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Lipschitz. In fact, Carleman estimates imply the unique continuation property which does not hold in general for a C 0,α Hölder regularity of the coefficients with 0 < α < 1 [START_REF] Miller | Nonunique continuation for uniformly parabolic and elliptic equations in self-adjoint divergence form with Hölder continuous coefficients[END_REF][START_REF] Pliś | On non-uniqueness in Cauchy problem for an elliptic second order differential equation[END_REF].

Here we are interested in coefficients that are non continuous across an interface S . When the observation takes place in the region where the diffusion coefficient c is the 'lowest', this question was solved in [START_REF] Doubova | Exact controllability to trajectories for semilinear heat equations with discontinuous diffusion coefficients[END_REF] for a parabolic operator P = ∂ t -∇ x • (c(x)∇ x ). In the one dimensional case, and without assumption on the localization of the observation, the question was solved for general piecewise C 1 coefficients [START_REF] Benabdallah | Carleman estimates for the one-dimensional heat equation with a discontinuous coefficient and applications[END_REF][START_REF]Carleman estimates for the one-dimensional heat equation with a discontinuous coefficient and applications to controllability and an inverse problem[END_REF] and for coefficients with bounded variations [START_REF] Rousseau | Carleman estimates and controllability results for the one-dimensional heat equation with BV coefficients[END_REF]. The work [START_REF]Carleman estimates for stratified media[END_REF] generalizes [START_REF] Benabdallah | Carleman estimates for the one-dimensional heat equation with a discontinuous coefficient and applications[END_REF][START_REF]Carleman estimates for the one-dimensional heat equation with a discontinuous coefficient and applications to controllability and an inverse problem[END_REF] to some stratified media with dimension n ≥ 1. Without Carleman estimate, the controllability for a one dimensional parabolic operator was proved in [START_REF] Alessandrini | Null-controllability of one-dimensional parabolic equations[END_REF] for c ∈ L ∞ but this approach does not authorize semilinear operators.

Recently, Carleman estimates for an arbitrary dimension without any condition on the localization of the observation were obtained in [START_REF] Bellassoued | Carleman estimates and distribution of resonances for the transparent obstacle and application to the stabilization[END_REF][START_REF] Rousseau | Carleman estimate for elliptic operators with coefficents with jumps at an interface in arbitrary dimension and application to the null controllability of linear parabolic equations[END_REF], in the elliptic case, and in the parabolic case in [START_REF]Carleman estimates for stratified media[END_REF][START_REF]Local and global Carleman estimates for parabolic operators with coefficients with jumps at interfaces[END_REF], but the methods used in [START_REF] Bellassoued | Carleman estimates and distribution of resonances for the transparent obstacle and application to the stabilization[END_REF][START_REF] Rousseau | Carleman estimates for elliptic operators with jumps at an interface: Anisotropic case and sharp geometric conditions[END_REF][START_REF]Carleman estimates for elliptic operators with jumps at an interface: Anisotropic case and sharp geometric conditions[END_REF][START_REF] Rousseau | Carleman estimate for elliptic operators with coefficents with jumps at an interface in arbitrary dimension and application to the null controllability of linear parabolic equations[END_REF][START_REF]Local and global Carleman estimates for parabolic operators with coefficients with jumps at interfaces[END_REF] require strong regularity for the coefficients and for the interface. Moreover, they fall short if the interface crosses the boundary whereas this configuration is typical in bounded stratified media, examples falling into the framework considered here and in [START_REF]Carleman estimates for stratified media[END_REF]. In [START_REF]Carleman estimates for stratified media[END_REF] the authors assumed that the diffusion coefficients have a 'stratified' structure. More precisely, they have considered operators of the form A = -∇ • (B(•)∇) in which the matrix diffusion coefficient B(x) has the following block diagonal form

B(x) = B(x , x n ) = c 1 (x n )C τ (x ) 0 0 c 2 (x n )
where Ω = Ω × (-H, H), x = (x , x n ), C τ is a smooth hermitian matrix and the coefficients c 1 , c 2 have a possible jump at x n = 0. The object of the present work is to obtain a Carleman estimate for more general diffusion coefficients without a stratified structure that separates variables. We shall consider a matrix diffusion coefficient of the form

B(x) = C τ (x) 0 0 c(x)
with C τ and c having possible jump at x n = 0.

Here, to understand the difficulties that we face, the reader can observe that attempting to prove the Carleman estimate by extending the proof as is done in the one dimensional case, leads in fact to tangential terms at the interface S that cannot be controlled. These terms existed also in [START_REF] Doubova | Exact controllability to trajectories for semilinear heat equations with discontinuous diffusion coefficients[END_REF] where B is a scalar function c which led the authors to add conditions on the jump of diffusion coefficient c at the interface. Not to mention our approach, the main contribution of our paper is to derive an estimate of these tangential terms allowing to conclude the proof of the Carleman estimate.

In [START_REF]Carleman estimates for stratified media[END_REF], these tangential terms at the interface are controlled by using Fourier series in the tangential direction. By a suitable choice of the weight function, the low frequencies lead to a positive quadratic form. The treatment of the high frequencies needs more computations. It uses the ideas developed in [START_REF] Bellassoued | Carleman estimates and distribution of resonances for the transparent obstacle and application to the stabilization[END_REF][START_REF] Rousseau | Carleman estimate for elliptic operators with coefficents with jumps at an interface in arbitrary dimension and application to the null controllability of linear parabolic equations[END_REF][START_REF]Local and global Carleman estimates for parabolic operators with coefficients with jumps at interfaces[END_REF] where the normal part of the elliptic operator can be inverted. In [START_REF]Carleman estimates for stratified media[END_REF] this argument uses the assumption of the separation of the tangential and normal variables in the diffusion matrix B.

In the case we consider here, the diffusion coefficients depend on x = (x , x n ) and, contrary to [START_REF]Carleman estimates for stratified media[END_REF], one cannot decompose the operator A as ∂ x n c 2 (x n )∂ x n + A τ with A τ a tangential elliptic operator on Ω . Our method consists in the introduction of a suitable decomposition, (Ω j,δ ), of a neighborhood of the interface and, on each Ω j,δ , an approximation of the diffusion coefficient c by a function depending only on the normal variable, x n , for which the result of [START_REF]Carleman estimates for stratified media[END_REF] can be used. As these approximations depend on the Carleman large parameters s and λ (see (1.1)), we shall need a refined estimate of the tangential derivative (more precisely, for the high frequencies, see Lemma 3.1).

The question of the derivation of Carleman estimates in the case where the diffusion coefficients are totally anisotropic in the neighborhood of a point where the interface S meets the boundary ∂Ω is left open. Note also that deriving Carleman estimates for the parabolic operator associated to the elliptic operator we consider here, is also an open question. In fact, if we follow the same idea as for the elliptic case we present here, and if we use singular weight functions as introduced in [START_REF] Fursikov | Controllability of evolution equations[END_REF], we then have to consider approximations of order

1 √ t(T -t)sλϕ |S
(connected to the Carleman parameters). These approximations blow up near t = 0 and t = T .

For each pair (s, λ) of Carleman parameters, we introduce several meshes that seem to indicate a connection to numerical methods. We believe that this connection should be further investigated.

Setting and notation

Let Ω be an open subset in R n , with Ω = Ω × (-H, H) 1 , where Ω is a nonempty bounded open subset of R n-1 with C 2 boundary 2 . We shall use the notation x = (x , x n ) ∈ Ω × (-H, H). We set S = Ω × {0}, that will be understood as an interface where coefficients and functions may jump. For a function f = f (x) we define by [ f ] S its jump at S , i.e., [ 

f ] S (x ) = f (x)| x n =0 + -f (x)| x n =0 -.
For a function u defined on both sides of S , we set u |S ± = u |Ω ± |S , with Ω + = Ω × (0, H) and Ω -= Ω × (-H, 0). Let B(x), x ∈ Ω, be with values in M n (R), the space of square matrices with real coefficients of order n. We make the following assumption. We further assume uniform ellipticity

0 < c min ≤ c(x) ≤ c max < ∞, x ∈ Ω, 0 < c min Id n-1 ≤ C τ (x) ≤ c max Id n-1 , x ∈ Ω.
1 As a matter of fact, we only ask that Ω is a cylinder in a neighborhood of the interface S . See the end of section 2. 2 For some particular geometries we can suppose that Ω is piecewise smooth. Nevertheless the technics used for building our approximation in a neighborhood of the interface seems to require better than C 1 . We shall take C 2 for the readability.

We consider the symmetric bilinear

H 1 0 -coercive form a(u, v) = ∫ Ω (B(•)∇u) • ∇vdx, with domain D(a) = H 1 0 (Ω). It defines a selfadjoint operator A = -∇ • (B(•)∇) in L 2 (Ω) with compact resolvent and its domain is D(A) = {u ∈ H 1 0 (Ω); ∇ • (B(•)∇u) ∈ L 2 (Ω)}.
In the elliptic case, we shall denote by • L 2 (Ω) the L 2 norm over Ω and by | • | L 2 (S ) the L 2 norm over the interface S of codimension 1.

In this article, when the constant C is used, it refers to a constant that is independent of all the parameters. Its value may however change from one line to another. If we want to keep track of the value of a constant we shall use another letter or add a subscript.

Statements of the main results

We consider ω, a nonempty open subset of Ω. For a function β in C 0 (Ω) we set ϕ(x) = e λβ(x) , λ > 0, to be used as weight function. A proper choice of the function β, with respect to the operator A, ω and Ω (see Assumption 2.4 and Assumption 4.1), yields the following Carleman estimate for the elliptic operator A.

Theorem 1.2. There exist C > 0, λ 0 and s 0 > 0 such that

sλ 2 e sϕ ϕ 1 2 ∇u 2 L 2 (Ω) + s 3 λ 4 e sϕ ϕ 3 2 u 2 L 2 (Ω) + sλ |e sϕ ϕ 1 2 ∇ τ u |S | 2 L 2 (S ) + |e sϕ ϕ 1 2 ∂ x n u |S | 2 L 2 (S ) + s 3 λ 3 |e sϕ ϕ 3 2 u |S | 2 L 2 (S ) ≤ C e sϕ Au 2 L 2 (Ω) + s 3 λ 4 e sϕ ϕ 3 2 u 2 L 2 (ω)
, for all u ∈ D(A), λ ≥ λ 0 , and s ≥ s 0 .

Here, ∇ τ is the tangential gradient, i.e. parallel to the interface S . Note that the membership of the domain D(A) implies some constraints on the function u at the interface S , namely u ∈ H 1 0 (Ω) and B∇ x u ∈ H(div, Ω) := {v ∈ L 2 (Ω) n ; div v ∈ L 2 (Ω)}. We shall first prove the result for piecewise

C 2 functions satisfying u |S -= u |S + , (c∂ x n u) |S -= (c∂ x n u) |S + ,
and then use their density in D(A) (see Appendix C).

Outline

Choosing 0 < δ < H, our starting point is the following Carleman estimate in the open set

Ω δ := Ω × (-δ, δ).
There exist a weight function β and C, C > 0, λ 0 > 0, s 0 > 0 such that

C sλ 2 ϕ 1 2 e sϕ ∇u 2 L 2 (Ω δ ) + s 3 λ 4 ϕ 3 2 e sϕ u 2 L 2 (Ω δ ) + sλϕ |S ∫ S [c 2 β |e sϕ ∂ x n u| 2 ] S dσ + ∫ S |sλϕe sϕ u |S | 2 [c 2 β 3 ] S dσ -∫ S |e sϕ ∇ τ u| 2 [β cC τ ] S dσ ≤ C e sϕ Au 2 L 2 (Ω δ ) (1.2)
for all u ∈ D(A), λ ≥ λ 0 , s ≥ s 0 and supp u ⊂ Ω × (-δ, δ).

We have to understand [β cC τ ] S as the matrix of jumps of each term of the matrix and [β cC τ ] S is its norm that we can take in L ∞ (S ). Such an inequality can be obtained by adapting the derivations in [START_REF] Doubova | Exact controllability to trajectories for semilinear heat equations with discontinuous diffusion coefficients[END_REF] for instance and a suitable choice of the weight function β. Some easy handlings (see [START_REF]Carleman estimates for stratified media[END_REF]) show that only the sign of the term ∫ S |e sϕ ∇ τ u| 2 [β cC τ ] S dσ arises a problem since we cannot exclude to have a negative quantity. In other words, the main difficulty is to estimate the tangential derivative of u at the interface S .

In Section 2, we introduce a covering (Ω j ) j of a neighborhood of Ω related to the Carleman's parameters s, λ and precise (c j ) j , the approximation of the diffusion coefficient c. Of course, we build an adapted partition of unity (χ j ) j subordinated to (Ω j ) j and we define, for each x n ∈ (-δ, δ) and each j, the tangential part of A, i.e.

A τ (x n ) = -∇ τ • C τ (•, x n )∇ τ with D j (A τ (x n )) = {u ∈ H 1 0 (Ω j ); ∇ τ • C τ (•, x n )∇ τ u ∈ L 2 (Ω j )}. So, for u ∈ D(A) that solves Au = f with f ∈ L 2 (Ω), u j := χ j u will solve                A τ (x n )u j -c j (x n )∂ 2 x n u j = f j + g j + h j on Ω ± j,δ = {x = (x , x n ); x ∈ Ω j , 0 < ±x n < δ}, u j = 0 on ∂Ω j , [u j ] S j = 0 and [c j ∂ x n u j ] S j = [(c j -c)∂ x n u j ] S j := θ j (1.3) with S j = Ω j ∩ S , f j = χ j f, g j = (c -c j )∂ 2
x n u j and

h j = [A τ , χ j ]u + (∂ x n c)(∂ x n u j ), (1.4) 
where [A τ , χ j ] denotes the commutator of A τ and χ j .

It will be sufficient to estimate the tangential derivative of u j defined below. We cannot directly apply the results of [START_REF]Carleman estimates for stratified media[END_REF] for two main reasons:

1. the dependence on x n of A τ , 2. the presence of θ j and g j involving the normal derivative of u on S j and the second derivative of u on Ω j , 3. the presence of h j which depends on s, λ.

To take into account the first constraint, we consider (µ 2 j,k (x n )) k≥1 , the family of eigenvalues of (A τ (x n ), D j (A τ (x n ))), and denote by u j,k , f j,k , g j,k , h j,k and θ j,k the respective Fourier coefficients of u j , f j , g j , h j and θ j in an orthonormal basis associated to the previous eigenvalues.

To overcome the two other constraints, we prove a refined estimate of the high frequencies (i.e. coefficients associated to the large eigenvalues in the decomposition on the eigenfunctions) of the tangential derivatives of u j (see Section 3): there exist a constant C independent of s, λ, µ j,k , a constant µ 0 := µ 0 (s, λ) > 0 such that, for all µ j,k (0 + ) ≥ µ 0 , one has

sλϕ | S |µ j,k (0 + )e sϕ | S u j,k | 2 S j ≤ C |e sϕ f j,k | 2 L 2 (-δ,δ) + ϕ | S |e sϕ ϕ -1/2 g j,k | 2 L 2 (-δ,δ) + ϕ -1 | S |e sϕ ϕ 1/2 h j,k | 2 L 2 (-δ,δ) + s 3/2 λϕ | S e 2sϕ| S |θ j,k | 2 (1.5)
for s, λ sufficiently large (as we allow C τ (x) to be discontinuous through S , µ j,k (0 + ) denotes lim x n ↓0 + µ j,k (x n )). Note the peculiar weights in the right hand side (in brief r.h.s.).

The low frequencies are treated as in [START_REF]Carleman estimates for stratified media[END_REF] and, still as in [START_REF]Carleman estimates for stratified media[END_REF], we conclude by verifying that there exists a weight function β such that one can recover the spectrum of (A τ (0 + ), D j (A τ (0 + ))) (see Section 4). It remains to eliminate the three last terms of (1.5) (the additional terms with respect to [START_REF]Carleman estimates for stratified media[END_REF]). The properties of the functions χ j and the definition of c j shall be used in this step:

∇χ j ∞ ≤ C sλϕ | S , ∇ • (B∇χ j ) ∞ ≤ Csλϕ | S , c j -c ∞ ≤ C 1 sλϕ | S ,
as well as the weights of the second members obtained through the refined estimate. Collecting all the previous results we shall have proved Theorem 1.2 and this will conclude Section 4.

In order to point out the main ideas of this work, we have put almost all technical results in the appendix.

Preparation of data

The partition

Theorem 2.1. For each pair (s, λ), s > 0, λ > 0, there exist a finite family (Ω j ) j∈J of open sets such that Ω ⊂ ∪ j Ω j and a partition of unity (χ j ) j∈J subordinated to this open covering with

∇ τ χ j ∞ ≤ C sλϕ | S and ∇ τ • (C τ ∇ τ χ j ) ∞ ≤ Csλϕ | S , (2.1) 
where the constant C is independant on s, λ and j. Moreover, only N functions χ j are non equal to 0 in each point of Ω with N only depending on Ω .

As a matter of fact, the proof is tricky when Ω is not a cube. In this case, we begin to define the Ω j := Ω j (s, λ) such that Ω j ⊂ Ω . They are cubes of which the length of the edges is h = h(s, λ). Next, we define the open sets Ω j that intersect ∂Ω . They are no more exactly cubes. The complete proof is given in Appendix A. We recover Ω δ by the family of cylindrical subdomains

Ω j,δ (s, λ) = {(x , x n ) ∈ R n ; x ∈ Ω j (s, λ), -δ < x n < δ}.
In the sequel, we will denote Ω j,δ := Ω j,δ (s, λ) = Ω j ×(-δ, δ) and we recall that

Ω ± j,δ = {(x , x n ); x ∈ Ω j , 0 < ±x n < δ} (already quoted for (1.3)).

Partition and transverse operators

On each subdomain Ω j,δ we define the following approximation of the diffusion coefficient c(x , x n ):

c j (x n ) =            c j + (x n ) = 1 |Ω j | ∫ Ω j c(x , x n ) dx , ∀ x n ∈ (0, δ), c j -(x n ) = 1 |Ω j | ∫ Ω j c(x , x n ) dx , ∀ x n ∈ (-δ, 0). (2.2)
So, for each x n ∈ (-δ, 0) ∪ (0, δ), we have given sense to (1.3) where the operators A τ (x n ) act in a section of Ω ± j,δ parallel to the interface S j . Similarly, we have c j (0 ± ). If Ω is a cube, we can go straight to Lemma 2.2 taking into account the construction of the partition (see Step 2 in Annexe A) since we do not need to extend the coefficients. Otherwise, a problem remains with the open cylinders Ω j,δ (s, λ) intersecting ∂Ω, which needs modifications in a neighborhood of ∂Ω . The idea is to extend the coefficients c(x , x n ), outside Ω and independently of (s, λ), in such a way that we control the behavior of the extended solutions u j that are associated to these cylinders. The reader may refer to Appendix A for more explanations. Now we mention the following result which will be useful in the next section.

Lemma 2.2. With Assumption 1.1, we have inf j∈J,k≥1 inf x n ∈(-δ,δ) µ 2 j,k (x n ) µ 2 j,k (0 + ) > 0, and sup j∈J,k≥1 sup x n ∈(-δ,δ) µ 2 j,k (x n ) µ 2 j,k (0 + ) < +∞. (2.3)
Proof. We shall easily deduce these inequalities from the variational presentation of the Min-Max Principle since all the symmetric bilinear H 1 0 -coercive forms a τ,x n ,Ω j of the operators A τ (x n ) have same domain up to a translation of variables, i.e.

H 1 0 (Ω j ). If V k denotes the generic k-dimensional linear space of L 2 (Ω j ) and if V ⊥
k is its orthogonal space in L 2 (Ω j ) for the scalar product (u, v) = ∫ uv dx (specific notation to this Lemma, as well as u 2 = (u, u)), we know that

µ 2 j,k (x n ) = max V k-1 ⊂L 2 (Ω j )        min u∈V ⊥ k ∩H 1 0 (Ω j ), u =1 a τ,x n ,Ω j (u, u)        ,
which implies, by Assumption 1.1,

c min max V k-1 ⊂L 2 (Ω j )        min u∈V ⊥ k ∩H 1 0 (Ω j ), u =1 ∇u 2        ≤ µ 2 j,k (x n ) ≤ c max max V k-1 ⊂L 2 (Ω j )        min u∈V ⊥ k ∩H 1 0 (Ω j ), u =1 ∇u 2        , from which one may conclude c min c max ≤ µ 2 j,k (x n ) µ 2 j,k (0 + ) ≤ c max c min . (2.4) Remark 2.3.
When Ω j ∩ ∂Ω ∅, we only have to modify, without repercussions, the values of c min and c max that appear in (2.4). We shall find again this situation throughout the proofs of this work.

In order to evaluate the awkward term ∫ S |e sϕ ∇ τ u| 2 [β cC τ ] S dσ that occurs in (1.2) , we have to estimate ∇ τ u on the interface S . In fact, we need this estimate for u j := χ j u. We write u j (x) = k u j,k (x n )ϕ k (x , x n ) where the family (ϕ k (•, x n )) k≥1 is an orthonormal basis associated to the eigenvalues of A τ (x n ). So, the first line of (1.3) becomes

µ 2 j,k (x n )u j,k -c j (x n )∂ 2 x n u j,k = f j,k + g j,k + h j,k , 0 < |x n | < δ. (2.5) 
For x n = 0, the same relation is valid on condition to distinguish the cases x n = 0 + and x n = 0 - for the coefficients µ 2 j,k and c j . Finally, reasoning as in [START_REF]Carleman estimates for stratified media[END_REF], section 2, we find

(c max ) -1 ∞ k=1 µ 2 j,k (x n )|u j,k (x n )| 2 ≤ ∇ τ u j (•, x n ) 2 L 2 (Ω j ) ≤ (c min ) -1 ∞ k=1 µ 2 j,k (x n )|u j,k (x n )| 2 .
(2.6)

The weight function β

The open set ω having been fixed in section 1.2, we choose a weight function β that satisfies the following properties.

Assumption 2.4. The function β ∈ C 0 (Ω), and

β |Ω ± ∈ C 2 (Ω ± ) and β ≥ C > 0, |∇ x β| ≥ C > 0 in Ω \ ω, β = Cst on Ω × {-H} and β = Cst on Ω × {H}, ∇ x β = 0 on ∂Ω × (-H, H), ∂ x n β > 0 on Ω × {-H}, and ∂ x n β < 0 on Ω × {H}.
There exists a neighborhood V of S in Ω of the form V = Ω × (-δ, δ) in which β solely depends on x n and is a piecewise affine function of x n .

We draw reader's attention on two points: firstly, the trace β |S is constant on the interface S and, secondly, we can assume that ω ∩ Ω × (-δ, δ) = ∅. Such a weight function β can be obtained by first designing a function that satisfies the proper properties at the boundaries and at the interface and then construct β by means of Morse functions following the method introduced in [START_REF] Fursikov | Controllability of evolution equations[END_REF].

In the remainder of this paper we assume that ∂ x n β = β > 0 on S + and S -, which means that the observation region ω is chosen in Ω × (0, H), i.e., where x n ≥ 0. As we can change x n into -x n to treat the case of an observation ω ⊂ Ω × (-H, 0), we lose nothing. Note that Assumption 2.4 will be completed below by Assumption 4.1.

A refined estimation for the high frequencies of the tangential derivative

We recall that this section is a first step to achieve inequality (1.5). Taking into account (2.5) we fix, for the moment, j ∈ J, k ∈ N * and consider w solution of

               µ 2 j,k (x n )w -c j (x n )∂ 2 x n w = F on (-δ, 0) ∪ (0, δ), w(±δ) = 0 [w] S = 0 and [c j ∂ x n w] S = θ,
with, here, S = {0}, F ∈ L 2 (-δ, δ), θ ∈ R. One has Lemma 3.1. Let F belong to L 2 (-δ, δ). There exist a constant C independent of s, λ, j, k, a constant µ 0 := µ 0 (s, λ) > 0 such that for all µ j,k (0 + ) ≥ µ 0 , the following estimates are satisfied for s, λ sufficiently large and w solution of (3)

sλϕ | S µ j,k (0 + ) 2 |e sϕ w| 2 S ≤ C |e sϕ F| 2 L 2 (-δ,δ) + s 3/2 λϕ | S e 2sϕ| S |θ| 2 , (3.1) sλϕ | S µ j,k (0 + ) 2 |e sϕ w| 2 S ≤ C ϕ | S |e sϕ ϕ -1/2 F| 2 L 2 (-δ,δ) + s 3/2 λϕ | S e 2sϕ| S |θ| 2 , (3.2) sλϕ | S µ j,k (0 + ) 2 |e sϕ w| 2 S ≤ C ϕ -1 | S |e sϕ ϕ 1/2 F| 2 L 2 (-δ,δ) + s 3/2 λϕ | S e 2sϕ| S |θ| 2 . (3.3) Remark 3.2.
Even if Lemma 3.1 seems similar to Proposition 3.5 of [START_REF]Carleman estimates for stratified media[END_REF] (for elliptic operator), there are two important differences: the weights for the sources F and the presence of θ which is 0 in this Proposition.

The difference among these three inequalities is the weight of the source terms. It should be noted that there is no comparison relation between them. The source terms resulting from the approximation of the coefficient c fall into three terms (see (1.4)). The first is just the localization of the initial source term, the second is the difference between the elliptic operator and its approximation and the third comes from the action of the cut-off function χ j on the elliptic operator. As we shall see later, they should be treated differently to be absorbed by the r.h.s. of the Carleman estimate (1.2).

Proof. We begin to set

σ 2 := inf j∈J,k≥1 inf x n ∈(-δ,δ) µ 2 j,k (x n ) c j (x n )µ 2 j,k (0 + ) and µ 0 := µ 0 (s, λ) = 2sλϕ | S β |S -+ λβ |S - σ , (3.4) 
and next we introduce

W(x n ) = 1 2 sλϕ | S e 2sϕ | S |w(x n )| 2 .
On the one hand it derives from (2.3) that we can choose σ > 0, on the other hand we observe that W ≥ 0 and it verifies

           ∂ 2 x n W -σ 2 µ j,k (0 + ) 2 W = -σ 2 µ 2 j,k (0 + ) - µ 2 j,k (x n ) c j (x n ) (2 -γ) W := -d, 0 < |x n | < δ, W(-δ) = W(δ) = 0, W(0 -) = W(0 + ), c j + W (0 + ) = c j -W (0 -) + θw | S sλϕ | S e 2sϕ | S with = 1 c j -sλϕ | S e 2sϕ | S F w + sλϕ | S e 2sϕ | S c j (∂ x n w) 2 + γµ 2 j,k W , (3.5) 
where the real number γ will be precised later and we have omitted the subscript j in S since the function β, and therefore ϕ, depends only on x n if -δ < x n < δ. Applying Lemma B.2, one gets (c j ± := c j (0 ± ) to lighten the writing)

sλϕ | S |µ j,k (0 + )e sϕ | S w(0)| 2 = 2µ j,k (0 + ) (c j + + c j -) δ ∫ 0 sinh(σµ j,k (0 + )(δ -x n )) σ cosh(σµ j,k (0 + )δ) c j + d(x n ) + c j -d(-x n ) dx n - 2µ j,k (0 + ) tanh(σµ j,k (0 + )δ) θw | S σ(c j + + c j -) sλϕ | S e 2sϕ | S (3.6)
that is exactly the left-hand side of estimates of Lemma 3.1. Setting r(x n ) := σ 2 µ 2 j,k (0 + )-

µ 2 j,k (x n ) c j (x n ) (2- γ), we have d(x n ) = r(x n )W(x n ) -(x n
) and, immediately, we note that the definition of σ implies that r(x n ) ≤ 0 as soon as γ ≤ 1. So, we emphasize a non positive contribution that we can eliminate, namely

δ ∫ 0 sinh(σµ j,k (0 + )(δ -x n ))
σ cosh(σµ j,k (0

+ )δ) c j + r(x n )W(x n ) + c j -r(-x n )W(-x n ) dx n ≤ 0. (3.7)
Now, we consider the contribution coming fromand, similarly to the previous result, the second term of (3.5) brings a non positive contribution since

- δ ∫ 0 sinh(σµ j,k (0 + )(δ -x n )) cosh(σµ j,k (0 + )δ) sλϕ | S e 2sϕ | S c j + (∂ x n w) 2 (x n ) + c j -(∂ x n w) 2 (-x n ) dx n ≤ 0. (3.8)
The estimate of the other terms of (3.6) needs more computations. Temporarily we forget the coefficient

2 σ(c j + +c j -)
that we shall reinstate later. Let us begin by

I ± := -µ j,k (0 + ) δ ∫ 0 sinh(σµ j,k (0 + )(δ -x n )) cosh(σµ j,k (0 + )δ) c j ± c j -sλϕ | S e 2sϕ | S F(±x n )w(±x n ) + γµ 2 j,k (±x n )W(±x n ) dx n .
On one hand, applying the Young inequality we have, for any α > 0,

µ j,k (0 + )|sλϕ | S e 2sϕ | S F(±x n )w(±x n )| ≤ 1 2γα e 2sϕ | S |F(±x n )| 2 + γ 2 αs 2 λ 2 ϕ 2 | S e 2sϕ | S µ 2 j,k (0 + )|w(±x n )| 2 ,
and, on the other hand, observing that sinh(σµ j,k (0 + )(δx n )) cosh(σµ j,k (0 + )δ) = e σµ j,k (0 + )(δ-x n )e -σµ j,k (0 + )(δ-x n ) e σµ j,k (0 + )δ + e -σµ j,k (0 + )δ ≤ e -σµ j,k (0 + )x n , we obtain

I ± = µ j,k (0 + ) δ ∫ 0 sinh(σµ j,k (0 + )(δ -x n )) cosh(σµ j,k (0 + )δ) c j ± c j sλϕ | S e 2sϕ | S F(±x n )w(±x n ) -γ(µ 2 j,k W)(±x n ) dx n ≤ δ ∫ 0 e -σµ j,k (0 + )x n +2sϕ | S 2γα c j ± c j |F(±x n )| 2 dx n + δ ∫ 0 sinh(σµ j,k (0 + )(δ -x n )) cosh(σµ j,k (0 + )δ) c j ± c j γ 2 µ 2 j,k (0 + )sλϕ | S |e sϕ | S w(±x n )| 2         αsλϕ | S - µ 2 j,k (±x n ) µ j,k (0 + )         dx n . Assuming α ≤ β | S - σ c min c max , we see that (αsλϕ | S - µ 2 j,k (±x n )
µ j,k (0 + ) ) ≤ 0 since we suppose µ j,k (0 ± ) ≥ µ 0 . That allows us to omit the corresponding term and gives

I ± ≤ ∫ δ 0 e -σµ j,k (0 + )xn+2sϕ | S 2γα c j ± c j |F(±x n )| 2 dx n .
This term will be estimated by three different and non-comparable ways that will lead to the three estimates of Lemma 3.1.

Case 1. We follow exactly the way described in [START_REF]Carleman estimates for stratified media[END_REF] (point 2(a) of section 4): replacing ∂ t w by F and forgetting the dependance in t, we arrive to the condition σµ j,k (0

+ ) ≥ 2sλβ ϕ | S .
As it is verified for µ j,k (0 + ) ≥ µ 0 , we have

I ± ≤ ∫ δ 0 e 2sϕ 2γα c j ± c j |F ± x n )| 2 dx n .
This will lead to (3.1), the first estimate of Lemma 3.1.

Case 2. Since we suppose µ j,k (0 + ) ≥ µ 0 with µ 0 defined in (3.4), the estimate (B.3) of Lemma B.1 leads to

I ± ≤ δ ∫ 0 e 2sϕ(±x n ) ϕ | S 1 2γα c j ± c j |ϕ -1/2 (±x n )F(±x n )| 2 dx n ,
which will give (3.2), the second estimate of Lemma 3.1.

Case 3. Always with the same hypothesis on µ j,k (0 + ), the estimate (B.2) of Lemma B.1 leads to

I ± ≤ δ ∫ 0 e 2sϕ(±x n ) ϕ -1 | S 1 2γα c j ± c j |ϕ 1/2 (±x n )F(±x n )| 2 dx n ,
which will give (3.3), the third estimate of Lemma 3.1.

Moreover the last term in (3.6) verifies 2µ j,k (0 + ) tanh(σµ j,k (0

+ )δ) θw | S σ(c j + + c j -) sλϕ | S e 2sϕ | S ≤ C s 3/2 λϕ | S e 2sϕ| S |θ| 2 + s 1/2 λϕ | S |µ j,k (0 + )e sϕ | S w | S | 2 ,
which permits to conclude for s large enough if we collect these results with (3.7) and (3.8).

Proof of the Theorem 1.2

We start off the inequality (1.2) and, as we do not know the sign of the second parenthesis of the left-hand side, we have to improve our knowledge of the integrant which leads us to introduce the quadratic form

B(u) = sλϕ |S e 2sϕ [c 2 β |∂ x n u| 2 ] S + |sλϕu |S | 2 [c 2 β 3 ] S
(we can extract the function e 2sϕ since it is continuous) and

c ± (x ) = c(x , 0 ± ), L = β |S + β |S - , K c (x ) = c -(x ) c + (x ) , K τ = C τ (x , 0 -)(C τ (x , 0 + )) -1 L ∞ (S ) K c = inf x ∈Ω K c (x ), K c = sup x ∈Ω K c (x ).
Finally, we set

D = D(L) = β |S -sup x ∈Ω c + (x ) C τ (x , 0 + ) (L + K c K τ )
and we make the following assumption on the weight function in addition to Assumption 2.4.

Assumption 4.1. The weight function β is chosen such that L ≥ L = max{K c , 2} and

K 2 c + L 3 (L -L) (L + K c K τ )(L -1) ≥ 36N sup x ∈Ω c + (x ) C τ (x , 0 + ) σ 2 inf x ∈Ω c 2 + (x ) , 2δβ |S -≤ β(0).
The integer N is the one of Theorem 2.1. The functions c, C τ being fixed, it is the same for σ 2 , K c , K c , K τ and L, which shows this inequality can be achieved by first choosing the value of β |S -> 0 and then picking a sufficiently large value for L. The assumption 2δβ |S -≤ β(0) can easily be fulfilled since β is defined up to a constant.

Lemma 4.2. We have

B(u) = sλϕ |S e 2sϕ |S B 1 |γ(u)| 2 + B 2 |sλ(ϕu) |S | 2 , with γ(u) = (c∂ x n u) |S + c + β |S - L 2 -K c
L-1 (sλϕu) |S and where

B 1 = β |S -(L -1), B 2 (x ) = c 2 + (x )(β |S -) 3 2(L 3 -K 2 c (x )) - L 2 -K c (x ) 2 L -1 . If β satisfies Assumption 4.1 we have B 1 > 0 and B 2 (x ) ≥ B, with B B = B(L) = inf x ∈Ω c 2 + (x ) (β |S -) 3 K 2 c + L 3 (L -L) L -1 . Remark 4.3. From the inequality (a + αb) 2 + b 2 ≥ (1 + α 2 ) -1 a 2 , we deduce that s 1/2 e 2sϕ | S |c∂ x n u| 2 is less than the product of s 1/2 λϕ | S inf(B 1 , B) -1
B(u) and of a constant C depending on L but not on (s, λ), which we shall use to remove the last term in (4.4), absorbing it by the l.h.s. of (1.2) for (s, λ) large enough.

The idea of the proof of Lemma 4.2 is similar to both proofs of Appendix A.2 and Lemma 4.4 that are in [START_REF]Carleman estimates for stratified media[END_REF].

It remains to estimate the tangential derivative of u at the interface S (the third integral of the second parenthesis in the l.h.s. of (1.2)). The wording of Theorem 2.1 points out an integer N and its existence implies that we have a constant C n independent on our mesh such that

I := sλϕ |S ∫ S [cβ C τ ] S |e sϕ ∇ τ u| 2 dσ ≤ C n sλϕ |S Σ j∈J ∫ S j [cβ C τ ] S |e sϕ ∇ τ u j | 2 dσ. Using [cβ C τ ] S = c + β |S -L Id R n-1 -K c C τ-(C τ+ ) -1 C τ+ , we obtain [cβ C τ ] S ≤ β |S -max(c + C τ+ ) L + K c C τ-(C τ+ ) -1
and, from (2.6) , it suffices to estimate D sλϕ |S Σ k≥1 µ j,k (0 + ) 2 |e sϕ u j,k | 2 on S j uniformly with respect to j. In order to solve this point, we shall distinguish two cases: the small values of k and the others.

Proposition 4.4. There exists C > 0 such that, for all j ∈ J, k ∈ N * , we have

Dsλϕ | S |µ j,k (0 + )e sϕ u j,k | 2 S j ≤ B 4N (sλϕ | S ) 3 e 2sϕ | S |u j,k | 2 S j + C |e sϕ f j,k | 2 L 2 (-δ,δ) + ϕ | S |e sϕ ϕ -1/2 g j,k | 2 L 2 (-δ,δ) +ϕ -1 | S |e sϕ ϕ 1/2 h j,k | 2 L 2 (-δ,δ) + s 3/2 λϕ | S e 2sϕ| S |θ j,k | 2 (4.1)
for s, λ and L large enough.

Proof. We shall keep track of the dependency of the constants on j and k. For low frequencies, direct computations lead to

Dsλϕ | S |µ j,k (0 + )e sϕ | S u j,k | 2 S j ≤ B 4N (sλϕ | S ) 3 e 2sϕ | S |u j,k | 2 S j , (4.2) 
as soon as µ j,k (0

+ ) ≤ 1 2 √ N B D sλϕ | S
. Now, we look at the high frequencies with the definition (3.4) of µ 0 and we use Lemma 3.1 for F = f j,k + g j,k + h j,k and θ = θ j,k : there exists a constant C > 0 such that we have

Dsλϕ | S |µ j,k (0 + )e sϕ | S u j,k | 2 S j ≤ C |e sϕ f j,k | 2 L 2 (-δ,δ) + ϕ | S |e sϕ ϕ -1/2 g j,k | 2 L 2 (-δ,δ) + ϕ -1 | S |e sϕ ϕ 1/2 h j,k | 2 L 2 (-δ,δ) + s 3/2 λϕ | S e 2sϕ| S |θ j,k | 2 , ∀µ j,k (0 + ) ≥ µ 0 . (4.3)
Collecting (4.2) and ( 4.3), we have (4.1) but it remains to verify that one can recover all the spectrum of A τ (0 + ). This will be true as soon as there exists a weight function β such that, in addition of Assumption 2.4, it verifies

1 2 √ N B D sλϕ | S ≥ 2sλϕ | S β |S -+ λβ |S - σ ,
which will be achieved if, for sϕ |S ≥ 1/2, one has

B D ≥ 36N(β |S -) 2 σ 2
. This inequality is equivalent to

inf x ∈Ω (c 2 + (x ) )(β |S -) 3 K 2 c +L 3 (L-L) L-1 β |S -sup x ∈Ω c + (x ) C τ (x , 0 + ) (L + K c K τ ) ≥ 36N(β |S -) 2 σ 2 .
As β verifies Assumption 4.1 the previous estimate occurs and the proof is complete.

We now prove the following key result, providing an estimate of the tangential derivative of u. Proof. The proof is a consequence of two Lemmas:

Lemma 4.6. There exists C > 0 such that for all j ∈ J, k ∈ N * , we have

ϕ | S e sϕ ϕ -1/2 g j 2 +ϕ -1 | S e sϕ ϕ 1/2 h j 2 ≤ C sλ ϕ -1/2 e sϕ f j 2 + (sλ) 2 e sϕ ϕ 1/2 ∇u 2 +s 3 λ 3 ϕ 3/2 e sϕ u 2 .
for s and λ large enough.

Proof. We recall that

h j = [A τ , χ j ]u + (∂ x n c)∂ x n u j . Since [A τ , χ j ] + (∂ x n c)∂
x n is an operator of order 1 of which the coefficients depend on ∇ τ χ j , ∇ τ • C τ ∇ τ χ j and ∂ x n c, and as e sϕ ϕ ±1/2 ≥ 1, we can apply Theorem 2.1 to obtain

ϕ -1 | S e sϕ ϕ 1/2 h j 2 ≤ C sλ e sϕ ϕ 1/2 ∇u 2 L 2 (Ω j,δ ) + s 2 λ 2 ϕ | S e sϕ ϕ 1/2 u 2 L 2 (Ω j,δ ) , e sϕ ϕ -1/2 h j 2 ≤ C sλϕ |S e sϕ ϕ -1/2 ∇u 2 L 2 (Ω j,δ ) + s 2 λ 2 ϕ 2 | S e sϕ ϕ -1/2 u 2 L 2 (Ω j,δ ) .
Moreover, because of (2.2) we have

c j -c ∞ ≤ C 1 √ sλϕ | S
where the constant C is independent on j ∈ J, and, as g j = -(c jc)∂ 2

x n u j , Lemma B.3 implies that for λ > λ 1 , defined just after (B.7), one has

ϕ | S e sϕ ϕ -1/2 g j 2 ≤ C sλ ϕ -1/2 e sϕ f j 2 + sλϕ | S ϕ -1/2 e sϕ ∇u j 2 + (sλϕ | S ) 2 ϕ -1/2 e sϕ u j 2 +(sλ) 2 ϕ 1/2 e sϕ ∂ x n u j 2 .
Gathering together the previous results we obtain

ϕ | S e sϕ ϕ -1/2 g j 2 +ϕ -1 | S e sϕ ϕ 1/2 h j 2 ≤ C sλ ϕ -1/2 e sϕ f j 2 +(sλ) 2 e sϕ ϕ 1/2 ∇u j 2 +(sλ) 2 e sϕ ϕ 1/2 ∇u 2 + sλϕ | S e sϕ ϕ -1/2 ∇u j 2 + s 2 λ 2 ϕ 2 | S e sϕ ϕ -1/2 u j 2 + s 3 λ 3 ϕ | S e sϕ ϕ 1/2 u 2 .
As soon as λ > λ 1 , sλ ≥ 1, the proof of the lemma is ended by noticing that 2δβ |S -≤ β(0) by Assumption 4.1 and, therefore, one has

β(0) ≤ 2β(x n ) on (-δ, δ) which implies ϕ |S ≤ ϕ 2 .
Lemma 4.7. There exists a constant C > 0 such that, for all j ∈ J, one has

s 3/2 λϕ | S e 2sϕ | S |θ j | 2 L 2 (S j ) ≤ Cs 1/2 e 2sϕ | S ∫ S j |c∂ x n u j | 2 dσ.
Proof. The definition

θ j = [(c j -c)∂ x n u j ] S j and (2.2) imply |θ j | 2 L 2 (S j ) ≤ C sλϕ | S |c∂ x n u j | 2 L 2 (S j ) .
Then the conclusion follows.

We recall that, for each x ∈ Ω , there are no more N (N is the integer of Theorem 2.1) elements of J such that χ j (x ) 0. So the proof of Theorem 4.5 is ended by noticing that for any function f , we have

f 2 = ( j∈J f χ j ) 2 ≤ N j∈J ( f χ j ) 2 ≤ N 2 f 2
since 0 ≤ χ j ≤ 1 and also since the convexity of the numerical function z → z 2 implies that

( 1≤ j≤N 1 N a j ) 2 ≤ 1 N 1≤ j≤N a 2 j .
Finally we obtain Theorem 1.2 since the three terms involving u in the r.h.s. of (4.4) are absorbed by the l.h.s. of (1.2) : use Remark 4.3 for the integral on S while the two others are absorbed by the l.h.s. of (1.2) by choosing s, λ large enough.

A Partition of unity

In this appendix, in order to prove Theorem 2.1 and the following results, we construct a suitable lattice in a neighborhood of

Ω . The open set Ω is a bounded set of R n-1 and its closure is included in a cube [a, b] n-1 , -∞ < a < b < ∞.
For the simplicity of the proof, we shall suppose that [a, b] = [0, 1] since only the value of the constant C in (2.1) will change in the general case. We shall proceed gradually: in a first time (Step 1), we shall suppose that Ω = (0, 1), then, in Step 2, we shall consider the case Ω = (0, 1) n-1 and, at last, in Step 3, we use as far as possible some elementary arguments to obtain the generalization to any Ω with our required regularity.

Step 1. We begin to work with n = 2 which means that the open cube is the interval (0, 1).

Let us denote

h(s, λ) := Θ √ sλϕ | S
where 1 2 < Θ ≤ 1 in such a way that

√ sλϕ | S Θ
is an even natural integer p = p(sλ). For each sλ > 1, there is a finite number of admissible values Θ. We shall choose the nearest value of 1.

In order to simplify our explanation, we work on S := (-h, 1 + h). On S we consider the lattice

x j (s, λ) = x j-1 (s, λ) + h(s, λ) where j = 0, ..., p(s, λ), x -1 (s, λ) = -h and x p+1 (s, λ) = 1 + h,
and we set

I j (s, λ) = (x j-1 (s, λ), x j+1 (s, λ)), 0 ≤ j ≤ p.
Two successive subintervals I j (s, λ) are overlaped each other and the intersection has a measure 

p I p x +1 p x O 1 1+h 1 I 2 I 0 I -h {1 x 0 x 1 x 2h h
ψ(x) =                1, for -1 3 < x < 1 3 , 0, for x (-2 3 , 2 
3 ), > 0, for -2 3 < x < 2 3 . Let us consider now the functions ψ j and χ j defined by

ψ j (x) = ψ x -x j h , and for -h ≤ x ≤ 1 + h, 0 ≤ j ≤ p, χ j (x) := ψ j (x) 0≤ j≤p ψ j (x) . (A.1)
Remark A.1. The previous sum contains less than two terms not vanishing for each x ∈ [-h, 1+h], and the family (χ j ) j is a partition of unity on (0, 1) if we only consider the restrictions on (0, 1) of each χ j .

Lemma A.2. There exists a constant C, independant of s, λ > 0 and j, 0 ≤ j ≤ p, such that

(χ j ) ∞ ≤ C sλϕ | S , and (χ j ) ∞ ≤ Csλϕ | S . (A.2)
Proof. Deriving the function ψ j , we have

|ψ j (x)| ≤ ψ ∞ h and |ψ j (x)| ≤ ψ ∞ h 2 .
From the definition of ψ j , there exists a constant m > 0 (m = 2 for an appropriate choice of ψ) such that 0≤ j≤n+1 ψ j (x) > 1/m. Then, using χ j (x) =

ψ j 0≤ j≤n+1 ψ j (x) - 0≤ j≤n+1 ψ j (x) ψ j ( ψ j ) 2 (x), we have |∇χ j (x)| ≤ 3m ψ ∞ h .
Similarly, Remark A.1 and the expression of χ j (x) give us the last estimation

|χ j (x)| ≤ 2m h 2 ψ ∞ + 4m ψ 2 ∞ .
Step 2. Now, we come back to the cube [0, 1] n-1 , n > 2. The pair (s, λ) being fixed, we use p = p(s, λ) defined in Step 1, and we build on each axis of coordinate a lattice similar to this one of Step 1. The product gives a lattice indexed by j := ( j 1 , j 2 , • • • , j n-1 ), 0 ≤ j i ≤ p(s, λ), which defines the small cubes Ω j = I j 1 × I j 2 × • • • × I j n-1 where each I j i has the form introduced in the previous step. The measure of each cube is (2h) n-1 and there is overlaping. We associate to each cube Ω j the function χ j (x ) := χ j 1 (x 1 )χ j 2 (x 2 ) • • • χ j n-1 (x n-1 ). So, in each point x ∈ Ω , there are q(x ) functions of the partition not vanishing with 1 ≤ q ≤ 2 n-1 . The proof of Theorem 2.1 is complete in this case. Moreover, if Ω = (0, 1) n-1 we can directly continue the coefficients c on each side of the boundary as we write it in item 2 of Step 3. The case Ω (0, 1) n-1 needs a little more work.

Step 3. In the following, the open set Ω is no more a cube but, in order to give an explanation very visual, we shall suppose n = 3 which means that Ω is a bounded open set in [0, 1] 2 and ∂Ω is C 2 . The reader will see that the extension to n > 3 is easy once this approach will be understood. In subsection 1.3, we have reduced our problem to the family of problems (1.3) posed in slices indexed by x n of the cylinder Ω × (-δ, δ), slices with sizes of same order. As the lattice of Step 2 fails now on this point, we precise our modified approach in the 6 following items. We build in items 1 and 2 a finite covering (R κ ) of the boundary ∂Ω using the C 2 regularity of ∂Ω , covering that does not depend on Carleman parameters (s, λ) and that permits to extend the coefficients in a neighborhood of Ω × (-δ, δ). Each R κ corresponds to a true cube Rκ by a diffeomophism. Then, once the pair (s, λ) is chosen, we distinguish the cubes far from the boundary (item 3) which come from the mesh of [0, 1] 2 ⊃ Ω and the 'cubes' close to the boundary (item 4) which come from a meshing of Rκ . Choosing h small enough, we show in items 5 and 6 that the covering is complete and the partition of the unity is adapted.

1. We cover the boundary of Ω by a finite family of open sets (R κ ) 1≤κ≤N b in such a way that each R κ is diffeomorphic by ϕ κ to a rectangle Rκ := (-α κ1 , α κ1 ) × (-α κ2 , α κ2 ) and R κ ∩ ∂Ω is the image by ϕ -1 κ of the straight line {0}×(-α κ2 , α κ2 ). Moreover, we can suppose that J ϕ κ , the Jacobian matrix of ϕ κ , has a determinant equal to 1. So, ∪ κ=N b κ=1 R κ is an open neighborhood of ∂Ω that contains the tube T δ := {x ∈ R 2 ; d(x, ∂Ω ) < δ } for a some δ > 0 which is now fixed. We set R± κ := {y = (y 1 , y 2 ) ∈ Rκ ; ±y 1 > 0} and

R ± κ := ϕ -1 κ ( R± κ ).
2. To each R κ and Rκ we associate the cylinders R κ,δ := R κ × (-δ, δ), Rκ,δ := R j × (-δ, δ) as well as the cylinders R ± κ,δ and R± κ,δ . We extend the functions w, defined on Rκ,δ , by antisymmetry relatively to the plane {y 1 = 0} and the coefficients crl (•, x 3 ) := c rl (ϕ -1 κ (•), x 3 ) by symmetry relatively to the same plane. As a matter of fact, crl (•, x 3 ) is continuous on Rκ and crl is C 1 on the four open subsets R± κ,δ ∩ {±x 3 > 0} of Rκ,δ . As it is usual, from A τ (x n ) acting in L 2 (R + κ ) we can define the extension Ãτ (x n ) in Rκ with the tangential matrix Cτ,κ (•,

x 3 ) = (J ϕ κ • ϕ -1 κ ) C(ϕ -1 κ (•), x 3 ) (J ϕ κ • ϕ -1 κ ) t
, and come back to R κ which gives the extended operator A τ (x n ) acting in L 2 (R κ ). The new tangential matrix will be C 1 since the map ϕ κ is C 2 .

3. Now, we take into account the parameters (s, λ). Firstly, we use Step 2 to obtain a mesh of [0, 1] 2 by the family (Ω j ) = (I j 1 × I j 2 ). We keep the cubes Ω j such that Ω j ⊂ Ω . Let J int be the set of the corresponding subscripts. Since Ω is not a cube, it is clear that ∪ j∈J int Ω j does not fill Ω . Therefore, we have to complete this family.

4. Using a process similar to Step 1 and 2, we build a covering for each rectangle Rκ with small cubes Rκ,l overlaping each other and having a size equivalent to 2h(s, λ). Let J b be this family of subscripts j = (κ, l). We deduce functions χκ,l adapted to these cubes and take theirs images χ κ,l using the functions ϕ -1 κ , 1 ≤ κ ≤ N b to come back to Ω . In the same way we obtain R κ,l using ϕ -1 κ , functions that do not depend on (s, λ). This last remark is important to claim that all the R κ,l have sizes of the same order and that the functions χ κ,l verify (2.1).

5.

We have to show that the union of (∪ j∈J int Ω j ) and (∪ j∈J b R j ) covers Ω . This will be true only if h(s, λ) is small enough, i.e. if s and λ are large enough. Once this point will be verified, it will be sufficient to normalize the functions of the partition in a similar spirit to (A.1). However, the overlap must be important enough in order that all the functions of the partition do not vanish in a same point (in Step 1, the size of I 2k ∩ I 2k+1 is half the length of each interval I k , for example). Note that ∪ J b R j ⊃ T δ and that the partition has all the required properties for each

x ∈ T δ /2 . Let us consider x ∈ Ω such that d(x , ∂Ω ) > δ 2 which implies that the open disc D(x , δ 2 ) ⊂ Ω , while the cube C(x , δ √ 2 
) of center x with sides of length L = δ 

). To conclude, it will be sufficient to prove Claim: If h(s, λ) ≤ L 8 , the point x is recovered by cubes Ω j such that at least one of the associated function χ j verifies χ j (x ) 0. In order to prove the claim we suppose that h(s, λ) = L 8 (the other situations will come easily). The lattice used in Step 2 does not depend on Ω . We project its points on each axis of coordinate. Let us consider the first axis of coordinate, i.e. the interval (x 1 -L 2 , x 1 + L 2 ). The projection of the lattice give 7 points (y

' ± T ) 2 | ' ± ; ' x ( D ) 2 | ' ± ; ' x ( D ' ± 2 | ' ± 2 | L { 1 ' x 1 1 0 ' @ ' ' x . ' x 2 | L + 1 ' x 4 y 3 y 1 ' x ' ) s;( h
1 , • • • , y 7 ) or 8 points (y 1 , • • • , y 8 ) included in (x 1 -L 2 , x 1 + L 2 )
. In the first case, x 1 = y 4 and in the second case, y 3 < x 1 < y 4 . We repeat this process for the second coordinate x 2 . So, there are enough points of the lattice that surround x in each direction to imply the result.

B Proof of some intermediate results

Lemma

B.1. Let σµ j,k (0 + ) ≥ 2sλϕ | S β |S -+ λβ |S -. (B.1)
Then, for all function g ∈ L 2 (-δ, δ), we have For r ∈ (0, 1), ϕ(-y + ry) ≤ ϕ(0) since β > 0 and, so, we have ϕ(0) -ϕ(-y) ≤ yλβ |S -ϕ(0), which gives

-σµ j,k (0 + )y + 2s(ϕ | S -ϕ(-y)) + λ(β | S -β(-y)) ≤ -σµ j,k (0 + )y + 2syλβ |S -ϕ(0) + λβ |S -y, y ∈ (0, δ).
Using (B.1), the first estimate (B.2) is proved.

Step 2. To prove (B.3), we will prove that ϕ -1 | S e -σµ j,k (0 + )y+2sϕ | S ≤ ϕ(±y) -1 e 2sϕ(±y) , for all y ∈ (0, δ). This is equivalent to prove that -σµ j,k (0

+ )y + 2s(ϕ | S -ϕ(±y)) -λ(β | S -β(±y)) ≤ 0.
Let us begin by the case with -y. As β | S -β(-y) ≥ 0 ( β > 0), it will be sufficient to prove that -σµ j,k (0 + )y + 2s(ϕ | S -ϕ(-y)) ≤ 0. In the first step we have seen that ϕ(0) -ϕ(-y) ≤ yλβ |S -ϕ(0), whence -σµ j,k (0

+ )y + 2s(ϕ | S -ϕ(-y)) ≤ -σµ j,k (0 + )y + 2syλβ |S -ϕ(0) ≤ 0
with the assumption on µ j,k .

Lemma B.3. There exist C > 0 and λ 1 > 0 such that

ϕ -1/2 e sϕ ∂ 2 x n u j 2 ≤ C ϕ -1/2 e sϕ f j 2 + sλϕ | S ϕ -1/2 e sϕ ∇u j 2 + (sλϕ | S ) 2 ϕ -1/2 e sϕ u j 2 +(sλ) 2 ϕ 1/2 e sϕ ∂ x n u j 2 , (B.5)
for all s ≥ 1, λ ≥ λ 1 and j ∈ J.

Proof.

In Ω ± , one has ϕ -1/2 e sϕ c∂ 2

x n u j = ϕ -1/2 e sϕ ∂ x n (c∂ x n u j ) -ϕ - 

∂ x n (c∂ x n u j ) = (∇ • B∇(χ j u) -∇ τ • C τ ∇ τ u j = -f χ j + 2(C τ ∇ τ u) • ∇ τ χ j + (∇ τ • C τ ∇ τ χ j )u -∇ τ • C τ ∇ τ u j .
Let η = ϕ -1/2 e sϕ . Using (2.1), there exists C > 0 independent of s, λ, j such that where g j = -∇ • B∇(χ j u), which also leads to g j = (-∇ • B∇u)χ j -u∇ τ • ( Cτ ∇ τ χ j ) -2 B∇u • ∇χ j .

As -∇ • ( B∇u) = η 2 f -(∂ x n η 2 )c∂ x n u, we obtain

g j = η 2 f j -2B∇u • ∇χ j -u∇ τ • (C τ ∇ τ χ j ) -χ j (∂ x n η 2 )c∂ x n u.
For h 0, parallel to the interface S , we set D h ρ(x) = ρ(x+h)-ρ(x) |h| , and take an any function ψ ∈ H 1 0 (Ω j,δ ) such that ψ = D -h (D h w) where supp w Ω j,δ (we suppose h small enough). On one side, we can write since [η 2 c∂ x n u j ] S = 0. There is no problem when Ω j,δ ⊂ Ω δ , otherwise, for Ω j,δ ∩ ∂Ω ∅, the way we proceed to continue functions and coefficients does not introduce any new problem (see Appendix A). As g j = -∇ • B∇u j , we deduce from the two previous expressions the following relation ∫ We carry these two previous estimates on (B.9), which gives

∫ Ω η 2 (B(x + h)∇D h u j ) • ∇D h w ≤ C 1 (B)|η∇u j | L 2 + |η -1 g j | L 2 |η∇(D h w)| L 2 .
This inequality is, in particular, true if we choose w equal to u j : Letting h go to zero we obtain ∫ Ω (∂ x l u j )(∂ x k ψ) ≤ C 3 C 2 (B) |η -1 ψ| L 2 which leads to 

|η∂ x k ∂ x l u j | L 2 ≤ C 1 (B)|η∇u j | L 2 + |η -1 g j | L 2 C 2 (B) for 1 ≤ k, l ≤ n -

Assumption 1 . 1 .

 11 The matrix diffusion coefficient B(x , x n ) has the following block diagonal formB(x) = C τ (x) 0 0 c(x)where 1. the functions C τ , c, are C 1 (Ω ± ) with a possible jump at x n = 0, 2. the two restrictions to the interface S of the function c : x → c(x , 0 ± ) are C 2 , 3. C τ (x) is an hermitian matrix of order n -1.

Theorem 4 . 5 .

 45 There exist C, λ 0 > 0 and s 0 > 0 such that, for s ≥ s 0 and λ ≥ λ 0 , we havesλϕ | S ∫ S e 2sϕ |∇ τ u| 2 S [β cC τ ] S dσ ≤ B 4 (sλϕ | S ) 3 ∫ S e 2sϕ |u| 2 S dσ+ C e sϕ f 2 + sλ ϕ 1/2 e sϕ ∇u 2 + s 2 λ 2 ϕ 3/2 e sϕ u 2 + s 1/2 ∫ S e 2sϕ |c∂ x n u| 2 dσ . (4.4)

Figure 1 :

 1 Figure 1: Covering in dimension 1 equal to h, half of the measure of each interval. Let us choose a function ψ ∈ C ∞ 0 (R) such that 0 ≤ ψ(x) ≤ 1 and

  coordinates is inscribed in D(x , δ

)

  Figure 2: Claim

δ ∫ 0 ϕ 1 | 1 ∫ 0 ϕ 1 ∫ 0 ϕ

 011010 | S e -σµ j,k (0 + )y+2sϕ | S g 2 (±y)dy ≤ S e -σµ j,k (0 + )y+2sϕ | S g 2 (±y)dy ≤ δ ∫ 0 ϕ(±y) -1 e 2sϕ(±y) g 2 (±y)dy. (B.3) Proof. Step 1. Let us prove the first estimate. Such kind of estimate is true if ϕ| S e -σµ j,k (0 + )y+2sϕ | S ≤ ϕ(±y)e 2sϕ(±y) , for all y ∈ (0, δ), which we write-σµ j,k (0 + )y + 2s(ϕ | S -ϕ(±y)) + λ(β | S -β(±y)) ≤ 0. (B.4) Since β > 0, ϕ is an increasing function on (-δ, δ) and we have ϕ(0) -ϕ(y) ≤ 0 and (β | S -β(y)) ≤ 0, y ∈ (0, δ), which gives the estimate (B.4) for +y. Let us prove that it is still valid for -y. Since the function β is affine on (-δ, 0), we have β | S -β(-y) = β |S -y for y ∈ (0, δ) whence ϕ(0) -ϕ(-y) = y (-y + ry)dr = yλβ |S - (-y + ry)dr.

η∂ x n (c∂ x n u j ) 2 ≤ C η f j 2 +

 22 sλϕ | S η∇ τ u 2 + (sλϕ | S ) 2 ηu 2 + η∇ τ • C τ ∇ τ u j 2 , (B.8)where the norms are taken in L 2 (Ω j,δ ). It remains to estimate the last term of the r.h.s. of (B.8).Let us denote B := η 2 B, C := η 2 C and let ψ ∈ H 1 0 (Ω j,δ ) be a test function. One has∫ Ω B∇(χ j u) • ∇ψ = ∫ Ω {(-∇ • B∇u)χ j -u∇ τ • ( Cτ ∇ τ χ j ) -2 B∇u • ∇χ j }ψ = ∫ Ω g j ψ

∫Ω

  B∇u j • ∇D -h (D h w) = ∫ Ω B∇u j • D -h (∇D h w) = ∫ Ω D h ( B∇u j ) • (∇D h w) = ∫ Ω [ B(x + h)D h (∇u j ) + D h ( B)∇u j ] • ∇D h wand, on the other side, we have∫ Ω B∇u j • ∇D -h (D h w) = -∫ Ω (∇ • B∇u j )D -h (D h w)

ΩB 2 .

 2 (x + h)D h (∇u j ) • ∇D h w = ∫ Ω g j D -h (D h w) -(D h ( B)∇u j ) • ∇D h w . (B.9)As η does not depend on the tangential variable, D h and η commute. This gives∫ Ω (D h ( B)∇u j ) • ∇D h w ≤ C 1 (B)|η∇u j | L 2 |η∇D h w| L 2 , ∫ Ω g j D -h (D h w) ≤ |η -1 g j | L 2 |D -h (ηD h w)| LIt is wellknown that |D -h w| L 2 ≤ |∇ w| L 2 for w ∈ H 1 0 with supp w ⊂ Ω j,δ and h small enough. Similarly, we have|D -h (ηD h w)| L 2 ≤ |∇ τ (ηD h w)| L 2 , from which one can conclude that ∫ Ω g j D -h (D h w) ≤ |η -1 g j | L 2 |η∇(D h w)| L 2 .

C 2 (

 2 B) ∫ Ω (η∇D h u j ) • η∇D h u j ≤ ∫ Ω η 2 (B(x + h)∇D h u j ) • ∇D h u j ≤ C 3 |η∇(D h u j )| L 2where the constants C 1 (B) and C 2 (B) depend on B but not on η and whereC 3 := C 1 (B)|η∇u j | L 2 + |η -1 g j | L 2 . Dividing the two extremities by |η∇(D h u j )| L 2 we obtain C 2 (B)|η∇D h u j | L 2 ≤ C 3 . For 1 ≤ l ≤ n -1, and ψ ∈ H 1 0 (Ω j,δ ), one obtains ∫ Ω (∂ x l u j )(D -h ψ) = ∫ Ω (D h u j )(∂ x l ψ) = ∫ Ω η(∂ x l D h u j )η -1 ψ ≤ C 3 C 2 (B) |η -1 ψ| L 2 .

  1/2 (∂ x n c)e sϕ ∂ x n u j . (B.6)We see straightaway thatϕ -1/2 (∂ x n c)e sϕ ∂ x n u j | ≤ c max (sλ) 2 ϕ 1/2 e sϕ ∂ x n u j 2 (B.7) if s ≥ 1 and λ > λ 1 where e λ 1 β L ∞ (Ω) = 1 λ 1 .The other term in (B.6) verifies

  1.Now, we can estimate η∇τ • C τ ∇ τ u j 2 , i.e. η∇ τ • C τ ∇ τ u j 2 ≤ C η∇u j 2 + η -1 g j 2 ≤ C η∇u j 2 + η f j 2 + sλϕ | S η∇u 2 + (sλ) 2 η -1 (∂ x n η 2 )∂ x n u 2 + (sλϕ | S ) 2 ηu 2 ≤ C η f j 2 + sλϕ | S η∇u 2 + (sλϕ | S ) 2 ηu 2 + (sλ) 2 η -1 (∂ x n η 2 )∂ x n u 2 ≤ C ϕ -1/2 e sϕ f j 2 + sλϕ | S ϕ -1/2 e sϕ ∇u 2 + (sλϕ | S ) 2 ϕ -1/2 e sϕ u 2 + (sλ) 2 ϕ 1/2 e sϕ ∂ x n u 2 .

Bringing this result in (B.8), we deduce (B.5) with the help of (B.6) and (B.7).
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Now, let us consider the case with +y. As β | S -β(y) = -β S + y, we have to prove that -σµ j,k (0 + )y+ 2s(ϕ | S -ϕ(y)) + λβ S + y ≤ 0. Using (B.1) this will be true whether 2s(ϕ | S -ϕ(y)) + λβ S + y ≤ (2sλϕ | S β |S -+ λβ |S -)y. As ϕ(y) -ϕ | S ≥ λϕ | S β S + y, we conclude by noticing that, for s ≥ 1/2, one has

Proof. The solution of this system is of the form

For s = 0 + , we obtain A + = ν(0 + ). Similarly, s = 0 -gives us A -= ν(0 -). Taking the derivative of the expression and considering s = 0 ± , we also obtain µB + = ν (0 + ) et µB -= ν (0 -). Thus, for s ∈ (-δ, 0), we have

For s ∈ (0, δ), we obtain ν(s) = ν(0) cosh(µs)

This can be written Finally, we have

C About the density in D(A)

The main ideas are in [START_REF] Agelas | The G method for heterogeneous anisotropic diffusion on general meshes[END_REF] where the authors proved the density in

Au. The reader will see here a small extension resulting from a chat with J. Droniou that we thank warmly: the convergence is in norm and not only weak. In other words, D(A) is a core of the operator A. We start knowing that the restriction to Ω ± of each u ∈ D(A) belongs to H 2 (Ω ± ) (this claim is a consequence of Appendix A and the technics developed in the proof of Lemma B.3). We begin by the two following lemmas that are easy:

1. We set c ± (x ) = lim ±x n ↓0 c(x , x n ) and we call n ± the interior normal to the interface S relatively to Ω ± which enables us to introduce a change of variables C 2 with the function

In our case, n ± (x ) = (0, • • • , 0, ±1) with the initial coordinates. We are seeing to appear the ask in point 2 of Assumption 1.1: the traces c ± : x → c ± (x ) are C 2 . So, with the new coordinates, a function belonging to H 2 (Ω + ) will keep this property in U + := Ψ(Ω + ) and if this function is 0 on ∂Ω, it will be the same with the change. Idem for Ω -and U -. As a matter of fact, we have replaced c by the value 1 on S .

2. Let u ∈ D(A) be a function of which the support is included in Ω δ and such that u ∈ H 2 (Ω ± ). Setting v(x , t) := u(Ψ(x , t)), we verify that v ∈ H 1 (U), v ∈ H 2 (U ± ) and

So, the jump of ∂v at the interface is 0 which implies that ∂ t v ∈ H 1 (U). The tangential derivatives do not give any problem when we are going through the interface. In conclusion, the function v is belonging to H 2 (U) ∩ H 1 0 (U). 3. There exists a sequence (v l ) ⊂ C 2 (U) that tends to v for the topology of H 2 (U) and we set u l = v l • Ψ -1 . From the properties of Ψ, it comes that u l ∈ H 1 (Ω) ∩ C 2 (Ω ± ) and u l → u just as well for H 1 (Ω δ ) as for H 2 (Ω ± δ ). The relation (C.1) implies the continuity of the trace of c∂ x l and from Lemma C.1 one has u l ∈ D(A) while Lemma C.2 gives the convergence of Au l to Au in L 2 (Ω δ ).