max
h′∈Hn

(

sup
t∈S̄(0,1)

ν2
n,h′(t) − V (h′)

3(1 + ‖K‖2
L1(R)

)

)

+

]

≤
∑

h′∈Hn

E

[(

sup
t∈S̄(0,1)

ν2
n,h′(t) − V (h′)

3(1 + ‖K‖2
L1(R)

)

)

+

]

.Then, the onlusion results from the following lemma:Lemma 7. Under the assumptions of Theorem 1, there exists a onstant C depending on
‖s‖L∞(A), ‖K‖L1(R) and ‖K‖L2(R) in Examples E3 and E4, and also on E[ε21], E[ε2+p

1 ] and
E[s2(X1)] in Example E1 or on E[ε41], E[ε4+p

1 ] and E[σ4(X1)] in Example E2, suh that,
∑

h∈Hn

E

[(

sup
t∈S̄(0,1)

ν2
n,h(t) − Ṽ (h)

)

+

]

≤ C

n
,with Ṽ (h) = δ′‖K‖L2(R)E[θ(Y1)

2]/(nh) for a purely numerial δ′ > 0.We hoose the κ involved in the de�nition of V suh that Ṽ (h) ≤ V (h)(1 + ‖K‖2
L1(R))/3.Thus, the proof is omplete.

✷6.4. Proof of Lemma 7. We write the empirial proess
νn,h(t) =

1

n

n
∑

i=1

ψt,h(Xi, Yi) − E [ψt,h(Xi, Yi)] ,(19) with ψt,h(Xi, Yi) = θ(Yi)

∫

φX(A)
Kh (u− FX(Xi)) du.The guiding idea is to apply Talagrand's Inequality (Lemma 3). However, we must distinguishdi�erent ases, depending on the example we deal with: for Examples E1 and E2, νn,h(t) isnot bounded (due to θ(Yi)), and the inequality annot be diretly applied. On the opposite, inExamples E3 and E4, as we have already remarked, θ(Yi) is bounded by 1 and the proess isbounded. We detail the �rst example whih is also the most tehnial, and we review brie�yeah of the others.6.4.1. Example E1. Reall that φX = FX and φX(A) = [0; 1]. We split the proess νn,h intothree parts, writing νn,h = ν

(1)
n,h + ν

(2,1)
n,h + ν

(2,2)
n,h , with, for l = 1, (2, 1), (2, 2),

ν
(l)
n,h =

1

n

n
∑

i=1

ϕ
(l)
t,h(Zi) − E

[

ϕ
(l)
t,h(Zi)

]

,

Zi = Xi or (Xi, εi), and
ϕ

(1)
t,h : x 7→ s(x)

∫ 1
0 Kh(u− FX(x))t(u)du,

ϕ
(2,1)
t,h : (x, ε) 7→ ε1|ε|≤κn

∫ 1
0 Kh(u− FX(x))t(u)du,

ϕ
(2,2)
t,h : (x, ε) 7→ ε1|ε|>κn

∫ 1
0 Kh(u− FX(x))t(u)du,



22 NONPARAMETRIC WARPED KERNEL ESTIMATORSwhere we de�ne, for a onstant c whih will be spei�ed below,(20) κn = c

√
nln(n)
.We apply Talagrand's Inequality to the �rst two bounded empirial proesses, and bound roughlythe last one. Thus, we split:

∑

h∈Hn

E

[(

sup
t∈S̄(0,1)

ν2
n,h(t) − Ṽ (h)

)

+

]

≤ 3
∑

h∈Hn

{

E

[(

sup
t∈S̄(0,1)

(

ν
(1)
n,h(t)

)2
− Ṽ1(h)

3

)

+

](21)
+E

[(

sup
t∈S̄(0,1)

(

ν
(2,1)
n,h (t)

)2
− Ṽ2(h)

3

)

+

]

+ E

[

sup
t∈S̄(0,1)

(

ν
(2,2)
n,h (t)

)2
]}

,with the deomposition Ṽ (h) = Ṽ1(h) + Ṽ2(h), and, denoting by δ′′ = δ′/2,
Ṽ1(h) = 3δ′′

‖K‖2
L2(R)E

[

s2(X1)
]

nh
,

Ṽ2(h) = 3δ′′
‖K‖2

L2(R)E
[

ε21
]

nh
.Atually, reall that we have E[θ2(Y1)] = E[Y 2

1 ] = E[s2(X1)] + E[ε21] here.We now show that eah of the three terms of the right hand-side of (21) is upper-bounded bya quantity of order 1/n. This will end the proof.
• First term of (21).Let us begin with ν(1)

n,h. To do so, we ompute H(1), M (1) and v(1), involved in Lemma 3.
• For M (1), let t ∈ S̄(0, 1) and x ∈ A be �xed:

∣

∣

∣
ϕ

(1)
t,h(x)

∣

∣

∣
≤ |s(x)|

∫ 1

0
|Kh(u− FX(x))t(u)| du,

≤ |s(x)|‖Kh‖L2(R)‖t‖L2(φX (A)) = |s(x)|
‖K‖L2(R)√

h
,

≤ ‖s‖L∞(A)

‖K‖L2(R)√
h

:= M (1).

• For H(1), notie that
ν

(1)
n,h(t) = 〈d̂h − gh, t〉φX (A), with d̂h =

1

n

n
∑

i=1

s(Xi)Kh (.− FX(Xi)) .Thus, thanks to Lemma 4, we obtain,
E

[

sup
t∈S̄(0,1)

(

ν
(1)
n,h(t)

)2
]

= E

[

∥

∥

∥
d̂h − gh

∥

∥

∥

2

L2([0;1])

]

,

=

∫ 1

0
Var(d̂h(u)

)

du, sine gh(u) = E

[

d̂h(u)
]

,

≤
∫ 1

0

1

n
E
[

s2(X1)K
2
h (u− FX(X1))

]

du.



NONPARAMETRIC WARPED KERNEL ESTIMATORS 23Then, we use the same omputation as the one done to bound the variane term inSetion 2.3, and set (H(1))2 = ‖K‖2
L2(R)E[s2(X1)]/(nh).

• For v(1), we also �x t ∈ S̄(0, 1). Hereafter, if w is a real-valued funtion, w̌ is the funtion
x 7→ w(−x). First,Var(ϕ(1)

t,h(X1)
)

≤ E

[

(

ϕ
(1)
t (X1)

)2
]

≤ ‖s‖2
L∞(A)E

[

(
∫ 1

0
Kh(u− FX(X1))t(u)du

)2
]

,and the expetation an be written
E

[

(
∫ 1

0
Kh(u− FX(X1))t(u)du

)2
]

= E

[

(

Ǩh ∗
(

t1[0;1]

))2
(FX(X1))

]

,

=

∫ 1

0

(

Ǩh ∗
(

t1[0;1]

))2
(u)du,

≤
∥

∥Ǩh ∗
(

t1[0;1]

)
∥

∥

2

L2(R)
,

≤
∥

∥Ǩh

∥

∥

2

L1(R)
‖t1[0;1]‖2

L2(R) =
∥

∥Ǩh

∥

∥

2

L1(R)
‖t‖2

L2([0;1]),thanks to Lemma 5. Therefore,Var(ϕ(1)
t (X1)

)

≤ ‖s‖L∞(A)‖K‖2
L1(R) := v(1).Then, Lemma 3 gives, for δ > 0,

E

[(

sup
t∈S̄(0,1)

(

ν
(1)
n,h(t)

)2
− 2(1 + 2δ)

(

H(1)
)2
)

+

]

≤ k1

{

1

n
exp

(

−k2
1

h

)

+
1

n2h
exp

(

−k3

√
n
)

}

,where k1, k2, k3 are three onstants whih depend on E[s2(X1)], ‖s‖L∞(A), ‖K‖L1(R) and ‖K‖L2(R).Assumption (Bα0) leads to
∑

h∈Hn

E

[(

sup
t∈S̄(0,1)

(

ν
(1)
n,h(t)

)2
− 2(1 + 2δ)‖K‖2

L2(R)E[s2(X1)]
1

nh

)

+

]

≤ C

n
,with C a onstant (whih also depends on the previous quantities).

• Seond term of (21).For the seond empirial proess ν(2,1)
n,h , the sketh of the proof is the same: similarly, weompute the quantities involved in the Talagrand Inequality,

M (2) = κn‖K‖L2(R)
1√
h
, H(2) = ‖K‖L2(R)

(

E[ε21]
)1/2 1√

nh
, v(2) = ‖K‖2

L1(R)E[ε21],and we obtain, by Lemma 3, for δ > 0,
E

[(

sup
t∈S̄(0,1)

(

ν
(2,1)
n,h (t)

)2
− 2(1 + 2δ)

(

H(2)
)2
)

+

]

≤ k1

{

1

n
exp

(

−k2
1

h

)

+
κ2

n

n2h
exp

(

−k3

√
n

κn

)}

,where k1, k2, k3 are three onstants whih depend on E[ε21], ‖K‖L1(R) and ‖K‖L2(R). The �rstterm of the right hand-side is like above. With the de�nition (20) of κn, the sum over h ∈ Hn ofthe seond term of the upper bound an be written
∑

h∈Hn

κ2
n

n2h
exp

(

−k3

√
n

κn

)

=
c2

n1+k3/c ln2(n)

∑

h∈Hn

1

h
.



24 NONPARAMETRIC WARPED KERNEL ESTIMATORSConsequently, using Assumption (Bα0) and hoosing c in the de�nition of κn suh that c ≤ k3/α0,we also obtain for a onstant C,
∑

h∈Hn

E

[(

sup
t∈S̄(0,1)

(

ν
(2,1)
n,h (t)

)2
− 2(1 + 2δ)‖K‖2

L2(R)E[ε21]
1

nh

)

+

]

≤ C

n
.

• Third term of (21).The last empirial proess is ν(2,2)
n,h (t) =

∫ 1
0 t(u)ψ(u)du, with

ψ(u) =
1

n

n
∑

i=1

εi1{|εi|>κn}Kh (u− FX(Xi)) − E
[

εi1{|εi|>κn}Kh (u− FX(Xi))
]

.It is not bounded. Nevertheless, we use the Cauhy-Shwarz Inequality, and the equality
‖t‖L2(φX(A)) = 1, for t ∈ S̄(0, 1)

E

[

sup
t∈S̃(0,1)

(

ν
(2,2)
n,h (t)

)2
]

≤ E

[
∫ 1

0
ψ2(u)du

]

,

≤ 1

n
E
[

ε211{|ε1|>κn}
]

E

[
∫ 1

0
K2

h (u− FX(X1)) du

]

,

≤
‖K‖2

L2(R)

nh
E
[

ε211{|ε1|>κn}
]

≤
‖K‖2

L2(R)κ
−p
n

nh
E

[

ε2+p
1

]

.Thus, there exists a onstant k1 whih depends on ‖K‖L2(R) and E[ε2+p
1 ],

∑

h∈Hn

E

[

sup
t∈S̄(0,1)

(

ν
(2,2)
n,h (t)

)2
]

≤ k1
κ−p

n

n

∑

h∈Hn

1

h
= c1κ

−p lnp(n)

n1+p/2

∑

h∈Hn

1

h
.The onlusion omes from Assumption (Bα0), and the hoie of p ≥ 2α0.

✷6.4.2. Examples E2 to E4. For the multipliative regression model E2, we split the proess intotwo terms: νn,h = ν
(1)
n,h + ν

(2)
n,h, with

ν
(1)
n,h(t) =

1

n

n
∑

i=1

{

σ2(Xi)ε
2
i 1{|εi|≤κn}

∫ 1

0
Kh (u− FX(Xi)) t(u)du

−E

[

σ2(Xi)ε
2
i 1{|εi|≤κn}

∫ 1
0 Kh (u− FX(Xi)) t(u)du

]}

,

ν
(2)
n,h(t) =

1

n

n
∑

i=1

{

σ2(Xi)ε
2
i 1{|εi|>κn}

∫ 1

0
Kh (u− FX(Xi)) t(u)du

−E

[

σ2(Xi)ε
2
i 1{|εi|>κn}

∫ 1
0 Kh (u− FX(Xi)) t(u)du

]}

,where κn is still a onstant for the proof, whih equals √c √
n

ln(n) and c > 0 is obtained by theomputations, like in Example E1. We exatly reover the framework of this previous example:the deviations of the proess ν(1)
n,h are bounded thanks to Talagrand's Inequality of Lemma 3,and the seond one is bounded in the same way as the proess ν(2,2)

n,h of the additive regressionsetting.



NONPARAMETRIC WARPED KERNEL ESTIMATORS 25For Examples E3 and E4, there is no point in splitting the proess (19), sine it is alreadybounded (reall that θ(Y1) is bounded by 1). Thus, we apply the onentration inequality.Reall that φX(A) = R+. In both of these ases, the quantity M1 involved in the assumptionsof Lemma 3 equals M1 = ‖K‖L2(R)/
√
h. Moreover, H2 an be hosen as the upper-bound of thevariane term of the estimator ĝh, that is H2 = ‖K‖L2(R)/nh. Finally, v equals ‖K‖L1(R) forExample E3, and ‖g‖L∞(R+)‖K‖L1(R) for Example E4.As an example, let us detail the omputation of v in Example E4. Reall that X = C ∧ Z,

Y = 1Z≤C , s is the hazard rate, and the warping φX is the funtion x 7→
∫ x
0 (1 − FX(t))dt.Thus, denoting by fC (respetively fZ) a density of the variable C (respetively Z), and FC(respetively FZ) its .d.f.,Var (ϕt,h(X1, Y1)) ≤ E

[

(ϕt,h(X1, Y1))
2
]

,

= E

[

Y1

(
∫

R+

Kh(u′ − φ(X1))t(u
′)du′

)2
]

,

=

∫

R+×R

1z≤c

(
∫

R+

Kh(u′ − φ(z))t(u′)du′
)2

fC(c)fZ(z)dzdc,

=

∫

R+

(
∫

R+

Kh(u′ − φ(z))t(u′)du′
)2

fZ(z) (1 − FC) (z)dz.We set z = φ−1(u). The integral beomes
∫

R+

(
∫

R+

Kh(u′ − φ(z))t(u′)du′
)2

fZ(z) (1 − FC) (z)dz

=

∫

R+

(
∫

R+

Kh(u′ − u)t(u′)du′
)2

fZ ◦ φ−1(u) (1 − FC) ◦ φ−1(u)
du

((1 − FX) ◦ φ−1(u))
.Thanks to the same arguments as the ones used to prove Equality (3) in Setion 2.2, we obtain:Var (ϕt,h(X1, Y1)) ≤

∫

R+

g(u)

(
∫

R+

Kh(u′ − u)t(u′)du′
)2

du,

=

∫

R+

g(u)
(

Kh ∗
(

t1R+

)

(u)
)2
du,

≤ ‖g‖L∞(R+)

∥

∥Ǩh ∗
(

t1R+

)
∥

∥

L2(R)
,

≤ ‖g‖L∞(R+)

∥

∥Ǩh

∥

∥

L1(R)

∥

∥

(

t1R+

)
∥

∥

L2(R)
,

= ‖g‖L∞(R+) ‖K‖L1(R) := v.One we have the three quantities, we easily apply Lemma 3 and the proof is omplete by usingAssumption (Bα0), like above (see the omputations in Example E1).
✷6.5. Proof of Corollary 1. We must bound the bias term of the right hand-side of Inequality(10) (Theorem 1). Atually, if we prove that

‖s− sh‖2
φ′

X
≤ Ch2β ,where C is a onstant, then the proof of the Corollary will be ompleted by omputing theminimum whih is involved in (10).



26 NONPARAMETRIC WARPED KERNEL ESTIMATORSThe beginning of the proof is the same for all the examples (E1 to E4). First,
‖s− sh‖2

φ′

X
= ‖g − gh‖2

L2(φX (A)) =

∫

φX(A)
(gh(u) − g(u))2 du.We then start with the de�nition of gh: for u ∈ φX(A),

gh(u) =
1

h

∫ 1

0
g(u′)K

(

u− u′

h

)

du′ =

∫ u
h

u−1
h

g(u− hz)K(z)dz,

=

∫ u
h

u−1
h

g̃(u− hz)K(z)dz =

∫

R

g̃(u− hz)K(z)dz.Thus, sine ∫
R
K(u)du = 1,

g̃h(u) − g(u) =

∫

R

K(z)g̃(u− hz)dz − g̃(u) =

∫

R

K(z) [g̃(u− hz) − g̃(u)] dz.Then we distinguish two ases:6.5.1. Examples E1 to E3. In these ases, reall that φX(A) = [0; 1]. We use a Taylor-Lagrangeformula for g̃: for u ∈ [0; 1], and z ∈ R, there exists θ ∈ [0; 1] suh that
g̃(u− hz) − g(u) = −hzg̃′(u) +

(−hz)2
2!

g̃′′(u) + · · · + (−hz)l−1

(l − 1)!
g̃(l−1)(u) +

(−hz)l
l!

g̃(l)(u− θhz).With Assumption (Kl), we obtain
‖s− sh‖2

φ′

X
≤

(

∫

z∈R

|K(z)| |hz|
l

l!

{
∫ 1

u=0

{

g̃(l)(u− θhz) − g̃(l)(u)
}2
du

}1/2

dz

)2

.Sine g̃ belongs to the Hölder spae H(β,L),
[
∫ 1

u=0

{

g̃(l)(u− θhz) − g̃(l)(u)
}2
du

]1/2

≤
[
∫ 1

u=0
L2(θhu)2(β−l)du

]1/2

,

= L|hz|β−l,whih enables us to onlude.
✷6.5.2. Example E4. Here, φX(A) = R+. The idea is the same, but sine we integrate over anunbounded subset, we hoose a integrated remainding term in the Taylor formula:

g̃(u−hz)−g̃(u) = −hzg̃′(u)+(−hz)2
2!

g̃′′(u)+· · ·+(−hz)l−1

(l − 1)!
g̃(l−1)(u)+

(−hz)l
(l − 1)!

∫ 1

0
(1−θ)l−1g̃(l)(u−θhz)dθ.The reasoning is then the same as in density estimation (see Tsybakov 2009 for details).

✷



NONPARAMETRIC WARPED KERNEL ESTIMATORS 276.6. Proof of Theorem 2. The arguments and the sketh of the proof are exatly the same asthose used to prove Theorem 1. We �rst obtain an equivalent of Inequality (15):
E

[

∥

∥

∥
π̂ĥ1,ĥ2

− π
∥

∥

∥

2

fX

]

≤ 6E

[

A(cd)(h1, h2)
]

+6V (cd)(h1, h2)+
‖K‖2

L2(R2)

nh1h2
+3‖g(cd)

h1,h2
−g(cd)‖2

L2([0;1]×B).Similarly, we must bound A(cd): we use the splitting (17). Then, bounding A(cd) amounts toontrol the deviation of the following entered empirial proess:
ν

(cd)
n,h1,h2

(t) =
1

n

n
∑

i=1

{

∫

(0;1)×B
K

(1)
h1

(u− FX(Xi))K
(2)
h2

(y − Yi) t(u, y)dudy−

E

[

∫

(0;1)×B
K

(1)
h1

(u− FX(Xi))K
(2)
h2

(y − Yi) t(u, y)dudy

]}

.Preisely, we apply the Talagrand Inequality (Lemma 3) with the following quantity:
M1 =

‖K‖L2(R2)√
h1h2

, H2 =
‖K‖2

L2(R2)

nh1h2
, v = ‖g(cd)‖L∞([0;1]×A2) ‖K‖2

L1(R2) .This proves that
∑

(h1,h2)∈Hn

E

[(

sup
t∈S̄(cd)(0,1)

(

ν
(cd)
n,h1,h2

(t)
)2

− Ṽ (cd)(h1, h2)

)

+

]

≤ C

n
,whih is the key point of the proof.
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