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NONPARAMETRIC WARPED KERNEL ESTIMATORSGAËLLE CHAGNYA ∗Abstra
t. In this work, we propose a general method of adaptive nonparametri
 estimation,based on warped kernels. The aim is to estimate a real-valued fun
tion s from a sample ofrandom variables (X, Y ). We �rst deal with the auxiliary fun
tion g = s◦φX , for a bije
tive map
φX depending on the distribution of the variable X: we 
onsider a 
olle
tion of kernel estimatesbuilt with the warped data (φX(X), Y ). The data-driven sele
tion of the best bandwidth isdone with a model sele
tion devi
e in the spirit of Goldenshluger and Lepski (2011). This leadsto an estimator ĝ for the fun
tion g, whi
h is then warped to estimate the target fun
tion s by
ŝ = ĝ ◦ φ̂X where φ̂X is an estimate for φX . The interest is twofold. From the pra
ti
al point ofview, the estimator 
an be 
omputed easily and fastly, thanks to its simple expli
it expression.From the theoreti
al point of view, the squared-bias/varian
e trade-o� is realized: we derivenon-asymptoti
 risk bounds. This general method permits to handle various problems su
h asadditive and multipli
ative regression, 
onditional density estimation, hazard rate estimationbased on randomly right 
ensored data, and 
umulative distribution fun
tion estimation from
urrent-status data.Keywords: Adaptive estimator. Censored data. Bandwidth sele
tion. Nonparametri
 estima-tion. Regression. Warped kernel.AMS Subje
t Classi�
ation 2010: 62G05; 62G08; 62N02.July 20121. Introdu
tion1.1. Motivation. Additive regression is one of the most studied model in nonparametri
 estima-tion. A huge variety of methods have been investigated, sin
e the �rst kernel strategies initiatedby Nadaraya (1964) and Watson (1964). Powerful te
hniques now enable to build estimators,whi
h have adaptive properties in the sense that their Mean Integrated Squared Error (M.I.S.E.)automati
ally rea
hes the best possible rate asso
iated with the unknown underlying smoothnessof the regression fun
tion.Moreover, the estimators built in this framework, from kernel to least-squares, are sour
eof inspiration for several other fun
tional estimation problems, su
h as multipli
ative regres-sion, 
onditional density estimation, hazard rate estimation based on randomly right 
ensoreddata, and 
umulative distribution fun
tion estimation from 
urrent-status data: the questionof building estimators in the spirit of reweighted Nadaraya-Watson fun
tions, or based on theminimization of regression-type 
riteria has re
eived a lot of attention in the past de
ades.The goal of this arti
le is to propose a uni�ed approa
h for fun
tional estimation, whi
h enjoysgood adaptive theoreti
al performan
es, low 
omputational 
omplexity, and whi
h permits to
over simultaneously all the aforementioned estimation problems. Therefore, the framework is
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2 NONPARAMETRIC WARPED KERNEL ESTIMATORSvery general: we aim at re
overing a real-valued fun
tion s on a borelian subset A of R or R
2,from a data sample of observations distributed like a 
ouple of real random variables (X,Y ).The main basi
 idea is to investigate thoroughly what we will 
all a "warping" method,following examples introdu
ed su

essively by Yang (1981), Stute (1984, 1986) and more re
entlyKerkya
harian and Pi
ard (2004): we �rst build a 
olle
tion of warped-kernel estimators. Then,we address the problem of bandwidth sele
tion by taking into a

ount the re
ent Goldenshluger-Lepski method (shortened by the "GL" method from now on), detailed in Goldenshluger andLepski (2011): we provide a totally data-driven pro
edure.1.2. Examples 
overed by the general framework. To be more pre
ise, we provide severalexamples illustrating the relevan
e of the general setting: we detail the 
ouple (X,Y ) and thetarget fun
tion s whi
h 
an be handled with the warped-kernel strategy. We also mentionnonparametri
 methods already studied in related problem. As we 
annot reasonably make areview of all nonparametri
 estimation, we essentially fo
us on adaptive methods, in the sensethat they do not require prior knowledge about the smoothness of the estimated fun
tion.Hereafter, we assume that the variableX takes values in A, while we denote by B the analogousset for Y . Besides, X is supposed to have a density fX with respe
t to the Lebesgue measure.We �rst present two 
lassi
al regression frameworks, before introdu
ing two estimation prob-lems based on lifetimes that 
an only be partly observed.In the �rst two examples, we assume that A is an interval: A = (a; b), with −∞ ≤ a < b ≤ ∞,and that the density fX does not vanish on its support A.Example E1: Additive random design regression. The fun
tion s to be estimated is the
onditional expe
tation of Y given a value for X. Thus, we 
an write Y = s(X) + ε, where ε isa 
entered, square-integrable random variable, independent of X.Example E2: Multipli
ative regression. Here, we write Y = σ(X)ε, and the target fun
tion

s is the volatility fun
tion σ2. The assumptions are the following: ε is a 
entered random variable,independent of X, whi
h satis�es E[ε2] = 1 and E[ε4] <∞.These estimation frameworks, mainly the additive one, are a famous subje
t of interest, andadaptive estimation is well developed. Autoregressive models are the setting the most related toExample E2. Histori
al methods are kernel strategies, initiated by Nadaraya (1964) and Watson(1964) (Example E1). Re
all that their estimator is built as the ratio of a kernel estimator ofthe produ
t sfX divided by a kernel estimator of the density fX . The data-driven 
hoi
e of thebandwidth, leading to adaptive estimators, is for example studied more a

urately by Fan andGijbels (1992) (Example E1), Härdle and Tsybakov (1997) (Examples E1 and E2), and Neumann(1994) (Example E2) who provide asymptoti
 results, for methods also sometimes involving lo
alpolynomials.At the same time, the expansion of s onto orthogonal bases has been used: among manyauthors, we 
an quote Golubev and Nussbaum (1992) for spline bases, Antoniadis et al. (1997)(Example E1) and Ho�mann (1999) (Example E2) for wavelet bases, and Efromovi
h (1999)(Fourier basis). Nonasymptoti
 risk bounds are �rst derived for this kind of estimates, usually bymodel sele
tion, via the minimization of a penalized least-squares 
riterion (see Wegkamp 2003,Baraud 2002, and Birgé 2004 for Example E1, and Comte and Rozenhol
 2002 for Example E2).Among the aforementioned works, the ratio form of kernel estimates may be seen as a draw-ba
k, sin
e it 
an be instable when a "hole" o

urs in the data. Moreover, two bandwidths must



NONPARAMETRIC WARPED KERNEL ESTIMATORS 3be sele
ted, one for the numerator and one for the denominator (from the theoreti
al point ofview, there are no reason to 
hoose the same bandwidths). The re
ent Goldenshluger-Lepskimethod has only been investigated re
ently by Chi
hignoud (2011a,b), for spe
i�
 frameworks(uniform design in additive regression, deterministi
 design and uniform noise in multipli
ativeregression). Moreover, least-squares 
ontrasts provide expli
it estimators under a matrix invert-ibility requirement (most of the time impli
itly).This motivates the investigation of "warping" methods to build estimators whi
h satisfy pow-erful nonasymptoti
 risk bounds while being simple to implement.For the third and fourth examples, related to reliability and survival analysis, X is a lifetime,and thus, A is equal to R+. Let also Z be a positive random variable of interest, whi
h isunobserved.Example E3: Interval 
ensoring, Case 1. In this 
ase, the 
ouple (X,Y ) is known as
urrent-status data. The only knowledge about the survival time of interest Z is its 
urrentstatus at time of examination X. Thus, Y = 1Z≤X indi
ates whether Z o

urs before X or not.Su
h data naturally arise in infe
tious disease study for example, when the time Z of infe
tionis unobserved, and a test is 
arried out at time X. The fun
tion s of interest is the 
umulativedistribution fun
tion of Z: s = FZ . Hereafter, we assume that fX is positive on its support
A = R+.In this model, not many investigations are 
on
erned with adaptivity, sin
e it is the unusualoptimal rate of 
onvergen
e (n−1/3) that has diverted attention for the last de
ades. Thus,most results are devoted to the Non-Parametri
 Maximum Likelihood Estimator (NPMLE) (seeGroeneboom and Wellner 1992; van de Geer 1993; Groeneboom 1995; Hudgens et al. 2007, forintan
e). Birgé (1999) built an histogram estimator, whi
h is very simple but not adaptive.A review is provided by Jewell and van der Laan (2004). Adaptivity has been more re
entlydis
ussed by Ma and Kosorok (2006), who sele
ted the regularity parameter of the NPMLE andof a least-squares estimator, and by Brunel and Comte (2009) or Plan
ade (2011), who 
onsideredmodel sele
tion devi
es to 
hoose regression-type estimators whi
h also require a matrix inversion.Example E4: Hazard rate estimation from right 
ensored-data. Here, X is the minimumof the variable of interest Z and of a 
ensoring time C, whi
h is a nonnegative random variable(like Z), supposed to be independent of the lifetime Z. We also know whether Z is 
ensoredor not. Then, we have X = C ∧ Z, and Y = 1Z≤C . Right 
ensoring o

urs when individuals,in
luded in a 
lini
al trial, are not observed until the end, for instan
e. The fun
tion s of interestis the hazard rate fun
tion:

s(x) =
fZ(x)

1 − FZ(x)whi
h is the risk of death at time x, given that the patient is alive until x (also, this is thederivative of the log-survival fun
tion). We assume both that FZ(x) < 1 and FC(x) < 1 for all
x ∈ A = R+.We reasonably 
annot quote all the estimators and results provided by the previous stud-ies. Let us only re
all that a lot of estimators use the well-known Kaplan-Meier estimate ofthe survival fun
tion (Kaplan and Meier, 1958), some others are based on the estimation ofthe 
umulative hazard with the Nelson-Aalen fun
tion (Nelson, 1972), and others use a di�er-ent de
omposition of s, using the "subdensity" fun
tion. Di�erent methods are proposed forea
h approa
h: kernel methods, with asymptoti
 results (Tanner and Wong, 1983; Müller andWang, 1994; Patil, 1993), orthogonal-serie de
omposition and model sele
tion, leading both to



4 NONPARAMETRIC WARPED KERNEL ESTIMATORSnonasymptoti
 and asymptoti
 risk bounds (Antoniadis et al., 1999; Brunel and Comte, 2005,2008; Reynaud-Bouret, 2006; Akakpo and Durot, 2010).A summary of these four frameworks 
an be found in Table 1. Finally, we extend at the end ofthe paper the method to a last example: the estimation of a 
onditional density, an example ofbivariate fun
tional estimation problem. The spe
i�
al setting and referen
es will be dis
ussedlater.1.3. The "warping" method. Let us present the sket
h of the method brie�y. Our goal is toestimate the real-valued fun
tion s on the set A, from n 
ouples of observations (Xi, Yi)i∈{1,...,n},distributed like (X,Y ) a

ording to Examples E1 to E4 previously des
ribed. We aim at provid-ing adaptive kernel estimators in ea
h of the previous framework, with simple expression.To do so, we �rst 
onsider an auxiliary fun
tion g de�ned by(1) g = s ◦ φ−1
X : φX(A) → R,where φ−1

X is the inverse of a fun
tion φX , whi
h is 
alled the "warping" fun
tion, and dependson the example:
• for Examples E1, E2, and E3, φX is the 
umulative distribution fun
tion (
.d.f.) of thevariable X. Sin
e we assume that the density fX is stri
tly nonnegative on A, φX admitsan inverse and φX(A) = (0; 1).
• for Example E4, we 
onsider for φX a fun
tion denoted by φ, whi
h is a primitive ofthe survival fun
tion 1 − FX , that is to say φ : x 7→

∫ x
0 (1 − FX(t))dt. We also assume

FX(t) < 1 for all t ≥ 0, thus φ admits an inverse too and φX(A) = R+.These 
hoi
es will be justi�ed below, see Identity (3).In a �rst step, we will build a 
olle
tion of 
lassi
al kernel estimators for the auxiliary fun
tion
g. In a se
ond step, we will sele
t ĝ, one of these kernel estimators, using the re
ent GL method,developed for density estimation initially (see Goldenshluger and Lepski 2011). Finally, a

ordingto De�nition (1), we will de�ne an estimator for the target s by

ŝ = ĝ ◦ φX or ŝ = ĝ ◦ φ̂X ,where φ̂X is an empiri
al 
ounterpart for φX , sin
e φX is unknown, in general.This warping devi
e, whi
h we sum up in Table 1, has already been used in the regressionframework (namely Example E1) by Stute (1984) who studied more a

uratly the kernel esti-mator of Yang (1981), and more re
ently by Kerkya
harian and Pi
ard (2004) and Pham Ngo
(2009), who adapted this to proje
tion estimation.The novelty of our 
ontribution lies in the 
ombination of the warping strategy and the GLmethod, to deal with several estimation settings simultaneously: our building estimators allows usto derive nonasymptoti
 adaptive results. Ora
le-type inequalities are provided for the M.I.S.E.,and 
onvergen
e rates are dedu
ed under regularity assumptions on the fun
tion g. Moreover,the simple expression of the estimates enables us to implement them easily, and to illustrate thetheoreti
al results with promising simulation experiments.Hereafter, for the sake of 
larity, we fo
us on the 
ase of known 
.d.f. FX , like in Pham Ngo
(2009): the 
ase of an unknown 
.d.f. FX requires further te
hni
alities, only due to the naturalplug-in of an empiri
al version for φX , even if the theoreti
al results are similar. It has also beenwidely detailed in Chagny (2011, 2012), for warped-bases estimators of a regression fun
tion andof a 
onditional density respe
tively. Therefore, in the sequel, we prefer to 
on
entrate on thewide range of examples whi
h are 
overed by the method, from 
lassi
al regression frameworks



NONPARAMETRIC WARPED KERNEL ESTIMATORS 5Example Target fun
tion φXE1 Y = s(X) + ε s FXE2 Y = σ(X)ε σ2 FXE3 (X,1Z≤X) FZ FXE4 (X = Z ∧ C,1Z≤C) fZ

1−FZ
φ : x 7→

∫ x
0 (1 − FX(t))dtTable 1. Summary of the studied examples and of the "warping" fun
tion usedin ea
h 
ase.to bivariate fun
tional estimation (
onditional density), getting also through survival analysisproblems.1.4. Organization of the paper. We present in Se
tion 2 the notations, the 
olle
tion of kernelestimators and the data-driven bandwidth sele
tion leading to a unique estimator. In Se
tion 3,we investigate the performan
e of this estimator: we study its global risk, state our main resultsand 
omment them. Se
tion 4 is devoted to a short simulation study, to illustrate the methodin the Examples E1 and E4. We provide in Se
tion 5 an extension of the method to 
onditionaldensity estimation. Finally, the proofs are gathered in Se
tion 6.2. A general method of estimation2.1. Notations. Throughout the arti
le, we 
onsider fun
tions whi
h are integrable with respe
tto the Lebesgue measure or to a weighted Lebesgue measure. For 0 < p ≤ ∞, we denote by

Lp(B) the set of the real-valued and measurable fun
tions t on a borelian subset B ⊂ R, su
hthat the (quasi-)norm
‖t‖Lp(B) =

{

∫

B |t(u)|pdu if 0 < p ≤ ∞
supu∈B |t(u)| if p = ∞is �nite. If p = 2, 〈., .〉B is the usual s
alar produ
t of the Hilbert spa
e L2(B). The following

L2− norm will also be useful, sin
e it is the natural loss fun
tion of the problem:(2) ‖t‖φ′

X
=

∫

A
t2(x)φ′X(x)dx,and L2(A,φ′X ) is the spa
e of fun
tions t for whi
h the quantity (2) exists and is �nite. Thisnorm leads to another 
orresponding s
alar produ
t 〈., .〉φ′

X
. Noti
e besides that the followinglinks hold between this spa
e and the 
lassi
al L2−spa
e previously de�ned: if t1, t2 belongs to

L2(A,φ′X), we 
ompute, using F ′
X = fX ,

‖t1 ◦ φX‖φ′

X
= ‖t1‖L2(φX (A)), 〈t1 ◦ φX , t2 ◦ φX〉φ′

X
= 〈t1, t2〉φX(A).The 
onvolution produ
t of two fun
tions t1 and t2 is t1 ⋆ t2 : x 7→
∫

R
t1(x− x′)t2(x′)dx′. Last,the notation x+, for a real number x, means max(x, 0).



6 NONPARAMETRIC WARPED KERNEL ESTIMATORSHereafter, K is a kernel, that is a fun
tion su
h that ∫
R
K(u)du = 1, and is assumed to belongto L2(R). We also denote by Hn a �nite 
olle
tion of nonnegative real numbers, the so-
alledbandwidths. Its 
ardinality may depend on the sample size n. Classi
ally, for ea
h h ∈ Hn, Kh isthe fun
tion u 7→ K(u/h)/h. We easily get ∫

R
Kh(u)du = 1, ‖Kh‖L1(R) = ‖K‖L1(R), and �nally

‖Kh‖L2(R) = ‖K‖L2(R)/h.2.2. Colle
tion of warped kernel estimators. Throughout the se
tion, we �x a bandwidth
h ∈ Hn. We �rst deal with the transformed data (φX(Xi), Yi)i∈{1,...,n}, to estimate the auxiliaryfun
tion g de�ned by (1). The 
ornerstone of the method is that for all u ∈ φX(A),

E [θ(Y )Kh(u− φX(X)] = Kh ⋆
(

g1φX(A)

)

(u),(3) with θ(Y ) =

{

Y for Examples E1, E3, and E4,
Y 2 for Example E2.This identity explains the 
hoi
es of the warping fun
tion φX , introdu
ed in Se
tion 1.3. Forinstan
e, let us prove it in Example E4. The proof of Equality (3) for the other 
ases is postponedto Se
tion 6.1. We start with

E [Y Kh(u− φX(X))] = E [1Z≤CKh(u− φ(Z ∧C)] = E [1Z≤CKh(u− φ(Z)] ,

=

∫

R+×R+

1z≤cKh (u− φ(z)) fC(c)fZ(z)dzdc,

=

∫

R+

Kh (u− φ(z)) fZ(z)

(
∫

R

1x≤cfC(c)dc

)

dz,

=

∫

R+

Kh (u− φ(z)) fZ(z) (1 − FC(z)) dz.Then, we set u′ = φ(z). The integral be
omes
E [Y Kh(u− φX(X))] =

∫

R+

Kh

(

u− u′
)

fZ ◦ φ−1(u′) (1 − FC) ◦ φ−1(u′)
du′

(1 − FX) ◦ φ−1(u′)
.Sin
e Z and C are independent, (1 − FX) = (1 − FC)(1 − FZ), and 
onsequently

E [Y Kh(u− φX(X))] =

∫

R+

Kh

(

u− u′
)

fZ ◦ φ−1(u′)
du′

(1 − FZ) ◦ φ−1(u′)
,

=

∫

R+

Kh

(

u− u′
)

s ◦ φ−1(u′)du′,

=

∫

R+

Kh

(

u− u′
)

g(u′)du′,

= Kh ⋆
(

g1R+

)

(u).A 
onsequen
e of Equality (3) is that we de�ne a natural estimator for g by
∀u ∈ φX(A), ĝh(u) =

1

n

n
∑

i=1

θ(Yi)Kh (u− φX(Xi)) .Sin
e the target fun
tion s 
an be written as s = g ◦ φX , we also set ŝh = ĝh ◦ φX . At thisstage of the pro
edure, the interest lies in the simple expression of the estimators ŝh, h ∈ Hn: itinvolves no ratio, one kernel only, and thus only one bandwidth to sele
t.



NONPARAMETRIC WARPED KERNEL ESTIMATORS 72.3. Bandwidth automati
-sele
tion. A 
olle
tion of estimators (ŝh)h∈Hn
is available now,and 
lassi
ally, the next question is the 
hoi
e of the bandwidth. As well as being data-driven, thesele
tion should lead to an adaptive estimator: thus our problem is to build a statisti
al pro
edurethat requires no prior knowledge on s but whose risk behaves almost like the minimum of therisk of the estimators in the 
olle
tion, that is to say almost as the ora
le bandwidth(4) h̃ := arg min

h∈Hn

E[‖s− ŝh‖2
φ′

X
].In fa
t, the quadrati
 risk weighted by the derivative of the warping fun
tion φX is the natural
riterion in our setting. Therefore, it requires that the fun
tion s belongs to L2(A,φ′X), and weassume it from now on:

• for Examples E1 to E3, φ′X = fX , and this 
ondition is ful�lled as soon as s is boundedon the set A,
• for Example E4, where φ′X is the survival fun
tion of the variable Z, we 
an 
he
k thatthe integrability 
ondition on s is veri�ed for all 
lassi
al distributions for C and Z insurvival analysis (su
h as exponential, Weibull, Gamma...).In order to explain what 
ould be a "good" sele
tion, we evaluate the performan
e of ŝh forea
h h, by giving an upper-bound for its weighted risk, that is for the 
lassi
al quadrati
 risk of

g: E[‖ŝh − s‖2
φ′

X
] = E[‖ĝh − g‖2

L2(φX(A))]. For that purpose, we introdu
e the approximation of gby the kernel Kh, gh = Kh ⋆ (g1φX (A)). It is �rst well known that
E

[

‖ŝh − s‖2
φ′

X

]

= ‖g − gh‖2
L2(φX(A)) + E

[

‖gh − ĝh‖2
L2(φX(A))

]

,(5)sin
e E[ĝh(u)] = gh(u), thanks to (3). If the �rst term in the right-hand side of (5) de
reaseswhen h goes to zero, the opposite holds for the se
ond term: in fa
t, we bound it as follows:
E

[

‖gh − ĝh‖2
L2(φX(A))

]

= E

[

∫

φX(A)
(ĝh(u) − E [ĝh(u)])2 du

]

=

∫

φX(A)
Var (ĝh(u)) du,and for ea
h u ∈ φX(A),Var (ĝh(u)) =

1

n
Var (θ(Y1)Kh (u− φX(X1))) ≤

1

n
E
[

θ2(Y1)K
2
h (u− φX(X1))

]

.Therefore, the varian
e-term grows when h de
reases:
E

[

‖gh − ĝh‖2
L2(φX(A))

]

≤ E
[

θ2(Y1)
]

‖K‖2
L2(R)

1

nh
.Thus, we re
over that 
hoosing a bandwidth h whi
h realizes a good 
ompromise between theapproximation term and the estimation (or varian
e) term leads to an estimator with small risk.This aim 
an be a
hieved with the observed data only, with a method des
ribed in Goldensh-luger and Lepski (2011). The idea is the following: if the bias and the varian
e term are unknown(sin
e they depend on the unknown s), we repla
e them by empiri
al versions. We de�ne �rst(6) ∀h ∈ Hn, V (h) = κ

(

1 + ‖K‖2
L1(R)

)

‖K‖2
L2(R)E

[

θ2(Y1)
] 1

nh
,whi
h 
orresponds to the upper-bound for the varian
e term. The 
onstant κ is purely numeri
al,and its value will be spe
i�ed in the proofs. Then, with a remark already used by Devroye



8 NONPARAMETRIC WARPED KERNEL ESTIMATORSExample s φX ŝ(x)E1 Y = s(X) + ε s FX
1

n

n
∑

i=1

YiKĥ(FX(x) − FX(Xi))E2 Y = σ(X)ε σ2 FX
1

n

n
∑

i=1

Y 2
i Kĥ(FX (x) − FX(Xi))E3 (X,1Z≤X ) FZ FX

1

n

n
∑

i=1

1Zi≤Xi
Kĥ(FX(x) − FX(Xi))E4 (X = Z ∧ C,1Z≤C) fZ

1−FZ
φ

1

n

n
∑

i=1

1Zi≤Ci
Kĥ(φ(x) − φ(Xi))Table 2. Summary of the estimators in the four studied statisti
al examples,des
ribed in Se
tion 1.2(1989), we introdu
e the auxiliary estimators involving two kernels: ĝh,h′ = Kh′ ⋆ (ĝh1φX(A)),and, a

ordingly, ŝh,h′ = ĝh,h′ ◦ φX . We set(7) ∀h ∈ Hn, A(h) = max

h′∈Hn

{

‖ŝh,h′ − ŝh′‖2
φ′

X
− V (h′)

}

+
.It is shown in the proof that A has the same order as the bias-term (see Lemma 6). Then thesele
ted bandwidth ĥ and the 
orresponding warped kernel estimator are(8) ĥ = arg min

h∈Hn

{A(h) + V (h)} , ŝ = ŝĥ.The formula of the estimators 
orresponding to ea
h 
onsidered example are summarized in Table2. Let us highlight the fa
t that the sele
ted bandwidth ĥ does not depend on the fun
tion s tobe estimated: it is totally data-driven. A
tually, in Examples E3 and E4, E[θ2(Y1)] is boundedby 1, and 
an be repla
ed by 1 in the de�nition of V . For the two other examples (additive andmultipli
ative regression), this expe
tation 
an easily be repla
ed in pra
ti
e and theory by the
orresponding empiri
al mean (see Brunel and Comte 2005, proof of Theorem 3.4 p.465).3. Theoreti
al results3.1. Assumptions and smoothness 
lasses. Now we are in position to state the result 
on-
erning the adaptive estimators built in the four examples.To set nonasymptoti
 risk bound, we require only one or two assumptions, depending on theexample we 
onsider: one about the bandwidth 
olle
tion, whi
h should not be too large and onewhi
h is 
on
erned with the distribution of the errors in the two regression settings (ExamplesE1 and E2).



NONPARAMETRIC WARPED KERNEL ESTIMATORS 9Assumption (Bα0):(i) For any 
onstant κ0 > 0, there exists C0 > 0, su
h that ∑
h∈Hn

exp
(

−κ0

h

)

≤ C0(κ0),(ii) There exists α0 > 0 su
h that ∑
h∈Hn

1

h
≤ k0n

α0 , for a 
onstant k0 ≥ 0.Assumption (Mp): With α0 �xed by Assumption (Bα0),(i) There exists p > 2α0, su
h that E[|ε1|2+p] <∞,(ii) There exists p > 4α0, su
h that E[|ε1|4+p] <∞.Remark 1. Classi
al 
olle
tions of bandwidths satisfy Assumption (Bα0). For instan
e:(1) Hn,1 =
{

k−1, k = 1, . . . , ϕ(n)
}, for whi
h Assumption (B2) is ful�lled if ϕ(n) = n, or

(B1) if ϕ(n) =
√
n.(2) Hn,2 =

{

2−k, k = 1, . . . , [ln(n)/ ln(2)]
}, for whi
h Assumption (B1) is ful�lled.Noti
e also that the smaller α0 in Assumption (Bα0), the less restri
tive the integrability 
on-straint p on the noise moments in Assumption (Mp).To dedu
e rates of 
onvergen
e from the nonasymptoti
 results, we will require the followingadditional assumption.Assumption (Kl): The kernel K is of order l, that is to say, for all j ∈ {1, . . . , l + 1}, thefun
tion x 7→ xjK(x) is integrable, and for 1 ≤ j ≤ l, ∫

R
xjK(x)dx = 0.Moreover, for 
onvergen
e rates, smoothness 
lasses must be de�ned to quantify the bias termof the de
omposition (5): ‖gh−g‖2. For estimation in Examples E1 to E3, we 
onsider fun
tions

t belonging to Hölder 
lasses on an interval B, denoted by H(β,L,B), β,L > 0: this means that
t admits derivatives up to order [β] (where [β] is the largest integer less than β), and(9) ∀x, x′ ∈ B,

∣

∣

∣
t[β](x) − t[β](x′)

∣

∣

∣
≤ L|x− x′|β−[β].This property is relevant for the bound on the integrated bias on 
ompa
t sets, but not on R+as required for Example E4. The fun
tional spa
es asso
iated to this 
ase are Nikol'skii 
lassesof fun
tions, N2(β,L): a fun
tion t : R 7→ R belongs to N2(β,L), if its admits derivatives up toorder [β] and

∀x ∈ R,
∥

∥

∥
τxt

[β] − t[β]
∥

∥

∥

L2(R)
≤ L|x|β−[β],where τx is the translation operator by x. Both of these spa
es are standard in kernel estimation:see Tsybakov (2009), Goldenshluger and Lepski (2011), and also Nikol′ski�� (1975) for instan
e.3.2. Risk bounds. We 
an prove the following result.Theorem 1. Assumption (Bα0) is supposed to be ful�lled, for an α0 > 0 and also Assumption

(Mp) for Examples E1 and E2. We also assume that the fun
tion s is bounded on the set A.Then there exist three 
onstants cl, l = 1, 2, 3, su
h that the following inequality holds for theestimator ŝ de�ned by (8):(10) E

[

‖ŝ− s‖2
φ′

X

]

≤ min
h∈Hn

{

c1 ‖s− sh‖2
φ′

X
+ c2

E
[

θ2(Y1)
]

‖K‖2
L2(R)

nh

}

+
c3
n
.The two 
onstants c1 and c2 depend only on ‖K‖L1(R), and c3 depends on ‖s‖L∞(A), ‖K‖L1(R)and ‖K‖L2(R) in Examples E3 and E4, and also on E[ε21], E[ε2+p

1 ] and E[s2(X1)] for Example E1or on E[ε41], E[ε4+p
1 ] and E[σ4(X1)] for Example E2.



10 NONPARAMETRIC WARPED KERNEL ESTIMATORSLet us 
omment and dis
uss the result.
• About the meaning of Inequality (10). It is an ora
le-type inequality: the sele
tedbandwidth ĥ is performing as well as the unknown ora
le (4), up to some multipli
ative
onstants c1 and c2, and up to a remainding term of order 1/n, whi
h is negligible.A
tually, it follows from (10) that the adaptive estimators ŝ, in Examples E1 to E4,automati
ally make the squared-bias/varian
e 
ompromise.
• About the assumptions of Theorem 1. The result holds for any sample size nand thus, is nonasymptoti
. There is no assumption on the approximation properties ofthe kernel K, that is no assumption on its regularity and moments, 
ontrary to mostof asymptoti
 results for kernel estimators. This is the strength of the GL method, inthe simple way we apply it. Espe
ially in Example E1 (additive regression), the riskbound 
an thus be 
onsidered as an improvement of the results of Stute (1986), whoprovides asymptoti
 normality for a warped kernel estimate, with well-
hosen kernel andbandsequen
e (but not adaptive).
• About the 
ase of unknown φX . The previous method is applied in the generalframework of unknown φX (that is to say the 
ase of unknown FX) by using a naturalplug-in devi
e: the 
.d.f. FX 
an be repla
ed by its empiri
al 
ounterpart in all o

ur-ren
es. Obviously, the adaptive result is the same, under stronger assumptions on thebandwidth 
olle
tion Hn. However the proof in this 
ase requires mu
h more te
hni-
alities than it may seem. Therefore we fo
us on the theoreti
al 
ase of known FX , to
on
entrate on the wide range of examples that the method 
overs. The substitution hasalready been widely detailed for regression estimation and 
onditional density estimationusing warped bases: we refer the reader to Chagny (2011, 2012).The "ora
le-approa
h" also leads to 
onvergen
e rate for the risk, under regularity assumptionsfor the auxiliary fun
tion g.Corollary 1. Let β and L be two nonnegative numbers. Assume that the fun
tion g satis�es

g(0) = g(1), and de�ne g̃ = g1[0;1] on R. Consider that g̃ belongs to Hölder 
lass H(β,L), inExamples E1 to E3, or to Nikol'skii spa
e N2(β,L) in Example E4. Assume that (Kl) for l = [β],and (Bα0), for an α0 > 0, holds. Assume also that (Mp) is ful�lled for Examples E1 and E2.Then,(11) E

[

‖ŝ− s‖2
φ′

X

]

≤ Cn
− 2β

2β+1 ,where C is a 
onstant whi
h does not depend on n and β.We re
over the 
lassi
al optimal rate in nonparametri
 estimation. Noti
e that the bounds (10)and (11) we provide are global ones: they hold for the MISE, with global bandwidth sele
tion.Here, adaptation has no pri
e: the rate of 
onvergen
e is the one found for the bias term, withoutdata-driven sele
tion of the bandwidth, just by minimizing the right-hand side of (5). On the
ontrary, it is well known that adaptation 
osts a logarithm fa
tor for pointwise sele
tion. Thisexplains why we fo
us on global sele
tion, whi
h is su�
ient for our purpose (as it is shown inthe previous theorem, and in the simulation study below).4. IllustrationTo illustrate the pro
edure, we fo
us only on two of the four examples: the 
lassi
al additiveregression (Example E1), and the estimation of 
.d.f. under interval 
ensoring 
ase I. In ea
h
ase, we propose to 
ompare the warped kernel strategy, whi
h we denote by WK in this se
tion,



NONPARAMETRIC WARPED KERNEL ESTIMATORS 11with another adaptive method: a regression type one, based on the minimization of a penalizedleast-squares 
ontrast. We denote it by LS.4.1. Implementation of the warped-kernel estimators. The theoreti
al study allows the
hoi
e of several kernels and bandwidth 
olle
tion. For pra
ti
al purpose, we 
onsider the Gauss-ian kernel, K : x 7→ e−x2/2/
√

2π, whi
h satis�es Assumption (K1). It has the advantage of havingsimple 
onvolution-produ
ts:(12) ∀h, h′ > 0, Kh ⋆ Kh′ = K√
h2+h′2 .The experiment is 
ondu
ted with the dyadi
 
olle
tion Hn,2 de�ned by Remark 1. Noti
e thatthe larger 
olle
tion Hn,1 has also been tested: sin
e it does not really improve the results butin
reases the 
omputation time, we only keep the other 
olle
tion. Besides, the simulations areperformed in the general 
ase of unknown φX , whi
h equals FX in Examples E1 and E3. Werepla
e ea
h of its o

urren
es by the empiri
al 
.d.f. F̂n = (1/n)

∑n
i=1 1[Xi;∞[. Therefore, theestimator is

ŝ : x 7→ 1

n

n
∑

i=1

θ(Yi)Kĥ(F̂n(x) − F̂n(Xi)).Then, the estimation pro
edure 
an be de
omposed in some steps:
• Simulate a data sample (Xi, Yi), i = 1, . . . , n, �tting Example E1 or E3.
• Compute V (h) and A(h) for ea
h h ∈ Hn,1.

• For V (h): we have 
alibrated the numeri
al κ involved in (6). A lower bound for itstheoreti
al value is provided by the proof. However, we keep in mind that this value isvery pessimisti
 due to rough upper-bounds (for the sake of 
larity). Thus, a pra
ti
al
alibration is required, like in most model sele
tion devi
es. Sin
e 
lassi
al te
hniquessu
h as the slope heuristi
 are not 
urrently well developped for the GL method, weadjust κ prior to the 
omparison with the other estimates: we look at the quadrati
 riskwith respe
t to the value of κ, and 
hoose one of the values leading to reasonable risk.
• For A(h): thanks to (12), the auxiliary estimates are easily 
omputed: ŝh,h′ = ŝ√h2+h′2 .The L2−norm is then approximated by a Riemann sum:

‖ŝh,h′ − ŝh′‖2
φ′

X
= ‖ĝh,h′ − ĝh′‖2

L2(φX(A)) ≈
1

K

K
∑

k=1

(

ĝh,h′(uk) − ĝh′(uk)
)2
,where K = 50, and (uk)k are grid points evenly distributed a
ross φX(A).

• Sele
t ĥ su
h that A(h) + V (h) is minimum.
• Compute ŝĥ.4.2. Example E1: additive regression. We 
ompare the warped kernel method (WK) withthe strategy from Baraud (2002): the model sele
tion devi
e is designed with a penalized least-squares 
ontrast, leading to an adaptive proje
tion estimator, developed in an orthogonal basis of
L2(A). The experiment is 
arried out with the Matlab toolbox FY3P, written by Yves Rozenhol
,and available on his web page http://www.math-info.univ-paris5.fr/ rozen/. We 
hoose a regularpie
ewise polynomial basis, with degrees 
hosen in an adaptive way. Sin
e we use a kernel withonly one vanishing moment, the 
omparison is fair if we 
onsider polynomials with degrees equalto or less than 1, so that the bias of the least-squares estimator has the same order than the oneof the warped-kernel estimate. We denote by LS1 the resulting estimator. However, as shownbelow, we will see that the warped-kernel generally outperforms the least-square, even if we usepolynomials with degree at most 2 (LS2). We also experiment the Fourier basis, but the resultsare not as good as the polynomial basis. Thus, we do not mention the values.
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(a) (b) (
) (d)Figure 1. Estimation in Example E1, with true regression fun
tion s3, designdistribution γ(4, 0.08), and n = 1000. (a) points: data (Xi, Yi)i, thi
k line: truefun
tion s3. (b)-(
)-(d) beams of 20 estimators built from i.i.d. sample (thin lines)versus true fun
tion (thi
k line): warped kernel estimators (subplot (b)), least-squares estimator in pie
ewise polynomial bases with degree at most 1 (subplot(
)) or 2 (subplot (d)).The pro
edure is applied for di�erent regression fun
tions, design and noise. We fo
us on thethree following regression fun
tions
s1 : x 7→ x(x− 1)(x− 0.6)
s2 : x 7→ − exp(−200(x − 0.1)2) − exp(−200(x − 0.9)2) + 1
s3 : x 7→ cos(4πx) + exp(−x2)The in�uen
e of the design is explored through four distributions:

• U[0;1], the uniform distribution on the interval [0; 1],
• γ(4, 0.08), the Gamma distribution, with parameters 4 and 0.08 (0.08 is the s
ale param-eter),
• N (0.5, 0.01), the Gaussian distribution with mean 0.5 and varian
e 0.01,
• BN a bimodal Gaussian distribution, with density x 7→ c(exp(−200(x − 0.05)2) +

exp(−200(x − 0.95)2)) (c is a 
onstant adjusted to obtain a density fun
tion).We also test the sensibility of the method to the noise distribution: 
ontrary to the underlyingdesign distribution, it does not seem to a�e
t the results. Thus, we present the simulation fora Gaussian 
entered noise, with varian
e σ2. We take into a

ount the signal-to-noise ratio:therefore, the value of σ is 
hosen in ea
h model su
h that the ratio of the varian
e of the signal(Var(s(X1))) over the varian
e of the noise (Var(ε1)) approximately equals 2.Figures 1 and 2 plot the generated data-sets and the fun
tion to estimate, and illustrate thevisual quality of the re
onstru
tion: beams of estimators (WK, LS1, and LS2) are presented.Figure 1 shows a regular 
ase, while Figure 2 aims at depi
ting the 
ase where a hole o

ursin the design density: the estimator built with warped kernel behaves still 
orre
tly, even if thedata are very inhomogeneous.We also perform a study of the risk whi
h is reported in Table 3, for the sample size n =
60, 200, 500 and 1000. The MISE 
riterion is retained. To be more pre
ise, it is 
omputed over
J sample repli
ations, and the quadrati
 norm is approximated as follows:

MISEj =
b− a

N

N
∑

k=1

(s̃(xk) − s(xk))
2 ,where s̃ stands for one of the estimators, b is the quantile of order 95% of the Xi and a is thequantile of order 5%. The (xk)k=1,...,N are the sample points falling in [a; b]. Finally, the valuesdisplayed in Table 3 are the mean of the previous values for j ∈ {1, . . . , J = 200}. In 56% of the
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(a) (b) (
) (d)Figure 2. Estimation in Example E1, with true regression fun
tion s2, designdistribution BN , and n = 1000. (a) points: data (Xi, Yi)i, thi
k line: truefun
tion s2. (b)-(
)-(d) beams of 20 estimators built from i.i.d. sample (thin lines)versus true fun
tion (thi
k line): warped kernel estimators (subplot (b)), least-squares estimator in pie
ewise polynomial bases with degree at most 1 (subplot(
)) or 2 (subplot (d)).examples, the risks of the warped-kernel estimator are smaller than the ones of the least-squaresestimator, in pie
ewise polynomials basis with degrees at most 2 (LS2). Besides, if we 
onsiderthe 
omparison with LS1, whi
h is more fair as explained above, the WK estimators give betterresults in 77% of the 
ases.4.3. Example E3: Interval 
ensoring, 
ase 1. The same 
omparison is 
arried out for theestimation of the 
.d.f. under interval 
ensoring. The adaptive least-squares estimate is providedby Brunel and Comte (2009), and the same Matlab toolbox is used for its implementation: infa
t, in this statisti
al model, re
all that the target fun
tion 
an be seen as a regression fun
tion:
s(x) = P(Z ≤ x) = E[1Z≤x|X = x] = E[Y |X].We 
onsider di�erent models for generating the data. We have 
alibrated the estimation set
A, su
h that most of the data belong to this interval, as it is done in Brunel and Comte (2009).We shorten "follow the distribution" by the symbol "∼".

• M1: X ∼ U[0;1], and Z ∼ U[0;1], A = [0; 1] (for instan
e, the target fun
tion is FZ : x 7→ x),
• M2: X ∼ U[0;1], and Z ∼ χ2(1) (Chi-squared distribution with 1 degree of freedom),
A = [0; 1],

• M3: X ∼ E(1) (exponential distribution with mean 1), and Z ∼ χ2(1), A = [0; 1.2],
• M4: X ∼ β(4, 6) (Beta distribution of parameter (4,6)), Z ∼ β(4, 8), A = [0; 0.5],
• M5: X ∼ β(4, 6), Z ∼ E(10) (exponential distribution with mean 0.1), A = [0; 0.5],
• M6: X ∼ γ(4, 0.08), Z ∼ E(10), A = [0, 0.5],
• M7: X ∼ E(0.1), Z ∼ γ(4, 3), A = [1; 23].The �rst two models, and the fourth, were also used by Brunel and Comte (2009). All thesemodels allow us to investigate thoroughly the sensibility of the method to the distribution of theexamination time X, and to the range of the estimation interval.Figure 3 shows the smoothness of warped-kernel estimates. We also explore the di�eren
ebetween the estimators by 
omputing the MISE for the di�erent models. Table 4 reveals thatthe warped-kernel estimates 
an advantageously be used as soon as the design Xi has not auniform distribution: it always outperform the least-squares estimators in these 
ases.To 
on
lude, these results must be put into perspe
tives: for Example E1 as mu
h as Exam-ple E3, more 
lasses of fun
tions and models should be studied to 
on�rm the interest of thewarped-kernel strategy, but it is beyond the s
ope of the paper. We just aim at illustrating thatour estimators 
an stand 
omparison with other adaptive methods, in various models from the
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s X σ n= 60 200 500 1000 Method
s1 U[0;1]

√
.0006 0.3719 0.1341 0.1957 0.2454 WK0.3892 0.1293 0.0681 0.0446 LS2

γ(4, 0.08) 5.10−5 0.0052 0.0033 0.0004 0.0003 WK0.0097 0.004 0.0017 0.0012 LS2
N (0.5, 0.01) 0.011 0.0049 0.0020 0.0008 0.0005 WK0.0020 0.0012 0.0010 0.0008 LS2
BN 0.022 0.524 0.422 0.267 0.205 WK0.166 0.054 0.038 0.029 LS2

s2 U[0;1] 0.17 16.35 6.791 3.51 0.837 WK33.212 2.058 0.691 0.407 LS2
γ(4, 0.08) 0.08 1.885 0.354 0.204 0.147 WK4.047 0.801 0.552 0.429 LS2
N (0.5, 0.01) 0.01 0.0619 0.0186 0.0079 0.0006 WK0.0078 0.0014 0.0001 0.0001 LS2
BN 0.18 12.052 5.279 1.698 1.041 WK52.668 11.009 5.817 1.215 LS2

s3 U[0;1] 0.35 28.03 10.55 4.63 2.747 WK125.055 45.298 12.607 5.713 LS131.073 7.477 4.199 3.319 LS2
γ(4, 0.08) 0.44 19.615 6.283 3.869 3.309 WK41.261 13.34 4.808 3.727 LS123.213 5.549 2.059 0.86 LS2
N (0.5, 0.01) 0.44 6.341 2.452 1.28 0.861 WK10.453 3.961 2.098 1.078 LS13.753 1.386 1.028 0.644 LS2
BN 0.32 44.381 13.618 9.637 7.928 WK182.525 58.787 24.229 12.317 LS166.663 30.377 8.521 4.574 LS2Table 3. Values of MISE ×1000 averaged over 200 samples, for the estimatorsof the regression fun
tion (Example E1), built with the warped kernel method(WK) or the least-squares methods, with pie
ewise polynomials of degree at most1 or 2 (LS1 or LS2).
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(a) (b) (
)Figure 3. Estimation in Example E3, in model M7, and n = 1000. (a)-(b)-(
)beams of 20 estimators built from i.i.d. sample (thin lines) versus true fun
tion(thi
k line): warped kernel estimators (subplot (a)), least-squares estimator inpie
ewise polynomial bases with degree at most 1 (subplot (b)) or 2 (subplot (
)).Model X Z [a;b℄ n= 60 200 500 1000 Method1 U[0;1] U[0;1] [0; 1] 2.41 1.125 0.975 0.533 WK0.63 0.111 0.056 0.024 LS22 U[0;1] χ2(1) [0; 1] 1.558 0.804 0.57 0.415 WK1.602 0.44 0.244 0.13 LS23 E(1) χ2(1) [0; 1.2] 1.285 0.614 0.243 0.247 WK2.385 0.893 0.651 0.365 LS24 B(4, 6) B(4, 8) [0; 0.5] 0.423 0.236 0.09 0.094 WK0.449 0.271 0.117 0.105 LS25 B(4, 6) E(10) [0; 0.5] 0.388 0.229 0.119 0.103 WK0.467 0.261 0.13 0.095 LS26 γ(4, 0.08) E(10) [0; 0.5] 0.424 0.166 0.102 0.069 WK0.698 0.286 0.162 0.095 LS27 E(0.1) γ(4, 3) [1; 23] 14.955 5.145 3.973 2.113 WK19.825 11.797 9.738 5.898 LS2Table 4. Values of MISE ×100 averaged over 100 samples, for the estimators ofthe 
.d.f. from 
urrent status data (Example E3) built with the warped kernelmethod (WK) or the least-squares methods, with pie
ewise polynomials of degreeat most 1 or 2 (LS1 or LS2).
lassi
al regression model to some estimation settings with 
ensored data, while being simpleand fast to implement.



16 NONPARAMETRIC WARPED KERNEL ESTIMATORS5. Extension to the estimation of a 
onditional density5.1. Presentation. From now on, we 
onsider an extension of warped-kernel strategy to esti-mate a bivariate fun
tion, the 
onditional density. Assume again that we observe pairs (Xi, Yi)i∈{1,...,n}of real random variables su
h as (X,Y ), and denote by f(X,Y ) a joint density of the 
ouple. Therelationship between the predi
tor X and the response Y 
an be thoroughly des
ribed by the
onditional density,
∀(x, y) ∈ A×B, π(x, y) =

f(X,Y )(x, y)

fX(x)by assuming that fX does not vanish on A.Kernel estimators for π have been widely studied: typi
ally, Nadaraya-Watson type estimates,su
h as "double-kernel" ratio estimators, with 
ross-validation methods to sele
t bandwidthsare studied from the asymptoti
 point of view (
onvergen
e rates and asymptoti
 normality areshown): among others, see Hyndman et al. (1996), Hyndman and Yao (2002), De Gooijer andZerom (2003) or Fan and Yim (2004).We propose to adopt again in this se
tion a nonasymptoti
 setting, and to build a warped-kernel estimate for the 
onditional density π, whi
h satis�es adaptive properties, like the re
entestimates proposed by Brunel et al. (2007), Efromovi
h (2010), Akakpo and La
our (2011), orCohen and Le Penne
 (2011), while having a simple expression.To adapt the previous method, we only warp the �rst 
oordinate of π, by using the 
.d.f. FXof the design X as warping fun
tion:(13) g(cd) : (u, y) ∈ [0; 1] ×B 7→ π
(

F−1
X (u), y

)is the new auxiliary fun
tion to be estimated �rst. Let us introdu
e some notations. We 
onsidertwo kernel fun
tions K(1) and K(2), whi
h are supposed to be squared-integrable on R. Fromthis point, H(cd)
n denotes a set of bandwidth 
ouples (h1, h2) ∈ (R∗

+)2. We set again K(l)
hl

: x 7→
K(l)(x/hl)/hl (l = 1, 2), and denote by K(u, y) = K

(1)
h1

⊗K
(2)
h2

(u, y) the produ
t K(1)
h1

(u)K
(2)
h2

(y),for all real numbers u and y. The fun
tional spa
es and 
orresponding norm are also adapted tothe bivariate setting, with the warping fun
tion φX equal to FX . Parti
ularly, t ∈ L2(A×B, fX)means
‖t‖2

fX
:=

∫

R2

t(x, y)fX(x)dxdy <∞.Finally, in this bivariate framework, the assumption (Bα0) be
omes:Assumption (B
(cd)
α0 ):(i) For any 
onstant κ0 > 0, there exists C0 > 0, su
h that ∑

(h1,h2)∈Hn

exp

(

− κ0

h1h2

)

≤

C0(κ0),(ii) There exists α0 > 0 su
h that ∑
h∈Hn

1

h1h2
≤ k0n

α0 , for a 
onstant k0 ≥ 0.5.2. Estimation and performan
e. The 
ornerstone of the method in this new setting is toremark that the auxiliary g(cd) de�ned by (13) is the density of the transformed data (FX(X), Y ).Thus, a 
olle
tion of kernel estimators for g(cd) is
∀(h1, h2) ∈ H(cd)

n , ĝ
(cd)
h1,h2

: (u, y) 7→ 1

n

n
∑

i=1

K
(1)
h1

(u− FX(Xi))K
(2)
h2

(y − Yi) ,
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olle
tion for π is (π̂h1,h2)(h1,h2)∈H(cd)
n

, with π̂h1,h2(x, y) = ĝ
(cd)
h1,h2

(FX(x), y).Stute (1986) studied similar estimators for a 
onditional distribution fun
tion. More re
ently, this
olle
tion has already been 
onsidered by Mehra et al. (2000), who 
ompared it asymptoti
allyto 
lassi
al Nadaraya-Watson estimates.The novelty whi
h must be underlined here is the GL sele
tion of the best bandwidths (ĥ1, ĥ2):we set, in the same way as (6) and (7):
∀(h1, h2) ∈ H(cd)

n ,











V (cd)(h1, h2) = δ′(1 + ‖K‖2
L1(R))

‖K‖L2(R2)

nh1h2
,

A(cd)(h1, h2) = max
(h′

1,h′

2)∈Hn

{

‖ĝ(h1,h2),(h′

1,h′

2)
− ĝh′

1,h′

2
‖2 − V (cd)(h′1, h

′
2)
}

+
,with

ĝ(h1,h2),(h′

1,h′

2)
: (u, y) 7→ K

(1)
h′

1
⊗K

(2)
h′

2
⋆
(

ĝh1,h21[0;1]×A2

)

(u, y).To realize the bias-varian
e 
ompromize, we de�ne:
(ĥ1, ĥ2) = arg min

(h1,h2)∈H(cd)
n

{A(cd)(h1, h2) + V (cd)(h1, h2)}.We now set the ora
le-type inequality, 
on
erning the sele
ted estimator π̂ĥ1,ĥ2
.Theorem 2. Assume that π is bounded, and that Assumption (B(cd)

α0 ) holds for the 
olle
tion
H(cd)

n . Then, there exists three 
onstants κl, l = 1, 2, 3 su
h that(14) E

[

∥

∥

∥
π̂ĥ1,ĥ2

− π
∥

∥

∥

2

fX

]

≤ min
(h1,h2)∈H(cd)

n

{

c1

∥

∥

∥
g(cd) − g

(cd)
h1,h2

∥

∥

∥

2

fX

+ c2
‖K(1) ×K(2)‖2

L2(R2)

nh1h2

}

+
c3
n
,where g(cd)

h1,h2
= (K

(1)
h1

⊗ Kh2) ⋆ (g(cd)
1[0;1]×B), and where the κl depend on ‖K(1) × K(2)‖L1(R2)(l = 1, 2, 3) and κ3 additionally depends on ‖g(cd)‖L∞([0;1]×B).Therefore, the warped kernel strategy 
ould be su

essfully adapted to a bivariate framework.The 
ru
ial 
hoi
e of the bandwidth is performed automati
ally: thanks to the GL method,the optimal trade-o� is rea
hed. Therefore, we extend the results of Mehra et al. (2000) aboutwarped kernel 
onditional density estimator.Moreover, it should be mentioned that the estimator admits a simple expression, and 
an be
onsequently implemented with low 
omplexity, like in the four univariate examples.Finally, Inequality (14) 
an be used for derivation of adaptive optimal rates for 
onditionaldensity estimation. For that purpose, we need to assume that the kernels K(1) and K(2) havevanishing moment property (su
h as Assumption (Kl)), and the 
onvergen
e rate is establishedover anisotropi
 Hölder 
lasses (de�ned for example in Se
tion 2.4 of Comte and La
our 2011).We do not detail this, sin
e the main goal of this se
tion is to show the adaptation of warped-basesstrategy to establish nonasymptoti
 bound for 
onditional density estimation.6. ProofsWe start with some useful results. The �rst one is a powerful 
on
entration inequality, whi
hpermits to 
ontrol the deviations of the supremum of an empiri
al pro
ess.Lemma 3. [Talagrand's Inequality℄ Let ξ1, . . . , ξn be i.i.d. random variables, and de�ne νn(r) =

1
n

∑n
i=1 r(ξi)−E[r(ξi)], for r belonging to a 
ountable 
lass R of real-valued measurable fun
tions.



18 NONPARAMETRIC WARPED KERNEL ESTIMATORSThen, for δ > 0, there exist three 
onstants cl, l = 1, 2, 3, su
h that
E

[

(

sup
r∈R

(νn (r))2 − c(δ)H2

)

+

]

≤ c1

{

v

n
exp

(

−c2δ
nH2

v

)

+
M2

1

C2(δ)n2
exp

(

−c3C(δ)
√
δ
nH

M1

)}

,with, C(δ) = (
√

1 + δ − 1) ∧ 1, c(δ) = 2(1 + 2δ) and
sup
r∈R

‖r‖∞ ≤M1, E

[

sup
r∈R

|νn(r)|
]

≤ H, and sup
r∈R

Var (r (ξ1)) ≤ v.Inequality (3) is a 
lassi
al 
onsequen
e of the Talagrand Inequality given in Klein and Rio(2005): see for example Lemma 5 (page 812) in La
our (2008).Then, we state a lemma whi
h will allow us to repla
e a L2−norm by the supremum of anempiri
al pro
ess.Lemma 4. Let B be a borelian subset of R (or R
2). Denote by S̃B(0, 1) the set of fun
tions

t ∈ L1(B) ∩ L2(B) su
h that ‖t‖L2(B) = 1. Then, for any fun
tion v ∈ L1(B) ∩ L2(B),
‖v‖L2(B) = sup

t∈S̃B(0,1)

〈v, t〉B .Moreover, the supremum over S̃B(0, 1) equals the supremum over a 
ountable subset S̄B(0, 1) of
S̃B(0, 1).Proof of Lemma 4. The Cau
hy-S
hwarz Inequality leads to

sup
t∈S̃B(0,1)

〈v, t〉B ≤ sup
t∈S̃B(0,1)

‖v‖L2(B)‖t‖L2(B) = ‖v‖L2(B).Besides, if we set t = v/‖v‖L2(B), then t belongs to S̃B(0, 1), and 〈t, v〉B = ‖v‖L2(B). This endsthe proof of the equality. Finally, we 
an repla
e S̃B(0, 1) by one of its dense 
ountable subset:su
h a set exists thanks to the separability of L2(R) (or L2(R2)).
✷Finally, we re
all a useful and standard property of the 
onvolution produ
t.Lemma 5. [Young Inequality℄ Let p, q ∈ [1;∞[ su
h that 1/p + 1/q ≥ 1. If u ∈ Lp(R) and

v ∈ Lq(R), then the 
onvolution produ
t u⋆v exists. Moreover, if r is de�ned by 1/r = 1/p+1/q−1then u ⋆ v ∈ Lr(R) and
‖u ⋆ v‖Lr(R) ≤ ‖u‖Lp(R)‖v‖Lq(R).6.1. Proof of Equality (3). We 
ompute E[θ(Y )Kh(u−φX(X))], for u ∈ φX(A), in ExamplesE1 to E3. Re
all that we deal with Example E4 in Se
tion 2.2 dire
tly.

• Example E1. Sin
e Y = s(X) + ε, X and ε are independent, and ε is 
entered,
E [Y Kh(u− FX(X))] = E [s(X)Kh (u− FX(X))] ,

=

∫

A
s(x)Kh(u− FX(x))fX(x)dx,

=

∫ 1

0
g(u′)Kh(u− u′)du′ = Kh ⋆ g1[0;1](u),by setting u′ = FX(x) in the integral.
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• Example E2. The 
omputations are similar, with the spe
i�
 properties or Example E2:

E
[

Y 2Kh(u− FX(X))
]

= E
[

ε2
]

E
[

σ2(X)Kh (u− FX(X))
]

,

=

∫

A
σ2(x)Kh(u− FX(x))fX(x)dx,

=

∫ 1

0
g(u′)Kh(u− u′)du′ = Kh ⋆

(

g1[0;1]

)

(u).

• Example E3. Here, we obtain
E [Y Kh(u− FX(X))] = E [1Z≤XKh (u− FX(X))] ,

=

∫

A×R

1z≤xKh (u− FX(x)) fX(x)fZ(z)dxdz,

=

∫

A
Kh (u− FX(x)) fX(x)

(
∫

R

1z≤xfZ(z)dz

)

dx,

=

∫

A
Kh (u− FX(x)) fX(x)FZ(x)dx,

=

∫ 1

0
Kh

(

u− u′
)

FZ ◦ F−1
X (u′)du′ =

∫ 1

0
Kh

(

u− u′
)

g(u′)du′,

= Kh ⋆
(

g1[0;1]

)

(u).The proof of Equality (3) is thus 
ompleted.
✷6.2. Proof of Theorem 1. Let h ∈ Hn be �xed. We begin with the following de
ompositionfor the loss of the estimator s̃ = ŝĥ:

∥

∥ŝĥ − s
∥

∥

2

φ′

X

=
∥

∥ĝĥ − g
∥

∥

2

L2(φX(A))
,

≤ 3
∥

∥

∥
ĝĥ − ĝh,ĥ

∥

∥

∥

2

L2(φX(A))
+ 3

∥

∥

∥
ĝh,ĥ − ĝh

∥

∥

∥

2

L2(φX(A))
+ 3 ‖ĝh − g‖2

L2(φX(A)) .The de�nitions of A(h) and A(ĥ) enable to write,
3
∥

∥

∥
ĝĥ − ĝh,ĥ

∥

∥

∥

2

L2(φX(A))
+ 3

∥

∥

∥
ĝh,ĥ − ĝh

∥

∥

∥

2

L2(φX(A))
≤ 3

(

A(h) + V
(

ĥ
))

+ 3
(

A
(

ĥ
)

+ V (h)
)

,

≤ 6 (A(h) + V (h)) ,by using the de�nition of ĥ. Besides, we have already studied the bias-varian
e de
ompositionof ĝh (see the beginning of Se
tion 2.3):
E

[

‖ĝh − g‖2
L2(φX (A))

]

≤
E[θ2(Y1)]‖K‖2

L2(R)

nh
+ ‖gh − g‖2

L2(φX(A)).Thus,(15) E

[

∥

∥ŝĥ − s
∥

∥

2

φ′

X

]

≤ 6E [A(h)] + 6V (h) +
E[θ2(Y1)]‖K‖2

L2(R)

nh
+ 3‖gh − g‖2

L2(φX(A)).Therefore, the remainding part of the proof follows from the lemma hereafter.



20 NONPARAMETRIC WARPED KERNEL ESTIMATORSLemma 6. Let h ∈ Hn be �xed. Under the assumptions of Theorem 1, there exist a 
onstant
C1 whi
h depends on ‖K‖L1(R), and a 
onstant C2 whi
h depends on ‖s‖L∞(A), ‖K‖L1(R) and
‖K‖L2(R) in Examples E3 and E4, and also on E[ε21], E[ε2+p

1 ] and E[s2(X1)] in Example E1 oron E[ε41], E[ε4+p
1 ] and E[σ4(X1)] in Example E2, su
h that,(16) E [A(h)] ≤ C1‖gh − g‖2

L2(φX(A)) +
C2

n
.Applying Inequality (16) in (15) implies (10) by taking the in�mum over h ∈ Hn. This endsthe proof of Theorem 1.

✷6.3. Proof of Lemma 6. To study A(h), we introdu
e the auxiliary quantities gh,h′ := Kh′ ⋆
(gh1φX(A)) = Kh′ ⋆ ((Kh ⋆ g1φX(A))1φX (A)), for any h′ ∈ Hn, and we �rst split

‖ŝh,h′ − ŝh′‖2
fX

= ‖ĝh,h′ − ĝh′‖2
L2(φX(A)) ≤ 3

(

Ta + Tb + ‖ĝh′ − gh′‖2
L2(φX (A))

)

,(17)where
Ta = ‖ĝh,h′ − gh,h′‖2

L2(φX (A)), Tb = ‖gh,h′ − gh′‖2
L2(φX(A)).The �rst term 
an be bounded as follows, using Lemma 5, with p = 2, q = 1, and r = 2:

Ta ≤
∥

∥Kh ⋆
(

ĝh′1φX(A) − gh′1φX(A)

)∥

∥

2

L2(R)
,

≤ ‖K‖2
L1(R)

∥

∥ĝh′1φX(A) − gh′1φX(A)

∥

∥

2

L2(R)

= ‖K‖2
L1(R) ‖ĝh′ − gh′‖2

L2(φX(A)) .In the same way,
Tb ≤ ‖Kh′‖2

L1(R) ‖gh − g‖2
L2(φX(A)) .Therefore, de
omposition (17) be
omes:

‖ŝh,h′ − ŝh′‖2
fX

≤ 3‖K‖2
L1(R)‖g − gh‖2

L2(φX(A)) + 3(1 + ‖K‖2
L1(R)) ‖ĝh′ − gh′‖2

L2(φX (A)) .Now, we get ba
k to the de�nition of A(h) given by (7):
A(h) ≤ 3 ‖K‖2

L1(R)‖g − gh‖2
L2(φX(A))(18)

+3(1 + ‖K‖2
L1(R)) max

h′∈Hn

(

‖ĝh′ − gh′‖2
L2(φX(A)) −

V (h′)

3(1 + ‖K‖2
L1(R)

)

)

+

.We apply Lemma 4:
‖ĝh′ − gh′‖L2(φX(A)) = sup

t∈S̄(0,1)

〈ĝh′ − gh′ , t〉φX (A),with S̄(0, 1) a dense 
ountable subset of S̃(0, 1) = {t ∈ L1(φX(A)) ∩ L2(φX(A)), ‖t‖L2(φX(A)) =
1}. Now,
〈ĝh′ − gh′ , t〉φX (A) =

1

n

n
∑

i=1

∫

φX(A)
{θ(Yi)Kh′ (u− FX(Xi)) − E [θ(Yi)Kh′ (u− FX(Xi))]} t(u)du

= νn,h′(t),
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al pro
ess. Thus, thanks to (18), it remains to bound the deviations of
supt∈S̄(0,1) ν

2
n,h′(t). First, we have

E

[

max
h′∈Hn

(

sup
t∈S̄(0,1)

ν2
n,h′(t) − V (h′)

3(1 + ‖K‖2
L1(R)

)

)

+

]

≤
∑

h′∈Hn

E

[(

sup
t∈S̄(0,1)

ν2
n,h′(t) − V (h′)

3(1 + ‖K‖2
L1(R)

)

)

+

]

.Then, the 
on
lusion results from the following lemma:Lemma 7. Under the assumptions of Theorem 1, there exists a 
onstant C depending on
‖s‖L∞(A), ‖K‖L1(R) and ‖K‖L2(R) in Examples E3 and E4, and also on E[ε21], E[ε2+p

1 ] and
E[s2(X1)] in Example E1 or on E[ε41], E[ε4+p

1 ] and E[σ4(X1)] in Example E2, su
h that,
∑

h∈Hn

E

[(

sup
t∈S̄(0,1)

ν2
n,h(t) − Ṽ (h)

)

+

]

≤ C

n
,with Ṽ (h) = δ′‖K‖L2(R)E[θ(Y1)

2]/(nh) for a purely numeri
al δ′ > 0.We 
hoose the κ involved in the de�nition of V su
h that Ṽ (h) ≤ V (h)(1 + ‖K‖2
L1(R))/3.Thus, the proof is 
omplete.

✷6.4. Proof of Lemma 7. We write the empiri
al pro
ess
νn,h(t) =

1

n

n
∑

i=1

ψt,h(Xi, Yi) − E [ψt,h(Xi, Yi)] ,(19) with ψt,h(Xi, Yi) = θ(Yi)

∫

φX(A)
Kh (u− FX(Xi)) du.The guiding idea is to apply Talagrand's Inequality (Lemma 3). However, we must distinguishdi�erent 
ases, depending on the example we deal with: for Examples E1 and E2, νn,h(t) isnot bounded (due to θ(Yi)), and the inequality 
annot be dire
tly applied. On the opposite, inExamples E3 and E4, as we have already remarked, θ(Yi) is bounded by 1 and the pro
ess isbounded. We detail the �rst example whi
h is also the most te
hni
al, and we review brie�yea
h of the others.6.4.1. Example E1. Re
all that φX = FX and φX(A) = [0; 1]. We split the pro
ess νn,h intothree parts, writing νn,h = ν

(1)
n,h + ν

(2,1)
n,h + ν

(2,2)
n,h , with, for l = 1, (2, 1), (2, 2),

ν
(l)
n,h =

1

n

n
∑

i=1

ϕ
(l)
t,h(Zi) − E

[

ϕ
(l)
t,h(Zi)

]

,

Zi = Xi or (Xi, εi), and
ϕ

(1)
t,h : x 7→ s(x)

∫ 1
0 Kh(u− FX(x))t(u)du,

ϕ
(2,1)
t,h : (x, ε) 7→ ε1|ε|≤κn

∫ 1
0 Kh(u− FX(x))t(u)du,

ϕ
(2,2)
t,h : (x, ε) 7→ ε1|ε|>κn

∫ 1
0 Kh(u− FX(x))t(u)du,



22 NONPARAMETRIC WARPED KERNEL ESTIMATORSwhere we de�ne, for a 
onstant c whi
h will be spe
i�ed below,(20) κn = c

√
nln(n)
.We apply Talagrand's Inequality to the �rst two bounded empiri
al pro
esses, and bound roughlythe last one. Thus, we split:

∑

h∈Hn

E

[(

sup
t∈S̄(0,1)

ν2
n,h(t) − Ṽ (h)

)

+

]

≤ 3
∑

h∈Hn

{

E

[(

sup
t∈S̄(0,1)

(

ν
(1)
n,h(t)

)2
− Ṽ1(h)

3

)

+

](21)
+E

[(

sup
t∈S̄(0,1)

(

ν
(2,1)
n,h (t)

)2
− Ṽ2(h)

3

)

+

]

+ E

[

sup
t∈S̄(0,1)

(

ν
(2,2)
n,h (t)

)2
]}

,with the de
omposition Ṽ (h) = Ṽ1(h) + Ṽ2(h), and, denoting by δ′′ = δ′/2,
Ṽ1(h) = 3δ′′

‖K‖2
L2(R)E

[

s2(X1)
]

nh
,

Ṽ2(h) = 3δ′′
‖K‖2

L2(R)E
[

ε21
]

nh
.A
tually, re
all that we have E[θ2(Y1)] = E[Y 2

1 ] = E[s2(X1)] + E[ε21] here.We now show that ea
h of the three terms of the right hand-side of (21) is upper-bounded bya quantity of order 1/n. This will end the proof.
• First term of (21).Let us begin with ν(1)

n,h. To do so, we 
ompute H(1), M (1) and v(1), involved in Lemma 3.
• For M (1), let t ∈ S̄(0, 1) and x ∈ A be �xed:

∣

∣

∣
ϕ

(1)
t,h(x)

∣

∣

∣
≤ |s(x)|

∫ 1

0
|Kh(u− FX(x))t(u)| du,

≤ |s(x)|‖Kh‖L2(R)‖t‖L2(φX (A)) = |s(x)|
‖K‖L2(R)√

h
,

≤ ‖s‖L∞(A)

‖K‖L2(R)√
h

:= M (1).

• For H(1), noti
e that
ν

(1)
n,h(t) = 〈d̂h − gh, t〉φX (A), with d̂h =

1

n

n
∑

i=1

s(Xi)Kh (.− FX(Xi)) .Thus, thanks to Lemma 4, we obtain,
E

[

sup
t∈S̄(0,1)

(

ν
(1)
n,h(t)

)2
]

= E

[

∥

∥

∥
d̂h − gh

∥

∥

∥

2

L2([0;1])

]

,

=

∫ 1

0
Var(d̂h(u)

)

du, sin
e gh(u) = E

[

d̂h(u)
]

,

≤
∫ 1

0

1

n
E
[

s2(X1)K
2
h (u− FX(X1))

]

du.
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omputation as the one done to bound the varian
e term inSe
tion 2.3, and set (H(1))2 = ‖K‖2
L2(R)E[s2(X1)]/(nh).

• For v(1), we also �x t ∈ S̄(0, 1). Hereafter, if w is a real-valued fun
tion, w̌ is the fun
tion
x 7→ w(−x). First,Var(ϕ(1)

t,h(X1)
)

≤ E

[

(

ϕ
(1)
t (X1)

)2
]

≤ ‖s‖2
L∞(A)E

[

(
∫ 1

0
Kh(u− FX(X1))t(u)du

)2
]

,and the expe
tation 
an be written
E

[

(
∫ 1

0
Kh(u− FX(X1))t(u)du

)2
]

= E

[

(

Ǩh ∗
(

t1[0;1]

))2
(FX(X1))

]

,

=

∫ 1

0

(

Ǩh ∗
(

t1[0;1]

))2
(u)du,

≤
∥

∥Ǩh ∗
(

t1[0;1]

)
∥

∥

2

L2(R)
,

≤
∥

∥Ǩh

∥

∥

2

L1(R)
‖t1[0;1]‖2

L2(R) =
∥

∥Ǩh

∥

∥

2

L1(R)
‖t‖2

L2([0;1]),thanks to Lemma 5. Therefore,Var(ϕ(1)
t (X1)

)

≤ ‖s‖L∞(A)‖K‖2
L1(R) := v(1).Then, Lemma 3 gives, for δ > 0,

E

[(

sup
t∈S̄(0,1)

(

ν
(1)
n,h(t)

)2
− 2(1 + 2δ)

(

H(1)
)2
)

+

]

≤ k1

{

1

n
exp

(

−k2
1

h

)

+
1

n2h
exp

(

−k3

√
n
)

}

,where k1, k2, k3 are three 
onstants whi
h depend on E[s2(X1)], ‖s‖L∞(A), ‖K‖L1(R) and ‖K‖L2(R).Assumption (Bα0) leads to
∑

h∈Hn

E

[(

sup
t∈S̄(0,1)

(

ν
(1)
n,h(t)

)2
− 2(1 + 2δ)‖K‖2

L2(R)E[s2(X1)]
1

nh

)

+

]

≤ C

n
,with C a 
onstant (whi
h also depends on the previous quantities).

• Se
ond term of (21).For the se
ond empiri
al pro
ess ν(2,1)
n,h , the sket
h of the proof is the same: similarly, we
ompute the quantities involved in the Talagrand Inequality,

M (2) = κn‖K‖L2(R)
1√
h
, H(2) = ‖K‖L2(R)

(

E[ε21]
)1/2 1√

nh
, v(2) = ‖K‖2

L1(R)E[ε21],and we obtain, by Lemma 3, for δ > 0,
E

[(

sup
t∈S̄(0,1)

(

ν
(2,1)
n,h (t)

)2
− 2(1 + 2δ)

(

H(2)
)2
)

+

]

≤ k1

{

1

n
exp

(

−k2
1

h

)

+
κ2

n

n2h
exp

(

−k3

√
n

κn

)}

,where k1, k2, k3 are three 
onstants whi
h depend on E[ε21], ‖K‖L1(R) and ‖K‖L2(R). The �rstterm of the right hand-side is like above. With the de�nition (20) of κn, the sum over h ∈ Hn ofthe se
ond term of the upper bound 
an be written
∑

h∈Hn

κ2
n

n2h
exp

(

−k3

√
n

κn

)

=
c2

n1+k3/c ln2(n)

∑

h∈Hn

1

h
.



24 NONPARAMETRIC WARPED KERNEL ESTIMATORSConsequently, using Assumption (Bα0) and 
hoosing c in the de�nition of κn su
h that c ≤ k3/α0,we also obtain for a 
onstant C,
∑

h∈Hn

E

[(

sup
t∈S̄(0,1)

(

ν
(2,1)
n,h (t)

)2
− 2(1 + 2δ)‖K‖2

L2(R)E[ε21]
1

nh

)

+

]

≤ C

n
.

• Third term of (21).The last empiri
al pro
ess is ν(2,2)
n,h (t) =

∫ 1
0 t(u)ψ(u)du, with

ψ(u) =
1

n

n
∑

i=1

εi1{|εi|>κn}Kh (u− FX(Xi)) − E
[

εi1{|εi|>κn}Kh (u− FX(Xi))
]

.It is not bounded. Nevertheless, we use the Cau
hy-S
hwarz Inequality, and the equality
‖t‖L2(φX(A)) = 1, for t ∈ S̄(0, 1)

E

[

sup
t∈S̃(0,1)

(

ν
(2,2)
n,h (t)

)2
]

≤ E

[
∫ 1

0
ψ2(u)du

]

,

≤ 1

n
E
[

ε211{|ε1|>κn}
]

E

[
∫ 1

0
K2

h (u− FX(X1)) du

]

,

≤
‖K‖2

L2(R)

nh
E
[

ε211{|ε1|>κn}
]

≤
‖K‖2

L2(R)κ
−p
n

nh
E

[

ε2+p
1

]

.Thus, there exists a 
onstant k1 whi
h depends on ‖K‖L2(R) and E[ε2+p
1 ],

∑

h∈Hn

E

[

sup
t∈S̄(0,1)

(

ν
(2,2)
n,h (t)

)2
]

≤ k1
κ−p

n

n

∑

h∈Hn

1

h
= c1κ

−p lnp(n)

n1+p/2

∑

h∈Hn

1

h
.The 
on
lusion 
omes from Assumption (Bα0), and the 
hoi
e of p ≥ 2α0.

✷6.4.2. Examples E2 to E4. For the multipli
ative regression model E2, we split the pro
ess intotwo terms: νn,h = ν
(1)
n,h + ν

(2)
n,h, with

ν
(1)
n,h(t) =

1

n

n
∑

i=1

{

σ2(Xi)ε
2
i 1{|εi|≤κn}

∫ 1

0
Kh (u− FX(Xi)) t(u)du

−E

[

σ2(Xi)ε
2
i 1{|εi|≤κn}

∫ 1
0 Kh (u− FX(Xi)) t(u)du

]}

,

ν
(2)
n,h(t) =

1

n

n
∑

i=1

{

σ2(Xi)ε
2
i 1{|εi|>κn}

∫ 1

0
Kh (u− FX(Xi)) t(u)du

−E

[

σ2(Xi)ε
2
i 1{|εi|>κn}

∫ 1
0 Kh (u− FX(Xi)) t(u)du

]}

,where κn is still a 
onstant for the proof, whi
h equals √c √
n

ln(n) and c > 0 is obtained by the
omputations, like in Example E1. We exa
tly re
over the framework of this previous example:the deviations of the pro
ess ν(1)
n,h are bounded thanks to Talagrand's Inequality of Lemma 3,and the se
ond one is bounded in the same way as the pro
ess ν(2,2)

n,h of the additive regressionsetting.



NONPARAMETRIC WARPED KERNEL ESTIMATORS 25For Examples E3 and E4, there is no point in splitting the pro
ess (19), sin
e it is alreadybounded (re
all that θ(Y1) is bounded by 1). Thus, we apply the 
on
entration inequality.Re
all that φX(A) = R+. In both of these 
ases, the quantity M1 involved in the assumptionsof Lemma 3 equals M1 = ‖K‖L2(R)/
√
h. Moreover, H2 
an be 
hosen as the upper-bound of thevarian
e term of the estimator ĝh, that is H2 = ‖K‖L2(R)/nh. Finally, v equals ‖K‖L1(R) forExample E3, and ‖g‖L∞(R+)‖K‖L1(R) for Example E4.As an example, let us detail the 
omputation of v in Example E4. Re
all that X = C ∧ Z,

Y = 1Z≤C , s is the hazard rate, and the warping φX is the fun
tion x 7→
∫ x
0 (1 − FX(t))dt.Thus, denoting by fC (respe
tively fZ) a density of the variable C (respe
tively Z), and FC(respe
tively FZ) its 
.d.f.,Var (ϕt,h(X1, Y1)) ≤ E

[

(ϕt,h(X1, Y1))
2
]

,

= E

[

Y1

(
∫

R+

Kh(u′ − φ(X1))t(u
′)du′

)2
]

,

=

∫

R+×R

1z≤c

(
∫

R+

Kh(u′ − φ(z))t(u′)du′
)2

fC(c)fZ(z)dzdc,

=

∫

R+

(
∫

R+

Kh(u′ − φ(z))t(u′)du′
)2

fZ(z) (1 − FC) (z)dz.We set z = φ−1(u). The integral be
omes
∫

R+

(
∫

R+

Kh(u′ − φ(z))t(u′)du′
)2

fZ(z) (1 − FC) (z)dz

=

∫

R+

(
∫

R+

Kh(u′ − u)t(u′)du′
)2

fZ ◦ φ−1(u) (1 − FC) ◦ φ−1(u)
du

((1 − FX) ◦ φ−1(u))
.Thanks to the same arguments as the ones used to prove Equality (3) in Se
tion 2.2, we obtain:Var (ϕt,h(X1, Y1)) ≤

∫

R+

g(u)

(
∫

R+

Kh(u′ − u)t(u′)du′
)2

du,

=

∫

R+

g(u)
(

Kh ∗
(

t1R+

)

(u)
)2
du,

≤ ‖g‖L∞(R+)

∥

∥Ǩh ∗
(

t1R+

)
∥

∥

L2(R)
,

≤ ‖g‖L∞(R+)

∥

∥Ǩh

∥

∥

L1(R)

∥

∥

(

t1R+

)
∥

∥

L2(R)
,

= ‖g‖L∞(R+) ‖K‖L1(R) := v.On
e we have the three quantities, we easily apply Lemma 3 and the proof is 
omplete by usingAssumption (Bα0), like above (see the 
omputations in Example E1).
✷6.5. Proof of Corollary 1. We must bound the bias term of the right hand-side of Inequality(10) (Theorem 1). A
tually, if we prove that

‖s− sh‖2
φ′

X
≤ Ch2β ,where C is a 
onstant, then the proof of the Corollary will be 
ompleted by 
omputing theminimum whi
h is involved in (10).



26 NONPARAMETRIC WARPED KERNEL ESTIMATORSThe beginning of the proof is the same for all the examples (E1 to E4). First,
‖s− sh‖2

φ′

X
= ‖g − gh‖2

L2(φX (A)) =

∫

φX(A)
(gh(u) − g(u))2 du.We then start with the de�nition of gh: for u ∈ φX(A),

gh(u) =
1

h

∫ 1

0
g(u′)K

(

u− u′

h

)

du′ =

∫ u
h

u−1
h

g(u− hz)K(z)dz,

=

∫ u
h

u−1
h

g̃(u− hz)K(z)dz =

∫

R

g̃(u− hz)K(z)dz.Thus, sin
e ∫
R
K(u)du = 1,

g̃h(u) − g(u) =

∫

R

K(z)g̃(u− hz)dz − g̃(u) =

∫

R

K(z) [g̃(u− hz) − g̃(u)] dz.Then we distinguish two 
ases:6.5.1. Examples E1 to E3. In these 
ases, re
all that φX(A) = [0; 1]. We use a Taylor-Lagrangeformula for g̃: for u ∈ [0; 1], and z ∈ R, there exists θ ∈ [0; 1] su
h that
g̃(u− hz) − g(u) = −hzg̃′(u) +

(−hz)2
2!

g̃′′(u) + · · · + (−hz)l−1

(l − 1)!
g̃(l−1)(u) +

(−hz)l
l!

g̃(l)(u− θhz).With Assumption (Kl), we obtain
‖s− sh‖2

φ′

X
≤

(

∫

z∈R

|K(z)| |hz|
l

l!

{
∫ 1

u=0

{

g̃(l)(u− θhz) − g̃(l)(u)
}2
du

}1/2

dz

)2

.Sin
e g̃ belongs to the Hölder spa
e H(β,L),
[
∫ 1

u=0

{

g̃(l)(u− θhz) − g̃(l)(u)
}2
du

]1/2

≤
[
∫ 1

u=0
L2(θhu)2(β−l)du

]1/2

,

= L|hz|β−l,whi
h enables us to 
on
lude.
✷6.5.2. Example E4. Here, φX(A) = R+. The idea is the same, but sin
e we integrate over anunbounded subset, we 
hoose a integrated remainding term in the Taylor formula:

g̃(u−hz)−g̃(u) = −hzg̃′(u)+(−hz)2
2!

g̃′′(u)+· · ·+(−hz)l−1

(l − 1)!
g̃(l−1)(u)+

(−hz)l
(l − 1)!

∫ 1

0
(1−θ)l−1g̃(l)(u−θhz)dθ.The reasoning is then the same as in density estimation (see Tsybakov 2009 for details).

✷



NONPARAMETRIC WARPED KERNEL ESTIMATORS 276.6. Proof of Theorem 2. The arguments and the sket
h of the proof are exa
tly the same asthose used to prove Theorem 1. We �rst obtain an equivalent of Inequality (15):
E

[

∥

∥

∥
π̂ĥ1,ĥ2

− π
∥

∥

∥

2

fX

]

≤ 6E

[

A(cd)(h1, h2)
]

+6V (cd)(h1, h2)+
‖K‖2

L2(R2)

nh1h2
+3‖g(cd)

h1,h2
−g(cd)‖2

L2([0;1]×B).Similarly, we must bound A(cd): we use the splitting (17). Then, bounding A(cd) amounts to
ontrol the deviation of the following 
entered empiri
al pro
ess:
ν

(cd)
n,h1,h2

(t) =
1

n

n
∑

i=1

{

∫

(0;1)×B
K

(1)
h1

(u− FX(Xi))K
(2)
h2

(y − Yi) t(u, y)dudy−

E

[

∫

(0;1)×B
K

(1)
h1

(u− FX(Xi))K
(2)
h2

(y − Yi) t(u, y)dudy

]}

.Pre
isely, we apply the Talagrand Inequality (Lemma 3) with the following quantity:
M1 =

‖K‖L2(R2)√
h1h2

, H2 =
‖K‖2

L2(R2)

nh1h2
, v = ‖g(cd)‖L∞([0;1]×A2) ‖K‖2

L1(R2) .This proves that
∑

(h1,h2)∈Hn

E

[(

sup
t∈S̄(cd)(0,1)

(

ν
(cd)
n,h1,h2

(t)
)2

− Ṽ (cd)(h1, h2)

)

+

]

≤ C

n
,whi
h is the key point of the proof.
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