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Abstract

Motivated by isotropic fully developed turbulence, we define a theory of symmetric
matrix valued isotropic Gaussian multiplicative chaos. Our construction extends the
scalar theory developed by J.P. Kahane in 1985.

1. Introduction

In the pioneering work [15], J.-P. Kahane introduced the theory of Gaussian multiplicative
chaos. Given a metric space and a reference measure, Gaussian multiplicative chaos gives a
mathematically rigorous definition to random measures defined as limits of measures with
a lognormal density. The main application of this theory was to define the Kolmogorov-
Obhukov model of energy dissipation in a turbulent flow (see [17], [19]): in this context,
the metric space is the euclidean space R

3 equipped with the Lebesgue measure and the
log density has logarithmic correlations. Since this seminal work, the theory of Gaussian
multiplicative chaos has found many applications in a broad number of fields among which
finance ([2], [10]) and 2-d quantum gravity (see [9], [18] for the physics literature and [3],
[11], [22] for the mathematics literature).

The main motivation of the Kolmogorov K41 theory ([16]) and it’s extensions ([17])
is to define a realistic statistical theory of an incompressible, homogeneous, isotropic and
fully developed turbulent flow (see for example [12, 13]). This ambitious program consists
in defining a probabilistic model for the velocity field which satisfies the main statistical
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signatures observed experimentally, such as the mean energy transfer towards the small
scales and the intermittency (or multifractal) phenomenon ([16]). Ideally, one looks for a
field as close as possible to an invariant measure of the equations of motion. In [6], the
authors propose a probabilistic construction of such a velocity field. Their construction,
which requires a limiting procedure, is mathematically non rigorous and is based on the
short time dynamics of the Euler flow, as well as further multifractal considerations. One
of the key step of this construction is the introduction of the exponential of an isotropic
trace-free matrix whose entries are Gaussian variables with logarithmic correlations. Un-
fortunately, as far as we know, there is no matrix valued theory of Gaussian multiplicative
chaos. The purpose of this work is thus to define such a theory for a class of Gaussian
symmetric and isotropic matrices.

In the next section, we present the framework and the main results. Section 3 is
devoted to the proofs of our main results. In the appendix, we gather general formulas
which are useful in our proofs.

Notations: we denote by M(Rd) the set of measures on R
d and by Ms(R

d) the set of
signed measures on R

d. We denote by S(Ms(R
d)) the set of symmetric matrices whose

components belong to Ms(R
d).

2. Framework and main results

We consider an integer N > 2 and c ∈] − 1, 1
N−1 ]. We introduce a probability space

(Ω,F , P ) and denote expectation by E. On this space, we consider a symmetric random
matrix-valued Gaussian process Xǫ(x) = (Xǫ

i,j(x))1 6 i,j 6 N indexed by x ∈ R
d where the

covariance structure is given for ǫ > 0 by:

E[Xǫ
i,i(x)

2] = γ2(ln
L

ǫ
+ 1), E[Xǫ

i,i(x)X
ǫ
j,j(x)] = −cγ2(ln

L

ǫ
+ 1), i 6= j

and for |y − x| > ǫ:

E[Xǫ
i,i(x)X

ǫ
i,i(y)] =K(x− y),

E[Xǫ
i,i(x)X

ǫ
j,j(y)] =− cK(x− y), i 6= j

for some constant L > 0 and some kernel of positive type K(x) = γ2 ln+
L
|x| + g(x) where

g is some continuous bounded function. In the sequel, we set g(0) = m.
We also set σ2

ǫ = γ2(ln L
ǫ +1), σ2

|y−x| = K(y−x). We assume that the off diagonal terms

are independent of the diagonal terms and mutually independent of variance σ̄2
ǫ = σ2

ǫ (1+c)
2

and covariance for |y − x| > ǫ:

E[Xǫ
i,j(x)X

ǫ
i,j(y)] =

1 + c

2
K(x− y), i < j.

In fact, the above structure is the most general situation that ensures that, for a given
x ∈ R

d, the Gaussian random matrix Xǫ(x) is isotropic (see Lemma 4 in the Appendix).

Remark. Notice that the diagonal terms are independent if and only if c = 0. In this
case, the above structure coincides with the usual Gaussian Orthogonal Ensemble (GOE)
[1, 20]. Notice also that the boundary case c = 1

N−1 corresponds to trace-free matrices.
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Remark. The canonical example of such a kernel K is when it coincides with γ2 ln L
|x|

for x small enough. In dimension 1 and 2 we can even choose K(x) = γ2 ln+
L
|x| . In

dimension greater than 3, we can use the constructions developed in [15, 23]: for examples
of such kernels, see Appendix A.1. Another approach is to use the convolution techniques
developed in [24]. This does not exactly fall into the framework set out above because the
convoluted kernel depends on ǫ at all scales, i.e. for |x− y| > ǫ. Nevertheless, this has a
non significant influence on the forthcoming computations so that we also claim that our
results remain valid for such regularization procedures.

We want to study the convergence of the following random variable which lives in S(Ms(R
d)):

M ǫ(A) =
1

cǫ

∫

A
eX

ǫ(x)dx, A ⊂ R
d, (1)

where cǫ is chosen such that E[M ǫ(A)] = |A|Id where |A| is the Lebesgue measure of A.
We will prove that the normalization constant cǫ has the following explicit form:

cǫ =
1

N

Γ(1/2)

Γ(N/2)
(1 + c)(N−1)/2σN−1

ǫ e
σ2
ǫ
2 .

Theorem 1. Let 0 < γ2 < d. Then there exists a random matrix measure M which lives

in S(Ms(R
d)) and such that for all bounded A ⊂ R

d:

E[tr(M ǫ(A)−M(A))2] →
ǫ→0

0.

We also have the following asymptotic structure:

E[trM(B(0, ℓ))2] ∼
ℓ→0

N2VN
Γ(N/2)eγ

2 lnL+m

(1 + c)(N−1)/2Γ(1/2)

ℓ2d−γ2

(γ2 ln 1
ℓ )

(N−1)/2
(2)

with VN =
∫

|v|,|u| 6 1
dudv

|v−u|γ2
. Furthermore, we get the following equivalent for k > 2:

lnE[trM(B(0, ℓ))k]

ln ℓ
→
ℓ→0

ζ(k) (3)

where ζ(k) = dk − γ2 k(k−1)
2 .

Notice that it would be interesting to prove that this matrix-valued Gaussian multi-
plicative chaos admits a phase transition as in the scalar case, which is likely to occur at
γ2 = 2d.

Remark. Application in turbulence. In the paper [6], the authors consider the following
boundary case as a building block of their random velocity fields:

γ2 =
8

3
λ2, N = 3, c =

1

N − 1
=

1

2

where λ2 is found to fit experimental data for λ2 ≈ 0.025 [6, 7]. Here, the zero trace
property is reminiscent of the incompressibility condition imposed on velocity fields.
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Conjecture 2. The power law spectrum of M is given by the following expression: for

all q < 2d
γ2 , ∀K ⊂ B(0, L),∀ℓ ∈ (0, 1],

E[trM(B(0, ℓ))q ] ≃ Cqℓ
ζ(q)(− ln ℓ)

1−N
2 ,

where Cq > 0 is a constant and the structure exponent is given by

ζ(q) =
(

d+
γ2

2

)

q − γ2

2
q2.

If this conjecture is true, this would show that non-commutativity yields an extra log factor

in the power-law spectrum of M .

Remark. Notice that one can define a notion of ”metric” (actually a measure) through the
quantity

A ∈ B(Rd) 7→ trM(A).

Therefore we can define the notion of Hausdorff dimension asociated to this ”metric” (see
[11, 22]). It would be interesting to prove a corresponding KPZ formula and relate it with
a KPZ framework .

3. Proofs of the N-dimensional case

Let us first mention that several results abouts isotropic matrices and related computations
are gathered in the appendix and will be used throughout this section.

3.1 Joint law of the eigenvalues of Gaussian isotropic matrices

We consider a symmetrical random matrix X = (Xi,j)1 6 i,j 6 N made up of centered
Gaussian variables with the following covariance structure: the off-diagonal terms (Xi,j)i<j

are i.i.d. with variance σ2. The diagonal term (X1,1, · · · ,XN,N ) is independent from the
off-diagonal and it has the following covariance structure:

KN = (E[Xi,iXj,j])1 6 i,j 6 N = (1 + c)σ2
dIN − cσ2

dPN

where IN is the identity matrix, PN = (1)i,j and c ∈]−1, 1
N−1 [. By noting that P 2

N = NPN ,

we get the following inverse for K if c 6= 1
N−1 :

K−1
N =

1

σ2
d(1 + c)

IN +
c

σ2
d(1 + c)

1

(1 + c(1−N))
PN

The density of the random matrix, with respect to the Lebesgue measure (dxi,j)i 6 j , is
therefore given by:

f
(

(xi,j)i 6 j

)

=
1

ZN
e
− 1

2σ2
d
(1+c)

∑N
i=1 x

2
i,i−

c

2σ2
d
(1+c)

1
(1+c(1−N))

(
∑N

i=1 xi,i)2−
1

2σ2

∑

i<j x
2
i,j

where
ZN = (2π)N(N+1)/4σN

d σN(N−1)/2(1 + c)(N−1)/2
√

1− (N − 1)c
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is a normalization constant.
Therefore if we have the following condition:

σ2
d(1 + c) = 2σ2, (4)

as we have required in section 2, we can rewrite the above density in the following matrix
form:

f((xi,j)i 6 j) =
1

ZN
e
− c

2σ2
d
(1+c)

1
(1+c(1−N))

(trX)2− 1

2σ2
d
(1+c)

trX2

(5)

with ZN = 2N/2πN(N+1)/4σ
N(N+1)/2
d (1 + c)(N−1)(N+2)/4

√

1 + c(1 −N). This shows that
the matrix is isotropic, namely that for any real orthogonal matrix O, the matrices X and
OXtO have the same probability law. Therefore by applying [1, Proposition 4.1.1, page
188], we get the density of the unordered eigenvalues:

f((λi)1 6 i 6 N ) =
1

Z̄N
e
−α(

∑N
i=1 λi)2−

1

2σ2
d
(1+c)

∑N
i=1 λ

2
i
Πi<j|λj − λi|, (6)

where α = c
2σ2

d(1+c)
1

(1+c(1−N)) and Z̄N = 2N(N−1)/4 ρ(U1(R))NN !
ρ(UN (R)) ZN (notations of [1]). We

remind that ρ(UN (R)) = 2N/2(2π)N(N+1)/4
∏N

k=1
1

Γ(k/2) (see [1, page 198]) and thus:

Z̄N = N !(2π)N/2(
N
∏

k=1

Γ(k/2)

Γ(1/2)
)σ

N(N+1)/2
d (1 + c)(N−1)(N+2)/4

√

1 + c(1 −N). (7)

The isotropic condition (Eq. 4) ensures also that the collection of eigenvectors (vi)1 6 i 6 N

is independent of the eigenvalues (λi)1 6 i 6 N , and they are distributed uniformly on the
unit sphere according to the Haar measure [1, Corollary 2.5.4, page 53].

3.2 Computations of the renormalization

We consider here isotropic symmetric matrices Xǫ(x) = (Xǫ
i,j(x))1 6 i,j 6 N as defined in

section 2 and compute the renormalization of order 1, i.e. the constant cǫ such that:

E[eX
ǫ(x)] = cǫIN =

E[tr eX
ǫ(x)]

N
IN .

The isotropic nature of the matrices ensures the proportionality of the former expectation
to the identity matrix IN . We want more precisely an equivalent of cǫ as ǫ → 0. We have:

cǫ =
1

Z̄N

∫

RN

eλ1e
−αǫ(

∑N
i=1 λi)

2− 1

2σ2
ǫ (1+c)

∑N
i=1 λ

2
iΠi<j|λj − λi|dλ1 · · · dλN ,

where αǫ = c
2σ2

ǫ (1+c)
1

(1+c(1−N)) and the normalization constant Z̄N given by Eq. 7 with

σ2
d = σ2

ǫ = γ2(ln L
ǫ + 1).

We set ui =
λi
σǫ

and therefore we get:

cǫ =
σ
N(N+1)/2
ǫ

Z̄N

∫

RN

eσǫu1e
−α(

∑N
i=1 ui)

2− 1
2(1+c)

∑N
i=1 u

2
iΠi<j |uj − ui|du1 · · · duN ,
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where α = c
2(1+c)

1
(1+c(1−N)) . We thus introduce

ϕ(u1, · · · , uN ) = σǫu1 − α(

N
∑

i=1

ui)
2 − 1

2(1 + c)

N
∑

i=1

u2i

The function ϕ is maximal for u1 = Sǫ(1+2α(1+c)(N−1)), i > 2 : ui = −2αSǫ(1+c) with
Sǫ =

σǫ
1

1+c
+2αN

. We thus set u1 = v1+Sǫ(1+2α(1+c)(N−1)), i > 2 : ui = vi−2αSǫ(1+c)

to get:

cǫ =
σ
N(N+1)/2
ǫ e

σ2
ǫ
2

Z̄N

∫

RN

e
−α(

∑N
i=1 vi)

2− 1
2(1+c)

∑N
i=1 v

2
i Π2 6 i|v1 − vi + (1 + c)σǫ|

×Π2 6 i<j|vj − vi|dv1 · · · dvN .

Therefore, we get the following equivalent by using the Laplace method:

cǫ ∼
ǫ→0

σ
N(N+1)/2
ǫ (1 + c)N−1σN−1

ǫ e
σ2
ǫ
2

Z̄N

∫

RN

e
−α(

∑N
i=1 vi)

2− 1
2(1+c)

∑N
i=1 v

2
i Π
2 6 i<j

|vj−vi|dv1 · · · dvN

By using equation (25) in the appendix, this leads finally to the following equivalent as
ǫ → 0:

cǫ ∼
ǫ→0

1

N

Γ(1/2)

Γ(N/2)
(1 + c)(N−1)/2σN−1

ǫ e
σ2
ǫ
2 . (8)

3.3 Computation of the moment of order 2

In order to study the convergence, for ǫ → 0, of the Gaussian chaos M ǫ(A) (Eq. 1), we
need to consider first the second-order moment:

E(M ǫ(A)2) =
1

c2ǫ

∫

A×A
E(eX

ǫ(x)eX
ǫ(y))dxdy,

that involves the following quantity:

E(eX
ǫ(x)eX

ǫ(y)) =
1

N
E
[

tr(eX
ǫ(x)eX

ǫ(y))
]

IN . (9)

We will show that E(M ǫ(A)2) converges to a limit as ǫ → 0. From this convergence,
one can easily deduce that the sequence (M ǫ(A))ǫ>0 is a L2 Cauchy sequence. Again, the
proportionality to the identity matrix in (9) comes from the isotropic character of matrices
and we will see moreover that, because the so-defined field of matrices is homogeneous, the
former quantity will depend only on |x−y|. The purpose of this section is to compute this
quantity. We will restrict to the case |y − x| > ǫ as the case |y − x| 6 ǫ, once integrated,
leads to vanishing terms in the limit ǫ → 0. It requires first the derivation of the joint
density of the two matrices Xǫ(x) and Xǫ(y). We will see indeed that the quantity will
depend only on |x− y|. We will also notice that, contrary to the one-point density (Eq. 5)
from which it can be shown that eigenvectors and eigenvalues are independent, eigenvalues
at point x are not only correlated to eigenvalues at point y, but also with eigenvectors at
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point y. This intricate correlation structure is reminiscent of the non-commutative nature
of this field of matrices and is encoded in the so-called Harish-Chandra-Itzykson-Zuber
integral over the orthogonal group, or angular-matrix integral, and its related moments.
This is an active field of research in random matrix theory and up to now, no explicit
formula are known in dimension N > 3 (see for instance [5, 4, 8] and references therein).
Nonetheless, we will succeed to get an explicit result in the asymptotic limit ǫ → 0.

3.3.1 Joint density of two isotropic matrices

We consider here two isotropic symmetric matricesXǫ(x) = (Xǫ
i,j(x))1 6 i,j 6 N andXǫ(y) =

(Xǫ
i,j(y))1 6 i,j 6 N as defined in section 2. We recall that matrix components are logarith-

mically correlated over space. We note xi,j = Xǫ
i,j(x) and yi,j = Xǫ

i,j(y), and in matrix
form X = Xǫ(x) and Y = Xǫ(y).

Let us first consider the diagonal terms

(x1,1, · · · , xN,N , y1,1, · · · , yN,N ).

The covariance structure K2N of these elements is given by:

K2N =

(

σ2
ǫAN σ2

|y−x|AN

σ2
|y−x|AN σ2

ǫAN

)

,

where AN = (1+ c)IN − cPN and we recall that σ2
ǫ = γ2(ln L

ǫ +1) and σ2
|x−y| = γ2 ln L

|x−y| .
We know that the inverse of K2N is given by:

K−1
2N =

1

σ4
ǫ − σ4

|y−x|

(

σ2
ǫA

−1
N −σ2

|y−x|A
−1
N

−σ2
|y−x|A

−1
N σ2

ǫA
−1
N

)

,

where A−1
N = 1

(1+c)IN + 2αPN with α = c
2(1+c)

1
(1+c(1−N)) which leads to the following

density:

f((xi,i)1 6 i 6 N ; (yj,j)1 6 j 6 N ) =

cNe
−

σ2
ǫ /(1+c)

∑
i x

2
i,i+2ασ2

ǫ (
∑

i xi,i)
2+σ2

ǫ /(1+c)
∑

i y
2
i,i+2ασ2

ǫ (
∑

i yi,i)
2−2σ2

|y−x|
/(1+c)

∑
i xi,iyi,i−4σ2

|y−x|
α(

∑
i xi,i)(

∑
i yi,i)

2(σ4
ǫ−σ4

|y−x|
)

where cN = 1

(2π)N
√

det(K2N )
. Now, det(K2N ) = (σ4

ǫ − σ4
|y−x|)

N (1 + c)2(N−1)(1 + c(1−N))2

and therefore cN = 1
(2π)N (σ4

ǫ−σ4
|y−x|

)N/2(1+c)(N−1)(1+c(1−N))
. A similar procedure can be

performed for the remaining N(N−1) off-diagonal terms of the two matrices. The density
of the couple (X = Xǫ(x), Y = Xǫ(y)) is thus given by, in matrix form:

f(X,Y ) =

c̄Ne
−

σ2
ǫ

2(1+c)(σ4
ǫ−σ4

|y−x|
)
(trX2+trY 2)−

ασ2
ǫ

(σ4
ǫ−σ4

|y−x|
)
((trX)2+(trY )2)+

σ2
|y−x|

(1+c)(σ4
ǫ−σ4

|y−x|
)
trXY+

2ασ2
|y−x|

σ4
ǫ−σ4

|y−x|

trXtrY

(10)

where c̄N = cN
1

πN(N−1)/2(1+c)N(N−1)/2(σ4
ǫ−σ4

|y−x|
)N(N−1)/4 . We can see in the expression of

the joint density of the two matrices X and Y (Eq. 10) two different contributions. The
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first one, where is entering terms of the form trX2 + trY 2 and (trX)2 + (trY )2, relates
the density of two symmetric isotropic matrices as if they were independent. The second
contribution relates an interaction term coming from the logarithmic correlation of the
components. Indeed, the former vanishes if the matrices are independent, i.e. σ2

|y−x| = 0.

At this stage, it is convenient to introduce two i.i.d. random matrices M = (Mi,j) and
M ′ = (M ′

i,j). These random matrices are taken to be living in the Gaussian Orthogonal
Ensemble (GOE), namely they are symmetrical and isotropic with independent compo-
nents with the following distribution: the components (Mi,j)i 6 j are independent centered
Gaussian variables with the following variances:

E[M2
i,j ] =

(1 + c)(σ4
ǫ − σ4

|y−x|)

2σ2
ǫ

, i < j; E[M2
i,i] =

(1 + c)(σ4
ǫ − σ4

|y−x|)

σ2
ǫ

.

With this, we get the following expression for E[F (X(x),X(y))], where F is any functional
of the two matrices X(x) and X(y):

E[F (X(x),X(y))]

=
1

Z
E



F (M,M ′)e
−

ασ2
ǫ

(σ4
ǫ−σ4

|y−x|
)
((trM)2+(trM ′)2)+

σ2
|y−x|

(1+c)(σ4
ǫ−σ4

|y−x|
)
trMM ′+

2ασ2
|y−x|

σ4
ǫ−σ4

|y−x|

trMtrM ′



 ,

where

Z = E



e
−

ασ2
ǫ

(σ4
ǫ−σ4

|y−x|
)
((trM)2+(trM ′)2)+

σ2
|y−x|

(1+c)(σ4
ǫ−σ4

|y−x|
)
trMM ′+

2ασ2
|y−x|

σ4
ǫ−σ4

|y−x|

trMtrM ′



 . (11)

By using classical theorems about isotropic matrices, we know that M = OD(λ)tO, M ′ =
O′D(λ′)tO′ where O (resp. O′) is uniformly distributed on the orthogonal group of RN

and is independent of the diagonal matrix D(λ) (resp. D(λ′)) the diagonal entries of which
are the eigenvalues of M (resp. M ′).

3.3.2 Joint density of eigenvalues of two correlated isotropic matrices

We are interested here in computing the renormalization constant Z (Eq. 11). To do so,
we diagonalize the matrices M and M ′, and perform an integration over the remaining
degrees of freedom left by the eigenvectors (see [4] for instance). We define the eigenvalues
of M as λ = (λ1, . . . , λN ) ∈ R

d and we note the Vandermonde determinant as △(λ) =
∏

1 6 i<j 6 N |λi − λj |. We get:

Z =
1

Rǫ
N

∫

RN×RN

|∆(λ)||∆(λ′)|e
−

σ2
ǫ

2(1+c)(σ4
ǫ−σ4

|y−x|
)

∑N
i=1 λ

2
i−

σ2
ǫ

2(1+c)(σ4
ǫ−σ4

|y−x|
)

∑N
i=1 λ

′2
i

× e
−

ασ2
ǫ

(σ4
ǫ−σ4

|y−x|
)
((
∑N

i=1 λi)2+(
∑N

i=1 λ
′
i)

2)+
2ασ2

|y−x|

σ4
ǫ−σ4

|y−x|

(
∑N

i=1 λi)(
∑N

i=1 λ
′
i)

J(D(λ),D(λ′))dλdλ′,

where Rǫ
N is a renormalization constant such that

1

Rǫ
N

∫

RN×RN

|∆(λ)||∆(λ′)|e
−

σ2
ǫ

2(1+c)(σ4
ǫ−σ4

|y−x|
)

∑N
i=1 λ

2
i−

σ2
ǫ

2(1+c)(σ4
ǫ−σ4

|y−x|
)

∑N
i=1 λ

′2
i

dλdλ′ = 1,
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and J is the following Harish-Chandra-Itzykson-Zuber integral [5, 4, 8], also called matrix
angular integral (dO stands for the Haar measure on ON (R))

J(D(λ),D(λ′)) =

∫

ON (R)
e

σ2
|y−x|

(1+c)(σ4
ǫ−σ4

|y−x|
)
trD(λ)OD(λ′)O−1

dO,

obtained while integrating over the eigenvectors that enter in the term trMM ′ of Eq.
11. We make the following change of variables ui =

σǫ
√

σ4
ǫ−σ4

|y−x|

λi, u
′
i =

σǫ
√

σ4
ǫ−σ4

|y−x|

λ′
i (set

γǫ =

√

σ4
ǫ−σ4

|y−x|

σǫ
) and get to:

Z =
γ
N(N+1)
ǫ

Rǫ
N

∫

RN×RN

|∆(u)||∆(u′)|e−
1

2(1+c)

∑N
i=1 u

2
i−

1
2(1+c)

∑N
i=1 u

′2
i

× e
−α((

∑N
i=1 ui)

2+(
∑N

i=1 u
′
i)

2)+
2ασ2

|y−x|

σ2
ǫ

(
∑N

i=1 ui)(
∑N

i=1 u
′
i)J(D(u),D(u′))dudu′,

where we have set:

J(D(u),D(u′)) =

∫

ON (R)
e

1
1+c

σ2
|y−x|

σ2
ǫ

∑N
i,j=1 uiu′

j |Oi,j |2

dO.

Therefore, since J(D(u),D(u′)) converges pointwise towards 0 as ǫ → 0, we can use the
Lebesgue theorem to get the following equivalent as ǫ → 0:

Z ∼
ǫ→0

γ
N(N+1)
ǫ

Rǫ
N

∫

RN×RN

|∆(u)||∆(u′)|e−
1

2(1+c)

∑N
i=1 u

2
i−

1
2(1+c)

∑N
i=1 u

′2
i

× e−α((
∑N

i=1 ui)
2+(

∑N
i=1 u

′
i)

2)dudu′,

that is straightforward to compute (see the appendix).

3.3.3 Two-points correlation structure of the matrix chaos

We want to get an equivalent as ǫ → 0 of the quantity given in Eq. 9. To do so, we
consider the following quantity:

Z̄ = E[tr(eMeM
′
)e

−
ασ2

ǫ
(σ4

ǫ−σ4
|y−x|

)
((trM)2+(trM ′)2)+

σ2
|y−x|

(1+c)(σ4
ǫ−σ4

|y−x|
)
trMM ′+

2ασ2
|y−x|

σ4
ǫ−σ4

|y−x|

trMtrM ′

].

In the same spirit as formerly, we diagonalize the matrices M and M ′ and perform the
integration over the eigenvectors. We get:

Z̄ =
1

Rǫ
N

∫

RN×RN

|∆(λ)||∆(λ′)|e
−

σ2
ǫ

2(1+c)(σ4
ǫ−σ4

|y−x|
)

∑N
i=1 λ

2
i−

σ2
ǫ

2(1+c)(σ4
ǫ−σ4

|y−x|
)

∑N
i=1 λ

′2
i

× e
−

ασ2
ǫ

(σ4
ǫ−σ4

|y−x|
)
((
∑N

i=1 λi)
2+(

∑N
i=1 λ

′
i)

2)+
2ασ2

|y−x|

σ4
ǫ−σ4

|y−x|

(
∑N

i=1 λi)(
∑N

i=1 λ
′
i)

I(D(λ),D(λ′))dλdλ′,

9



where I is the following moment of the angular integral:

I(D(λ),D(λ′)) =

∫

ON (R)
tr(eD(λ)OeD(λ′)O−1)e

σ2
|y−x|

(1+c)(σ4
ǫ−σ4

|y−x|
)
trD(λ)OD(λ′)O−1

dO.

We make the following change of variables ui = σǫ
√

σ4
ǫ−σ4

|y−x|

λi, u′i = σǫ
√

σ4
ǫ−σ4

|y−x|

λ′
i (set

γǫ =

√

σ4
ǫ−σ4

|y−x|

σǫ
):

Z̄ =
N
∑

i,j=1

γ
N(N+1)
ǫ

Rǫ
N

∫

RN×RN

|∆(u)||∆(u′)|e−
1

2(1+c)

∑N
k=1 u

2
k−

1
2(1+c)

∑N
k=1 u

′2
k

× e
−α((

∑N
k=1 uk)

2+(
∑N

k=1 u
′
k)

2)+
2ασ2

|y−x|

σ2
ǫ

(
∑N

k=1 uk)(
∑N

k=1 u
′
k)eγǫ(ui+u′

j)Ii,j(D(u),D(u′))dudu′,

where we have set:

Ii,j(D(u),D(u′)) =

∫

ON (R)
|Oi,j |2e

1
1+c

σ2
|y−x|

σ2
ǫ

∑N
k,k′=1

uku
′
k′
|Ok,k′ |

2

dO,

known as the Morozov moment [4]. We make the following change of variables in the
above integral: ui = vi + γǫ, uk = vk − cγǫ for k 6= i and u′j = v′j + γǫ, u′k = v′k − cγǫ for
k 6= j. We obtain the following equivalent:

Z̄ ∼
ǫ→0

N
∑

i,j=1

γ
N(N+1)
ǫ eσ

2
ǫ (1 + c)2(N−1)σ

2(N−1)
ǫ

cǫN
Ii,j

∫

RN×RN

|∆i(v)||∆j(v
′)|

× e
− 1

2(1+c)

∑N
k=1 v

2
k−

1
2(1+c)

∑N
k=1 v

′2
k −α((

∑N
k=1 vk)

2+(
∑N

k=1 v
′
k)

2)+2ασ2
|y−x|

(1+c(1−N))2
dvdv′,

where |∆i(v)| =
∏

l<l′,l,l′ 6=i |vl − vl′ | and:

Ii,j =

∫

On(R)
|Oi,j |2e

1
1+c

σ2
|y−x|

∑N
k,k′=1

(−c+(1+c)1k=i)(−c+(1+c)1k′=j)|Ok,k′ |
2

dO

= e
σ2
|y−x|

( c
2N
1+c

−2c)
∫

ON (R)
|O1,1|2eσ

2
|y−x|

(1+c)|O1,1|2dO,

which is independent of i, j. Therefore, we get:

Z̄ ∼
ǫ→0

N2 γ
N(N+1)
ǫ eσ

2
ǫ (1 + c)2(N−1)σ

2(N−1)
ǫ

cǫN
I1,1

∫

RN×RN

|∆1(v)||∆1(v
′)|

e
− 1

2(1+c)

∑N
k=1 v

2
k−

1
2(1+c)

∑N
k=1 v

′2
k −α((

∑N
k=1 vk)

2+(
∑N

k=1 v
′
k)

2)+2ασ2
|y−x|

(1+c(1−N))2
dvdv′.

In conclusion, we get:

Z̄/Z ∼
ǫ→0

(1 + c)N−1(
Γ(1/2)

Γ(N/2)
)2eσ

2
ǫ σ2(N−1)

ǫ e
−cσ2

|y−x|

∫

ON (R)
|O1,1|2eσ

2
|y−x|

(1+c)|O1,1|2dO.

Including furthermore the normalization constant cǫ (Eq. 8), we get:

Z̄/(Zc2ǫ ) ∼
ǫ→0

N2e
−cσ2

|y−x|

∫

ON (R)
|O1,1|2eσ

2
|y−x|

(1+c)|O1,1|2dO.
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3.3.4 Computation of the moment of order 2

From the above subsections, we deduce that:

E(trM ǫ(A)2) →
ǫ→0

N2

∫

A×A
e
−cσ2

|y−x|

∫

ON (R)
|O1,1|2eσ

2
|y−x|

(1+c)|O1,1|2dO dxdy

We remind that the law of |O1,1|2 is the one of the square of one component of a vector
uniformely distributed on the unit sphere, and has thus a density given by (see Lemma 3)

f(v) =
Γ(N/2)

Γ(1/2)Γ((N − 1)/2)
v−1/2(1− v)(N−3)/2.

We get the following equivalent as |y − x| → 0:

N2e
−cσ2

|y−x|

∫

ON (R)
|O1,1|2eσ

2
|y−x|

(1+c)|O1,1|2dO ∼
|y−x|→0

N2Γ(N/2)

Γ(1/2)

e
σ2
|y−x|

(1 + c)(N−1)/2σN−1
|y−x|

,

which entails (2).

3.4 Computation of the moment of order k

We are interested here in studying the convergence, when ǫ → 0, of the Gaussian chaos
M ǫ(A) (Eq. 1) for higher order moments such as, k ∈ N,

E(M ǫ(A))k =
1

ckǫ

∫

Ak

E





∏

1 6 i 6 k

eX
ǫ(xi)



 dx1 · · · dxk,

that involves the following quantity:

E





∏

1 6 i 6 k

eX
ǫ(xi)



 =
1

N
E



tr
∏

1 6 i 6 k

eX
ǫ(xi)



 IN . (12)

To generalize former calculations in the case k = 2, we will first derive the joint density
of k-matrices (Xǫ(xi))1 6 i 6 k. A generalized version to k-points of the Harish-Chandra-
Itzykson-Zuber integral enters the expression of the density. An exact evaluation of these
integrals remains an open issue. As far as we know, only their behavior in the asymptotic
limit of large matrices (N → +∞) has been considered in the literature [8]. Nonetheless,
a logarithmic equivalent of the quantity of interest (Eq. 12) can be obtained and allows
to show the multifractal behavior of the multiplicative chaos (i.e. ζ(k) is a non linear
function of the order k, see theorem 1).

3.4.1 Joint density of k isotropic Gaussian matrices

We consider here k isotropic Gaussian matrices (Xǫ(xi))1 6 i 6 k. The ensemble made of
the kN diagonal terms, i.e.

(Xǫ
1,1(x1), · · · ,Xǫ

N,N (x1), · · · ,Xǫ
1,1(xk), · · · ,Xǫ

N,N (xk)),

11



has covariance structure KkN :

KkN =















σ2
ǫAN σ2

|x1−x2|
AN · · · · · · σ2

|x1−xk|
AN

σ2
|x2−x1|

AN σ2
ǫAN · · · · · · σ2

|x2−xk|
AN

· · · · · · · · · · · · · · ·
σ2
|xk−1−x1|

AN σ2
|xk−1−x2|

AN · · · σ2
ǫAN σ2

|xk−1−xk|
AN

σ2
|xk−x1|

AN σ2
|xk−x2|

AN · · · σ2
|xk−xk−1|

AN σ2
ǫAN















,

where again, AN = (1 + c)IN − cPN . We know that the inverse of KkN is approximately
given by (ǫ → 0):

K−1
kN =

1

σ4
ǫ















σ2
ǫA

−1
N −σ2

|x1−x2|
A−1

N · · · · · · −σ2
|x1−xk|

A−1
N

−σ2
|x2−x1|

A−1
N σ2

ǫA
−1
N · · · · · · −σ2

|x2−xk|
A−1

N

· · · · · · · · · · · · · · ·
−σ2

|xk−1−x1|
A−1

N −σ2
|xk−1−x2|

A−1
N · · · σ2

ǫA
−1
N −σ2

|xk−1−xk|
A−1

N

−σ2
|xk−x1|

A−1
N −σ2

|xk−x2|
A−1

N · · · −σ2
|xk−xk−1|

A−1
N σ2

ǫA
−1
N















,

where A−1
N = 1

(1+c)IN + 2αPN , with α = c
2(1+c)

1
(1+c(1−N)) . The density of diagonal

components, considering the N -dimensional vector X(l) = (Xǫ
1,1(xl), · · · ,Xǫ

N,N (xl)), is
thus given by:

f(X(1), · · · ,X(k)) = cNe
− 1

2σ4
ǫ

∑k
i,j=1(δi,jσ

2
ǫ−(1−δi,j )σ

2
|xi−xj |

)tX(i)( 1
(1+c)

IN+2αPN )X(j)

where cN = 1

(2π)kN/2
√

det(KkN )
. For the off diagonal terms, the situation is simpler. If

i < j, the covariance matrix of the vector (Xǫ
i,j(x1), · · · ,Xǫ

i,j(xk)), which is independent
on all the remaining diagonal and off-diagonal components, is:

1 + c

2















σ2
ǫ σ2

|x1−x2|
· · · · · · σ2

|x1−xk|

σ2
|x2−x1|

σ2
ǫ · · · · · · σ2

|x2−xk|

· · · · · · · · · · · · · · ·
σ2
|xk−1−x1|

σ2
|xk−1−x2|

· · · σ2
ǫ σ2

|xk−1−xk|

σ2
|xk−x1|

σ2
|xk−x2|

· · · σ2
|xk−xk−1|

σ2
ǫ















,

whose inverse is approximately given by (ǫ → 0):

2

(1 + c)σ4
ǫ















σ2
ǫ −σ2

|x1−x2|
· · · · · · −σ2

|x1−xk|

−σ2
|x2−x1|

σ2
ǫ · · · · · · −σ2

|x2−xk|

· · · · · · · · · · · · · · ·
−σ2

|xk−1−x1|
−σ2

|xk−1−x2|
· · · σ2

ǫ −σ2
|xk−1−xk|

−σ2
|xk−x1|

−σ2
|xk−x2|

· · · −σ2
|xk−xk−1|

σ2
ǫ















.

This leads to the following density, using the notations x
(r)
i,j = Xǫ

i,j(xr):

f(x
(1)
i,j , · · · , x

(k)
i,j ) = kNe

− 1

(1+c)σ4
ǫ

∑k
r,l=1(δr,lσ

2
ǫ−(1−δr,l)σ

2
|xr−xl|

)x
(r)
i,j x

(l)
i,j .
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Therefore, we get the following density for the k matrices (we omit superscript ǫ for the
sake of clarity):

f(X(x1), · · · ,X(xk)) = c̄Ne
− 1

2σ4
ǫ

∑k
r,l=1(δr,lσ

2
ǫ−(1−δr,l)σ

2
|xr−xl|

)tX(r)( 1
(1+c)

IN+2αP )X(l)

× e
−

∑

i<j
1

(1+c)σ4
ǫ

∑k
r,l=1(δr,lσ

2
ǫ−(1−δr,l)σ

2
|xr−xl|

)x
(r)
i,j x

(l)
i,j ,

which we rewrite under matrix notation:

f(X(x1), · · · ,X(xk)) = c̄Ne
− 1

2(1+c)σ2
ǫ

∑k
r=1 tr(X(xr)2)−

α

σ2
ǫ

∑k
r=1(trX(xr))2

× e
1

(1+c)σ4
ǫ

∑

r<l σ
2
|xr−xl|

trX(xr)X(xl)+
2α

σ4
ǫ

∑

r<l σ
2
|xr−xl|

trX(xr)trX(xl)
.

We introduce k i.i.d. random matrices M (l) = (M
(l)
i,j ) pertaining to the GOE ensemble.

These random matrices are symmetrical and isotropic with independent components with

the following distribution: the components (M
(l)
i,j )i 6 j are independent centered Gaussian

variables with the following variances:

E[(M
(l)
i,j )

2] =
1 + c

2
σ2
ǫ , i < j; E[(M

(l)
i,i )

2] = (1 + c)σ2
ǫ .

With this, we get the following expression for the expectation of any functional F (Xǫ(x1), · · · ,Xǫ(xk))
of the k matrices Xǫ(x1), · · · ,Xǫ(xk):

E[F (Xǫ(x1), · · · ,Xǫ(xk))]

=
E[F (M (1), · · · ,M (k))e

− α

σ2
ǫ

∑k
r=1(trM

(r))2+ 1

(1+c)σ4
ǫ

∑

r<l σ
2
|xr−xl|

trM (r)M (l)+ 2α

σ4
ǫ

∑

r<l σ
2
|xr−xl|

trM (r)trM (l)

]

Z
,

where:

Z = E[e
− α

σ2
ǫ

∑k
r=1(trM

(r))2+ 1

(1+c)σ4
ǫ

∑

r<l σ
2
|xr−xl|

trM (r)M (l)+ 2α

σ4
ǫ

∑

r<l σ
2
|xr−xl|

trM (r)trM (l)

].

By using classical theorems about isotropic matrices, we know that, for each r, M (r) =
O(r)D(λ(r))tO(r) where O(r) is uniformly distributed on the orthogonal group of RN and
is independent of the diagonal matrix D(λ(r)) the diagonal entries of which are the eigen-
values of M (r).

3.4.2 Joint density of eigenvalues of k isotropic Gaussian matrices and com-

putation of the renormalization

We start by computing Z. For λ = (λ1, . . . , λN ) ∈ R
d, we note the Vandermonde deter-

minant as △(λ) =
∏

1 6 i<j 6 N |λi − λj |. We get:

Z =
1

Rǫ
N

∫

RkN

Πk
r=1|∆(λ(r))|e−

1

2(1+c)σ2
ǫ

∑k
r=1

∑N
i=1(λ

(r)
i )2− α

σ2
ǫ

∑k
r=1(

∑N
i=1 λ

(r)
i )2

× e
2α

σ4
ǫ

∑

r<l σ
2
|xr−xl|

(
∑N

i=1 λ
(r)
i )(

∑N
i=1 λ

(l)
i )

J(D(λ(1)), · · · ,D(λ(k)))dλ(1) · · · dλ(k),
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where Rǫ
N is a renormalization constant such that

1

Rǫ
N

∫

RkN

Πk
r=1|∆(λ(r))|e−

1

2(1+c)σ2
ǫ

∑k
r=1

∑N
i=1(λ

(r)
i )2

= 1,

and J is the following angular integral: (dO(r) stands for the Haar measure on ON (R))

J(D(λ(1)), · · · ,D(λ(k))) =
∫

ON (R)k
e

1

(1+c)σ4
ǫ

∑

r<l σ
2
|xr−xl|

trO(r)D(λ(r))tO(r)O(l)D(λ(l))tO(l)

dO(1) · · · dO(k).

We make the following change of variables u
(r)
i =

λ
(r)
i
σǫ

:

Z =
σ
N(N+1)k/2
ǫ

Rǫ
N

∫

RkN

Πk
r=1|∆(u(r))|e−

1
2(1+c)

∑k
r=1

∑N
i=1(u

(r)
i )2−α

∑k
r=1(

∑N
i=1 u

(r)
i )2

× e
2α

σ2
ǫ

∑

r<l σ
2
|xr−xl|

(
∑N

i=1 u
(r)
i )(

∑N
i=1 u

(l)
i )

J(D(u(1)), · · · ,D(u(l)))du(1) · · · du(l),

where we have set:

J(D(u(1)), · · · ,D(u(k))) =
∫

ON (R)k
e

1

(1+c)σ2
ǫ

∑

r<l σ
2
|xr−xl|

trO(r)D(u(r))tO(r)O(l)D(u(l))tO(l)

dO(1) · · · dO(k).

Therefore, since J(D(u(1)), · · · ,D(u(k))) converges pointwise towards 1 as ǫ → 0, we can
use the Lebesgue theorem to get the following equivalent as ǫ → 0:

Z ∼
ǫ→0

σ
N(N+1)k/2
ǫ

Rǫ
N

∫

RkN

Πk
r=1|∆(u(r))|e−

1
2(1+c)

∑k
r=1

∑N
i=1(u

(r)
i )2

× e−α
∑k

r=1(
∑N

i=1 u
(r)
i )2du(1) · · · du(k).

3.4.3 k-points correlation structure of the multiplicative chaos

For i 6 j, we want to get an equivalent as ǫ → 0 of the following quantity:

Z̄ = E[(Πk
r=1e

M (r)
)i,je

− α

σ2
ǫ

∑k
r=1(trM

(r))2+ 1

(1+c)σ4
ǫ

∑

r<l σ
2
|xr−xl|

trM (r)M (l)+ 2α

σ4
ǫ

∑

r<l σ
2
|xr−xl|

trM (r)trM (l)

].

We get:

Z̄ =
1

Rǫ
N

∫

RkN

Πk
r=1|∆(λ(r))|e−

1

2(1+c)σ2
ǫ

∑k
r=1

∑N
i=1(λ

(r)
i )2− α

σ2
ǫ

∑k
r=1(

∑N
i=1 λ

(r)
i )2

× e
2α

σ4
ǫ

∑

r<l σ
2
|xr−xl|

(
∑N

i=1 λ
(r)
i )(

∑N
i=1 λ

(l)
i )

I(D(λ(1)), · · · ,D(λ(k)))dλ(1) · · · dλ(k),

where I is the following angular integral:

I(D(λ(1)), · · · ,D(λ(k))) =

∫

ON (R)k
(Πk

r=1O
(r)eD(λ(r))tO(r))i,j

× e
1

(1+c)σ4
ǫ

∑

r<l σ
2
|xr−xl|

trO(r)D(λ(r))tO(r)O(l)D(λ(l))tO(l)

dO(1) · · · dO(k).

14



We make the following change of variables u
(r)
i =

λ
(r)
i
σǫ

:

Z̄ =
N
∑

j1,··· ,jk=1

σ
N(N+1)k/2
ǫ

Rǫ
N

∫

RkN

Πk
r=1|∆(u(r))|e−

1
2(1+c)

∑k
r=1

∑N
i=1(u

(r)
i )2

× e
−α

∑k
r=1(

∑N
i=1 u

(r)
i )2+ 2α

σ2
ǫ

∑

r<l σ
2
|xr−xl|

(
∑N

i=1 u
(r)
i )(

∑N
i=1 u

(l)
i )

e
σǫ(u

(1)
j1

+···+u
(k)
jk

)

×
N
∑

l1,··· ,lk−1=1
l0=i;lk=j

Ij1,··· ,jkl0,l1,··· ,lk−1,lk
(D(u(1)), · · · ,D(u(k)))du(1) · · · du(k),

where we have set:

Ij1,··· ,jkl0,l1,··· ,lk−1,lk
(D(u(1)), · · · ,D(u(k))) =

∫

ON (R)k
(Πk

r=1O
(r)
lr−1,jr

O
(r)
lr ,jr

)

× e
1

(1+c)σ2
ǫ

∑

r<l σ
2
|xr−xl|

trO(r)D(u(r))tO(r)O(l)D(u(l))tO(l)

dO(1) · · · dO(k).

We make the following change of variables in the above integral for 1 6 r 6 k: u
(r)
jr

=

v
(r)
jr

+ σǫ, u
(r)
k = v

(r)
k − cσǫ k 6= jr. We obtain the following equivalent:

Z̄ ∼
ǫ→0

N
∑

j1,··· ,jk=1

σ
N(N+1)k/2
ǫ ekσ

2
ǫ /2(1 + c)(N−1)kσ

(N−1)k
ǫ

Rǫ
N

∫

RkN

Πk
r=1|∆jr(v

(r))|

× e
− 1

2(1+c)

∑k
r=1

∑N
i=1(v

(r)
i )2−α

∑k
r=1(

∑N
i=1 v

(r)
i )2+2α(1+c(1−N))2

∑

r<l σ
2
|xr−xl|

×
N
∑

l1,··· ,lk−1=1
l0=i;lk=j

Īj1,··· ,jkl0,l1,··· ,lk−1,lk
dv(1) · · · dv(k),

where we have set:

Īj1,··· ,jkl0,l1,··· ,lk−1,lk
=

∫

ON (R)k
(Πk

r=1O
(r)
lr−1,jr

O
(r)
lr ,jr

)

× e
1

(1+c)

∑

r<l σ
2
|xr−xl|

∑N
m1,m2=1 β

jr,jl
m1,m2

∑N
n1,n2=1 O

(r)
n1,m1

O
(r)
n2,m1

O
(l)
n1,m2

O
(l)
n2,m2dO(1) · · · dO(k)

with βjr ,jl
m1,m2 = (−c+ (1 + c)1m1=jr)(−c+ (1 + c)1m2=jl). This leads to

Īj1,··· ,jkl0,l1,··· ,lk−1,lk
=

∫

ON (R)k
(Πk

r=1O
(r)
lr−1,jr

O
(r)
lr ,jr

)

× e
1

(1+c)

∑

r<l σ
2
|xr−xl|

(c2tr(O(r)tO(r)O(l)tO(l))+(1+c)2(tO(r)O(l))2jr ,jl
)

× e
−c

∑

r<l σ
2
|xr−xl|

((tO(r)O(l)tO(l)O(r))jr ,jr+(tO(l)O(r)tO(r)O(l))jl,jl )dO(1) · · · dO(k)

= e
( c2N
(1+c)

−2c)
∑

r<l σ
2
|xr−xl|

∫

ON (R)k
(Πk

r=1O
(r)
lr−1,jr

O
(r)
lr ,jr

)

× e
(1+c)

∑

r<l σ
2
|xr−xl|

(tO(r)O(l))2jr ,jldO(1) · · · dO(k)
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In conclusion, we get the following equivalent:

Z̄ ∼
ǫ→0

σ
N(N+1)k/2
ǫ ekσ

2
ǫ /2(1 + c)(N−1)kσ

(N−1)k
ǫ

Rǫ
N

∫

RkN

Πk
r=1|∆1(v

(r))|e−
1

2(1+c)

∑k
r=1

∑N
i=1(v

(r)
i )2

× e−α
∑k

r=1(
∑N

i=1 v
(r)
i )2dv(1) · · · dv(k)e−c

∑

r<l σ
2
|xr−xl|Fi,j(x1, · · · , xk)

where we have the following expression for Fi,j(x1, · · · , xk):

Fi,j(x1, · · · , xk) =
N
∑

j1,··· ,jk=1

N
∑

l1,··· ,lk−1=1
l0=i;lk=j

∫

ON (R)k
(Πk

r=1O
(r)
lr−1,jr

O
(r)
lr ,jr

)e
(1+c)

∑

r<l σ
2
|xr−xl|

(tO(r)O(l))2jr ,jldO(1) · · · dO(k)

=

N
∑

j1,··· ,jk=1

∫

ON (R)k
O

(1)
i,j1

(tO(1)O(2))j1,j2 · · · (tO(k−1)O(k))jk−1,jkO
(k)
j,jk

× e
(1+c)

∑

r<l σ
2
|xr−xl|

(tO(r)O(l))2jr,jldO(1) · · · dO(k)

We get thus the following expression:

Z̄/(Zckǫ ) ∼
ǫ→0

Ck,Ne
−c

∑

r<l σ
2
|xr−xl|Fi,j(x1, · · · , xk), (13)

where Ck,N is a constant which depends only on k,N (we can compute this constant but
it is tedious and will not be necessary for the purpose of this paper).

3.4.4 Computation of the moment of order k and of the structure functions

From relation (13), we get the following expression:

E(trM ǫ(A)k) →
ǫ→0

Ck,N

∫

Ak

e
−c

∑

r<l σ
2
|xr−xl|

N
∑

i=1

Fi,i(x1, · · · , xk)dx1 · · · dxk (14)

The main difficulty is to study the functions Fi,j. If one takes the trace, we get:

N
∑

i=1

Fi,i(x1, · · · , xk)

=

N
∑

j1,··· ,jk=1

∫

ON (R)k
(tO(1)O(2))j1,j2 · · · (tO(k−1)O(k))jk−1,jk(

tO(k)O(1))jk,j1

× e
(1+c)

∑

r<l σ
2
|xr−xl|

(tO(r)O(l))2jr ,jldO(1) · · · dO(k). (15)

In particular, for k = 2, we recover that:

N
∑

i=1

Fi,i(x1, x2) = N2

∫

ON (R)2
(tO(1)O(2))21,1e

(1+c)σ2
|x2−x1|

(tO(1)O(2))21,1dO(1)dO2.
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In order to prove (3), we want to study the asymptotic of
∑N

i=1 Fi,i(ℓx1, · · · , ℓxk) as

ℓ → 0 with (x1, · · · , xk) fixed. Since
∑

r<l(
tO(r)O(l))2jr ,jl 6

k(k−1)
2 , it is obvious that:

lim
ℓ→0

ln(
∑N

i=1 Fi,i(ℓx1, · · · , ℓxk))
ln 1

ℓ

6 (1 + c)γ2
k(k − 1)

2
(16)

To get an inverse inequality in (16), we will study the asymptotic of each term in the
sum (15). Here we suppose that L = 1 and m = 0 to simplify the presentation. We fix
(j1, · · · , jk) and ǫ, δ small such that ǫ < δ. We have:

∫

ON (R)k
(tO(1)O(2))j1,j2 · · · (tO(k−1)O(k))jk−1,jk(

tO(k)O(1))jk,j1

× e
(1+c)γ2 ln 1

ℓ

∑

r<l(
tO(r)O(l))2jr ,jl e

(1+c)
∑

r<l σ
2
|xr−xl|

(tO(r)O(l))2jr ,jldO(1) · · · dO(k)

= Aǫ +Aǫ,δ +Aδ

where

Aǫ =

∫

∑

r<l(
tO(r)O(l))2jr ,jl

>
k(k−1)

2
−ǫ

· · · , Aǫ,δ =

∫

k(k−1)
2

−δ 6
∑

r<l(
tO(r)O(l))2jr ,jl

6
k(k−1)

2
−ǫ

· · ·

and Aδ is the
∑

r<l(
tO(r)O(l))2jr ,jl 6

k(k−1)
2 − δ part of the integral. On the event

∑

r<l(
tO(r)O(l))2jr ,jl >

k(k−1)
2 − ǫ, each |tO(r)O(l))jr ,jl| is greater or equal to

√
1− ǫ. In

particular, we have that |(tO(r)O(r+1))jr ,jr+1| >
√
1− ǫ for all r 6 k − 1. Notice that

(tO(k)O(1))jk,j1 = (tO(1)O(2))j1,j2 · · · (tO(k−1)O(k))jk−1,jk + O(ǫ). Therefore, we can con-

clude that (tO(1)O(2))j1,j2 · · · (tO(k−1)O(k))jk−1,jk and (tO(1)O(2))j1,j2 have the same sign.
Thus, we get:

Aǫ

> e(1+c)γ2 ln 1
ℓ
(
k(k−1)

2
−ǫ)

×
∫

∑

r<l(
tO(r)O(l))2jr,jl

>
k(k−1)

2
−ǫ
(tO(1)O(2))j1,j2 · · · (tO(k−1)O(k))jk−1,jk(

tO(k)O(1))jk,j1

× e
(1+c)

∑

r<l σ
2
|xr−xl|

(tO(r)O(l))2jr ,jldO(1) · · · dO(k)

> e(1+c)γ2 ln 1
ℓ
(k(k−1)

2
−ǫ)((1 − ǫ)k +O(ǫ))

×
∫

∑

r<l(
tO(r)O(l))2jr,jl

>
k(k−1)

2
−ǫ

e
(1+c)

∑

r<l σ
2
|xr−xl|

(tO(r)O(l))2jr ,jldO(1) · · · dO(k).

The only thing to check is that
∑

r<l(
tO(r)O(l))2jr ,jl >

k(k−1)
2 − ǫ has a positive probability

but this can be seen easily by setting one chosen element of each O(r), say O
(r)
1,jr

, very

close to one. Now, one can choose δ larger than ǫ such that |Aǫ,δ| 6 Aǫ
2 . Finally, for these

choices of ǫ, δ, we have:

|Aδ| 6 e(1+c)γ2 ln 1
ℓ
(
k(k−1)

2
−δ)

×
∫

∑

r<l(
tO(r)O(l))2jr,jl

6
k(k−1)

2
−δ

e
(1+c)

∑

r<l σ
2
|xr−xl|

(tO(r)O(l))2jr ,jldO(1) · · · dO(k) .
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We thus get the following:

lim
ℓ→0

ln(Aǫ +Aǫ,δ +Aδ)

ln 1
ℓ

> (1 + c)γ2(
k(k − 1)

2
− ǫ)

Since this is valid for all ǫ, by combining with (16), we get that:

lim
ℓ→0

ln(
∑N

i=1 Fi,i(ℓx1, · · · , ℓxk))
ln 1

ℓ

= (1 + c)γ2
k(k − 1)

2
(17)

The desired result (3) is then a consequence of (17) and of the limit (14).

A. Appendix

A.1 Discussion about the construction of kernels

In this subsection, we discuss in further details the construction of the kernel K as sum-
marized in remark 2. In dimension 1 and 2, it is plain to see that

ln+
L

|x| =
∫ +∞

0
(t− |x|)+νL(dt) (18)

where the measure νL is given by (δu stands for the Dirac mass at u):

νL(dt) = 1[0,L](t)
dt

t2
+

1

L
δL(dt).

Hence, for every µ > 0, we have:

ln+
L

|x| =
1

µ
ln+

Lµ

|x|µ =

∫ +∞

0
(t− |x|µ)+νLµ(dt).

We are therefore led to consider µ > 0 such that the function x 7→ (1− |x|µ)+ is positive
definite, the so-called Kuttner-Golubov problem (see [14]).

For d = 1, it is straightforward to check that (1 − |x|)+ is positive definite. We can
thus consider a Gaussian process Xǫ with covariance kernel given by

Kǫ(x) = γ2
∫ L

ǫ
(t− |x|)+νL(dt).

Notice that

∀x 6= 0, γ2 ln+
L

|x| = lim
ǫ→0

Kǫ(x) (19)

and

∀ǫ < |x| 6 L, Kǫ(x) = γ2
∫ L

|x|
(t− |x|)+νL(dt) = γ2 ln+

L

|x| . (20)

In dimension 2, we can use the same strategy since Pasenchenko [21] proved that the
mapping x 7→ (1 − |x|1/2)+ is positive definite over R

2. We can thus consider a Gaussian
process Xǫ with covariance kernel given by

Kǫ(x) = 2γ2
∫ L1/2

ǫ1/2
(t− |x|1/2)+νL1/2(dt),
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sharing the same properties (22) and (23).
In dimension 3, it is not known whether the mapping x 7→ ln+

L
|x| admits an integral

representation of the type explained above. Nevertheless it is positive definite so that we
can use the convolution techniques developed in [24]. In dimension 4, it is not positive
definite [24] so that another construction is required. We explain the methods in [23]. We
set the dimension d to be larger than d > 3. Let us denote by S the sphere of Rd and
σ the surface measure on the sphere such that σ(S) = 1. Remind that this measure is
invariant under rotations. We define the function

∀x ∈ R
d, F (x) = γ2

∫

S
ln+

L

|〈x, s〉|σ(ds). (21)

It is plain to see that F is an isotropic function. Let us compute it over a neighborhood
of 0: for |x| 6 L, we can write x = |x|ex with ex ∈ S. Then we have

F (x) = γ2
∫

S
ln

L

|x||〈ex, s〉|
σ(ds) = λ2 ln

L

|x| +
∫

S
ln

1

|〈ex, s〉|
σ(ds).

Notice that the integral
∫

S ln 1
|〈ex,s〉|

σ(ds) is finite (use Lemma 3 below for instance) and
does not depend on x by invariance under rotations of the measure σ. By using the
decomposition (18), we can thus consider a Gaussian process Xǫ with covariance kernel
given by

Kǫ(x) = γ2
∫

S

∫ L

ǫ
(t− |〈x, s〉|)+νL(dt)σ(ds),

sharing the properties:
∀x 6= 0, lim

ǫ→0
Kǫ(x) = F (x) (22)

and

∀ǫ < |x| 6 L, Kǫ(x) = F (x) = λ2 ln
L

|x| + C (23)

for some constant C.

A.2 Auxiliary results

We give a proof of the following standard result:

Lemma 3. If (Zi)1 6 i 6 N are i.i.d. standard Gaussian random variables then the vector

V =
1

√

∑N
i=1 Z

2
i

(Z1, . . . , ZN )

is distributed as the Haar measure on the sphere of RN . In particular, the density of the

first entry of a random vector uniformly distributed on the sphere is given by:

Γ(N2 )

Γ(12 )Γ(
N−1
2 )

y−
1
2 (1− y)

N−3
2 1[0,1](y) dy.
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Proof. By using the invariance under rotations of the law of the Gaussian vector (Zi)1 6 i 6 N ,
the law of V is invariant under rotations and is supported by the sphere. By uniqueness of
the Haar measure, V is distributed as the Haar measure. We have to compute the density

of ζ1 =
Z2
1

∑N
i=1 Z

2
i

. Notice that

ζ1 =
Y

Y + Z

where Y,Z are independent random variables with respective laws chi-squared distribu-
tions of parameters 1 et N − 1. Therefore

E[f(ζ1)] =

∫

R+

∫

R+

f
( x

x+ y

) 1

2
1
2Γ(12)

x−
1
2 e−

x
2

1

2
N−1

2 Γ(N−1
2 )

y
N−1

2 e−
y
2 dx dy

=
1

2
N
2 Γ(12 )Γ(

N−1
2 )

∫ 1

0
f(u)

1
√
u(1− u)

3
2

∫

R+

e
− y

2(1−u) y
N−2

2 dy du

=
Γ(N2 )

Γ(12)Γ(
N−1
2 )

∫ 1

0
f(u)u−

1
2 (1− u)

N−3
2 du.

Next we characterize all the symmetric Gaussian random matrices:

Lemma 4. Let X be a centered Gaussian symmetric random matrix of size N ×N . Then

the diagonal terms (X11, . . . ,XNN ) have a covariance matrix of the form σ2(1+c)IN−cσ2P
for some σ2 > 0 and c ∈]− 1, 1

N−1 ], where P is the N ×N matrix whose all entries are 1.

The off-diagonal terms are i.i.d with variance σ2 1+c
2 and are independent of the diagonal

terms.

Proof. If X admits a density with respect to the Lebesgue measure dM over the set of
symmetric matrices (see [1, chapter 4]), then the density of M is given by

e−f(M) dM,

where f is a homogeneous polynomial of degree 2. By isotropy, f must be a symmetric
function of the eigenvalues of M . Therefore it takes on the form

f(M) = αtr(M2) + βtr(M)2

for some α, β ∈ R. In this case, the result follows easily.
If M does not admit a density with respect to the Lebesgue measure over the set of

symmetric matrices, we can add an independent ”small GOE”, i.e. we consider M + ǫM ′

where M ′ is a matrix of the GOE ensemble with a normalized variance independent of
M . The matrix M + ǫM ′ admits a density so that we can apply the above result. Then
we pass to the limit as ǫ → 0.

A.3 Some integral formulae

Let α, c > 0. We want to compute the integral:
∫

RN

e
−α(

∑N
i=1 λi)

2− 1
2(1+c)

∑N
i=1 λ

2
iΠi<j |λj − λi|dλ.

20



We write the integrand under the form (6):

e
−α(

∑N
i=1 λi)2−

1

2σ2
d
(1+c̄)

∑N
i=1 λ

2
i
Πi<j |λj − λi|

where σ2
d(1 + c̄) = (1 + c) and α = c̄

2σ2
d(1+c̄)

1
(1+c̄(1−N)) . In that case, we have c̄ =

2α(1+c)
1+2α(1+c)(N−1) and 1 + c̄(1−N) = 1

1+2α(1+c)(N−1) . We deduce:

∫

RN

e
−α(

∑N
i=1 λi)2−

1
2(1+c)

∑N
i=1 λ

2
iΠi<j|λj−λi|dλ = N !(2π)N/2(

N
∏

k=1

Γ(k/2)

Γ(1/2)
)
(1 + c)N(N+1)/4

√

1 + 2α(1 + c)N

(24)
We also want to compute the integral:

∫

RN

e
−α(

∑N
i=1 λi)

2− 1
2(1+c)

∑N
i=1 λ

2
iΠ2 6 i<j |λj − λi|dλ.

We have:
∫

RN

e
−α(

∑N
i=1 λi)2−

1
2(1+c)

∑N
i=1 λ

2
i Π
2 6 i<j

|λj − λi|dλ1 · · · dλN

=

∫

RN−1

(

∫

R

e
−2αλ1(

∑N
i=2 λi)−(α+ 1

2(1+c)
)λ2

1dλ1)e
−α(

∑N
i=2 λi)

2− 1
2(1+c)

∑N
i=2 λ

2
i Π
2 6 i<j

|λj − λi|dλ2 · · · dλN

=
√
2π

√

1 + c

2α(1 + c) + 1

∫

RN−1

e
2α2 1+c

2α(1+c)+1
(
∑N

i=2 λi)2−α(
∑N

i=2 λi)2−
1

2(1+c)

∑N
i=2 λ

2
i Π
2 6 i<j

|λj − λi|dλ2 · · · dλN

=
√
2π

√

1 + c

2α(1 + c) + 1

∫

RN−1

e
− α

2α(1+c)+1
(
∑N

i=2 λi)
2− 1

2(1+c)

∑N
i=2 λ

2
i Π
2 6 i<j

|λj − λi|dλ2 · · · dλN

=
√
2π

√

1 + c

2α(1 + c) + 1

∫

RN−1

e
− c̄

2σ2
d
(1+c̄)

1
(1+c̄(2−N))

(
∑N

i=2 λi)
2− 1

2σ2
d
(1+c̄)

∑N
i=2 λ

2
i

Π
2 6 i<j

|λj − λi|dλ2 · · · dλN

for σ2
d(1+ c̄) = 1+c and c̄ = 2α(1+c)

2α(1+c)(N−1)+1 (or equivalently, 1+ c̄(2−N) = 1+2α(1+c)
1+2α(1+c)(N−1)

and 1 + c̄ = 1+2α(1+c)N
1+2α(1+c)(N−1) ). This leads to the following:

∫

RN−1

e
− c̄

2σ2
d
(1+c̄)

1
(1+c̄(2−N))

(
∑N

i=2 λi)
2− 1

2σ2
d
(1+c̄)

∑N
i=2 λ

2
i

Π
2 6 i<j

|λj − λi|dλ2 · · · dλN = Z̄N−1

where Z̄N−1 = (N−1)!(2π)(N−1)/2(
∏N−1

k=1
Γ(k/2)
Γ(1/2) )σ

N(N−1)/2
d (1+c̄)(N−2)(N+1)/4

√

1 + c̄(2−N).
In conclusion, we get:

∫

RN

e
−α(

∑N
i=1 λi)2−

1
2(1+c)

∑N
i=1 λ

2
i Π
2 6 i<j

|λj − λi|dλ1 · · · dλN

=
√
1 + c(N − 1)!(2π)N/2(

N−1
∏

k=1

Γ(k/2)

Γ(1/2)
)
(1 + c)N(N−1)/4

√

1 + 2α(1 + c)N
(25)
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