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Abstract

Graph edit distance measures the distance between two graphs as the number of elementary
operations (vertex/edge insertion, deletion, substitution) required to transform the first graph
into the second one. Such a distance allows to define a metric between graphs and has many
applications in the structural pattern recognition framework. However, the complexity of the
computation of this distance is exponential in the size of both graphs to be compared. In this
technical report, we focus our attention on applications where families of graphs to be considered
have a finite set of structures. We then investigate under which relationships between the costs
of the different elementary operations, such a priori knowledge may be used to pre compute most
of the optimal edit path between any two graphs.

1 Introduction

An edit path between two graphs is defined as a set of vertex and edge removals, insertions and sub-
stitutions which transforms the first graph into the second. If each elementary operation is associated
to a cost, the global cost of an edit path is defined as the sum of the costs of its elementary operations.

The edit distance between two graphs is defined as the minimal costs of all edit paths transforming
the first graph into the second. Such an edit distance reflects the minimal amount of transformations
that we have to apply in order to transform one graph into another one. Such a distance encodes
thus a dissimilarity measure between two graphs. Neuhaus and Bunke [2] have shown that if each
elementary operation satisfies the criteria of a distance (separability, symmetry, triangular inequality)
then the edit distance defines a metric between graphs.

Using the notations of Bunke [1], let us denote by cvd, cvi the costs of vertex deletion and insertion
and by cvs, ces the costs of vertex and edge substitutions. Given an edit path P and two input
graphs G1 and G2, let us denote by Ĝ1 the sub graph obtained from G1 by performing all vertex
removals contained in P . Let us further denote by Ĝ2 the sub graph of G2 obtained from G1 by the
successive application of all vertex removals and vertex/edge substitutions contained in P . Note that
using Bunke [1] formalism, all graphs are considered as complete graphs, and vertex/edge removals
are performed by substituting edge’s label by null. Conversely, an edge insertion is performed by
substituting its null label by a non null one. Bunke [1] has shown that if cvd+ cvi ≤ cvs and cvd+ cvi ≤
ces, the sub graphs Ĝ1 and Ĝ2 both correspond to a maximum common sub graph of G1 and G2.

Intuitively, the constraints cvd + cvi ≤ cvs and cvd + cvi ≤ ces state that a vertex substitution
may always be replaced (at lower cost) by the removal of this vertex followed by its insertion with a
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new label. Based on these constraints the determination of the edit path with minimal costs which
encodes the edit distance must avoid as much as possible vertex and edge substitutions hence leading
to the two isomorphic sub graphs Ĝ1 and Ĝ2 which can be transformed into one another without any
substitution.

One may first note, that in many applications, the constraint imposed by Bunke is counter intuitive,
since the removal and the insertion of a vertex modifies twice the structure of a graph while its
substitution is a basic operation which modifies the label attached to a vertex without altering the
structure of the graph. Moreover, beside the fact that the result shown by Bunke [1] nicely connects
the graph edit distance problem with the one of maximum common sub graph, this connection as
only minor practical consequences since the efficient computation of a maximum common sub graph
remains a challenging problem for which only algorithms with a high complexity are available.

In this study we are mainly interested by a family of graph databases such that for each database
D = {G1, . . . , Gn}, each graph Gi is defined by a structure graph (Vi, Ei) belonging to a finite set of
known structures B and two label functions µi and νi mapping respectively the vertices and edges of
Gi into two sets of vertex and edge labels. In other words, we are working on databases based on a
finite set of structure and arbitrary label functions. Within such a framework the connection between
graph edit distance and maximum common sub graph is of little help to compute the graph edit
distance. Indeed, the maximum common sub graph of two graphs highly depends on labels which
may vary freely in our case. In order to exploit the finite number of graph structure encountered
in our databases, we have investigated under which conditions on the different costs of elementary
operations, the two sub graphs defined by an edit path may correspond to a maximum structural
sub graph, i.e. a maximum sub graph computed without taking into account vertex and edge labels.
When satisfied, such conditions allow us to decompose the computation of the edit distance between
two graphs G1 and G2 into three steps, two of these steps being pre-computed.

After the introduction of some basic concepts (Section 2), we study connections between graph
edit distance and maximum common structural sub graphs in Section 3. As shown by this last section
such connections occur only if some ratios between the costs of elementary operations is above some
thresholds. In order to decrease the value of such thresholds we restrict our study to edit paths
preserving connectedness in Section 4. We finally present an efficient method to compute the graph
edit distance between two graphs whose structure is known in Section 5.

2 Main Definitions

Definition 1 Unlabeled simple graph An unlabeled undirected simple graph G is defined by the
couple G = (V,E) where V is the set of vertices and E ⊆ P2(V ) is the set of edges, where P2(V ) is
the set of 2-element subsets of V .

Definition 2 Labeled simple graph
Let L be a finite alphabet of vertex and edge labels. A labeled simple graph is a tuple G = (V,E, µ, ν)

where

• the couple (V,E) defines an unlabeled simple graph,

• µ : V → L is a vertex labeling function,

• ν : E → L is an edge labeling function.

The unlabeled graph associated to a given labeled graph G = (V,E, µ, ν) is defined by the couple (V,E).
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In the following we will only consider simple graphs that we will simply denote by unlabeled (resp.
labeled) graphs. The term graph will denote indifferently a labeled or an unlabeled graph.

Definition 3 Sub graph

• An unlabeled graph G1 = (V1, E1) is said to be an unlabeled sub graph of G2 = (V2, E2) if V1 ⊆ V2

and E1 ⊆ E2 ∩ P2(V1). The unlabeled sub graph G1 is called an unlabeled proper sub graph if
V1 6= V2 or E1 6= E2.

• If G1 = (V1, E1, µ1, ν1) and G2 = (V2, E2, µ2, ν2) are both labeled graphs then G1 is a (proper)
sub graph of G2 if (V1, E1) is an unlabeled (proper) sub graph of (V2, E2) and if the following
additional constraint is fulfilled:

µ2|V1
= µ1 and ν2|E1

= ν1

where f| denotes the restriction of function f to a particular domain.

• A structural sub graph of a labeled graph G is an unlabeled sub graph of the unlabeled graph
associated to G.

Definition 4 Graph isomorphism

• Given two unlabeled graphs G1 = (V1, E1) and G2 = (V2, E2) we say that there is a structural
isomorphism between G1 and G2 and we denote it by G1 ≃s G2 if there exists a bijective function
f from V1 to V2 such that:

{u, v} ∈ E1 ⇔ {f(u), f(v)} ∈ E2.

With a slight abuse of notation we consider that f also applies from E1 to E2 and maps any
edge {u, v} of E1 onto {f(u), f(v)} in E2.

• Given two labeled graphs G1 and G2 we say that G1 is isomorphic to G2 (denoted as G1 ≃ G2) if
the unlabeled graph associated to G1 is isomorphic to the one associated to G2 and the following
additional constraint is fulfilled:

µ2 ◦ f = µ1 and ν2 ◦ f = ν1

Definition 5 Common sub graph

• An unlabeled graph G is said to be a common structural sub graph of two graphs G1 and G2 if
there are two structural sub graphs Ĝ1 and Ĝ2 of G1 and G2 such that:

G ≃s Ĝ1 ≃s Ĝ2

• A graph G is said to be a common sub graph of two graphs G1 and G2 if there are two sub graphs
Ĝ1 and Ĝ2 of G1 and G2 such that:

G ≃ Ĝ1 ≃ Ĝ2

Definition 6 Maximal/Maximum common sub graphs
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• A common sub graph of two graphs G1 and G2 is maximal if it is a common sub graph of G1

and G2 and if it is not a proper sub graph of any common sub graphs of G1 and G2.

• A common sub graph G is maximum if it is a maximal sub graph of G1 and G2 and if there
exists no other common sub graph of G1 and G2 with more nodes than G.

• A common structural sub graph of two graphs G1 and G2 is maximal if it is a common structural
sub graph of G1 and G2 and if it is not an unlabeled proper sub graph of any common structural
sub graphs of G1 and G2.

• A common structural sub graph G is maximum if it is a maximal structural sub graph of G1

and G2 and if there exists no other common structural sub graph of G1 and G2 with more nodes
than G.

Note that a common graph can not be maximal if it is a sub graph of a common graph with a same
number of vertices but with less edges. On the other hand, one common sub graph may be maximum
despite the fact that there exist other maximal common sub graphs with more edges but less vertices.

Definition 7 Elementary edit operations An elementary edit operation is one of the following
operation applied on a graph:

• Vertex/Edge removal. Such removals are defined as the removal of the considered element from
sets V or E.

• Vertex/Edge insertion. On labeled graphs, a vertex/edge insertion also associates a label to the
inserted element.

• Vertex/Edge substitution if the graph is a labeled one. Such an operation modifies the label of a
vertex or an edge and thus transforms the vertex or edge labeling functions.

Definition 8 Cost of an elementary edit operation Each elementary operation is associated
to a cost encoded by a specific function for each type of operation. More precisely, let x denote an
elementary operation, we distinguish the following cost functions:

• Vertex (cvd(x)) and edge removal (ced(x))

• Vertex (cvi(x)) and edge (cei(x)) insertion,

• Vertex (cvs(x)) and edge (ces(x)) substitution on labeled graphs.

By extension, we will consider that functions cvd and cvi (resp. ced and cei) apply on the set of vertices
(resp. set of edges) of a graph. Hence, the cost cvd(v) denotes the cost of the elementary operation
“removing vertex v”.

We assume that a substitution transforming one label into the same label has zero cost:

∀l ∈ L, cvs(l → l) = ces(l → l) = 0

where l → l′ denotes the substitution of label l into l′ on some edge or vertex.

Definition 9 Edit path

4



• An edit path of a graph G is a sequence of elementary operations applied on G, where vertex
removal and edge insertion have to satisfy the following constraints:

1. A vertex removal implies a first removal of all its incident edges,

2. An edge insertion can be applied only between two existing or already inserted vertices.

• An edit path between two graphs G1 and G2 is an edit path of G1 whose last graph is G2.

If G1 and G2 are unlabeled we assume that no vertex nor edge substitutions are performed.

Definition 10 Cost of an edit path
The cost of an edit path P , denoted γ(P ) is the sum of the costs of its elementary edit operations.

Definition 11 Edit distance
The edit distance between two graphs G1 and G2 is defined as the minimal cost of all edit paths

between G1 and G2.
d(G1, G2) = min

P∈P(G1,G2)
γ(P )

where P(G1, G2) is the set of all edit paths transforming G1 into G2. An edit path from G1 to G2 with
minimal cost is called an optimal path.

Proposition 1 Given any graph G, and any edit path P of G, the transformation of G by P is still
a simple graph.

Proof:
Let G = (V,E, µ, ν) and G′ = (V ′, E ′, µ′, ν ′) denote the initial graph and its transformation by P .

Since the insertion of vertices and edges induces the definition of their labels, function µ′ (resp. ν ′)
defines a valid labeling function over V ′ (resp. E ′). Let us consider {u, v} ∈ E ′.

• If {u, v} ∈ E ∩E ′ then u and v belong to V ∩ V ′, otherwise, the removal of either u or v would
have implied the removal of {u, v} (Definition 9, condition 1).

• If {u, v} ∈ E ′ \ E then {u, v} has been inserted. In this case, both u and v should either be
present in V or have been inserted before the insertion of edge {u, v} (Definition 9, condition 2).
Moreover, none of these vertices can be removed after the last insertion of edge {u, v} since such
a removal would imply the removal of {u, v} (Definition 9, condition 1). Both u and v thus
belong to V ′.

In both cases, vertices u and v belong to V ′, which shows that E ′ ⊆ P2(V
′). It follows that G′ =

(V ′, E ′, µ′, ν ′) is a labeled simple graph according to Definition 2. �

Definition 12 Independent edit path An independent edit path between two labeled graphs G1

and G2 is an edit path such that:

1. No vertex nor edge is both substituted and removed,

2. No vertex nor edge is simultaneously substituted and inserted,

3. Any inserted element is never removed,

4. Any vertex or edge is substituted at most once,
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Note that an independent edit path is not minimal in the number of operations. Indeed, definition 12
still allows to replace one substitution by one removal followed by one insertion (but such an operation
can be performed only once for each vertex or edge thanks to condition 3). We however forbid useless
operations such as the substitution of one vertex followed by its removal (condition 1) or the insertion
of a vertex with a wrong label followed by its substitution (condition 2). In the following we will only
consider independent edit paths that we simply call edit paths.

Proposition 2 The elementary operations of an independent edit path between two graphs G1 and
G2 may be ordered into a sequence of removals, followed by a sequence of substitutions and terminated
by a sequence of insertions.

Proof:
Let R, S and I denote the sub-sequence of Removals, Substitutions and Insertions of an edit

path P , respectively. Since no removal may be performed on a substituted element (condition 1 of
Definition 12) and no removal may be performed on an inserted element (condition 3), removals only
apply on elements which are neither substituted nor inserted. Such removals operations may thus
be grouped at the beginning of the edit path. Now, since an element can not be substituted after
its insertion, substitutions apply only on the remaining elements after the removal step and can be
grouped after the removal operations. The remaining operations only contain insertions.

Let us consider the sequence of elementary operations (R, S, I) the order within sequences R, S
and I being deduced from the one of P . Such a sequence may be defined since operations in R apply
on elements not in S and I while operations in S do not apply on the same elements than operations
in I. Such sets are independent, hence the definition of the independent edit path. We, however, still
have to show that the sequence (R, S, I) defines a valid edit path.

1. Since R contains all the removal operations contained in P , if P satisfies condition 1 of Defini-
tion 9, so does the sequence R.

2. Let us suppose that an edge insertion is valid in sequence P while it violates Definition 9,
condition 2 in sequence (R, S, I). Let us denote by {u, v} such an edge. Edge {u, v} violates
condition 2 in sequence (R, S, I) only if either the removal of u or v belongs to R. In such
a case the insertion of {u, v} in P should be made before the removal of u or v. But such a
removal would imply the removal of all the incident edges of u or v (Definition 9, condition 1)
including the newly inserted edge {u, v}. Such an operation would violate the independence of
P (Definition 12, condition 3).

The sequence (R, S, I) is thus a valid edit path which transforms a graph G1 into G2 if P do so.
Furthermore, it is readily seen that all the conditions of Definition 12 are satisfied by the sequence
(R, S, I) as soon as they are satisfied by P . The sequence (R, S, I) is thus an independent edit path.
�

Proposition 3 Let P be an edit path between two graphs G1 and G2. Let us further denote by R,
S and I the sequence of vertex and edge Removals, Substitutions and Insertions performed by P , the
order in each sequence being deduced from the one of P . Then:

• the graph Ĝ1 obtained from G1 by applying removal operations R is a sub graph of G1,

• the graph Ĝ2 obtained from G1 by applying the sequence of operations (R, S) is a sub graph of
G2,
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• Both Ĝ1 and Ĝ2 correspond to a same common structural sub graph of G1 and G2.

Proof:

1. Since the sequence R is an edit path, Ĝ1 is a graph by Proposition 1. Moreover, since R is
only composed of removal operations, we trivially have V̂1 ⊂ V1 and Ê1 ⊂ E1. The fact that
Ê1 ⊂ E1 ∩P2(V̂1) is induced by the fact that Ĝ1 is a graph. Moreover, if G1 is a labeled graph,
since removal operations do not modify labels, labels on Ĝ1 are only the restriction of the ones
on G1 to V̂1 and Ê1.

2. The graph Ĝ2 is deduced from G1 by the edit path (R, S), it is thus a graph. Moreover, G2

is deduced from Ĝ2 by the sequence of insertions I. We thus trivially have: V̂2 ⊂ V2 and
Ê2 ⊂ E2 ∩ P2(V̂2). Moreover, since insertion operations do not modify the label of existing
elements, the restriction of the label functions of G2 to V̂2 and Ê2 corresponds to the label
functions of Ĝ2.

3. Sub graph Ĝ2 is deduced from Ĝ1 by the sequence of substitution operations S. Since substitu-
tion operations only modify label functions, the structure of both graphs is the same and there
exists a structural isomorphism between both graphs.

�

One should note that it may exist several structural isomorphisms between Ĝ1 and Ĝ2. The set of
substitutions S fixes one of them, say f such that the image of any element of Ĝ1 by f have the same
label than the one defined by the substitution. More precisely, let us suppose that we enlarge the set
of substitution S by 0 cost substitutions so that all the vertices and edges of Ĝ1 = (V̂1, Ê1, µ1, ν1) are
substituted. In this case, we have:

{

∀v ∈ V̂1, µ2(f(v)) = lv

∀e ∈ Ê1, ν2(f(e)) = le

Where lv and le correspond to the labels defined by the substitutions of v and e and µ2 and ν2 define
respectively the vertex and edge labeling functions of G2.

Corollary 1 Using the same notations than in Proposition 3, the cost γ(P ) of an edit path is defined
by:

γ(P ) =
∑

v∈V1\V̂1

cvd(v) +
∑

e∈E1\Ê1

ced(e) +
∑

v∈V̂1

cvs(v) +
∑

e∈Ê1

ces(e)

+
∑

v∈V2\V̂2

cvi(v) +
∑

e∈E2\Ê2

cei(e)

Proof:
The edit path P and its rewriting in (R, S, I) have the same set of operations and thus a same

cost.

From G1 to Ĝ1: Operations in R remove vertices in V1 \ V̂1 and edges in E1 \ Ê1.
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From Ĝ1 to Ĝ2: Substitutions of S apply between the two graphs Ĝ1 and Ĝ2. Let us consider the
set of substitutions S ′ which corresponds to the completion of S by 0 cost substitutions so that
all vertices and edges of Ĝ1 are substituted. Both S and S ′ have a same cost. The cost of S ′ is
defined as the sum of costs of the substituted vertices and edges of Ĝ1.

From Ĝ2 to G2: Operations in I insert vertices of V2 \ V̂2 and edges of E2 \ Ê2 in order to obtain G2

from Ĝ2.

�

Corollary 2 If all costs do not depend on the vertex/edge involved the cost of an edit path P is equal
to:

γ(P ) = (|V1| − |V̂1|)cvd + (|E1| − |Ê1|)ced + Vfcvs + Efces

+(|V2| − |V̂2|)cvi + (|E2| − |Ê2|)cei

where Vf (resp. Ef) denotes the number of vertices (resp. edges) substituted with a non zero cost and
cvd, ced, cvs, ces, cvi, and cei denote the constant costs of the associated functions.

Moreover, in this case minimizing the cost of the edit path is equivalent to maximizing the following
formula:

M(P )
not.
= |V̂1|(cvd + cvi) + |Ê1|(ced + cei)− Vfcvs − Efces

Proof:
We deduce immediately from Corollary 1 the following formula:

γ(P ) = (|V1| − |V̂1|)cvd + (|E1| − |Ê1|)ced + Vfcvs + Efces

+(|V2| − |V̂2|)cvi + (|E2| − |Ê2|)cei

We obtain by grouping constant terms:

γ(P ) = |V1|cvd + |E1|ced + |V2|cvi + |E2|cei

−
[

|V̂1|cvd + |Ê1|ced + |V̂2|cvi + |Ê2|cei − Vfcvs − Efces

]

Since there is a structural isomorphism between Ĝ1 and Ĝ2, we have V̂1 = V̂2 and Ê1 = Ê2. So:

γ(P ) = |V1|cvd + |E1|ced + |V2|cvi + |E2|cei

−
[

|V̂1|(cvd + cvi) + |Ê1|(ced + cei)− Vfcvs − Efces

]

The first part of the above equation being constant, the minimization of γ(P ) is equivalent to the
maximization of the last part of the equation. �

3 Edit Distance and Maximal/Maximum Common Struc-

tural Sub Graphs

Proposition 4 Given two graphs G1 and G2, and a common structural sub graph G of G1 and G2,
there exists at least one edit path transforming G1 into G2 whose:
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• sequence of removals produces a sub graph of G1 structurally isomorphic to G,

• sequence of removals and substitutions produces a sub graph of G2 structurally isomorphic to G,

Such an edit path is called an edit path between G1 and G2 associated to G.

Proof:
Let us consider two sub graphs G′

1 and G′
2 of G1 and G2 structurally isomorphic to G. Such sub

graphs exist by definition of a common structural sub graph (Definition 5). We build an edit path
P = (R, S, I) from G1 to G2 passing through G′

1 and G′
2 as follows:

• The set of operations R removes all vertices in V1 \V
′
1 and all edges in E1 \E

′
1. Such a sequence

of operations produces the sub graph G′
1.

• Let f be an isomorphism between G′
1 and G′

2. The set of substitutions is defined as the set of
substitutions of each vertex’s label µ1(v) into µ2(f(v)) and each edge’s label ν1(e) into ν2(f(e)).
These substitutions transform G′

1 into G′
2.

• The set of insertions I is defined as the insertion of vertices in V2 \ V
′
2 and edges in E2 \ E

′
2. It

produces the graph G2 from G′
2.

�

Proposition 5 Given two graphs G1 and G2, let us denote by δv the number of vertices of their
maximum common sub graphs and by δe the maximal number of edges of their common structural sub
graphs. Then,

• If cvs = 0 and (cvd + cvi) ≥ cesδe, or

cvd + cvi

cvs
≥ δv +

ces

cvs
δe

and

• If ces = 0 and (ced + cei) ≥ cvsδv, or

ced + cei

ces
≥ δe +

cvs

ces
δv

then for any optimal edit path Popt = (Ropt, Sopt, Iopt), the sub graphs of G1 and G2, Ĝ1 and Ĝ2 defined
respectively by the edit operations Ropt and (Ropt, Sopt) are maximal common structural sub graphs of
G1 and G2.

Proof:
Let us suppose that there exists one common structural sub graph G′

1 of G1 and G2 such that Ĝ1

is a proper sub graph of G′
1. We consider the edit path P = (R, S, I) associated to G′

1 (Proposition 4).
Following Corollary 2, we may compare the costs of the edit paths P and Popt by comparing the two
values:







M(P ) = |V ′
1 |(cvd + cvi) + |E ′

1|(ced + cei)− (V ′
fcvs + E ′

fces)

M(Popt) = |V̂1|(cvd + cvi) + |Ê1|(ced + cei)− (Vfcvs + Efces)

where Vf and V ′
f (resp. Ef and E ′

f ) denote the number of vertices (resp. edges) substitutions
performed respectively by Popt and P .

Since Ĝ1 is a proper sub graph of G′
1 then one of the following cases holds:
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• |V̂1| < |V ′
1 | and |Ê1| < |E ′

1|

• |V̂1| < |V ′
1 | and |E ′

1| = |Ê1|

• |V ′
1 | = |V̂1| and |Ê1| < |E ′

1|

We now show that in each of these cases M(P ) ≥ M(Popt) which contradicts the optimality of
Popt.

• Suppose that |V̂1| < |V ′
1 | and |Ê1| < |E ′

1|.
Hence if cvs = ces = 0 we trivially have M(P ) ≥ M(Popt).
Let us suppose that both cvs and ces are strictly positive. We have then:

M(P )−M(Popt) = cvs

[

(|V ′
1 | − |V̂1|)

cvd+cvi
cvs

− (V ′
f − Vf )

]

+

ces

[

(|E ′
1| − |Ê1|)

ced+cei
ces

− (E ′
f − Ef )

]

Since both |V ′
1 |−|V̂1| and |E ′

1|−|Ê1| correspond to integer quantities greater or equal to 1, we deduce:

M(P )−M(Popt) ≥ cvs

[

cvd+cvi
cvs

− (V ′
f − Vf )

]

+ ces

[

ced+cei
ces

− (E ′
f − Ef )

]

≥ cvs

[

cvd+cvi
cvs

− V ′
f

]

+ ces

[

ced+cei
ces

− E ′
f

]

(1)

V ′
f and E ′

f are respectively bounded by |V ′
1 | ≤ δv and |E ′

1| ≤ δe. It follows that:

M(P )−M(Popt) ≥ cvs

[

cvd+cvi
cvs

− δv

]

+ ces

[

ced+cei
ces

− δe

]

Using our hypothesis on the ratios cvd+cvi
cvs

and ced+cei
ces

we obtain M(Popt)−M(P ) ≥ 0.
If cvs = 0 and ces > 0 we have:

M(P )−M(Popt) = (|V ′
1 | − |V̂1|)(cvd + cvi) + ces

[

(|E ′
1| − |E1|)

ced + cei

ces
− (E ′

f − Ef )

]

With similar arguments as before we deduce that:

M(P )−M(Popt) ≥ ces

[

(|E ′
1| − |E1|)

ced+cei
ces

− (E ′
f − Ef )

]

≥ ces

[

ced+cei
ces

− E ′
f

]

≥ ces

[

ced+cei
ces

− δe

]

We again obtain that M(P )−M(Popt) ≥ 0. The case when cvs > 0 and ces = 0 is similar.

• Now, let us suppose that |V̂1| < |V ′
1 | and |E ′

1| = |Ê1|.
If cvs = ces = 0 we again trivially have M(P ) ≥ M(Popt). Let us suppose that both cvs and ces

are strictly positive. We have then:

M(P )−M(Popt) = cvs

[

(|V ′
1 | − |V̂1|)

cvd + cvi

cvs
− (V ′

f − Vf )

]

− ces(E
′
f − Ef )

10



Using the same arguments as before we deduce that:

M(P )−M(Popt) ≥ cvs

[

cvd+cvi
cvs

− (V ′
f − Vf )

]

− ces(E
′
f − Ef )

≥ cvs

[

cvd+cvi
cvs

− V ′
f

]

− cesE
′
f

≥ cvs

[

cvd+cvi
cvs

− δv

]

− cesδe

≥ cvs

[

cvd+cvi
cvs

− (δv +
ces
cvs

δe)
]

Since from our hypothesis we have cvd+cvi
cvs

≥ (δv +
ces
cvs

δe) we again obtain that M(P ) ≥ M(Popt).
Now, if cvs = 0 and ces > 0 we have

M(P )−M(Popt) = (|V ′
1 | − |V̂1|)(cvd + cvi)− ces(E

′
f − Ef )

Using the fact that |V̂1| < |V ′
1 | and E ′

f ≤ |E ′
1| ≤ δe we deduce that

M(P )−M(Popt) ≥ (cvd + cvi)− ces(E
′
f − Ef )

≥ (cvd + cvi)− cesE
′
f

≥ (cvd + cvi)− cesδe

Since from our hypothesis we have (cvd + cvi) ≥ cesδe we obtain that M(P ) ≥ M(Popt).
In the case when cvs > 0 and ces = 0 we have:

M(P )−M(Popt) = cvs

[

(|V ′
1 | − |V̂1|)

cvd + cvi

cvs
− (V ′

f − Vf )

]

Since |V̂1| < |V ′
1 | and V ′

f ≤ |V ′
1 | ≤ δv we deduce

M(P )−M(Popt) ≥ cvs

[

cvd+cvi
cvs

− (V ′
f − Vf )

]

≥ cvs

[

cvd+cvi
cvs

− V ′
f

]

≥ cvs

[

cvd+cvi
cvs

− δv

]

From our hypothesis, since cvs > 0 we have

cvd + cvi

cvs
− δv ≥

ces

cvs
δe ≥ 0

It follows that M(P )−M(Popt) ≥ 0.

• Now, let us suppose that |V ′
1 | = |V̂1| and |Ê1| < |E ′

1|.
If cvs = ces = 0 we again trivially have M(P ) ≥ M(Popt). Now, let us suppose that both cvs and

ces are strictly positive. We have then:

M(P )−M(Popt) = ces

[

(|E ′
1| − |Ê1|)

ced + cei

ces
− (E ′

f − Ef )

]

− cvs(V
′
f − Vf )

11



Since |Ê1| < |E ′
1| we deduce that

M(P )−M(Popt) ≥ ces

[

ced+cei
ces

− (E ′
f − Ef )

]

− cvs(V
′
f − Vf )

≥ ces

[

ced+cei
ces

− E ′
f

]

− cvsV
′
f

V ′
f and E ′

f are respectively bounded by |V ′
1 | ≤ δv and |E ′

1| ≤ δe. Thus we have:

M(P )−M(Popt) ≥ ces

[

ced+cei
ces

− δe

]

− cvsδv

≥ ces

[

ced+cei
ces

− (δe +
cvs
ces

δv)
]

Since from our hypothesis, if ces > 0 we have ced+cei
ces

≥ (δe +
cvs
ces

δv), we obtain that M(P ) ≥ M(Popt).
Now, if cvs = 0 and ces > 0 we have

M(P )−M(Popt) = ces

[

(|E ′
1| − |Ê1|)

ced + cei

ces
− (E ′

f − Ef )

]

Using the same arguments as before we obtain:

M(P )−M(Popt) ≥ ces

[

ced + cei

ces
− δe

]

From our hypothesis, since ces > 0 we have:

ced + cei

ces
− δe ≥

cvs

ces
δv ≥ 0

It follows that M(P )−M(Popt) ≥ 0.
If cvs > 0 and ces = 0 we have

M(P )−M(Popt) = (|E ′
1| − |Ê1|)(ced + cei)− cvs(V

′
f − Vf )

and we obtain:
M(P )−M(Popt) ≥ (ced + cei)− cvsδv

From our hypothesis (ced + cei) ≥ cvs so that M(P ) ≥ M(Popt).
In all cases, we obtain a contradiction with the fact tha Popt is optimal. It follows that a common

structural sub graph G′
1 of G1 and G2 such that Ĝ1 is a proper sub graph of G′

1 cannot exist. Therefore
Ĝ1 is a maximal common structural sub graph of G1 and G2. �

Proposition 5 provides very poor results since the bounds on both ratios may be very large. We can
however not expect to do much more, since the enlargement of a common sub graph may drastically
change the implied substitutions by an edit path.

This point is illustrated in Fig. 1. Let us suppose that the first row of this figure represents
common sub graphs Ĝ1 and Ĝ2 and let us suppose that both right branches of these graphs have a
same length. Then Ĝ1 may be transformed into Ĝ2 with 0 substitution cost, just by switching the two
long branches of both graphs. However, if we suppose that the bottom graphs in Fig. 1 correspond
to G′

1 and G′
2, then the fact of enlarging the common sub graph by two vertices, forces to match the

branch made of vertices labeled a with the one made of vertices labeled b. The number of substitutions
is in this case equal to twice the length of the branches.

12
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Figure 1: Drastic change of the number of substitutions implied by a slight enlargement of a common
sub graph.

Proposition 6 Let us suppose that ced = cei = 0 and ces ≤ cvs. Given two graphs G1 and G2, let us
further denote by δv the number of vertices of their maximum common structural sub graphs and by
δe the maximal number of edges of all maximum common structural sub graphs. Then if:

cvd + cvi

cvs
≥ δv + δe

any edit path Popt = (Ropt, Sopt, Iopt), associated to a maximum common structural sub graph of G1

and G2, induces a lower edit distance than any edit path associated to a non maximal structural sub
graph.

Proof:
Let us denote by Popt = (Ropt, Sopt, Iopt) an edit path passing through a maximum common struc-

tural sub graph of G1 and G2.
If ced = cei = 0 the function to maximize by the edit distance (Corollary 2) associated to the edit

path Popt reduces to:

M(Popt) = |V̂1|(cvd + cvi)− Vfcvs − Efces

where Vf and Ef denote the number of vertex and edge substitutions encoded by Sopt.
Let us consider an alternative edit path P = (R, S, I) associated to the non maximum structural

sub graphs G′
1 and G′

2 of G1 and G2. We have:

M(P ) = |V̂ ′
1 |(cvd + cvi)− V ′

fcvs − E ′
fces

where V ′
f and E ′

f denote the number of vertex and edge substitutions encoded by S.

13



Since Ĝ1 is a maximum common structural sub graph of G1 and G2 and not G′
1 we have δv =

|V̂1| ≥ |V ′
1 |+ 1. Therefore:

cvd + cvi

cvs
≥ δv + δe ≥ |V̂1|+ |Ê1| ≥

|V̂1|+ |Ê1|

|V̂1| − |V ′
1 |

We have thus:

(|V̂1| − |V ′
1 |)(cvd + cvi) ≥ cvs

[

|V̂1|+ |Ê1|
]

≥ cvs [Vf + Ef ]

≥ cvsVf + cesEf

Enventually,

M(Popt) = |V̂1|(cvd + cvi)− cvsVf − cesEf ≥ |V ′
1 |(cvd + cvi) ≥ M(P )

�

Corollary 3 Using the same hypothesis than in Proposition 6, an optimal edit path between two graphs
G1 and G2 is an edit path whose associated common sub graph is a maximum structural common sub
graph and which minimizes the number of substitutions: Vfcvs + Efces.

The main advantage of Corollary 3 is that if the structure of two graphs is known, their maximum
common structural sub graphs may be pre computed and then the computation of the edit distance
reduces to a computation of a minimal number of substitutions between two graphs.

An equivalent result may be obtained with no hypothesis on the number of edges of maximum
common structural sub graphs at the price of a higher bound:

Corollary 4 Using the same notations and hypothesis concerning ced, cei, ces and cvs than in Propo-
sition 6, if

cvd + cvi

cvs
≥

δv(δv + 1)

2

then any edit path Popt = (Ropt, Sopt, Iopt), associated to a maximum common structural sub graph of
G1 and G2, induces a lower edit distance than any edit path associated to a non maximal structural
sub graph.

Proof:

cvd + cvi

cvs
≥

δv(δv + 1)

2
= δv +

δv(δv − 1)

2
≥ δv + δe

�

A smaller bound may also be obtained by restricting the class of graphs, as stated by the following
corollaries.

Corollary 5 Using the same notations and hypothesis concerning ced, cei, ces and cvs than in Propo-
sition 6, if G1 or G2 is planar and if

cvd + cvi

cvs
≥ 4δv − 6

then any edit path Popt = (Ropt, Sopt, Iopt), associated to a maximum common structural sub graph of
G1 and G2, induces a lower edit distance than any edit path associated to a non maximal structural
sub graph.

14



Proof:
If G1 or G2 is planar, the common structural sub graphs of G1 and G2 are also planar. Let us

denote by G one such common sub graph and by G′ the graph obtained from G by removing all
its bridges. The planar graph G′ is 2-connected. It is well known that the number of edges and
vertices within 2-connected planar graphs are related by the following equation: |E ′| ≥ 3

2
|F ′|, where

F ′ denotes the set of faces of G′ including the outer face.
Since removals of bridges do not modify the set of faces, the set F of faces of G is equal to F ′, the

one of G′. Moreover, since G′ is obtained from G by edge removals we have:

|E| ≥ |E ′| ≥
3

2
|F ′| =

3

2
|F |.

Finally, the number of vertices, edges and faces of a planar graph G are connected by the Euler
characteristic:

#cc+ 1 = |V | − |E|+ |F |

where #cc corresponds to the number of connected components of the graph. Combining Euler
characteristic with previous inequalities we obtain:

2 ≤ #cc+ 1 = |V | − |E|+ |F | ≤ |V | − |E|+
2

3
|E| ≤ |V | −

1

3
|E|

We have thus:
|E| ≤ 3|V | − 6

This inequality being true for any common sub graph we have:

δe ≤ 3δv − 6

Therefore:
cvd + cvi

cvs
≥ 4δv − 6 ≥ δv + 3δv − 6 ≥ δv + δe

and the result follows using Proposition 6. �

Corollary 6 Using the same notations and hypothesis concerning ced, cei, ces and cvs than in Propo-
sition 6, if G1 or G2 is a tree and if

cvd + cvi

cvs
≥ 2δv − 1

then any edit path Popt = (Ropt, Sopt, Iopt), associated to a maximum common structural sub graph of
G1 and G2, induces a lower edit distance than any edit path associated to a non maximal structural
sub graph.

Proof:
If G1 or G2 is a tree, the common sub graph of G1 and G2 is a forest. Let G = (V,E) denote such

a common structural sub graph of G1 and G2. The Euler characteristic of the forest G satisfies:

#cc+ 1 = |V | − |E|+ |F | = |V | − |E|+ 1

where #cc denotes the number of connected components of G and F its set of faces, reduced in this
case to the outer one. We have thus :

#cc = |V | − |E| ≥ 1 ⇒ |E| ≤ |V | − 1

15



If G denotes now a maximum common structural sub graph, we obtain |E| ≤ δv−1 and by taking the
maximum over all maximum common structural sub graphs we obtain: δe ≤ δv − 1. We have thus:

cvd + cvi

cvs
≥ 2δv − 1 = δv + δv − 1 ≥ δv + δe

and the result follows using Proposition 6. �

4 Edit Path Preserving Connectedness

Definition 13 Elementary edit operations preserving connectedness An elementary edit op-
eration preserving connectedness is one of the following operation applied on a graph:

• Edge removal: Such removals are defined as the removal of the considered element from sets V

or E. An edge removal can not increase the number of connected components of a graph.

• Edge insertion: An edge insertion in a graph G = (V,E) is restricted to the insertion of an
element of P2(V ). Such an insertion can not decrease the number of connected components of
the graph. On labeled graphs, an edge insertion also associates a label to the inserted element.

• Vertex-Edge insertion: A vertex-edge insertion on a graph G = (V,E) corresponds to the addi-
tion of a vertex v 6∈ V to V and an edge {v, u} with u ∈ V . On labeled graphs, a vertex-edge
insertion also associates a label to the inserted elements.

• Vertex Removal: The removal of a vertex v in a graph G = (V,E) is defined as the removal of v
from V and the removal of any edge {v, u} in E. Such a removal can not increase the number
of connected components of a graph.

• Vertex/Edge substitution if the graph is a labeled one. Such an operation modifies the label of a
vertex or an edge and thus transforms the vertex or edge labeling functions.

The costs of elementary edit operations preserving connectedness which correspond to already
defined elementary edit operations are defined as in Definition 8. Using notations of Definition 13,
the cost of a vertex-edge insertion is defined as cvi(v)+cei({v, u}). The cost of the removal of a vertex
v is equal to:

cvd(v) +
∑

{v,u}∈E

ced({v, u})

Definition 14 Edit path preserving connectedness
An edit path of a graph G preserving connectedness is an edit path (Definition 14) composed of

elementary edit operations preserving connectedness.
If G1 and G2 are unlabeled we assume that no vertex nor edge substitutions are performed.

Proposition 7 Given two graphs G1 and G2 and an edit path P between G1 and G2 preserving
connectedness. If C1

1 , . . . , C
1
n and C2

1 , . . . , C
2
n correspond to the connected components of G1 and G2,

the sub graphs Ĝ1 and Ĝ2 of G1 and G2 associated to P (Proposition 3) have n connected components,
Ĉ1

1 , . . . , Ĉ
1
n and Ĉ2

1 , . . . , Ĉ
2
n, each connected component (Ĉj

i )i∈{1,...,n},j∈{1,2} being a connected sub graph

of Cj
i .
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Proof:
From the very definition of an edit path preserving connectedness, the sub graph Ĝ1 has exactly n

connected components. Since Ĝ2 is isomorphic to Ĝ1, it follows that Ĝ2 has n connected components.
By Proposition 1, since Ĝ1 is a graph, each of its connected components is also a simple connected

graph. Let us consider one of such connected components Ĉ1
i = (V̂ 1

i , Ê
1
i ).

Since Ĉ1
i is a sub graph of G1 there exists at least one k in {1, . . . , n} such that V̂ 1

i ∩ V 1
k 6= ∅.

Let us suppose that there exists j ∈ {1, . . . , n}, j 6= k such that V̂ 1
i ∩ V 1

j 6= ∅ and let us consider

x ∈ V̂ 1
i ∩ V 1

k and y ∈ V̂ 1
i ∩ V 1

j . Since both x and y belong to V̂ 1
i and Ĉ1

i is connected, there exists a

path in Ĉ1
i which connects x to y. Since Ĝ1 is obtained from G1 by edge and vertex removals, such a

path should also exist in G1. This contradicts the fact that x and y belong to two different connected
components of G1.

For each i ∈ {1, . . . , n} there exists thus only one k such that V̂ 1
i ⊂ V 1

k . Let us denote by f(i)
such a k.

Now since Ĉ1
i is a graph, we have:

Ê1
i ⊂ P2(V̂

1
i ) ⊂ P2(V

1
f(i))

Since Ê1
i is deduced from E1 by edge removals we have Ê1

i ⊂ Ê1 ⊂ E1. Thus :

Ê1
i =

(

E1 ∩ Ê1
i

)

⊂ E1 ∩ P2(V
1
f(i)) = E1

i

We have thus:
{

V̂ 1
i ⊂ V 1

f(i)

Ê1
i ⊂ E1

f(i)

and Ĉ1
i is a connected sub graph of C1

f(i).

The relation f is thus a map from {1, . . . , n} to {1, . . . , n} which associates to each i the index
f(i) such that Ĉ1

i is a connected sub graph of C1
f(i). Let us now suppose that f is not surjective. It

means that there exists one i ∈ {1, . . . , n} such that for any j in {1, . . . , n}, the graph Ĉ1
j is not a sub

graph of C1
i . In other words:

∀j ∈ {1, . . . , n}, V̂ 1
j ∩ V 1

i = ∅

and thus V̂1 ∩ V 1
i = ∅. All vertices of C1

i being removed in Ĝ1, this connected component is removed
by the edit path from G1 to Ĝ1 which contradicts the fact that P preserves connectedness.

Since f is thus a surjective map from {1, . . . , n} to {1, . . . , n} it is therefore bijective. Eventually,
we have proved that, up to a renumbering of connected components (Ĉ1

i )i∈{1,...,n}, each Ĉ1
i is a sub

graph of C1
i .

The same demonstration holds between connected components of Ĝ2 and the ones of G2. �
Note that each connected component of G1 is related by a bijective relationship to a component of
Ĝ1 which itself is related by an isomorphism to a connected component of Ĝ2 finally related by an
other bijective relationship with a connected component of G2. An edit path preserving connectedness
induces thus a bijective relationship between the connected components of G1 and G2.

Proposition 8 Given two graphs G1 and G2 with a same number of connected components, the cost
of an edit path preserving connectedness between G1 and G2 is equal to the sum of costs of edit paths
transforming each connected component of G1 into a connected component of G2.
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Proof:
Let us consider such an edit path preserving connectedness P . By Corollary 1:

γ(P ) =
∑

v∈V1\V̂1

cvd(v) +
∑

e∈E1\Ê1

ced(e)+

∑

v∈V̂1

cvs(v → g(v)) +
∑

e∈Ê1

ces(e → g(e))+

∑

v∈V2\V̂2

cvi(v) +
∑

e∈E2\Ê2

cei(e)

where g is the isomorphism between Ĝ1 and Ĝ2 associated to P (Proposition 3) and cvs(v → g(v))
(resp. ces(e → g(e))) denotes the cost of the rewriting of the labels of v and e in Ĝ1 into the ones of
g(v) and g(e) in Ĝ2.

Let us denote by n the number of connected components of G1 and G2 and let us decompose
G1 = (V1, E1), Ĝ1 = (V̂1, Ê1), Ĝ2 = (V̂2, Ê2), and G2 = (V2, E2) into their n connected components
(label functions are omitted here to prevent overloaded notations):

• (C1
i = (V 1

i , E
1
i ))i∈{1,...,n} for G1,

•
(

Ĉ1
i = (V̂ 1

i , Ê
1
i )
)

i∈{1,...,n}
for Ĝ1,

•
(

Ĉ2
i = (V̂ 2

i , Ê
2
i )
)

i∈{1,...,n}
for Ĝ2, and

• (C2
i = (V 2

i , E
2
i ))i∈{1,...,n} for G2.

Using Proposition 7 we have:

V1 \ V̂1 = ∪n
i=1V

1
i \ V̂ 1

i

V2 \ V̂2 = ∪n
i=1V

2
i \ V̂ 2

i

E1 \ Ê1 = ∪n
i=1E

1
i \ Ê

1
i

E2 \ Ê2 = ∪n
i=1E

2
i \ Ê

2
i

Moreover, if we denote by gi the restriction of g to Ĉ1
i , fi is an isomorphism from Ĉ1

i to Ĉ2
i and we

have:

γ(P ) =
n

∑

i=1

∑

v∈V 1

i
\V̂ 1

i

cvd(v) +
∑

e∈E1

i
\Ê1

i

ced(e)+

∑

v∈V̂ 1

i

cvs(v → gi(v)) +
∑

e∈Ê1

i

ces(e → gi(e))+

∑

v∈V 2

i
\V̂ 2

i

cvi(v) +
∑

e∈E2

i
\Ê2

i

cei(e)

Let us consider Ri the set of vertex and edge removals V 1
i \V̂

1
i and E1

i \Ê
1
i , Si the set of vertex and edge

substitutions between Ĝ1
i and Ĝ2

i encoded by fi and Ii the set of vertex and edge insertions V 2
i \ V̂ 2

i
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and E2
i \ Ê

2
i . The sequence Pi = (Ri, Si, Ii) defines a valid edit path which preserves connectedness

as P do. Moreover, we have:

γ(P ) =
n

∑

i=1

γ(Pi)

with

γ(Pi) =
∑

v∈V 1

i
\V̂ 1

i

cvd(v) +
∑

e∈E1

i
\Ê1

i

ced(e)+

∑

v∈V̂ 1

i

cvs(v → gi(v)) +
∑

e∈Ê1

i

ces(e → gi(e))+

∑

v∈V 2

i
\V̂ 2

i

cvi(v) +
∑

e∈E2

i
\Ê2

i

cei(e)

�

Let us now suppose that costs of elementary operations do not depend on their parameter. As
previously, we denote such costs using the same symbol than the associated function.

Proposition 9 Let us consider a forest G1 and a graph G2 with a same number of connected com-
ponents, let us denote by δv the maximal number of vertices of their maximum common connected
structural sub graphs in each connected component. Then:

• If cvs = 0 or
cvd + cvi

cvs
> δv

and

• If ces = 0 or
ced + cei

ces
> δv − 1

then for any optimal edit path preserving connectedness Popt = (Ropt, Sopt, Iopt), the sub graphs

of G1 and G2, Ĝ1 and Ĝ2 defined respectively by the edit operations Ropt and (Ropt, Sopt), are
maximum common structural sub graphs of G1 and G2.

Proof:
Since the cost of any edit path between G1 and G2 is defined as a sum of costs between the con-

nected components of G1 and G2, we may restrict our demonstration to a single connected component
without loss of generality.

We thus suppose that G1 is a tree and G2 a connected graph. Any common structural sub graph of
G1 and G2 is a forest. Moreover, for any edit path preserving connectedness, the associated unlabeled
sub graphs Ĝ1 and Ĝ2 are connected. They thus correspond to trees.

Let us consider a non maximal common structural sub tree G′
1 of G1 and G2. Let us additionally

consider the edit path P = (R, S, I) associated to G′
1 (Proposition 4). Following Corollary 2, we may

compare the costs of the edit paths P and Popt by comparing the two values:







M(P ) = |V ′
1 |(cvd + cvi) + |E ′

1|(ced + cei)− (V ′
fcvs + E ′

fces)

M(Popt) = |V̂1|(cvd + cvi) + |Ê1|(ced + cei)− (Vfcvs + Efces)
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where Vf and V ′
f (resp. Ef and E ′

f ) denote the number of vertices (resp. edges) substitutions
performed respectively by Popt and P .

Since G′
1 is a non maximal structural sub tree we have |V ′

1 | < |V̂1| and |E ′
1| = |V ′

1 | − 1 < |V̂1| − 1.
Hence if cvs = ces = 0 we trivially have M(P ) < M(Popt).

Let us suppose that both cvs and ces are strictly positive. We have then:

M(Popt)−M(P ) = cvs

[

(|V̂1| − |V ′
1 |)

cvd+cvi
cvs

− (Vf − V ′
f )
]

+

ces

[

(|Ê1| − |E ′
1|)

ced+cei
ces

− (Ef − E ′
f )
]

Since |V ′
1 | < |V̂1| and |E ′

1| < |E1| both |V̂1| − |V ′
1 | and |Ê1| − |E ′

1| correspond to positive integer
quantities. Thus:

M(Popt)−M(P ) ≥ cvs

[

cvd+cvi
cvs

− (Vf − V ′
f )
]

+ ces

[

ced+cei
ces

− (Ef − E ′
f )
]

≥ cvs

[

cvd+cvi
cvs

− Vf

]

+ ces

[

ced+cei
ces

− Ef

]

(2)

Vf and Ef are respectively bounded by |V̂1| ≤ δv and |Ê1| ≤ δv − 1. Using our hypothesis on the
ratios cvd+cvi

cvs
and ced+cei

ces
we obtain M(Popt) −M(P ) > 0 which demonstrates that P can not be an

optimal edit path.
If only one of the variable cvs and ces is equal to 0, its associated term on the right side of equation 2

vanishes and the same argument as above holds for the remaining term. �

5 Efficient Computation of the Graph Edit Distance

Given two graphs G1 = (V1, E1, µ1, ν1) and G2 = (V2, E2, µ2, ν2), let us suppose without loss of
generality that G1 and G2 have only one maximum common structural sub graph G. Boths sub
graphs of G1 and G2, Ĝ1 = (V̂1, Ê1, µ1, ν1) and Ĝ2 = (V̂2, Ê2, µ2, ν2) are isomorphic to G. We have
thus:







|V̂1| = |V̂2| = |V | and

|Ê1| = |Ê2| = |E|
(3)

Moreover, assuming that the costs of elementary operations do not depend on their parameters, the
cost of any edit path P may be decomposed into two parts:

γ(P ) = γstruct(P ) + γlabel(P )

with






γstruct(P ) =
∣

∣

∣
V1 \ V̂1

∣

∣

∣
cvd +

∣

∣

∣
V2 \ V̂2

∣

∣

∣
cvi +

∣

∣

∣
E1 \ Ê1

∣

∣

∣
ced +

∣

∣

∣
E2 \ Ê2

∣

∣

∣
cei

γlabel(P ) = Vfcvs + Efces

where Vf (resp. Ef ) denotes the number of vertex (resp. edge) substitutions performed by P .
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5.1 Computation of the Structural Cost

Since V̂i ⊂ Vi and Êi ⊂ Ei for i in {1, 2} we have by equation 3:

∀i ∈ {1, 2},















∣

∣

∣
Vi \ V̂i

∣

∣

∣
= |Vi| − |V̂i| = |Vi| − |V |

∣

∣

∣
Ei \ Êi

∣

∣

∣
= |Ei| − |Êi| = |Ei| − |E|

The cost γstruct(P ) may thus be written as:

γstruct(P ) = |V1|cvd + |V2|Cvi + |E1|ced + |E2|cei − |V |(cvd + cci)− |E|(ced + cei)

We must emphasize that the unlabeled graph G is uniquely determined by the structure (V1, E1) and
(V2, E2) of G1 and G2. Therefore, if these structures belong to a finite set of know structures, G and
γstruct(P ) may be pre-computed.

5.2 Computation of the Substitution Cost

Let {Ĝ1
1, . . . , Ĝ

n
1} denote the set of sub graphs of G1 structurally isomorphic to G. In the same way,

let us denote by {Ĝ1
2, . . . , Ĝ

m
2 } the set of sub graphs of G2 isomorphic to G. If the structures (V1, E1)

and (V2, E2) of G1 and G2 are known, both sets may be pre-computed since they correspond to the
occurrences of G into (V1, E1) and (V2, E2). Any sub graph Ĝi

1 may be obtained from G1 by a same
amount of vertex and edge removals. In the same way, G2 may be constructed from any Ĝ

j
2 with a

same number of vertex and edge insertions. Therefore, any edit path transforming G1 into G2 and
passing through Ĝi

1 and Ĝ
j
2 will be associated to a same structural cost and the edit path P mentioned

in the previous section is just one of them.
Let Φ12 denote the set of automorphisms of G. For each i ∈ {1, . . . , n} and j ∈ {1, . . . ,m} the

automorphism ϕ ∈ Φ corresponds to a mapping of the vertices and edges of Ĝi
1 into the one of Ĝj

2.
Such a mapping induces V

ij
f (ϕ) and E

ij
f (ϕ) substitutions of vertices and edges with non identical

labels. More precisely we have:















V
ij
f (ϕ) =

∣

∣

∣
{v ∈ V̂ i

1 | µ1(v) 6= µ2(ϕ(v))}
∣

∣

∣

E
ij
f (ϕ) =

∣

∣

∣
{e ∈ Êi

1 | ν1(e) 6= ν2(ϕ(e))}
∣

∣

∣

The substitution cost of any edit path Pi,j,ϕ passing through Ĝi
1 and Ĝ

j
2 is equal to:

γlabel(Pi,j,ϕ) = V
ij
f (ϕ)cvs + E

ij
f (ϕ)ces

Let us denote by Popt the edit path belonging to the family

(Pi,j,ϕ)(i,j,ϕ)∈{1,...,n}×{1,...,m}×Φ12

such that:
γlabel(Popt) = min

(i,j)∈{1,...,n}×{1,...,m}
min
ϕ∈Φ12

γlabel(Pi,j,ϕ) (4)
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Since γstruct(Pi,j,ϕ) = γstruct(P ) for any (i, j, ϕ) ∈ {1, . . . , n} × {1, . . . ,m} × Φ12 we have:

∀i ∈ {1, . . . , n}

∀j ∈ {1, . . . ,m}

∀ϕ ∈ Φ12



















γ(Pi,j,ϕ) = γstruct(P ) + γlabel(Pi,j,ϕ) ≥ γ(Popt)

5.3 Computation of the Edit Distance

If the elementary operations do not depend on their parameters and if the ratios between cvd, cvi, ced, cei
and cvs, ces are such that any optimal edit path passes trough a maximum common structural sub
graph of G1 and G2 then the optimal edit path should be one of the edit paths Pi,j,ϕ mentioned in
the previous section. The path Popt being the path of minimal cost among all Pi,j,ϕ we have:

d(G1, G2) = γ(Popt)

If the structures (V1, E1) and (V2, E2) of G1 and G2 are known, their maximum common struc-
tural sub graph G may be pre-computed together with both sets of sub graphs {Ĝ1

1, . . . , Ĝ
n
1} and

{Ĝ1
2, . . . , Ĝ

m
2 } and γstruct(P ). Then given any label function applied to G1 and G2 the optimal edit

distance between G1 and G2 is computed using equation 4 which requires O(nm|Φ12|) calculus. Note
that using a finite family of structure graphs, the values of n, m and |Φ12| are bounded.

6 Conclusion

We have studied in this paper the conditions, on the costs of the elementary operations of edit
paths, under which the optimal edit path encoding the edit distance should pass through a maximum
structural common sub graph of two graphs. To our knowledge, this point has been the subject of
very few researches. This apparent lack of interest is certainly due to the fact that the only bounds
that we may find to “force” an optimal edit path to pass through a maximum structural common sub
graphs are relative to the two graphs being compared. Such a negative property requires to take the
maximum of these bounds for all pairs of graphs in a given data set. However a remarkable property
is that these bounds depend only on the structure of the graphs and not on their labels. Therefore, in
applications where we are dealing with a small set of structures, but with a possibly infinite number
of labellings of these structures, bounds may be restricted to small values. One of the major result
of this technical report is to show that in such a case, the computation of the optimal edit distance
may be performed efficiently.

In our future work we plan to apply these results to the graph kernel framework where we often have
to deal with a small number of structural patterns extracted from graph databases. The extraction
process associates labels to each structural pattern whose number of structures remains small.
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