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NONPARAMETRIC WARPED KERNEL ESTIMATORS

GAELLE CHAGNYA *

ABSTRACT. In this work, we propose a general method of adaptive nonparametric estimation,
based on warped kernels. The aim is to estimate a real-valued function s from a sample of
random variables (X,Y"). We first deal with the auxiliary function g = so¢x, for a bijective map
¢x depending on the distribution of the variable X: we consider a collection of kernel estimates
built with the warped data (¢x(X),Y). The data-driven selection of the best bandwidth is
done with a model selection device in the spirit of Goldenshluger and Lepski (2011). This leads
to an estimator ¢ for the function g, which is then warped to estimate the target function s by
§=go (;ASX where (]BX is an estimate for ¢x. The interest is twofold. From the practical point of
view, the estimator can be computed easily and fastly, thanks to its simple explicit expression.
From the theoretical point of view, the squared-bias/variance trade-off is realized: we derive
non-asymptotic risk bounds. This general method permits to handle various problems such as
additive and multiplicative regression, conditional density estimation, hazard rate estimation
based on randomly right censored data, and cumulative distribution function estimation from
current-status data.

Keywords: Adaptive estimator. Censored data. Bandwidth selection. Nonparametric estima-
tion. Regression. Warped kernel.

AMS Subject Classification 2010: 62G05; 62G08; 62N02.
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1. INTRODUCTION

1.1. Motivation. Additive regression is one of the most studied model in nonparametric estima-
tion. A huge variety of methods have been investigated, since the first kernel strategies initiated
by Nadaraya (1964) and Watson (1964). Powerful techniques now enable to build estimators,
which have adaptive properties in the sense that their Mean Integrated Squared Error (M.I.S.E.)
automatically reaches the best possible rate associated with the unknown underlying smoothness
of the regression function.

Moreover, the estimators built in this framework, from kernel to least-squares, are source
of inspiration for several other functional estimation problems, such as multiplicative regres-
sion, conditional density estimation, hazard rate estimation based on randomly right censored
data, and cumulative distribution function estimation from current-status data: the question
of building estimators in the spirit of reweighted Nadaraya-Watson functions, or based on the
minimization of regression-type criteria has received a lot of attention in the past decades.

The goal of this article is to propose a unified approach for functional estimation, which enjoys
good adaptive theoretical performances, low computational complexity, and which permits to
cover simultaneously all the aforementioned estimation problems. Therefore, the framework is
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2 NONPARAMETRIC WARPED KERNEL ESTIMATORS

very general: we aim at recovering a real-valued function s on a borelian subset A of R or R?,
from a data sample of observations distributed like a couple of real random variables (X,Y).

The main basic idea is to investigate thoroughly what we will call a "warping" method,
following examples introduced successively by Yang (1981), Stute (1984, 1986) and more recently
Kerkyacharian and Picard (2004): we first build a collection of warped-kernel estimators. Then,
we address the problem of bandwidth selection by taking into account the recent Goldenshluger-
Lepski method (shortened by the "GL" method from now on), detailed in Goldenshluger and
Lepski (2011): we provide a totally data-driven procedure.

1.2. Examples covered by the general framework. To be more precise, we provide several
examples illustrating the relevance of the general setting: we detail the couple (X,Y") and the
target function s which can be handled with the warped-kernel strategy. We also mention
nonparametric methods already studied in related problem. As we cannot reasonably make a
review of all nonparametric estimation, we essentially focus on adaptive methods, in the sense
that they do not require prior knowledge about the smoothness of the estimated function.

Hereafter, we assume that the variable X takes values in A, while we denote by B the analogous
set for Y. Besides, X is supposed to have a density fx with respect to the Lebesgue measure.

We first present two classical regression frameworks, before introducing two estimation prob-
lems based on lifetimes that can only be partly observed.

In the first two examples, we assume that A is an interval: A = (a;b), with —co < a < b < 00,
and that the density fx does not vanish on its support A.

Example E1: Additive random design regression. The function s to be estimated is the
conditional expectation of Y given a value for X. Thus, we can write Y = s(X) + ¢, where ¢ is
a centered, square-integrable random variable, independent of X.

Example E2: Multiplicative regression. Here, we write Y = o(X)e, and the target function
s is the volatility function 0. The assumptions are the following: € is a centered random variable,
independent of X, which satisfies E[e?] = 1 and E[¢*] < oo.

These estimation frameworks, mainly the additive one, are a famous subject of interest, and
adaptive estimation is well developed. Autoregressive models are the setting the most related to
Example E2. Historical methods are kernel strategies, initiated by Nadaraya (1964) and Watson
(1964) (Example E1). Recall that their estimator is built as the ratio of a kernel estimator of
the product sfx divided by a kernel estimator of the density fx. The data-driven choice of the
bandwidth, leading to adaptive estimators, is for example studied more accurately by Fan and
Gijbels (1992) (Example E1), Hérdle and Tsybakov (1997) (Examples E1 and E2), and Neumann
(1994) (Example E2) who provide asymptotic results, for methods also sometimes involving local
polynomials.

At the same time, the expansion of s onto orthogonal bases has been used: among many
authors, we can quote Golubev and Nussbaum (1992) for spline bases, Antoniadis et al. (1997)
(Example E1) and Hoffmann (1999) (Example E2) for wavelet bases, and Efromovich (1999)
(Fourier basis). Nonasymptotic risk bounds are first derived for this kind of estimates, usually by
model selection, via the minimization of a penalized least-squares criterion (see Wegkamp 2003,
Baraud 2002, and Birgé 2004 for Example E1, and Comte and Rozenholc 2002 for Example E2).

Among the aforementioned works, the ratio form of kernel estimates may be seen as a draw-
back, since it can be instable when a "hole" occurs in the data. Moreover, two bandwidths must
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be selected, one for the numerator and one for the denominator (from the theoretical point of
view, there are no reason to choose the same bandwidths). The recent Goldenshluger-Lepski
method has only been investigated recently by Chichignoud (2011a,b), for specific frameworks
(uniform design in additive regression, deterministic design and uniform noise in multiplicative
regression). Moreover, least-squares contrasts provide explicit estimators under a matrix invert-
ibility requirement (most of the time implicitly).

This motivates the investigation of "warping" methods to build estimators which satisfy pow-
erful nonasymptotic risk bounds while being simple to implement.

For the third and fourth examples, related to reliability and survival analysis, X is a lifetime,
and thus, A is equal to Ry. Let also Z be a positive random variable of interest, which is
unobserved.

Example E3: Interval censoring, Case 1. In this case, the couple (X,Y) is known as
current-status data. The only knowledge about the survival time of interest Z is its current
status at time of examination X. Thus, ¥ = 1<y indicates whether Z occurs before X or not.
Such data naturally arise in infectious disease study for example, when the time Z of infection
is unobserved, and a test is carried out at time X. The function s of interest is the cumulative
distribution function of Z: s = Fy. Hereafter, we assume that fx is positive on its support
A - R+.

In this model, not many investigations are concerned with adaptivity, since it is the unusual
optimal rate of convergence (n~'/3) that has diverted attention for the last decades. Thus,
most results are devoted to the Non-Parametric Maximum Likelihood Estimator (NPMLE) (see
Groeneboom and Wellner 1992; van de Geer 1993; Groeneboom 1995; Hudgens et al. 2007, for
intance). Birgé (1999) built an histogram estimator, which is very simple but not adaptive.
A review is provided by Jewell and van der Laan (2004). Adaptivity has been more recently
discussed by Ma and Kosorok (2006), who selected the regularity parameter of the NPMLE and
of a least-squares estimator, and by Brunel and Comte (2009) or Plancade (2011), who considered
model selection devices to choose regression-type estimators which also require a matrix inversion.

Example E4: Hazard rate estimation from right censored-data. Here, X is the minimum
of the variable of interest Z and of a censoring time C, which is a nonnegative random variable
(like Z), supposed to be independent of the lifetime Z. We also know whether Z is censored
or not. Then, we have X = C A Z, and Y = 1z<¢. Right censoring occurs when individuals,
included in a clinical trial, are not observed until the end, for instance. The function s of interest
is the hazard rate function:

 fz(x)
Sl oy

which is the risk of death at time z, given that the patient is alive until  (also, this is the
derivative of the log-survival function). We assume both that Fz(z) < 1 and Feo(z) < 1 for all
r€A= R+.

We reasonably cannot quote all the estimators and results provided by the previous stud-
ies. Let us only recall that a lot of estimators use the well-known Kaplan-Meier estimate of
the survival function (Kaplan and Meier, 1958), some others are based on the estimation of
the cumulative hazard with the Nelson-Aalen function (Nelson, 1972), and others use a differ-
ent decomposition of s, using the "subdensity" function. Different methods are proposed for
each approach: kernel methods, with asymptotic results (Tanner and Wong, 1983; Miiller and
Wang, 1994; Patil, 1993), orthogonal-serie decomposition and model selection, leading both to
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nonasymptotic and asymptotic risk bounds (Antoniadis et al., 1999; Brunel and Comte, 2005,
2008; Reynaud-Bouret, 2006; Akakpo and Durot, 2010).

A summary of these four frameworks can be found in Table 1. Finally, we extend at the end of
the paper the method to a last example: the estimation of a conditional density, an example of
bivariate functional estimation problem. The specifical setting and references will be discussed
later.

1.3. The "warping" method. Let us present the sketch of the method briefly. Our goal is to
estimate the real-valued function s on the set A, from n couples of observations (X;, Y;')ie{l,...,n}a
distributed like (X, Y") according to Examples E1 to E4 previously described. We aim at provid-
ing adaptive kernel estimators in each of the previous framework, with simple expression.

To do so, we first consider an auxiliary function g defined by

(1) g= soqﬁ)_(l s ox(A) = R,

where qS;(l is the inverse of a function ¢x, which is called the "warping" function, and depends
on the example:

e for Examples E1, E2, and E3, ¢x is the cumulative distribution function (c.d.f.) of the
variable X. Since we assume that the density fx is strictly nonnegative on A, ¢ x admits
an inverse and ¢x(A) = (0;1).

e for Example E4, we consider for ¢x a function denoted by ¢, which is a primitive of
the survival function 1 — F, that is to say ¢ :  — [;(1 — Fx(t))dt. We also assume
Fx(t) <1 for all t > 0, thus ¢ admits an inverse too and ¢x(A) = R..

These choices will be justified below, see Identity (3).

In a first step, we will build a collection of classical kernel estimators for the auxiliary function
g. In a second step, we will select g, one of these kernel estimators, using the recent GL method,
developed for density estimation initially (see Goldenshluger and Lepski 2011). Finally, according
to Definition (1), we will define an estimator for the target s by

§=godx or §=goox,

where ngb x is an empirical counterpart for ¢x, since ¢x is unknown, in general.

This warping device, which we sum up in Table 1, has already been used in the regression
framework (namely Example E1) by Stute (1984) who studied more accuratly the kernel esti-
mator of Yang (1981), and more recently by Kerkyacharian and Picard (2004) and Pham Ngoc
(2009), who adapted this to projection estimation.

The novelty of our contribution lies in the combination of the warping strategy and the GL
method, to deal with several estimation settings simultaneously: our building estimators allows us
to derive nonasymptotic adaptive results. Oracle-type inequalities are provided for the M.I.S.E.,
and convergence rates are deduced under regularity assumptions on the function g. Moreover,
the simple expression of the estimates enables us to implement them easily, and to illustrate the
theoretical results with promising simulation experiments.

Hereafter, for the sake of clarity, we focus on the case of known c.d.f. Fx, like in Pham Ngoc
(2009): the case of an unknown c.d.f. Fx requires further technicalities, only due to the natural
plug-in of an empirical version for ¢y, even if the theoretical results are similar. It has also been
widely detailed in Chagny (2011, 2012), for warped-bases estimators of a regression function and
of a conditional density respectively. Therefore, in the sequel, we prefer to concentrate on the
wide range of examples which are covered by the method, from classical regression frameworks
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Example Target function ¢x
El1Y =s(X)+e¢ s Fx
E2Y =0(X)e o? Fx
E3 (X,1z<x) Fy Fx
E4 (X = ZAC,15<0) - ¢ x— [J(1— Fx(t))dt

TABLE 1. Summary of the studied examples and of the "warping" function used
in each case.

to bivariate functional estimation (conditional density), getting also through survival analysis
problems.

1.4. Organization of the paper. We present in Section 2 the notations, the collection of kernel
estimators and the data-driven bandwidth selection leading to a unique estimator. In Section 3,
we investigate the performance of this estimator: we study its global risk, state our main results
and comment them. Section 4 is devoted to a short simulation study, to illustrate the method
in the Examples E1 and E4. We provide in Section 5 an extension of the method to conditional
density estimation. Finally, the proofs are gathered in Section 6.

2. A GENERAL METHOD OF ESTIMATION

2.1. Notations. Throughout the article, we consider functions which are integrable with respect
to the Lebesgue measure or to a weighted Lebesgue measure. For 0 < p < oo, we denote by
LP(B) the set of the real-valued and measurable functions ¢ on a borelian subset B C R, such
that the (quasi-)norm

Il ) ltw)Pdu it 0 < p < oo
Lr(5) sup,ep |t(w)] if p= o0

is finite. If p = 2, (.,.)p is the usual scalar product of the Hilbert space L?(B). The following
L?— norm will also be useful, since it is the natural loss function of the problem:

@) Ity = [ @)k @)

and L?(A, ¢'y) is the space of functions ¢ for which the quantity (2) exists and is finite. This
norm leads to another corresponding scalar product (., .>¢/X. Notice besides that the following

links hold between this space and the classical L?—space previously defined: if ¢1,ts belongs to
L%(A, ¢'y), we compute, using Fi = fx,

[t1 0 dxllgy, = lItallL2(oxa)y, (10 @x t20dx )y = (t1,t2)gy (a)-

The convolution product of two functions ¢ and to is t1 *t9 : & — fR t1(x — 2’ )to(2")da'. Last,
the notation z, for a real number z, means max(z,0).
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Hereafter, K is a kernel, that is a function such that fR K(u)du = 1, and is assumed to belong
to L%(R). We also denote by H, a finite collection of nonnegative real numbers, the so-called
bandwidths. Its cardinality may depend on the sample size n. Classically, for each h € H,,, K}, is
the function u — K(u/h)/h. We easily get [p Kp(u)du =1, [| Kyl 1) = [| K| 11(r), and finally
IKnll2my = 1K 2/ P

2.2. Collection of warped kernel estimators. Throughout the section, we fix a bandwidth
h € H,. We first deal with the transformed data (¢x(X:), Yi)ief1,....n}, to estimate the auxiliary
function g defined by (1). The cornerstone of the method is that for all u € ¢x(A),

3) EBY)Kn(u—ox(X)] = Kux(glsya) (w),
with 6(Y) = Y2for Examples E1, E3, and E4,
Y= for Example E2.

This identity explains the choices of the warping function ¢x, introduced in Section 1.3. For
instance, let us prove it in Example E4. The proof of Equality (3) for the other cases is postponed
to Section 6.1. We start with

E[YKp(u—¢x(X))] = Elz<cKp(u—¢(ZNC)| =E[lz<cKp(u—¢(Z)],
= /R - 1< Kp (u— ¢(2)) fo(e) fz(z)dzde,

= [ Kutu- () f2(2) < / 1xgcfc<c>dc> gz,

Ry

= | Ku(u=0(2) f2(2) (1 - Fo(z) d=.

Then, we set u' = ¢(z). The integral becomes

du/
(1—Fx)op—t(w)
Since Z and C are independent, (1 — Fx) = (1 — F¢)(1 — Fz), and consequently

du/
(1 — Fz) o] (ﬁ_l(ul)7

= / Kp(u—u')so ot (u)du,
Ry

E[YKh(u—(ﬁx(X))] = /R Kh (u—u/) fZO(ﬁ_l(u/) (1—Fc)0¢_1(u/)

E[YKp(u—éx (X)) = /RKh(U_ul)oné_l(u/)

- / K (u— ) g()ded,

R4
= Kh * (91R+) (u)

A consequence of Equality (3) is that we define a natural estimator for g by
1 n
Vu € gx(A), gn(u) = > 0¥y (u— dx(X0).
i=1
Since the target function s can be written as s = g o ¢x, we also set 5, = g, o ¢x. At this

stage of the procedure, the interest lies in the simple expression of the estimators 55, h € H,: it
involves no ratio, one kernel only, and thus only one bandwidth to select.
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2.3. Bandwidth automatic-selection. A collection of estimators (Sp,)nen,, is available now,
and classically, the next question is the choice of the bandwidth. As well as being data-driven, the
selection should lead to an adaptive estimator: thus our problem is to build a statistical procedure
that requires no prior knowledge on s but whose risk behaves almost like the minimum of the
risk of the estimators in the collection, that is to say almost as the oracle bandwidth

4 hi= in Ef||s — &5, .
(4) arg min Ellls — 34, |

In fact, the quadratic risk weighted by the derivative of the warping function ¢x is the natural
criterion in our setting. Therefore, it requires that the function s belongs to L?(A, ¢y ), and we
assume it from now on:

e for Examples El to E3, ¢/, = fx, and this condition is fulfilled as soon as s is bounded
on the set A,

e for Example E4, where ¢/ is the survival function of the variable Z, we can check that
the integrability condition on s is verified for all classical distributions for C' and Z in
survival analysis (such as exponential, Weibull, Gamma...).

In order to explain what could be a "good" selection, we evaluate the performance of §; for
each h, by giving an upper-bound for its weighted risk, that is for the classical quadratic risk of
g: E[||sn, — s||2,X] = El[||gn — 9||2L2(¢X(A))]' For that purpose, we introduce the approximation of g

by the kernel Kj, g = Kp, * (914, (4)). It is first well known that

(5) E[lI5n =52 ] = 9= onlEeoncay + E [l9n = nlaaxcan]

since E[gn(u)] = gn(u), thanks to (3). If the first term in the right-hand side of (5) decreases
when h goes to zero, the opposite holds for the second term: in fact, we bound it as follows:

E[”gh_th%?(qu(A))] = B

/ <gh<u>—E[gh<u>1>2du] - / Var (n () du,
dx(A) dx(A)

and for each u € ¢x(A),

. 1 1
Var (gn(u)) = —Var (0(V)Kp (u = 6x(X1))) < ~E[0*(V) K} (u = 6x(X1))]
Therefore, the variance-term grows when h decreases:
. 1
E | llgn = /1320 (ap] < B [8200)] 1K F2zy =

Thus, we recover that choosing a bandwidth A which realizes a good compromise between the
approximation term and the estimation (or variance) term leads to an estimator with small risk.

This aim can be achieved with the observed data only, with a method described in Goldensh-
luger and Lepski (2011). The idea is the following: if the bias and the variance term are unknown
(since they depend on the unknown s), we replace them by empirical versions. We define first

1

(6) Vh € o V(R) = 5 (14 KD ry ) 1K 2B [02(10)] =
which corresponds to the upper-bound for the variance term. The constant  is purely numerical,
and its value will be specified in the proofs. Then, with a remark already used by Devroye
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Example S ox  S(x)

El1Y =s(X)+e s Fx %;YZK}L(FX(!E) — Fx(Xi))
E2Y =o(X)e o  Fx % ZXZ;EZK;L(FX () — Fx(Xi))

E3 (X,1z<x) Fz Fx %ngﬂxiKﬁ(FX(l’) - Fx(Xi))

B4 (X =ZACz<0) % ¢ % ; 17,0, K, (¢(x) — o(X5))

TABLE 2. Summary of the estimators in the four studied statistical examples,
described in Section 1.2

(1989), we introduce the auxiliary estimators involving two kernels: gy = Kpr x (gnlgy(a)),
and, accordingly, 85, 57 = gpnr © ¢x. We set

_ 5o, — a2, — /
(7) Vh € Hy Ah) = mas {[lann — dwllly, VDT

It is shown in the proof that A has the same order as the bias-term (see Lemma 6). Then the
selected bandwidth h and the corresponding warped kernel estimator are

(8) h = arg hrg?l% {A(R) +V(h)}, 5=3;.

The formula of the estimators corresponding to each considered example are summarized in Table
2. Let us highlight the fact that the selected bandwidth h does not depend on the function s to
be estimated: it is totally data-driven. Actually, in Examples E3 and E4, E[6?(Y})] is bounded
by 1, and can be replaced by 1 in the definition of V. For the two other examples (additive and
multiplicative regression), this expectation can easily be replaced in practice and theory by the
corresponding empirical mean (see Brunel and Comte 2005, proof of Theorem 3.4 p.465).

3. THEORETICAL RESULTS

3.1. Assumptions and smoothness classes. Now we are in position to state the result con-
cerning the adaptive estimators built in the four examples.

To set nonasymptotic risk bound, we require only one or two assumptions, depending on the
example we consider: one about the bandwidth collection, which should not be too large and one
which is concerned with the distribution of the errors in the two regression settings (Examples
El and E2).
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Assumption (B,,):

(i) For any constant ko > 0, there exists Cp > 0, such that Z exp <
heHn,

£2) < Colro),

1
(ii) There exists ag > 0 such that Z 7 < kon®°, for a constant ko > 0.

heH
Assumption (M,): With ag fixed by Assumption (By,),

(i) There exists p > 2aq, such that E[|e;|*™?] < oo,
(ii) There exists p > 4oy, such that E[[€1\4+p] < 0.

Remark 1. Classical collections of bandwidths satisfy Assumption (B, ). For instance:
(1) Hpp = {k™', k=1,...,¢(n)}, for which Assumption (Bs) is fulfilled if ¢(n) = n, or
(B1) if ¢(n) = v/n.
(2) Hpo={27% k=1,...,[In(n)/In(2)]}, for which Assumption (Bj) is fulfilled.
Notice also that the smaller o in Assumptlon (Bay), the less restrictive the integrability con-
straint p on the noise moments in Assumption (Mp,).

To deduce rates of convergence from the nonasymptotic results, we will require the following
additional assumption.

Assumption (K;): The kernel K is of order [, that is to say, for all j € {1,...,1+ 1}, the
function = — 27/ K (x) is integrable, and for 1 < j <1, [p 2/ K(x)dx = 0.

Moreover, for convergence rates, smoothness classes must be defined to quantify the bias term
of the decomposition (5): ||gn — g||?. For estimation in Examples E1 to E3, we consider functions
t belonging to Holder classes on an interval B, denoted by H (3, L, B), 3, L > 0: this means that
t admits derivatives up to order [3] (where [3] is the largest integer less than 3), and

(9) va,2' € B, [t(z) - 9(a")| < Ljw — o5

This property is relevant for the bound on the integrated bias on compact sets, but not on R
as required for Example E4. The functional spaces associated to this case are Nikol’skii classes
of functions, No(3, L): a function ¢ : R — R belongs to Na(8, L), if its admits derivatives up to
order [(] and

Vo € R,

S CI— H < L|z|P-1
L2(R) — ’

where 7, is the translation operator by x. Both of these spaces are standard in kernel estimation:
see Tsybakov (2009), Goldenshluger and Lepski (2011), and also Nikol’skit (1975) for instance.

3.2. Risk bounds. We can prove the following result.

Theorem 1. Assumption (By,) is supposed to be fulfilled, for an og > 0 and also Assumption
(My) for Ezamples E1 and E2. We also assume that the function s is bounded on the set A.

Then there exist three constants ¢, | = 1,2,3, such that the following inequality holds for the
estimator § defined by (8):

E [62(51)] ”KH 2
N 2 . 2 L2(R) Cc3
/ < / .
(10) E |:”S—SH¢ } }fnlnn {Cl ”S_ShH¢ + co h —l——n

The two constants c1 and ca depend only on ||K || 11wy, and c3 depends on |[s||pe(ay, K| 11w
and | K|| 12wy in Ezamples ES and E4, and also on E[e}], E[E%ﬂ)] and E[s*(X1)] for Ezample E1
or on E[ef], E[&?;Hp] and E[o*(X1)] for Ezample E2.



10 NONPARAMETRIC WARPED KERNEL ESTIMATORS

Let us comment and discuss the result.

e About the meaning of Inequality (10). It is an oracle-type inequality: the selected
bandwidth h is performing as well as the unknown oracle (4), up to some multiplicative
constants ¢; and ¢g, and up to a remainding term of order 1/n, which is negligible.
Actually, it follows from (10) that the adaptive estimators §, in Examples E1 to E4,
automatically make the squared-bias/variance compromise.

e About the assumptions of Theorem 1. The result holds for any sample size n
and thus, is nonasymptotic. There is no assumption on the approximation properties of
the kernel K, that is no assumption on its regularity and moments, contrary to most
of asymptotic results for kernel estimators. This is the strength of the GL method, in
the simple way we apply it. Especially in Example El (additive regression), the risk
bound can thus be considered as an improvement of the results of Stute (1986), who
provides asymptotic normality for a warped kernel estimate, with well-chosen kernel and
bandsequence (but not adaptive).

e About the case of unknown ¢x. The previous method is applied in the general
framework of unknown ¢x (that is to say the case of unknown F'x) by using a natural
plug-in device: the c.d.f. Fx can be replaced by its empirical counterpart in all occur-
rences. Obviously, the adaptive result is the same, under stronger assumptions on the
bandwidth collection H,,. However the proof in this case requires much more techni-
calities than it may seem. Therefore we focus on the theoretical case of known Fx, to
concentrate on the wide range of examples that the method covers. The substitution has
already been widely detailed for regression estimation and conditional density estimation
using warped bases: we refer the reader to Chagny (2011, 2012).

The "oracle-approach" also leads to convergence rate for the risk, under regularity assumptions
for the auxiliary function g.

Corollary 1. Let B and L be two nonnegative numbers. Assume that the function g satisfies
9(0) = g(1), and define g = gly,q on R. Consider that g belongs to Hélder class H(B, L), in
Ezamples E1 to E3, or to Nikol’skii space Na(3, L) in Example E. Assume that (K;) forl =[],
and (By,), for an ag > 0, holds. Assume also that (M,) is fulfilled for Ezamples E1 and E2.
Then,

. 9 26
(11) E [|ls - s}y ] < on” 55,
where C' is a constant which does not depend on n and (3.

We recover the classical optimal rate in nonparametric estimation. Notice that the bounds (10)
and (11) we provide are global ones: they hold for the MISE, with global bandwidth selection.
Here, adaptation has no price: the rate of convergence is the one found for the bias term, without
data-driven selection of the bandwidth, just by minimizing the right-hand side of (5). On the
contrary, it is well known that adaptation costs a logarithm factor for pointwise selection. This
explains why we focus on global selection, which is sufficient for our purpose (as it is shown in
the previous theorem, and in the simulation study below).

4. ILLUSTRATION

To illustrate the procedure, we focus only on two of the four examples: the classical additive
regression (Example E1), and the estimation of c.d.f. under interval censoring case I. In each
case, we propose to compare the warped kernel strategy, which we denote by WK in this section,
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with another adaptive method: a regression type one, based on the minimization of a penalized
least-squares contrast. We denote it by LS.

4.1. Implementation of the warped-kernel estimators. The theoretical study allows the
choice of several kernels and bandwidth collection. For practical purpose, we consider the Gauss-
ian kernel, K : x — e‘x2/2/\/ﬁ, which satisfies Assumption (K7). It has the advantage of having
simple convolution-products:

(12) \V/h, h, > 0, Kh*Kh’ = K\/W

The experiment is conducted with the dyadic collection H,, o defined by Remark 1. Notice that
the larger collection H,, 1 has also been tested: since it does not really improve the results but
increases the computation time, we only keep the other collection. Besides, the simulations are
performed in the general case of unknown ¢x, which equals F'x in Examples E1 and E3. We
replace each of its occurrences by the empirical c.d.f. F, = (1/n) Y ie1 1x, 00 Therefore, the

estimator is

5:z - %ZH(E)KB(Fn(a;)—Fn(Xi)).
i=1

Then, the estimation procedure can be decomposed in some steps:
e Simulate a data sample (X;,Y;), i = 1,...,n, fitting Example E1 or E3.
e Compute V(h) and A(h) for each h € H,, ;.

e For V(h): we have calibrated the numerical s involved in (6). A lower bound for its
theoretical value is provided by the proof. However, we keep in mind that this value is
very pessimistic due to rough upper-bounds (for the sake of clarity). Thus, a practical
calibration is required, like in most model selection devices. Since classical techniques
such as the slope heuristic are not currently well developped for the GL method, we
adjust x prior to the comparison with the other estimates: we look at the quadratic risk
with respect to the value of x, and choose one of the values leading to reasonable risk.

e For A(h): thanks to (12), the auxiliary estimates are easily computed: 8, ' = 3 /a7
The L?—norm is then approximated by a Riemann sum:

K
. . . . 1 . . 2
15,00 = 8w G = lgnne = w25 (1)) = 32 >~ (Gnn () — G (wr)) "

=1

where K = 50, and (ux)j are grid points evenly distributed across ¢x(A).

e Select h such that A(h) 4+ V (k) is minimum.
e Compute 5; .

4.2. Example E1: additive regression. We compare the warped kernel method (WK) with
the strategy from Baraud (2002): the model selection device is designed with a penalized least-
squares contrast, leading to an adaptive projection estimator, developed in an orthogonal basis of
L?(A). The experiment is carried out with the Matlab toolbox FY3P, written by Yves Rozenholc,
and available on his web page http://www.math-info.univ-paris5.fr/ rozen/. We choose a regular
piecewise polynomial basis, with degrees chosen in an adaptive way. Since we use a kernel with
only one vanishing moment, the comparison is fair if we consider polynomials with degrees equal
to or less than 1, so that the bias of the least-squares estimator has the same order than the one
of the warped-kernel estimate. We denote by LS1 the resulting estimator. However, as shown
below, we will see that the warped-kernel generally outperforms the least-square, even if we use
polynomials with degree at most 2 (LS2). We also experiment the Fourier basis, but the results
are not as good as the polynomial basis. Thus, we do not mention the values.
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(a)

FiGure 1. Estimation in Example E1, with true regression function sz, design
distribution (4, 0.08), and n = 1000. (a) points: data (Xj,Y;);, thick line: true
function s3. (b)-(c)-(d) beams of 20 estimators built from i.i.d. sample (thin lines)
versus true function (thick line): warped kernel estimators (subplot (b)), least-
squares estimator in piecewise polynomial bases with degree at most 1 (subplot
(c)) or 2 (subplot (d)).

The procedure is applied for different regression functions, design and noise. We focus on the
three following regression functions

s1:x—z(z—1)(x —0.6)
59 1 @+ —exp(—200(z — 0.1)2) — exp(—200(z — 0.9)%) + 1
53 : @ cos(4nx) + exp(—z?)

The influence of the design is explored through four distributions:

® Ujp,), the uniform distribution on the interval [0; 1],

e v(4,0.08), the Gamma distribution, with parameters 4 and 0.08 (0.08 is the scale param-
eter),

e N(0.5,0.01), the Gaussian distribution with mean 0.5 and variance 0.01,

e BN a bimodal Gaussian distribution, with density = +— c(exp(—200(z — 0.05)?) +
exp(—200(x — 0.95)?)) (c is a constant adjusted to obtain a density function).

We also test the sensibility of the method to the noise distribution: contrary to the underlying
design distribution, it does not seem to affect the results. Thus, we present the simulation for
a Gaussian centered noise, with variance o?. We take into account the signal-to-noise ratio:
therefore, the value of ¢ is chosen in each model such that the ratio of the variance of the signal
(Var(s(X7))) over the variance of the noise (Var(e1)) approximately equals 2.

Figures 1 and 2 plot the generated data-sets and the function to estimate, and illustrate the
visual quality of the reconstruction: beams of estimators (WK, LS1, and LS2) are presented.
Figure 1 shows a regular case, while Figure 2 aims at depicting the case where a hole occurs
in the design density: the estimator built with warped kernel behaves still correctly, even if the
data are very inhomogeneous.

We also perform a study of the risk which is reported in Table 3, for the sample size n =
60, 200, 500 and 1000. The MISE criterion is retained. To be more precise, it is computed over
J sample replications, and the quadratic norm is approximated as follows:

b—a
MISE) = == (3(wx) = s(ai))*,
k=1

where § stands for one of the estimators, b is the quantile of order 95% of the X; and a is the
quantile of order 5%. The (xj)g=1,. ~ are the sample points falling in [a;b]. Finally, the values
displayed in Table 3 are the mean of the previous values for j € {1,...,J = 200}. In 56% of the
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(a) (b) (©) ()

FiGURE 2. Estimation in Example E1, with true regression function ss, design
distribution BN, and n = 1000. (a) points: data (X;,Y;);, thick line: true
function s3. (b)-(c)-(d) beams of 20 estimators built from i.i.d. sample (thin lines)
versus true function (thick line): warped kernel estimators (subplot (b)), least-

squares estimator in piecewise polynomial bases with degree at most 1 (subplot
(c)) or 2 (subplot (d)).

examples, the risks of the warped-kernel estimator are smaller than the ones of the least-squares
estimator, in piecewise polynomials basis with degrees at most 2 (LS2). Besides, if we consider
the comparison with LS1, which is more fair as explained above, the WK estimators give better
results in 77% of the cases.

4.3. Example E3: Interval censoring, case 1. The same comparison is carried out for the
estimation of the c.d.f. under interval censoring. The adaptive least-squares estimate is provided
by Brunel and Comte (2009), and the same Matlab toolbox is used for its implementation: in
fact, in this statistical model, recall that the target function can be seen as a regression function:
s(x) =P(Z <z) =E[lz<,|X = z] = E[Y|X].

We consider different models for generating the data. We have calibrated the estimation set
A, such that most of the data belong to this interval, as it is done in Brunel and Comte (2009).
We shorten "follow the distribution" by the symbol "~".

e M1: X ~ U1}, and Z ~ Ujp,q}, A = [0; 1] (for instance, the target function is Fz : z +— ),
e M2: X ~ Uy, and Z ~ x2(1) (Chi-squared distribution with 1 degree of freedom),

A = [0;1],
e M3: X ~ &£(1) (exponential distribution with mean 1), and Z ~ x2(1), A = [0;1.2],
e M4: X ~ (3(4,6) (Beta distribution of parameter (4,6)), Z ~ (3(4,8), A =[0;0.5],
o M5: X ~ (3(4,6), Z ~ £(10) (exponential distribution with mean 0.1), A = [0;0.5],
o M6: X ~ 7(4,0.08), Z ~ £(10), A = [0,0.5],

e M7: X ~ £(0.1), Z ~~(4,3), A=[1;23].
The first two models, and the fourth, were also used by Brunel and Comte (2009). All these
models allow us to investigate thoroughly the sensibility of the method to the distribution of the
examination time X, and to the range of the estimation interval.

Figure 3 shows the smoothness of warped-kernel estimates. We also explore the difference
between the estimators by computing the MISE for the different models. Table 4 reveals that
the warped-kernel estimates can advantageously be used as soon as the design X; has not a
uniform distribution: it always outperform the least-squares estimators in these cases.

To conclude, these results must be put into perspectives: for Example E1 as much as Exam-
ple E3, more classes of functions and models should be studied to confirm the interest of the
warped-kernel strategy, but it is beyond the scope of the paper. We just aim at illustrating that
our estimators can stand comparison with other adaptive methods, in various models from the
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s X o n= 60 200 500 1000  Method

s1 U, v.0006 0.3719 0.1341 0.1957 0.2454 WK
0.3892 0.1293 0.0681 0.0446 LS2

~(4,0.08) 5.107°  0.0052 0.0033 0.0004 0.0003 WK
0.0097 0.004 0.0017 0.0012 LS2

N(0.5,0.01) 0.011 0.0049 0.0020 0.0008 0.0005 WK
0.0020 0.0012 0.0010 0.0008 LS2

BN 0.022 0.524  0.422 0.267 0.205 WK
0.166  0.054 0.038 0.029 LS2

s2 U 0.17 16.35  6.791 351 0.837 WK
33.212  2.058 0.691 0.407 LS2
~(4,0.08) 0.08 1.885  0.354 0.204 0.147 WK

4.047  0.801 0.552 0.429 LS2
N(0.5,0.01) 0.01 0.0619 0.0186 0.0079 0.0006 WK
0.0078 0.0014 0.0001 0.0001 LS2
BN 0.18 12.052  5.279 1.698 1.041 WK
52.668 11.009 5.817 1.215 LS2

s3 Upp.) 0.35 28.03 1055 4.63 2747 WK
125.055 45.298 12.607 5.713 LS1

31.073 7477 4199 3.319 LS2

~(4,0.08) 0.44 19.615 6.283 3.869 3.309 WK
41.261 13.34 4.808 3.727 LS1

23.213 5549 2.059 0.86 LS2

N(0.5,0.01) 0.44 6.341 2452 128 0.861 WK
10.453 3.961 2.098 1.078 LS1

3.753  1.386 1.028 0.644 LS2

BN 0.32 44.381 13.618 9.637 7.928 WK
182.525 58.787 24.229 12.317 LS1

66.663 30.377 8.521 4.574 LS2

TABLE 3. Values of MISE x1000 averaged over 200 samples, for the estimators
of the regression function (Example E1), built with the warped kernel method
(WK) or the least-squares methods, with piecewise polynomials of degree at most
1 or 2 (LS1 or LS2).
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FIGURE 3. Estimation in Example E3, in model M7, and n = 1000. (a)-(b)-(c)
beams of 20 estimators built from i.i.d. sample (thin lines) versus true function
(thick line): warped kernel estimators (subplot (a)), least-squares estimator in
piecewise polynomial bases with degree at most 1 (subplot (b)) or 2 (subplot (c)).

Model X Z [a;p] n=60 200 500 1000 Method
1 Uy Uy — [0;1] 241 1125 0975 0533 WK
0.63 0.111 0.056 0.024  LS2
2 U,y x2(1)  [0;1] 1.558 0.804 0.57 0415 WK
1.602 044 0244 013  LS2
3 £(1) x2(1)  [0;1.2] 1.285 0.614 0243 0247 WK
2.385  0.893 0.651 0.365 LS2
4 B(4,6)  B(4,8) [0;0.5] 0423 0236 009 0.094 WK
0449 0271 0.117 0.105  LS2
5 B(4,6)  £(10) [0;0.5] 0388 0.229 0.119 0.103 WK
0467 0261 0.13 0.095 LS2
6 v(4,0.08) £(10) [0;0.5] 0424 0.166 0.102 0.069 WK
0.698 0.286 0.162 0.095 LS2
7 £(0.1)  ~y(4,3) [1;23] 14955 5.145 3.973 2.113 WK
19.825 11.797 9.738 5.898  LS2

TABLE 4. Values of MISE x100 averaged over 100 samples, for the estimators of
the c.d.f. from current status data (Example E3) built with the warped kernel
method (WK) or the least-squares methods, with piecewise polynomials of degree

at most 1 or 2 (LS1 or LS2).

15

classical regression model to some estimation settings with censored data, while being simple

and fast to implement.
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5. EXTENSION TO THE ESTIMATION OF A CONDITIONAL DENSITY

5.1. Presentation. From now on, we consider an extension of warped-kernel strategy to esti-

mate a bivariate function, the conditional density. Assume again that we observe pairs (X, Yi)z’e{l,...

of real random variables such as (X,Y’), and denote by f(x y) a joint density of the couple. The
relationship between the predictor X and the response Y can be thoroughly described by the
conditional density,

I (X,Y) (z,9)
by assuming that fx does not vanish on A.

Kernel estimators for m have been widely studied: typically, Nadaraya-Watson type estimates,
such as "double-kernel" ratio estimators, with cross-validation methods to select bandwidths
are studied from the asymptotic point of view (convergence rates and asymptotic normality are
shown): among others, see Hyndman et al. (1996), Hyndman and Yao (2002), De Gooijer and
Zerom (2003) or Fan and Yim (2004).

We propose to adopt again in this section a nonasymptotic setting, and to build a warped-
kernel estimate for the conditional density m, which satisfies adaptive properties, like the recent
estimates proposed by Brunel et al. (2007), Efromovich (2010), Akakpo and Lacour (2011), or
Cohen and Le Pennec (2011), while having a simple expression.

To adapt the previous method, we only warp the first coordinate of 7, by using the c.d.f. Fix
of the design X as warping function:

(13) gD (u,y) € [0;1] x B — 7 (Fy' (), y)

is the new auxiliary function to be estimated first. Let us introduce some notations. We consider
two kernel functions K and K3, which are supposed to be squared-integrable on R. From
this point, H? denotes a set of bandwidth couples (h1,hs) € (R%)% We set again K }(Lll) DT
KW(xz/h;)/h; (1 =1,2), and denote by .K(u, y) = K}(Li) ® Kf(é) (u,y) 'the product Kf(Lll) (U)Kf(i) (y),
for all real numbers u and y. The functional spaces and corresponding norm are also adapted to
the bivariate setting, with the warping function ¢x equal to Fy. Particularly, t € L?(A x B, fx)
means

HtH%X = /}R2 t(z,y) fx(x)dzdy < oo.

Finally, in this bivariate framework, the assumption (B,,) becomes:

Assumption (B{Y):

K
(i) For any constant ko > 0, there exists Cp > 0, such that Z exp <_h 2 > <
172
(h1,h2)EHnR

Co(ko),
(ii) There exists ag > 0 such that Z —— < kon®?, for a constant kg > 0.

heHy, h1h2

5.2. Estimation and performance. The cornerstone of the method in this new setting is to
remark that the auxiliary ¢{°? defined by (13) is the density of the transformed data (Fx (X),Y).
Thus, a collection of kernel estimators for ¢(¢® is

¥(hi, ha) € HED, G0 (u Z KW (u— Fx (X)) K (y - Vi),

7n}
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and the analogous collection for 7 is (ﬁhlvh2)(h1,h2)eH5fd)’ with 7, p,(2,y) = Q}(gf;lz(FX(x),y).
Stute (1986) studied similar estimators for a conditional distribution function. More recently, this
collection has already been considered by Mehra et al. (2000), who compared it asymptotically
to classical Nadaraya-Watson estimates.

The novelty which must be underlined here is the GL selection of the best bandwidths (izl, ilg):
we set, in the same way as (6) and (7):

K|l 2 (m2)
VD, hg) = &' (14 (K| ) =
V(h1, ha) € HYY, (cd) LER) nhihy . 2 (cd) (11 77
A he) = s {00400y = g g P = VDRI

with
Gy ha) (R hy) (U,y)HK;(LI) K(/)*(gh1,h2 Ljo1)xa,) (4, y).

To realize the bias-variance compromize, we define:

(hi,hg) =arg  min  {ACD(hy, hy) + VD (hy hy)}.
(h1,ha)eHiED

We now set the oracle-type inequality, concerning the selected estimator frﬁl -

Theorem 2. Assume that m is bounded, and that Assumption (Bé%d)) holds for the collection

%Cd). Then, there exists three constants ky, | =1,2,3 such that
2 2 KM x K@ HLz (R2) cs
14) E Hfr ; —7TH } < min c H (cd) _ gled) c + —,
(14) [ h1h2 Ix1 (b, ho)erE? He I hal|p, T2 nhyhg n

where ggclil;n = (K}(Li) ® Kp,) * (g(Cd)l[o;l]XB) and where the r; depend on KM x K HLl(R2
(1 =1,2,3) and k3 additionally depends on ||g{°? | oo ([0:1x B) -

Therefore, the warped kernel strategy could be successfully adapted to a bivariate framework.
The crucial choice of the bandwidth is performed automatically: thanks to the GL method,
the optimal trade-off is reached. Therefore, we extend the results of Mehra et al. (2000) about
warped kernel conditional density estimator.

Moreover, it should be mentioned that the estimator admits a simple expression, and can be
consequently implemented with low complexity, like in the four univariate examples.

Finally, Inequality (14) can be used for derivation of adaptive optimal rates for conditional
density estimation. For that purpose, we need to assume that the kernels K 1) and K@ have
vanishing moment property (such as Assumption (K;)), and the convergence rate is established
over anisotropic Holder classes (defined for example in Section 2.4 of Comte and Lacour 2011).
We do not detail this, since the main goal of this section is to show the adaptation of warped-bases
strategy to establish nonasymptotic bound for conditional density estimation.

6. PROOFS

We start with some useful results. The first one is a powerful concentration inequality, which
permits to control the deviations of the supremum of an empirical process.

Lemma 3. [Talagrand’s Inequality] Let &1, . .., &, be i.i.d. random wvariables, and define v, (r) =
% Yo (&) —E[r(&)], forr belonging to a countable class R of real-valued measurable functions.
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Then, for § > 0, there exist three constants ¢, | = 1,2,3, such that

E [(f&g(’/" (r)? — c(é)H2>J < o {%exp (_6251@7H2>

+ C'jz?;ﬂ exp (—C3C(6)\/5%> } ,

with, C(0) = (V1+ 0 —1) A1, ¢(d) = 2(1 +20) and

sup ||rflec < My, E [sup rum)@ < H, and sup Var(r (1)) < v.
reR reER reR

Inequality (3) is a classical consequence of the Talagrand Inequality given in Klein and Rio
(2005): see for example Lemma 5 (page 812) in Lacour (2008).

Then, we state a lemma which will allow us to replace a L?—norm by the supremum of an
empirical process.

Lemma 4. Let B be a borelian subset of R (or R?). Denote by Sp(0,1) the set of functions
t € L*(B) N L*(B) such that ||t||;2(p) = 1. Then, for any function v € L*(B) N L*(B),

[vllz2s)y = sup (v,t)p.
teSp(0,1)

Moreover, the supremum over SB(O, 1) equals the supremum over a countable subset Sg(0,1) of
Sp(0,1).
Proof of Lemmma 4. The Cauchy-Schwarz Inequality leads to

sup (v,t)p < sup ol litlzsy = [vliLem)-
teSp(0,1) t€Sp(0,1)

Besides, if we set t = v/||v[|12(p), then t belongs to S5(0,1), and (t,v)p = [l z2(B)- This ends
the proof of the equality. Finally, we can replace S 5(0,1) by one of its dense countable subset:
such a set exists thanks to the separability of L2(R) (or L?(R?)).

]

Finally, we recall a useful and standard property of the convolution product.

Lemma 5. [Young Inequality] Let p,q € [1;00] such that 1/p+1/q > 1. If u € LP(R) and
v € LY(R), then the convolution product uxv exists. Moreover, ifr is defined by 1/r = 1/p+1/q—1
then uxv € L"(R) and

|u* vl Lr®) < [Julle@)llv]lLar)-

6.1. Proof of Equality (3). We compute E[0(Y)Kp(u— ¢x(X))], for u € ¢px(A), in Examples
El to E3. Recall that we deal with Example E4 in Section 2.2 directly.
e Example E1. Since Y = s(X) + ¢, X and ¢ are independent, and ¢ is centered,

E[YKy(u—Fx (X)) = E[s(X)Kp(u— Fx(X))],
- /A o(2) K (1 — F(2))fx (2)de,

1
_ / 9 (') Kn(u — ' ydu! = K % gl (1),
0

by setting v’ = Fx(x) in the integral.
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e Example E2. The computations are similar, with the specific properties or Example E2:

E[Y?K,(u—Fx(X))] = E[E[0*(X)K, (u— Fx(X))],
— [ @Kt Fx()fx(a)de,

1
- /0 gt K — )’ = Ky, % (g1 p17) (1):
e Example E3. Here, we obtain

EYKp(u—Fx(X))] = E[lz<xKp(u— Fx(X))],

_ /A Lol (= Fx(2) fx (o) f2(2) o,
= /AKh (u— Fx(z)) fx(z) </R 1z§mfZ(Z)dz> d,
_ /A K (u— Fx(2)) fx (2)Fy(2)dz,

1 1
= / Ky (u—u')Fzo Fl()du' = / Ky (u—u) g(u')du,
0 0

= Kp* (910,1)) (w).
The proof of Equality (3) is thus completed.
O

6.2. Proof of Theorem 1. Let h € H,, be fixed. We begin with the following decomposition
for the loss of the estimator s = §;:

~

S}AL—S

N 2
I _9HL2<¢X(A>>’
2

L2(¢x (A

2
Px
2

L2(¢x(A))

A~

< 3 9;, — ghjz‘

: +3th7ﬁ—§h( +39n — 917205 () -

The definitions of A(h) and A(h) enable to write,
2

L2(¢x (A

2

L2(¢x(A))

3119, — gh,h‘

IN

3 <A(h) v (h)) +3 <A <h) + V(h)) ,
< 6(A(h)+V(h),

) +3 Hﬁhﬁ - Qh‘

by using the definition of h. Besides, we have already studied the bias-variance decomposition
of g (see the beginning of Section 2.3):

E[02 (VD)) 22 )

E [Hﬁh - 9”%2(¢>X(A))] < o +llgn = 9lZ2ox (2))-
Thus,
E[6*(Y1)][| K72
A 2 L% (R
(15) E[ 5 — s d&] < 6E[A(R)] + 6V (h) + - B 3llgn — 91226 (a))-

Therefore, the remainding part of the proof follows from the lemma hereafter.
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Lemma 6. Let h € 'H, be fized. Under the assumptions of Theorem 1, there exist a constant
Cy which depends on ||K||1(w), and a constant Cy which depends on |[s||ec(a), K| p1w) and

| K|[z2(r) in Ezamples ES and E4, and also on E[e], E[s?rp] and E[s*(X1)] in Ezample E1 or
on E[¢f], E[ezlyrp] and E[o*(X1)] in Evample E2, such that,

C:
(16) E[A(R)] < Cillgn — 9172y (a)) + ;2

Applying Inequality (16) in (15) implies (10) by taking the infimum over h € H,,. This ends
the proof of Theorem 1.
O

6.3. Proof of Lemma 6. To study A(h), we introduce the auxiliary quantities gp pr := Kp *
(gh1¢X(A)) = Kh/ * ((Kh *91¢X(A))1¢X(A))7 for any N e Hn, and we first Split
A7) 18nnw =3wlFe = lgnnw — wllZ2 oy (ay <3 <Ta + T+ |gn — gh’||%2(¢X(A))) ;
where
T, = ”gh,h’ - gh7h’”2L2(¢X(A))7 T, = th7h’ - gh"‘%Z((;,X(A))-

The first term can be bounded as follows, using Lemma 5, with p =2, ¢ =1, and r = 2:

To < [[Enx (@losa) = 9 loxa) )

IN

KT e [13m Lo ) = 9w Lo ey

1B Z 1 gy 19 — 901726 ()
In the same way,
2
Ty < Kwlliig) l9n = 9265 ay -
Therefore, decomposition (17) becomes:
. . . 2
I8na = 8wl < BIEIZ w9 = 9mlF2oy (ay) + 3+ I N0 )) 1dn — gllz2(g () -
Now, we get back to the definition of A(h) given by (7):

(18)  A(h) <3 |K|Zmyllg = 9nlliz(sy(ay)

X 2 V(h)
+3(1 + ”KH%A(]R)) hI’Ié%{Xn (”gh’ - gh’”L2(¢>X(A)) - 3(1 n HK”%l(R)) :
+

We apply Lemma 4:

190 = gnll L2 ay) = SUP (G — s g (4
t€5(0,1)

with S(0,1) a dense countable subset of 5(0,1) = {t € L' (¢x(A)) N L*(¢x(A)), 1l 2 (6 x (4)) =
1}. Now,

(G = gn, Box () = % Z/ {0(Y:)Kp (u— Fx(X;)) = E[0(Y;) Kp (u — Fx (X))} t(u)du
=1 Y ¢x(A)

- Vn,h’ (t)a
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where v, ;s is an empirical process. Thus, thanks to (18), it remains to bound the deviations of
SUP;e§(0,1) v2,,(t). First, we have

max | sup v2,,(t) — VK)
h'€Hn t€S(0,1) mh 3(1+|’KH%1(R)) 4

V(')

2

sup vy, () — .
(tes‘(o,l) w0 3(1+”KH%1(R)))J

Then, the conclusion results from the following lemma:

E

<) E
hEHR

Lemma 7. Under the assumptions of Theorem 1, there exists a constant C depending on
IIs ||Loo(A K1y and |[K|[L2mw) in Ezamples E3 and E4, and also on E[e], E[s?rp] and

E[s?(X1)] in Evample E1 or on Elef], E[ezlyrp] and E[o*(X1)] in Evample E2, such that,

S E ( sup (t)_m)) ]gg,
t€S(0,1) + n

h€Hn

with V(h) = || K|l r2(r)E[0(Y1)?]/(nh) for a purely numerical §' > 0.

We choose the  involved in the definition of V such that V(h) < V(h)(1 + ||K||%1(R))/3.
Thus, the proof is complete.

O

6.4. Proof of Lemma 7. We write the empirical process
1 n

(19) van(t) = =) Wen(Xi,Y5) = E (X, V)]
g

with wt,h(Xh}fi) = 6’(}/2)/ K (U—Fx(XZ)) du.

#x(A)
The guiding idea is to apply Talagrand’s Inequality (Lemma 3). However, we must distinguish
different cases, depending on the example we deal with: for Examples E1 and E2, v, ;(t) is
not bounded (due to 6(Y;)), and the inequality cannot be directly applied. On the opposite, in
Examples E3 and E4, as we have already remarked, 6(Y;) is bounded by 1 and the process is
bounded. We detail the first example which is also the most technical, and we review briefly
each of the others.

6.4.1. Ezample E1. Recall that ¢x = Fx and ¢x(A4) = [0;1]. We split the process vy, into

( })l—i— V(2h1) + 1/7(”1), with, for [ =1,(2,1), (2, 2),

three parts, writing v, , = v, o

), = - Z%E;L(Z) E [wifi(zi)] 7

1=1
Zi = Xz or (XZ',EZ'), and

cpg/l}z sz — s(w) fol Kp(u— Fx(2))t(u)du,
o5 (@,0) = eliian, Jo Knlu— Fx(2))t(u)du,
Pen - (LL’, E) = €1|e\>lin fol Kh(u - FX(‘T))t(U)duv
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where we define, for a constant ¢ which will be specified below,

(20) K = cﬁ.

In(n)

We apply Talagrand’s Inequality to the first two bounded empirical processes, and bound roughly
the last one. Thus, we split:

sup vy (1) = V(h < 3 E[| sup (vt Q_Vl(h)> ]

<t€§(£’1) o ()>+] h;'t:n{ Kteg(&)("’h( )) 3 ).
@0, 2 Va(h)

( () “‘%f‘>+]

t€S(0,1)
2
Sup (Vﬁf;’f) (t)> ] } :
t€5(0,1)
with the decomposition V (k) = V;(h) + Va(h), and, denoting by " = /2,

- K172 gy E [5%(X1)
Vi(h) = 38" LQ(R)nh[ |
1K [£2]
nh '
Actually, recall that we have E[0?(Y1)] = E[Y{] = E[s?(X1)] + E[?] here.
We now show that each of the three terms of the right hand-side of (21) is upper-bounded by

a quantity of order 1/n. This will end the proof.

o First term of (21).
Let us begin with VS;L. To do so, we compute HY | M® and vM | involved in Lemma 3.

e For M let t € S(0,1) and z € A be fixed:

0| < 1@ [ = Pt o

(21) Y E
he€Hn

+E

+E

Va(h) = 30"

" Vh
1K1l 2 (®)
< lsllzee(ay v

e For HM notice that

n

. . 1
v (8) = (dh — ghs t) gy (a), with dp = =3 s(X)E (-~ Fx (X))
i=1
Thus, thanks to Lemma 4, we obtain,

. (0)°| = 2l

t€S(0,1)

E

2
L?([o;ln] ’

= /01 Var <dh(u)> du, since gp(u) =E [Czh(u)] )

i

IN
S

E [s*(X1) K} (u — Fx(X1))] du.
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Then, we use the same computatlon as the one done to bound the variance term in
Sectlon 2.3, and set (HM)? = || K2, [ 2(X1)]/(nh).

e For vV, we also fix t € 5(0,1). Hereafter, if w is a real-valued function, w is the function

x — w(—z). First,
1 2
(/ K — FX(Xl))t(u)du> ] ,
0
and the expectation can be written

E [(/01 Kp(u— FX(X1))t(u)du> 2] = E [(Kh s (tl[o;l]))2 (FX(Xl))] ,

2
var (v060) = | (6000)] < Bl

1
- /0 (K * (t10,)))” (u)du,
. 2
< HKh*(tl[O;I])HLZ(R)
< Rl gy Mo ey = 1l s oy 18120y

thanks to Lemma 5. Therefore,
1
Var (sﬁg )(Xl)) < ||S||L00(A)||K||%1(R) — )

Then, Lemma 3 gives, for § > 0,

#| i, Gt e (o)) [ Lo ()« e v}

where ki, ky, k3 are three constants which depend on E[s*(X1)], [|s]| oo (a), | K1 (r) and [ K]l f2(r)
Assumption (B,,) leads to

> EK sup (vﬁii(t))z—2<1+25)\\K|riz(R>E[82<X1>1n—1h> ]
.

heH, teS(0,1)

IN
31Q

with C a constant (which also depends on the previous quantities).

e Second term of (21).

For the second empirical process foill), the sketch of the proof is the same: similarly, we
compute the quantities involved in the Talagrand Inequality,

1/2
MO = k| K| 22y — |K |2 (E[E3)" = | K12 @ El3],

2
:‘\,

b
Vh'

and we obtain, by Lemma 3, for § > 0,

21 )2 2))2 1 1 K2 NG
E sup (v, 57(t)) —2(1+26) (H <kiq—exp|—ko- | + =-exp | —k3— ) ¢,
[(tES(OJ) < " ) < ) 4 " h n2h Fn

where k1, ko, k3 are three constants which depend on E[ef], || K||11g) and ||K|| 2. The first
term of the right hand-side is like above. With the definition (20) of x,,, the sum over h € H,, of
the second term of the upper bound can be written

K2 Vn
D o, o <"“3E> = T Z B

he€Hn
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Consequently, using Assumption (B,,) and choosing ¢ in the definition of x,, such that ¢ < k3/ao,
we also obtain for a constant C,

2,1 2 1 C
> E ( sup (V,S,h)@)) —2(1+26)||K||%2(R)E[6%]%) ]gg.
hEH, tGS(O,l) n
e Third term of (21).
The last empirical process is A h fo u)du, with

1
Y(u) = - Z€i1{|ei\>nn}Kh (u— Fx(X3)) = E [eil{c; > Kn (u — Fx(X3))] -
i1

It is not bounded. Nevertheless, we use the Cauchy-Schwarz Inequality, and the equality

[l 22(6x (a)) = 1, for t € 5(0,1)
1
E [/ ¢2(u)du] ,
0

22) 1)
sup (l/mh (t)) ]
1 1
< R[Nk 5n ] E [/0 Ky (u — Fx(Xl))du] :

teS(0,1)
||K||%2(R) 9 ||K||%2(R)“n 21
< nh E [611{\a1|>rm}] < nh E [61 p} :

Thus, there exists a constant k; which depends on || K| 2(r) and E[E%er 1,

2 Kn? 1 In?(n) 1
Z E | sup V(th)(t) ] < ki— Z — =k P——= —.
heH [teg(o,l) < ) " her, h ni+p/2 heHn h

E

IA

The conclusion comes from Assumption (B,,), and the choice of p > 2ay.
(]

6.4.2. Ezamples E2 to E4. For the multiplicative regression model E2, we split the process into

two terms: v, p = Vr(ngl + fogl, with

n

1
00 = 23 {0 e [ B0 Ex(X0) )
=1
—E[ 2(X )6 1{|E@\<Hn} fO Kh U—FX du }

n

Z{ (Xo)e; 1{az|>rm}/ Ky (u— Fx (X)) t(u)du

E [022&1)@ et Jo B (1= B (X0)) t()dul }

X
—
Y
> —
—~
~
SN—
I
S|

where x,, is still a constant for the proof, which equals Mc% and ¢ > 0 is obtained by the
computations, like in Example E1. We exactly recover the framework of this previous example:

(1)

the deviations of the process v, ; are bounded thanks to Talagrand’s Inequality of Lemma 3,

(2,2)

and the second one is bounded in the same way as the process v, of the additive regression
setting.
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For Examples E3 and E4, there is no point in splitting the process (19), since it is already
bounded (recall that #(Y7) is bounded by 1). Thus, we apply the concentration inequality.

Recall that ¢x(A) = Ri. In both of these cases, the quantity M; involved in the assumptions
of Lemma 3 equals My = ||K||L2(R)/\/E. Moreover, H? can be chosen as the upper-bound of the
variance term of the estimator gy, that is H? = ||K||z2r)/nh. Finally, v equals ||K||1 g for
Example E3, and ||g|| poor )| K|/L1(®) for Example E4.

As an example, let us detail the computation of v in Example E4. Recall that X = C A Z,
Y = 1z<¢, s is the hazard rate, and the warping ¢x is the function z — [(1 — Fx(t))dt.
Thus, denoting by fo (respectively fz) a density of the variable C' (respectively Z), and Fg
(respectively Fz) its c.d.f.,

Var (poa(X1,71)) < E [(eon(X1,11))7)

= E

Yi ( Ky — ¢(X1))t(u’)du’>2] ,
Ry
= /R+XR 1.<. ( o Kp(u' — ¢(z))t(u’)du’>2 fo(e) fz(z)dzde,

= /R+ < . Kp(u' — ¢(z))t(u’)du’>2fz(z) (1— Fp) (2)de.

We set z = ¢~ 1(u). The integral becomes

/R ) < 5 Kp(u' — ¢(z))t(u’)du’>2 F2(2) (1 = Fo) (2)dz

du
(1= Fx)op~H(u))

Thanks to the same arguments as the ones used to prove Equality (3) in Section 2.2, we obtain:

- /]R+ < 5 Ky — u)t(u')du'>2 fzo¢  (w) (1 - Fe)o ¢ (u)

2
Var (¢ n(X1,Y1)) < /R g(u)< : Kh(u’—u)t(u’)du’> du,

_ /R g(u) (K * (t1g, ) ()2 du,

< gl ey [En* (t1r,) | 2y
Ky,

A\

IN

190l o< ) ‘Ll(R) H(th+)HL2(R)’
= Hg|’L°°(R+) HK”LI(R) = .

Once we have the three quantities, we easily apply Lemma 3 and the proof is complete by using
Assumption (B, ), like above (see the computations in Example El).

O

6.5. Proof of Corollary 1. We must bound the bias term of the right hand-side of Inequality
(10) (Theorem 1). Actually, if we prove that

ls = snll3, < Ch*,

where C' is a constant, then the proof of the Corollary will be completed by computing the
minimum which is involved in (10).
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The beginning of the proof is the same for all the examples (E1 to E4). First,
s = sl = lo = 9l = [ (onlw) = g(w)?* du.
dx(A)

We then start with the definition of gp: for u € ¢x(A),

i) = 1 / i () o = /ﬁgw—hz)K(z)dz,

h

_ /u_l (i — h2) K (2)dz = /R G(u— ha)K (2)dz.

h

Thus, since [ K (u)du =

gn(u) —g(u) = / K(2)§(u — hz)dz — / K(2)[g(u— hz) — g(u)] dz.

Then we distinguish two cases:

6.5.1. Ezamples E1 to E3. In these cases, recall that ¢x(A) = [0;1]. We use a Taylor-Lagrange
formula for g: for u € [0;1], and z € R, there exists 6 € [0; 1] such that

h)2 _pai—1 _
3 — h2) — glu) =~z () + o gy 4 CII g ) 1 CR 50, gy

91 (—1)

With Assumption (K;), we obtain

2
Is = sall3, < (/ZER| KL {500 - one) - (l)(u)}2du}l/2dz) |

Since g belongs to the Holder space H(3, L),

1/2

! 2 1 1/2
[ / . {é(” (u—6hz) — Ez(l’(u)} du] < [ / . L2(6’hu)2(ﬁ_l)du} ,
= Llhz",

which enables us to conclude.

6.5.2. Ezample Ej. Here, ¢x(A) = Ry. The idea is the same, but since we integrate over an
unbounded subset, we choose a integrated remainding term in the Taylor formula:

—hz 2 —hz -1 — Zl
Guhz)—g(u) = —hzg (u) 4 ;’!) g”(u)+---+%§“‘”(u>+éz_h 1))!

The reasoning is then the same as in density estimation (see Tsybakov 2009 for details).

1
/ (1-0)15W (u—0hz)dh.
0
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6.6. Proof of Theorem 2. The arguments and the sketch of the proof are exactly the same as
those used to prove Theorem 1. We first obtain an equivalent of Inequality (15):
K2 g

) cd ¢
’ [ nhihso +3”gi(n7;zz_g( d)”2L2([0;1]><B)'

Similarly, we must bound A4 we use the splitting (17). Then, bounding A“? amounts to
control the deviation of the following centered empirical process:

: 1
VT(l,;lL)Lhz () = n Z {/(0 s K;(Lll) (u— Fx(X;)) K}(lz) (y = Y;) t(u, y)dudy—
i=1 )X

N 2
ﬂ-illyﬁZ - Terx

} < 6E [A@d)(hl, hz)} +6V D (hy, hy)+

E

/(0 1)xB K}(Lll) (u — Fx(X3)) K;(z) (y—Yi) t(u,y)dudy] } ,
;L)X

Precisely, we apply the Talagrand Inequality (Lemma 3) with the following quantity:

Kl z2mey o IKlZ2me (cd) 2
M= =7 B = —m= 0= llg Dl oy KL @) -

This proves that

<

9

slQ

> E[( sup (VT(Lc,;ll)l,hz(t))z_V(Cd)(hl’h2)>

(h1,h2)EHn teS=(0,1)

+
which is the key point of the proof.
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