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I. INTRODUCTION

The recent discovery of superconductivity in F doped LaFeAsO with Tc of ∼ 26 K created a flurry of excitement in condensed matter research. 1 Rapidly, numerous families of Fe-based superconductors such as REFeAs(O 1-x F x ) (1111-family, RE = rare earth), M Fe 2 As 2 (122-family, M = Ba, Ca, Sr, K, Cs ...), LiFeAs/NaFeAs (111-family) and Fe 1+y Te 1-x Se x (11family) [2][3][4][5][6][7][8] have been found and investigated.

Although the Fe 1+y Te 1-x Se x chalcogenides share with their pnictogen-based cousins similar structure, based on planar layers of edge sharing [Fe(Se,Te)] 4 tetrahedra, some significant differences were rapidly revealed. Among them are the large magnetic moment (∼ 2.0-2.5 µ B ) and the double stripe magnetic ordering of the parent FeTe compound. 9,10 Magnetic stripes are found in other Febased parent compounds such as BaFe 2 As 2 or LaFeAsO stripes in pnictides, but they are rotated by 45 • around caxis with respect to Fe 1+y Te, [10][11][12][13] with significantly lower magnetic moments on Fe in these compound (typically 0.4-1.0 µ B /iron 14,15 ). The magnetic ordering is accompanied by a structural transition (T N ∼ 67K), 9 which can be progressively suppressed upon substitution of isovalent Se at the Te 2b Wyckoff position. This also results in emergence of superconductivity with a (T max c ∼ 14 K at ambient pressure) at the optimum doping. 6,7 However, numerous re-ports have recently demonstrated that the excess of interstitial Fe between the chalcogenide layers, even after doping with Se, and could affect both superconducting and magnetic properties, e.g. suppression of transition temperature T c or lowering shielding fraction, as well as leading to the appearance of weakly localized magnetic states. [16][17][18][19][20][21][22] Raman spectroscopy is an ultimate non-invasive tool and can allow systematic studies of the temperature dependence of the phonon spectrum as function of Se and excess of interstitial Fe. For example, Raman spectroscopy has proved useful in the understanding of the structural, magnetic and electronic properties of superconducting pnictides. [23][24][25][26][27][28][29][30][31][32][33][34][35][36] Available Raman data on single crystals of Fe 1+y Te 1-x Se x is to date limited. In refs. 37 and 38, comparison between Se-substituted and parent Fe 1+y Te samples is made, but neither temperature dependence nor influence of the excess iron concentration on the lattice dynamics are discussed. In ref. 39, the authors study the evolution with temperature of the Raman spectra of Fe 1.05 Te, with a particular emphasis on the anomalously large lineshape of the Te A 1g phonon. It is argued to originate from a peculiar spin-orbital frustration effect, that leaves unaffected the B 1g phonon after symmetry considerations.

In this paper, we focus mainly on this Raman active c-axis polarized optical phonon in Fe 1+y Te 1-x Se x , which is common to all the iron-based superconductors fami-lies, and discuss its evolution with temperature for various Fe, y, and Se content, x. We can demonstrate that contrarily to the A 1g mode, the observed temperature dependence is strongly affected by composition. To some extent, the phonon behavior through the various phases transitions (depending of the Se content) is consistent with those of the c-axis polarized Fe modes reported in the other families of Fe-based superconductors (e.g. 122, 111). The narrowing of the phonon lineshape through the magnetic transition of the parent compound or the absence of renormalization through the superconducting one are for instance reported. On the other hand, we also show that in some specific conditions, the behavior of the B 1g mode seriously deviates from the aforementioned one. The phonon linewidth shows an anomalous broadening in the paramagnetic state of FeTe parent compounds and an unusually strong dependence with the Se concentration in the doped compounds. Further anomalies, indicative of additional decay channels, are found when increasing the concentration of excess Fe y.

To try to get some insights about the influence of excess iron on the Raman phonon, we have carried out a Density Functional Theory (DFT) ab-initio calculation within the local density approximation (LDA) of the phonon frequencies, including the effects of magnetism and Fe non-stoichiometry in the Virtual Crystal Approximation (VCA). The measured frequencies are in good agreement with the predicted ones, including a softening with increasing Fe content in Fe deficient samples, but the effects of Fe non-stoichiometry are poorly reproduced.

Recent studies of magnetic properties have revealed that excess Fe induces local magnetism and low energy magnetic fluctuations 21,40 , but these can not be treated within our DFT approaches. Generally speaking, whenever low energy magnetic fluctuations are at play, the B 1g phonon behavior deviates from the conventional harmonic picture and cannot be reproduced within our theoretical framework. This suggests that the reported anomalies originate from coupling between the mode to these excitations.

II. EXPERIMENTAL DETAILS

In order to discriminate the effects of Fe excess and of Se substitution, we have studied different groups of crystals, listed in Table I. In the first group, no Se was present and only the Fe concentration was changed Fe 1+y Te (Fe 1.02 Te, Fe 1.09 Te). In the second group we changed the Se concentration while keeping the Fe concentration as close from 1 as possible (Fe . Fe 1+y Te 1-x Se x single crystals were grown in sealed quartz tube as described elsewhere [41][42][43][44] . cryostat allowing measurements between 5 K and room temperature. Spectra were taken in backscattering geometry through a JobinYvon LabRam 1800 single grating spectrometer equipped with a razor-edge filter and a Peltier-cooled CCD camera. We used a linearly polarized He + /Ne + mixed gas laser with λ = 632.817 nm for excitation. The laser beam was focused through a 50× microscope objective to ∼ 5 µm diameter spot on the sample surface. The power of the incident laser was kept less than 1 mW to avoid laser-induced heating. In order to determine the precise frequency of phonons for each temperature, Neon emission lines were recorded between each measurements. For data analysis, all phonon peaks were fitted by Lorentzian profiles, convoluted with the spectrometer resolution function (a gaussian line of 2 cm -1 full width at half maximum (FWHM)).

The chemical composition listed in

III. EXPERIMENTAL RESULTS

A. Influence of Se doping

In Fig. 1 we show the Raman spectrum measured at room temperature on the Se-free Fe 1.02 Te sample, together with the Fe 1.00 Te 0.78 Se 0.22 , Fe 0.99 Te 0.69 Se 0.31 , Fe 0.98 Te 0.66 Se 0.34 and Fe 0.95 Te 0.56 Se 0.44 superconducting samples that have all a Fe stoichiometry close to 1. From symmetry consideration, one expects four Raman active modes: A 1g (Te/Se), B 1g (Fe), E g (Te), E g (Fe). Raman measurement have been performed in backscattering geometry, with the incident light polarization along the aaxis of the single crystal. An analyzer has been used to check the phonon selection rules, but most of the measurements presented here have been performed without in order to maximize the phonon peak intensities. In this scattering geometry, only the A 1g (Te/Se) and B 1g (Fe) modes, sketched in Fig. 1, are present. As seen in Fig. 1, these modes are found at ∼ 155 cm -1 and ∼ 197 cm -1 at ) room temperature, respectively, in agreement with previous reports [37][38][39] . These two peaks are much broader than in any of the other iron pnictides [25][26][27] . The large A 1g mode linewidth (∼ 20 cm -1 at room temperature in Fe 1.02 Te, almost three times larger than the A 1g As mode in BaFe 2 As 2 25 ) has been attributed to spin-orbital frustration effects 39 . In the parent Fe 1.02 Te single crystal, an additional peak was observed around 136 cm -1 . The origin of this mode remains unclear. It is temperature independent (and can therefore not be attributed to the lowering of the crystal symmetry induced by the structural transition), and has been observed irrespective of the Fe excess concentration (see Fig. 5-a). It is not observed in the Se-rich compounds (see Fig. 1). In contrast with the results of Xia et al. in ref. 37, claiming the disappearance of the A 1g mode in the Raman spectra of FeTe 0.92 and Fe 1.03 Te 0.7 Se 0.3 with increasing Se concentration, the mode is clearly visible in all the investigated compounds.
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The frequency of the two phonons is weakly dependent on Se contents: at the lowest recorded temperatures (5 K) it remains essentially constant for Se contents between 22% and 34% (Fe 1.00 Te 0.78 Se 0.22 , 2 and 3 samples), while a small hardening (∼ 2 cm -1 ) is observed for the sample with 44% of Se (Fe 0.95 Te 0.56 Se 0.44 ). This latter effect may be caused by the significant Fe deficiency in the Fe 0.95 Te 0.56 Se 0.44 sample (see sections IV and V B 2). Within our experimental errors, this seems to be also the case for the A 1g phonon, as trivially expected from the substitution of Te with lighter Se (the mode frequency going, in first approximation, as M -1/2 , M standing for the reduced mass of the considered oscillator). The only noticeable exception, is the Fe 1.00 Te 0.78 Se 0.22 sample, where the A 1g mode is found broader and softer than in any other compounds. This may originate from an overlapping of the A 1g mode with the 136 cm -1 peak observed in the parent compounds. It seems that for this particular doping level the modes energies are still separated enough to cause an apparent broadening and shift to lower frequency of the total envelope, but not enough to allow to resolve them individually.

In Figs. 2-a and -b, we show details of the fitting for the Fe 1.02 Te and Fe 0.95 Te 0.56 Se 0.44 samples, that illustrates one of the main finding of our study, i.e. the strong changes in the temperature dependence of the B 1g phonon upon doping. In the undoped Fe 1.02 Te sample, the B 1g mode hardens and broaden with decreasing temperature down to T N , and then softens and narrows down to base temperature. For the Fe 0.95 Te 0.56 Se 0.44 sample with the highest Se concentration, we observed a continuous hardening and narrowing of the mode the whole way down to 5 K. In Figs. 3 and4, respectively, we report the full temperature dependence of the frequency of the two c-axis polarized modes for the five samples with Fe concentration close to 1. Temperature dependence of the linewidths for the same samples are given in the lower panels of these figures.

While the temperature is decreased, a hardening of both the A 1g and B 1g modes in all the systems is observed, as expected from the lattice contraction. No noticeable differences between the samples are seen. As we go through the magnetic transition in the Fe 1.02 Te parent compound, a clear softening of the B 1g mode is observed (see also Fig. 6), while no changes across T c occur in the samples containing Se. Within our error bars, the A 1g mode frequency remains essentially unaffected by these transitions. As shown in Fig. 3 weak narrowing of the A 1g line with decreasing temperature is observed for Fe 45,46 ,

ω ph (T) = ω 0 -C 1 + 2 e ω 0 2k B T -1 (1) 
Γ ph (T) = Γ 0 + Γ 1 + 2 e ω 0 2k B T -1 (2) 
where C and Γ are positive constants, ω 0 is the bare phonon frequency, and Γ 0 a residual (temperature independent) linewidth originating from sample imperfections or electron-phonon interactions. The fitting parameters for these three samples are summarized in Table II Before discussing the possible origin of this unusual evolution of the temperature dependence of the B 1g mode FWHM, it is interesting to discuss its dependence with the concentration of Fe excess. We show in Fig. 5-a the raw Raman data obtained at room temperature on the two Se-free samples Fe 1.02 Te and Fe 1.09 Te where the excess iron concentration has been measured to be 2%, and 9%. No strong differences can be found at first glance. The strong aging effect reported in ref. 37 has also been observed in our Fe 1+y Te samples, as seen in Fig. 5-b, as well as on the Se-doped samples (not shown here). The origin of this strong Raman signal is not clear. In ref. 37 , the authors attribute it to the formation of amorphous Te as a decomposition product of Fe 1+y Te x Se 1-x on the basis of earlier reports 47,48 . In particular, in Fig. 2-d from ref. 47 , the authors say that the room temperature spectra of amorphous Te is plotted, but in a Note added in proof, they recognize that it rather originates from tetragonal TeO 2 (the Raman spectra of single crystalline paratellurite TeO 2 reported in ref. 48 shows a much complex structure). We have added these data to our Fig. 5-a and found them not inconsistent with the measurements from our aged surface. Main differences are the relative intensities and widths of the two features of TeO 2 at 120 and 145 cm -1 , that may originate either from different texturing and strain of TeO 2 and/or from the presence of Fe in the decomposition product.

The excess iron induces a small softening of the A 1g mode (Fig. 6-a), but does no affect its already broad linewidth (Fig. 6-c). No changes in the temperature dependence are seen. Similarly, the case of the B 1g mode appears to be more interesting. In the excess-Fe rich sample Fe 1.09 Te, a small softening through the magnetic transition can still be observed (Fig. 6-b), but the signature of this transition in the FWHM is clearly suppressed (Fig. 6-d). We note finally that the unusual broadening of the mode with decreasing temperature in the parent compounds is observed irrespective to the measured excess iron concentration (fig. 6-d), ruling out a disorder origin for this phenomena.

Se-doped compounds

We now discuss the effect of the excess iron on the vibrational properties for the Se-rich compounds. As seen directly by comparing the data in Figs. 2-b and-c, the low temperature behavior of the phonons is strongly affected by the Fe concentration. In the case of Fe 0.95 Te 0.56 Se 0.44 , as already discussed, regular hardening and narrowing of the phonon are observed as temperature is lowered. This is true between room temperature and 60 K for the Fe 1.05 Te 0.58 Se 0.42 sample, with a very close Se content to those of Fe 0.95 Te 0.56 Se 0.44 but where ∼ 5% of excess Fe has been measured. A sudden upturn in this behavior is observed for lower temperature, since at 5K the mode is softer and broader than at 60K. This can be better seen on Figs 7-a andb, where we compare the temperature dependence of frequencies and linewidth of the B 1g mode for these two samples. Clearly, as temperature decreases, the phonon hardens and narrows regularly, just as in absence of excess iron, but at a temperature of about 35 K the mode starts to broaden (∼ 3 cm -1 ) and softens (∼ 5 cm -1 ). In samples with lower Se contents a similar, although weaker, softening of the phonon is observed in the same temperature range, but with no change in the linewidth. None of these effects were observed on the A 1g phonon (not shown here).

C. Summary of the experimental results

To summarize our main experimental findings, we observe: i) For null or low Se concentration, an unusual broadening of the B 1g phonon FWHM as temperature is decreased. This progressively turns into a conventional anharmonic narrowing as Se is substituted to Te.

ii) Clear softening and narrowing of this phonon through the magnetic transition in parent compound, suppressed in presence of Fe excess.

iii) Strong softening and broadening of the B 1g at low temperature in Se substituted samples

IV. LDA DFT CALCULATIONS

In order to gain further insights on the effects of magnetism and Fe concentration on the lattice dynamics in these systems, we have performed density-functional theory (DFT) calculations of the frequency of the A 1g and B 1g modes in both paramagnetic (non-spin-polarizednsp hereafter) and double stripe ordered (spin-polarized, sp) phases. We start with the results obtained for stoichiometric FeTe system using the frozen phonon approach, summarized in table IV. [START_REF]We used the LDA approximation for the exchange correlation functional, and the linearly-augmented plane wave (LAPW) basis set with local orbitals. The k-point integration was performed on a 4 8 4 grid for the doubled unit cell[END_REF] Consistently with previous calculations, 50 we find a value of the double-stripe magnetic moment at y = 0 (m =2.2µ B ), which is close to the experimental one. We then consider the effect of Fe excess and deficiencies on the B 1g mode. Non-stoichiometry was considered within the VCA, which amounts to replacing Fe with a "virtual" atom with charge Z ±y F e in the self-consistent DFT calculations. This means that the average potential due to doping is treated self-consistently, but the effects of randomness are disregarded. Since, within VCA, it is impossible to to model the isovalent Se/Te substitution, we do not address the issue of the dependence of the A 1g mode on Se/Te concentration in this work. A proper description would require large supercell calculations, beyond the scope of the present paper. We used the FeTe experimental lattice parameters and Te height for all Fe concentrations 22 . For each value of the Fe excess y, the frequencies were calculated for nsp and sp configurations. [START_REF]We used the LDA approximation for the exchange correlation functional, and the linearly-augmented plane wave (LAPW) basis set with local orbitals. The k-point integration was performed on a 4 8 4 grid for the doubled unit cell[END_REF] The frequencies we obtained are given in table IV, together with the self-consistent value of the magnetic moment at equilibrium. The values of the calculated frequencies are found ex-tremely sensitive to the Fe excess content, which also affects strongly the magnetic moment.

In the VCA, the magnetic moments and frequencies decrease monotonically with increasing Fe content, up to the highest doping we calculated (y = 0.06). We find an almost linear increase of the B 1g frequency with doping, with a linear slope of 523 and 292 cm -1 /y for nsp and sp calculations, respectively. As discussed in the next section, the experimentally observed effects of Fe non stoichiometry are found much weaker. In parent Fe 1.02 Te, we have observed a clear softening and a narrowing of the B 1g phonon through the magnetic ordering transition at T N . Such narrowing has also been reported in parent BaFe 2 As 2 25,26 and CaFe 2 As 2 32 through the SDW transition. In the latter case only, it is accompanied by a jump of the phonon frequency that can, at least partially, be explained by the sudden collapse of the unit cell along the c-axis through the transition (such collapse that does not take place in BaFe 2 As 2 ). On the contrary, in Fe 1+y Te, the c-axis lattice parameter has been found to expand slightly through the coupled structural-magnetic transition 20 . This certainly favors the observed softening, although one would in this case expect an abrupt jump in the phonon frequency at T N (the structural transition is first-order) rather than the observed smooth softening between T N and 10K.

Regarding the agreement with the calculated phonon frequencies, it has been shown for the 122 and 1111 systems that the experimental phonon frequencies are closer from those obtained with a magnetic calculation than from those where magnetism is not included, even in the paramagnetic state 24,33,34,51 . This is also the case here as we get a better match with our experimental data using the sp calculation rather than the nsp one (see section IV).

Finally, as phonon linewidth is inversely proportional to the lifetime of the excitation, its renormalization through T N reflects the changes in the coupling of the phonons to some decay channels. In the 122 arsenides, as the SDW gap opens 53,54 , a significant reduction of the electronic density-of-states at the Fermi level occurs, leading to a decrease of electron-phonon coupling which reasonably accounts for the observed sharpening of the phonons 25 . Such SDW gap opening has not yet been reported in the 11 compounds 55,56 , but has recently been observed in ARPES experiments 57 and is very likely responsible for the B 1g mode narrowing in the Fe 1.02 Te sample.

B. Se-doped systems

Absence of superconductivity induced anomalies

As mentioned in the introduction, the B 1g Fe mode that shows here the most striking doping dependence is active in all the families of Fe-based superconductors. The absence of renormalization of this phonon as well as of the A 1g one through the superconducting transition in the doped compounds is consistent with experiments carried out on the doped 122 arsenide compounds 25 (with the noticeable exception electron-doped of Pr 1-x Ca x Ba 2 As 2 36 , where a small hardening of the B 1g phonon through T c has been observed) or on 111 compound LiFeAs 35 , where no signature of the superconducting transition is seen either in the frequency or in the linewidth of these two modes. This is due to the fact that the superconducting gap amplitude is smaller than the phonon frequencies, hence his opening let them unaffected. The situation is similar for the 11 compounds, as the phonon frequency is much larger than the energies reported for the superconducting gap(s) in various experiments (2∆ ∼ 2 meV (17 cm -1 ) 58 , 3.4 meV (27.4 cm -1 ) 59 or 4.6 meV (37 cm -1 ) 60 from STM, 2∆ ∼ 3 meV (24 cm -1 ) from NMR 61 , 2∆ ∼ 6 meV (48 cm -1 )from specific heat 42 ).

Se-substitution induced evolution of the B1g mode FWHM temperature dependence

We now turn to the influence of Se concentration on the behavior of the B 1g phonon. As it is substituted into the system, we observe a weak increase of the B 1g phonon frequency at the lowest temperatures (see Figs. 4 b to e), that goes along with the reduction of the c-axis parameter reported from x-ray and neutron diffraction experiments 7,10,20 . The room temperature linewidth for this mode is only weakly dependent on the Se concentration, although the FWHM clearly tends to sharpen with increasing Se content. This fact is already surprising as one may have rather expected the Se-substitution induced disorder to favor a broadening of the phonon lineshape instead of a narrowing. The normal state temperature dependence of the mode FWHM for different doping levels is even more puzzling. As noted in section III A, the situation appears conventional in the Fe 0.95 Te 0.56 Se 0.44 samples close to half doping, with a continuous narrowing of the phonon with decreasing temperature. On the contrary, as Se contents are reduced the phonon broadens with decreasing temperature. This is particulary clear for the two Se-free samples (Fe 1.02 Te and Fe 1.09 Te) as seen in Fig. 6-d.

The temperature dependence of the three samples with the highest Se content have successfully been fitted using a conventional anharmonic decay model (equation 2). Interestingly, looking at the fitting parameters of table III A, the residual -or temperature independent-linewidth Γ 0 (3.4 cm -1 ) in Fe 0.95 Te 0.56 Se 0.44 is comparable with the one of the temperature dependent parameter Γ (2.1 cm -1 ), while in Fe 0.98 Te 0.66 Se 0.34 and Fe 0.99 Te 0.69 Se 0.31 we have Γ 0 ∼ 10 cm -1 Γ. The situation is thus much closer to the one reported for Pr 1-x Ca x Ba 2 As 2 36 than for LiFeAs, where the residual linewidth was always found vanishingly small 35 . This shows that in FeTeSe systems, the contribution of anharmonicity to the B 1g phonon lifetime is not the dominant one. An additional decay channel for this phonon must therefore take over the usual anharmonic effects, and its contribution increases strongly as Se content is decreased. Such behavior can have at least two possible origins: electron-phonon coupling and spin-phonon coupling. In the first scenario, the increasing relative weight Γ 0 with decreasing Se content can be trivially related to the increase of the electronic density-of-states at the Fermi level N (E F ) 50 (as Γ 0 ∝ N (E F )).This may however not be sufficient to account for the reported effect: electron-phonon coupling is in principle temperature independent and can therefore hardly explain the increasing linewidth of the B 1g phonon with decreasing temperature in the systems with the lowest Se contents (Fe 1.02 Te, Fe 1.00 Te 0.78 Se 0.22 ). Having in mind the increasing weight of magnetic excitations as Se concentration decreases towards the parent compound 18 , we are naturally led to suggest that spin-phonon coupling may be the additional decay channel for the phonons.The effects of excess Fe discussed in the next section indeed confirm an interplay between the lattice and spin degrees of freedom in these systems.

C. Influence of the iron concentration

Comparison of experimental data with LDA DFT calculation

According to our calculation in section IV, increasing the Fe concentration induces a softening of the B 1g mode frequencies in both sp and nsp calculations. The softening rates are found to be 523 and 292 cm -1 /y for nsp and sp, respectively. Experimentally, at low temperature, a small hardening is instead observed in the parent compounds, when going from Fe 1.02 Te to Fe 1.09 Te. In Se-substituted samples on the other hand, a ∼ 7 cm -1 softening between Fe 0.95 Te 0.56 Se 0.44 and Fe 1.05 Te 0.58 Se 0.42 B 1g phonon frequencies is indeed observed (∼ 70 cm -1 /y). An effect of comparable size is found when comparing the B 1g peak frequencies of Fe 0.95 Te 0.56 Se 0.44 (ω B1g = 205.6cm -1 ) and Fe 0.98 Te 0.66 Se 0.34 (ω B1g = 203.8cm -1 ), with significantly different Fe deficiencies (even though the Se concentrations are in this case slightly different). This gives a softening rate of ∼ 66 cm -1 /y.

In any cases, the experimentally observed effects of Fe non-stoichiometry are much weaker than those theoretically calculated, even considering the sp calculation where they are the smallest. One has to keep in mind that accurate comparison to the calculation is tough as the presence of excess (y > 0) Fe complicates the situation. In fact, in the VCA there is no qualitative difference between Fe excess and deficiency, as the excess (deficient) charge are both located around the Fe site. Experimentally, however, it is known that the excess Fe ions are located in the Te planes, and this has qualitatively different effects, the most important being that the effective Fe magnetic moment is enhanced and not reduced, due to the formation of local moments on the excess Fe in the Te planes. This cannot be taken into account by the VCA approach of treating the doping in our LDA calculations. Furthermore, it is important to point out that mean-field LDA DFT calculations cannot reproduce the renormalization of the B 1g frequency and linewidth observed at low temperature in the Fe-rich systems, that are discussed in the next paragraph.

Excess Fe-induced magnetic fluctuation

We have seen in section III B 1 that in the Fe 1.09 Te crystal, we are not able to observe clearly the effect of the magnetic transition on the phonons. A small softening has been seen (see Fig. 6-d), but no narrowing of the lineshape. In the Se-substituted system, as shown in Fig. 7, excess iron, in addition to decrease T c induces large effects on both frequency and lineshape of the phonons. The strongest effect occurs close to 50% Se content, with a large softening and broadening of the B 1g phonon below T ∼ 35 K, well above T c . To our knowledge, no phase transition has been reported in this temperature range for this doping level, but the occurrence of short range magnetic fluctuation has been reported 16 . In the undoped case with low excess iron concentration, it has been shown that a low energy gap in the spin wave excitations spectrum opens when entering the magnetic state 40 . Increasing the excess iron concentration, this gap is filled up with low energy spin fluctuations 40 .

In both doped and undoped cases, one effect of excess iron is therefore to induce low energy magnetic fluctuations, in a temperature range at which we also observe a broadening relative broadening of the B 1g phonon, i. e. a decrease of its lifetime. This reinforces the point we made at the end of section V B 2, indicating that the additional damping for the B 1g mode may actually originate from its coupling to magnetic excitations.

VI. CONCLUSIONS

We have carried out a systematic study of the lattice dynamics in Fe 1+y Te 1-x Se x system, focussing more particularly on the c-axis polarized Fe B 1g mode. In parent compounds, unlike other systems such as BaFe 2 As 2 or LiFeAs, a non-conventional broadening of this mode is observed as temperature decreases, and a clear signature of the SDW gap opening is observed. As Se is substituted to Te, the temperature dependence of this modes smoothly evolves towards a more regular situation, with the B 1g phonon showing conventional anharmonic decay. A good agreement between the observed phonon frequencies and a first principle calculation including the effects of magnetic ordering is found. The temperature dependence of the phonon linewidth, as well as the effects induced by the Fe non stoichiometry in these compounds, revealed a peculiar coupling of this mode to magnetic fluctuations in the Fe 1+y Te 1-x Se x system, and can to date not be satisfactorily reproduced within state-of-theart computational approaches.
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FIG. 2 :

 2 FIG.2:(Color online) a) B1g phonon of the Fe1.02Te sample for selected temperatures (Room temperature, T ∼ TN and base temperature). Black squares are the data, red line the fit following the procedure described in the text. Phonon intensity have been normalized and the spectra have been shifted vertically for clarity. b) Same plot for the Fe0.95Te0.56Se0.44 sample. c) same plot for the Fe1.05Te0.58Se0.42 sample.

FIG. 3 :

 3 FIG. 3: (Color online) Upper panel: Temperature dependence of the A1g(Te/Se) mode frequency of the a) Fe1.02Te, b) Fe1.00Te0.78Se0.22, c) Fe0.99Te0.69Se0.31, d) Fe0.98Te0.66Se0.34, and e) Fe0.95Te0.56Se0.44 samples. Lower panel: Temperature dependence of the A1g(Te/Se) mode full-width-half-maximum of the f) Fe1.02Te, g) Fe1.00Te0.78Se0.22, h) Fe0.99Te0.69Se0.31, i) Fe0.98Te0.66Se0.34, and j) Fe0.95Te0.56Se0.44 samples.

FIG. 4 :

 4 FIG. 4: (Color online) Upper panel: Temperature dependence of the B1g(Fe) mode frequency of the a) Fe1.02Te, b)Fe1.00Te0.78Se0.22, c) Fe0.99Te0.69Se0.31, d) Fe0.98Te0.66Se0.34, and e) Fe0.95Te0.56Se0.44 samples. Lower panel: Temperature dependence of the B1g(Fe) mode full-width-half-maximum of the f) Fe1.02Te, g) Fe1.00Te0.78Se0.22, h) Fe0.99Te0.69Se0.31, i) Fe0.98Te0.66Se0.34, and j) Fe0.95Te0.56Se0.44 samples. Solid lines are fits of the temperature dependence of the B1g phonon frequency and linewidth in the various samples using the anharmonic model described in the text.

FIG. 6 :

 6 FIG. 5: (Color online) a) Room temperature Raman spectra of the parent Fe1.02Te and Fe1.09Te samples (vertically shifted for clarity). b) Example of aging effect on the parent single crystals.

FIG. 7 :

 7 FIG. 7: (Color online) a) and c) Effect of the Fe-excess on the temperature dependence of the B1g mode frequency in Se-substituted samples. b) and d) Effect of the Fe-excess on the temperature dependence of the B1g mode linewidth in Se-substituted samples.
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  1.00 Te 0.78 Se 0.22 , Fe 0.99 Te 0.69 Se 0.31 , Fe 0.98 Te 0.66 Se 0.34 and Fe 0.95 Te 0.56 Se 0.44 ). Finally, we also studied Se-doped sample containing sizeable excess iron (Fe 1.05 Te 0.58 Se 0.42 , Fe 1.08 Te 0.73 Se 0.27
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(Color online) Room temperature Raman spectra of the Fe1.02Te, Fe1.00Te0.78Se0.22, Fe0.99Te0.69Se0.31, Fe0.98Te0.66Se0.34, and Fe0.95Te0.56Se0.44 samples (see Table

1

). Spectra have been shifted vertically for clarity.

cleaved surface of Fe 1+y Te 1-x Se x single crystals. All the samples were mounted in a helium-flow

  

	Fe1+yTe	TN
	Fe1.02Te	67 K
	Fe1.09Te	65 K
	Fe1+yTe1-xSex	Tc
	Fe1.00Te0.78Se0.22	11.5 K
	Fe0.99Te0.69Se0.31	11 K
	Fe0.98Te0.66Se0.34	10.5 K
	Fe0.95Te0.56Se0.44	14 K
	Fe1.05Te0.58Se0.42	11.5 K
	Fe1.08Te0.73Se0.27	9 K
	TABLE I: A summary of the chemical compositions and prop-
	erties of the various Fe1+yTe1-xSex samples used in this
	study.	

  0.99 Te 0.69 Se 0.31 , Fe 0.98 Te 0.66 Se 0.34 and Fe 0.95 Te 0.56 Se 0.44 samples, while its broad linewidth remains essentially temperature independent in the Fe 1.02 Te and Fe 1.00 Te 0.78 Se 0.22 sample. In parallel to this, an unusual evolution upon Se doping of the temperature dependence of the B 1g mode linewidth can be see in the lower panels of Fig.4. Starting from the almost half-doped Fe 0.95 Te 0.56 Se 0.44 compound, a conventional behavior is observed: as in most of the materials, this mode narrows with decreasing temperature (the phonon width is inversely proportional to its lifetime, which is expected to increase as phonon-phonon interaction is reduced when decreasing temperature45,46 ). Decreasing Se concentration towards the parent Fe 1.02 Te sample, a smooth evolution from this regular behavior is observed: in Fe 0.99 Te 0.69 Se 0.31 and Fe 0.98 Te 0.66 Se 0.34 samples only a weak narrowing of the phonon is observed between room and base temperature, while in Fe 1.00 Te 0.78 Se 0.22 and Fe 1.02 Te the phonon essentially broadens as temperature is decreased. Below the magnetic ordering transition in the Fe 1.02 Te sample, in addition to the softening mentioned above, a narrowing of the B 1g phonon is observed, in agreement with recent report on FeTe39 .The temperature dependence of both frequency and FWHM of the B 1g phonon of the Fe 0.99 Te 0.69 Se 0.31 , Fe 0.98 Te 0.66 Se 0.34 and Fe 0.95 Te 0.56 Se 0.44 samples can been well fitted assuming a symmetric anharmonic decay of this optical phonon, i.e. decay into two acoustic modes with identical frequencies and opposite momenta

  . For the Fe 1.02 Te and Fe 1.00 Te 0.78 Se 0.22 samples, as the FWHM increases with decreasing temperature, we can simply not use the latter expression to fit the experimental data.

				B. Effect of the iron excess
				1. Undoped compounds
	Mode	ω0 (cm -1 )	Γ0 (cm -1 )	Γ (cm -1 )
	Fe0.99Te0.69Se0.31	203.9	9.9	0.78
	Fe0.98Te0.66Se0.34	203.8	9.8	0.78
	Fe0.95Te0.56Se0.44	205.6	3.44	2.1
	TABLE II: Fitting parameters for the temperature depen-
	dence of the B1g phonon linewidth in Fe0.99Te0.69Se0.31,
	Fe0.98Te0.66Se0.34 and Fe0.95Te0.56Se0.44 samples.	

TABLE III :

 III A1g and B1g frequencies of FeTe, from non-spinpolarized (ωnsp) and spin-polarized (ωsp) DFT calculations.

		ωnsp (cm -1 )	ωsp (cm -1 )	exp. at 10 K (cm -1 )
				Fe1.02Te sample
	A1g	135	175	159.7
	B1g	200.9	197.5	200.5

TABLE IV :

 IV B1g frequencies of Fe1+yTe, from non-spinpolarized (ωnsp) and spin-polarized (ωsp) DFT calculations. m is the value of the self-consistent double-stripe moment at zero displacement, in µB.
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