N
N

N

HAL

open science

Artificial compliance inherent to the intrinsic cohesive

zone models: criteria and application to planar meshes

Nawfal Blal, Loic Daridon, Yann Monerie, Stéphane Pagano

» To cite this version:

Nawfal Blal, Loic Daridon, Yann Monerie, Stéphane Pagano. Artificial compliance inherent to the
intrinsic cohesive zone models: criteria and application to planar meshes. International Journal of

Fracture, 2012, 178, pp.71-83. 10.1007/s10704-012-9734-y . hal-00714812

HAL Id: hal-00714812
https://hal.science/hal-00714812
Submitted on 5 Jul 2012

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.


https://hal.science/hal-00714812
https://hal.archives-ouvertes.fr

Artificial compliance inherent to the intrinsic cohesiveneo
models: criteria and application to planar meshes

BLAL Nawfal 23 -DARIDON Loic 3
MONERIE Yann?3 -PAGANO Stéphane’

! Laboratoire de Mécanique et Génie Civil, Montpellier
2 Institut de Radioprotection et de Sareté Nucléaire, Caxdara
3 Laboratoire de Micromécanique et d’Intégrité des Struestur

MIST Laboratory, IRSN-CNRS-Université Montpellier 2
{nawfal.blal, loic.daridon, stephane.paga@univ-montp2.fr

yann.monerie@irsn.fr

Abstract

In this study, criteria on the artificial compliance due ttrimsic cohesive zone models are pre-
sented. The approach is based on a micromechanical modetédlection of cohesive zone models
embedded between each mesh of a finite element-type distieti. The overall elastic behaviour
of this cohesive volumetric medium is obtained using homaggion techniques and is given in a
closed-form as function of bulk properties of the relevaatenial and mesh parameters (the mesh
type and size). Practical criteria are obtained for thebeation of the cohesive stiffnesses bounding
the additional compliance inherent to intrinsic cohesiwrez models by lower value. For isotropic
planar discretizations (e.g. Delaunay mesh), a rigorousmtdds derived whereas convenient esti-
mates are given for non-isotropic discretizations (e.gula mesh).

Keywords: Micromechanics; Damage; Cohesive Zone Models; Homog#aiz&lanar meshes

1 Introduction

Since the pioneering works &fugdale(1960 andBarenblat{1962, cohesive approaches had emerged
as one of the most efficient methods used for numerical frachechanics. Their numerical simplicity
as their capacity to simulate numerical fracture processes crack initiation to overall failure without
any ad hoc criteria are the most appealing features of thesielsy However, their numerical imple-
mentation exhibits a strong mesh sensitivity which is stillissue of concern: as shownTijssens
et al. (2000, the fracture paths depend on the mesh geometry and sizpit®¢his path sensitivity,
the authors show therein that the overall force-displacg¢mesponse is not very sensitive to the mesh
size and can be predicted with reasonable accuracy. Anasipect of this mesh sensitivity concerns the
intrinsic Cohesive Zone Models (CZM), i.e. traction-seq@n laws with initial slope: incorporating
cohesive zones between each couple of adjacent elementnittaelement-type discretization leads
to an additional compliance since the density of the coledsiterfaces increases as the mesh is refined.
This aspect can be illustrated on a simple 1D case (see Fijundere a linear elastic intrinsic CZM is
inserted between two bulk elements. In that case, the bquith condition reads:

E — BMe — Cy[ul. (1)
S
whereF is the applied forces the strain in the bulk elements (mesh sizgesh, cross sectiors), EM
the Young’s modulus used in the bulk element constitutiveals®ur,Cy, the initial cohesive stiffness of
the intrinsic model andlu] is the displacement jump across the cohesive zone.Thellosteadn of this



composite is:
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Since the equilibrium condition requirds/S = EZ, whereE denotes the apparent Young's modulus
of the assemblage, one can deduce the normalized appanemy’¥anodulus:
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with ¢ = M 3
According to this last equation, the ratfoappears as the key adimentional parameter in controlling
the mesh sensitivity of intrinsic CZMs. More precisely, théded compliance vanisheg (— EM)
whené — +oo, see Figurel (b). In other words, the overall elastic behaviour is noeetiéd by the
introduction of intrinsic CZMs between bulk elements angf#fiore the mesh sensitivity effect vanishes.
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Figure 1: lllustration of the relationship between appaidaung’s modulus and mesh size in 1D-case:
(a) a representative part of 1D finite element mesh with emiedohesive zone model, (b) overall
Young's modulus normalized by bulk modulus vs mesh size.

Following the same type of ideas, various authors have gegbeemi-empirical bound for the ration
order to define 'invisible’ CZMs at the scale of a structurgugtion @) results from similar mechanical
considerations in the work afuron et al.(2007 concerning the numerical simulation of delamination:
taking ¢ larger than50 (¢ > 50) ensures that the apparent loss of stiffness is less2fiarhence the
composite is not affected by the presence of cohesive auest Performing numerical tension and
shear testd-spinosa and Zavattief2003 have noticed that the elastic wave speeds remain unchanged
across a cohesive line between two elastic and isotropidanvaiden& > 10. Estimating the added
compliance for cross-triangle elements arranged in glzaeral pattern submitted to uniaxial tension,
biaxial uniform tension and pure shedgmar et al.(2004 obtain ¢ being the Poisson ratio of the
bulk material):
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with o = 1 for plane stress and = 1/ (1 — (v*)?) for plane strain. The aim of this work is to forth
fully generalize these criteria to three dimensional situes and to any type of loadings.

2 Micromechanical model

We focus in the sequel ocohesive-volumetric finite element approach withtrinsic cohesive zone
model: each volumetric element of a standard finite elemisaratization is connected to each cou-
ple of adjacent elements using intrinsic CZMs as boundangditions. Recent developments suggest
to replace the cohesive-volumetric approach with the éoggdetween CZMs and X-FEM, e.@en-
venuti (2008, but this cumbersome technic is not widely spread in corsrakecodes. Moreover, the
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cohesive-volumetric approach can be used with extrindiesive models, i.e. initially rigid or 'shifted’
models Hille et al, 2004. But most of the time, loading-unloading situations leaeastic reload of
the cohesive zones and the intrinsic case should anywayrsidened. Intrinsic cohesive zone mod-
els embedded within a standard finite element discretizatidhus investigated in the following as a
reference case.

2.1 Cohesivediscretization asa " matrix-inclusion" composite

Following Blal et al.(2011), the main idea is to replace a cohesive-volumetric finiéengint discretiza-
tion by a continuousnatrix containing penny-shaped cohesivielusions (Figure2). The matrix has
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Figure 2: Principle of the approach: a cohesive-volumiddirlement mesh is replaced by a continuous
matrix corresponding to bulk elements and a collection ofweshaped cohesive inclusions correspond-
ing to the edges of the underlying mesh; (a) 2-D illustratidgm) 3-D illustration.

the same behaviour as the bulk finite element behaviour \akdte penny-shaped inclusions have a
cohesive behaviour defined by a traction-separation lawe. spatial distribution of the cohesive inclu-
sions corresponds to those of the edges of the underlying ereshas the same density, denoted/by

In particular, in the case of a statistical isotropic mesf, @ Delaunay-type mesh, the inclusions are
randomly distributed in space and in orientation. The dgrisicorresponds to the specific 'surface’ of
the interface between the meshes: in two dimensignis, equal to the ratio of the total length of the
edges to the area of the meshed surface; in three dimengidagqual to the ratio of the total area of
the edges to the volume of the meshed body. Moreover, theassximption is made concerning the
shape of the inclusions:

Hypothesis 1. The inclusions are assumed to be penny-shaped (Figure 2). In two dimensions, the
straight edges of the mesh are thus replaced by zero thickness whiskers and this assumption has no con-
sequence. Inthree dimensions, the polygonal edges arereplaced by disks (with the same spatial density):
the two situations are admittedly close to each other but are different when considered rigoroudly.

2.2 Phasesproperties

In the sequel, we restrict our attention to linear elasticavéours. Moreover, the matrix phase is con-
sidered as isotropic and its constitutive relation reads:

o=C:e with CM=3M]+2,MK, (5)

whereo (resp. ) is the stress field (resp. straitf™ is a fourth order stiffness tensd and ;. are
the bulk and the shear modulus respectively. The symmetngors] andK define the generic basis of
the fourth order isotropic symmetric tensors:

J= §’L ®i and K=I-J with 2Hijkl = ('Likzjl + 'Lil'ij) (6)



wherei is the second order identity tensor. The previous constitlaw (5) can be written in a matrix
form as follows:
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The cohesive traction-separation law corresponds to arliredation between the cohesive stress vector
RN and the opening displacement vecfai] = u™ — u~ whereu™ (resp. ™) is the displacement

of the points located on the top (resp. bottom) side of therfate. In the local normal-tangent basis
oriented by the normal vectar, the jump displacement vector can be decomposed to a naigand

a tangentialut, component, so thafu] = uyn + wr. The cohesive constitutive relation reads:

ROM— K. .[u] with K=C\non+Cr(i—non), (8)

whereCly (resp.Ct) is the normal (resp. tangential) initial 'stiffness’ oktlcohesive law. The cohesive
stress tensor is given thus combinir®y &énd the relationshifr®" = ¢ . , as proposed iAcary and
Monerie(2009:

" = (CNE; + CTKY) : ([u] @5 ), ©9)

where®; is the symmetric dyadic produd @, b = a;b; + a;b; for any vectora andb) andE,;, K;
are two components of the fourth order transversely isatrapd symmetric tensors frame:

E=neneonen and K =2(j,®j,+j; ®j) (10)

with j, = n ®s s andj, = n ®, t, wheres andt are two orthogonal vectors defining the transversal
plane @, t, s define the local orthogonal basis of the cohesive inclusiDefining the cohesive 'strain’
with the help of a small length (Michel et al, 1994):

€COh — [[u]] ®5 n (11)
e 7
a fourth order stiffness tens@*" can be deduced for the cohesive phase. The constitutiviérethus
reads for the inclusions:

oM = N g with €N = ¢ (CNE; + C1K)) . (12)

According to the local framén, ¢, s), the cohesive governing equatiat?) reads in a reduced form:

Onn CN 0 0 O 0 0 €nn
Ott 0O 0 0 O 0 O Ett
Oss N 0 0 O 0 0 0 Ess
V2o | “¢1 0 0 0 cr 0 0 V2ent (13)
V200s 0 0 0 0 Cr O V2ens
| V204t | L 0 0 0 0 0 0] | v2eq |

The small lengthe, that should tend to zero, is a fictitious thickness assedi&d the cohesive zone.
Since oblate ellipsoids tend to penny-shaped inclusiorexwtheir thickness tends to zero, the cohesive
inclusions are now considered as oblate ellipsoids and tledime fractionf is the product of the
densityZ (inversely proportional to a length, namely the mesh giges,) and of the fictitious thickness
e:

f=eZ

where the cylindrical hypothesis of inclusions insteadld&te one has no consequence whe# 0.
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2.3 Theoverall homogeneous behaviour: Hashin-Shtrickman estimate

A Hashin-Shtrikman estimatéd@shin and Shtrikmarl963 is used in order to establish an analytical
expression of the overall elastic stiffness, denote@i". The considered matrix-inclusion composite
(Figure2) is composed of an isotropic elastic matrix (volume frattio- f) following the constitutive
relation 6) and of a collection of transversely isotropic oblate altipls (volume fractiory’) with the
largest semi-axig varying fromA~ to A", with the same aspect ratio = b/a < 1 (b is the smallest
semi-axis, i.e. along the dimension of the ellipsoids altregsymmetry axis) and following the consti-
tutive relation 8). The orientation of these ellipsoids is characterizedhgydirection of their symmetry
axis, i.e. a vecton of the unit spheres of R? (measureir). This collection of inclusions is splitted
into N — 1 familiesr (r = 2, ..., N), ther-th family being defined by a radius included(im a + da)
and an orientation lying within the elementary solid angtecentered om. Defining the inclusion
density¢(a, n) such thatp(a, n)dads is the number of inclusions of theth family in a unit volume,
the volume fraction by unit volume. of ther-th family reads:

4 4
Cr = qﬁ(a,n)?ﬂa%dads = gb(a,n)%agw dads (r=2,...,N),

with f = ZCT // o(a,n) —a 3w dads. (14)

For this situation, the following generallzatlon of the HasShtrikman'’s result is consideretV{lis,
19779):

(CHS ((CO) —

(1— f)CM . <H+IP M <c°) +Zer<c°°h (H+IP (<c‘;°h—<c°))7

] (15)
;[(1—f>(n+n»:<<c -c) +ZCT(H+P (" -c”) 1]

whereCY (resp. C°") is the fourth order stiffness tensor of a reference meditgap( of ther-th
family of inclusions) and is the Hill polarization tensor which characterizes thesdrthat the infinite
surrounding reference medium applies on a single ellipsaidng a homogeneous eigenstrain. The Hill
tensorP depends on the shape of the inclusionon its orientationr and on the stiffness tensor of the
reference mediur@’. Following Willis (1977), this reference medium is a homogeneous material such
that the constitutive relation§)and (L2) are replaced respectively with= C° : e+7 ando®®" = C° :

g°oh 1 70N where the polarizations and°°" reads:r = (C — C°) : ¢ and7°" = (C" — ) : gooh,
Using the Hill influence tensoE* = P~! — C°, and introducing the two fourth order tenséfg =

(C* +CM~'andV, = (C* + C®M")~1, one obtains:

I+P:(CM-C% = 1+(@C*+CH ! (M-
= (C+C !+ M
(C*+CcH vt
and the same relation holds for
I+P:(CP"—C% = (C*+CO!: v L,

Combining these two last relations and simplifying (& + C°), equation {5) is rearranged as:
-1

N N
CEC) = |1-HC: V14> 6CP: V| (1= HVI+ D oV, (16)
r=2

r=2




IntroducingT, =V, : Vfl and remarking that the cohesive stiffness depends only @orikntation
n, i.e. C" = C%°"(n), and that tensdF,. depends only on the aspect raticand the directiom, i.e.

T, = T(w,n) = (C*(w,n) + C"(n))~! : (C*(w,n) + C™) (17)

the estimateX(6) is rewritten with the help of the density(a, n), equation {4) and an integration over
the radius and the orientation:

cHS(cY) = [ f)cM + // o(a,m) Ta 3w C®M(n) T(w,n)dads]

-1

[ (I—-HI+ // o(a,n) —a 3wT(w, n)dads (18)

Sincew is assumed to be constant afitP" (n) andT(w, n) do not depend on the radiusintegrating
overa leads to:

CHS(CY) = [(1— HCM +w /S Y(n)CPN(n) ']I‘(w,n)ds} :
-1
[(1 —f)]I+w/SQ/J(n)']I‘(w,n)ds} (19)

AT
P(n) :/A_ %ﬂa?’(b(a, n)da.

If the underlying mesh contains specific orientations (eugisotropic meshes), they have to be taken
into account through the density(n). For simplicity, isotropic meshes (e.g. Delaunay-type mes}
are considered in the next section.

where

24 Lower bound for isotropic meshes

We now specializel(9) for the case of an isotropic microstructure: both matrid #ire mesh distribution
are isotropic. Hence, the orientations of inclusions asumed to have an equi-probability property
(randomly oriented inclusions corresponding to isotrapierall meshes), the density(n) is reduced
to f/(4ww) and the estimatel@) becomes [ = eZ):

f 71

CHS(C0) = % /S CoN ; T, m)ds + (1 — f)CM] : [—

i /S’]I'(w,n)ds +(1- I

(20)

= {eZ<(CcOh : T>® + (1 - eZ)(CM} : [eZ(T) s + (1 — 62)]1]71

where(.) , indicates the average over all orientations. Followd@gft et al.(2009, this orientational
average is equivalent to a projection over the isotropimé&dor the fourth order symmetric tensors:
J::D K::

D
(D) = i JJ] +t R KK for any fourth order tensdp, (21)

and the overall stiffness tensor is obtained after the gastathe limit: C"™ = lim,_,o C™S(C?).

At this stage, according to the choice of the reference medif), different bounds and estimates can be
derived. Since, the normal and the tangential cohesiviasti$e<Cy andCt have bounded values, the
cohesive stiffness tens@*°" tends to zero when the small lengtkends to zero (see equatiat?y). At

the limite — 0, C" is thus always smaller in a quadratic sense than the magstietensofc™. The
choice of the reference mediu@@® = CM corresponds to the Hashin-shtrickman upper bound (or the
Mori-Tanake estimate) and gives the trivial restf’™ = CM at the limite — 0. The same trivial result
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is obtained for the self-constitent schen® (= C"™). Thus, by focusing on the ca&® = C®" i.e.
using the most compliant phase as a reference medium thén-Blstrickman lower bound is defined
(CHS— — CHS((CCOh):

(Chom — lim (CHS—
e—0

: coh M -1 (22)
= lim [ez<c : ']T>O +(1—-eZ)C ] :[eZ(T) s + (1 — eZ2)]]
where the tensdr is reduced in this case to:
T = T(C™") = [+ P(C™") : (CM - C*o"). (23)

The explicit analytical expression of the fourth order ®n&"°™ can be conveniently obtained by
representing the different tensors in terms of the compsragdihe generic basis of transversely isotropic
symmetric and fourth order tensors. Any transversely dgitr symmetric and fourth order tensdts
can be linearly decomposed as follows (Beenert et al(2001) for example):

C = C1E; + OaJ; + C5(F + 'F) + C5K; + CsKy, (24)

whereE,; andK; are previously introduced iriQ) and the other components of the transversely isotropic
tensor frame are given by:

h=1—non Jtziit@)im

Fz%zﬂ@n@n Kt:Ht—Jt-
with T; being the fourth order transversal identity andthe main axis of the transversely isotropic
medium (heren coincides with the outward normal of the penny-shaped d¢ebésclusions). It follows
that the sum and the product of two tensGrandQ are immediately given by:

(25)

C+Q=(C1+Q1)E + (Ca+Q2) I+ (C3+Q3) (F+TF) + (C5 + Q5) K,
+(Cs + Q) Ky,

(26)
C: Q= (C1Q1 + C3Q3) E; + (C2Q2 + C3Q3) Iy + (C1Q3 + C3Q2) F
+(C3Q1 + C2Q3) TF + C5Q5K; + C6Qe K.
Moreover, the inverse of a tens@rcan be obtained using simple algebraic manipulations:
C -C
-1 1 3 T
= —FE +—= —(F+'F)+ =—K; + =—K 27
C A Bt S Jt+A(+)+C5t+C6l (27)
whereA = C1Cy — C3.
As first step, the cohesive stiffness tensor is re-writtethéntransversely isotropic frame:
ceoh — ¢ (CNEZ + Oal, + Cg(F + TF) + CcKy + CTKZ) : (28)

where the coefficients)s, Cg and Cc do not have any physical sense and are introduced in order to
calculate the inverse tensors occurring in the expresditireddashin-Shtrikman estimate; indeed, these
coefficients will naturally disappear wheriends to zero. The expression of the polarization telser
then derived for penny-shaped inclusions (radi)swith the cohesive inclusion®28) as the reference
medium using the method proposedSavostianov et a{2005:

1 3T
Pe,n) = —eB) + —or
(6 ) CNe : 4\/§CNR
1 Ca +2C¢c

K
T et T TACER

(F+TF) — m(ﬂt +Ky)

(29)

ﬂKl.



The Projection of the matrix stiffness teng@¥ in the transversely isotropic frame:

M M
cM = [k'\" + 4%} E, + [\/5 (k'\" - 2%)} (F + TF)
w2 M 0
+ |:2k‘ +T:| Jt+2,u (Kt+Kl)a

and the substitution of equatiors)((28) and @9) into (23) leads to:

9em + 12R 4 T
b= [ oner © <3CNe - ZCNR> “M} £
__ 3Cpem (18em + 24R) M (_ 2v/2 T ) M
T V/2CWR | 1220eR 3Cne | 2v2CWR )"
Caem  (—24Cnm +9CTT) m T 21 M
e 12CNCrR <—2CNR N 3CTR> a } Je
[Ccem + CrR 27 puM K
. 1R CTR} ¢
N _1 _ Cper +2Ccer +4CTR N (Caem + 2Ccerm + 4CTR)MM} K,.
I 4CTR 2C2eR

+ (F+TF)

+ |1+

(31)

_l’_

The Hashin-Shtrikman lower boun@3) involves the quantityC®" : T which can be obtained using the
formulas (2), (31) and the elementary operations introducedi) (
M 3EM —

M
coh M H 2p
:T= |k E
C [ + 3 + 1R We] l

M M M
+\/§[1€M_2" +3l<: + M]F

3 4R
[Ca(—24k + 16pM) Ca(9CTEM + 120TMM)M] -

+ e
12v2C+R 12v/2CNCTR

i (32)
[Oam(3KM —2uM)  Ca(6kM7 — 3CT R + 27M)

* ICnR T 3CR e] 3

: QCcﬂMM M (CA + QCc)IU,M
+ _<C’C— O R >e] K + [ZM + 207 R me| K;

+ o(e)
Then, to calculate the expression

)

cHs = [eZ<(CC0h : T>m +(1— eZ)(CM} [eZ(T) + (1 —e2)1)
use is made of the average over all spatial orientations (&Bg and the inversion relationshi27).
Noting that

El::.ﬂ:%, Jtiiﬂ:%
F::J:TF::ng, K 2 J=K;::J=0, (33)
El::K:%, JtiiK:%7
F::K:TF::K:_T‘/E, Kie : K=K K =2,
the power series expansion@'S around the point = 0 at the first order reads:
chs = <[3kM - 2Zk:Me] J+ [2,uM - %Z}LMG] K+ o(e)> :
CN 15C|\|CT,MM (34)
—_— h K
<|:CN + EMZ * g(e):| T+ |:15CNCT + 120NZMM + 4CTZIU,M + (6):| + 0(6))
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where
2C%kMrZ —9kMr + 20NR

= CrR(Cn + ZEM2° T GR(Cy + ZEM)?

g(e) CnZe
and
he) = 15 (3CFmpM + Cn (BCER — 3(Ca + 2Cc)mpM 4 14C7mpM)) o
©= R(4CTZpM + 30N (5CT + AZuM))2 N&E:
Finally, the passage to the limit— 0 allows to derive the analytical expression of the homogaseo
Hashin-Shtrikman lower bound:

CN]{?M 15CNCTIU,M

chom — 3 2 K 35
CN+ k‘MZJ * 15CNCr + 12C|\|Z}LM + 4C’-|-Z,uM (35)
Hence, the expression of the bulk and shear homogeneoudina8#ltiand "™ are:
hom
2 S yith & = ﬂ,
kM 14+ & ZkM 36
hom 15 C ( )
PET S ith g, = N
‘LLM 1+§N 4(1+3CN/CT) Z}LM

It is worth noting that equation36) show that a cohesive-volumetric formulation with vanightan-
gential cohesive stiffnesf — 0) leads to a macroscopic no shear matefidPf — 0). Moreover,

the lower bounds3p) allow to definecriteria on the overall loss of stiffnesses, e.g. assuming that a
reduction of5% on the apparent bulk and shear moduli is admissible:

khom
—w = 0.95 is ensured fogy > 20

shom (37)
> 0.95 is ensured fog,, > 20.
o’

M

Since the geometribypothesis 1 has no influence for the case of 2-D discretization, it shdxaanen-
tioned that, for planar isotropic meshe86)is a lower bound and3() is a’rigorous criteria. For
regular meshes36) is an estimate. The accuracy of the obtained results &iifited in the next section
and practical criteria are derived in the sectibn

3 Numerical experiments

All calculation presented hereafter were done using thewvené XPER Perales et g/.2008 2010.
The analysis is based on embedded linear elastic coheslivergtric elements and isotropic medium
under plane strain conditions. In Figutethe dependency of the overall elastic moduli on the normal-
to-tangential cohesive stiffness ratio is studied for t@gmeshes (see Figuik left). Bulk material
properties are as follows: Young's modulf®! = 117.5 GPa and Poisson coefficiemt! = 0.3. The
evolution of the overall elastic properties as functionhe hormal cohesive stiffness is illustrated for
different normal-to-tangential cohesive stiffness miti/Ct. Numerical experiments show clearly
that the overall bulk modulus™™ is not sensitive to the rati@'y /Ct, as predicted by the theoretical
bounds 86). The overall shear modulyg™™ decreases with the rati@y /Cy, and again these results
are compatible with the bound36). It should be noticed that these bounds are sharper whewtheal-
to-tangential cohesive stiffness ratio decreases. Nwairispeaking, the bound8) are thus not very
accurate for large values of the ratiy /Ct as expected.

The results presented in Figuseshow that the apparent reduction associated to the Younggthilus
EMom/EM depends on the normal-to-tangential cohesive stiffne@s aa expected by3g). Moreover,
we observe that the rati@y /C leading to an apparent Young’s modules reducihi™ / EM increases
with the Poisson ratio: the dashed lines show that for a rahieith M = 0.3, the Young’s modulus
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Figure 3: Examples of Regular (left) and Delaunay-typeh@ligneshes.
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Figure 4: Normalized overall elastic moduli for differerdses of the normal-to-tangential cohesive
stiffness ratio: bulk modulus (top) and shear modulus @}t Numerical resultsCy/Ct = 1/3
black bullets,C\/Ct = 1 gray crossesCy/Ct = 3 gray dashed squares. Theoretical bour®8): (
Cn/Ct = 1/3 black curve C\/Ct = 1 gray curveCy/Ct = 3 gray dashed curve.

reduction reache8.77 when the ratioCy/Ct = 1, whereas a material witbtM = 0 needs a ratio
Cn/Ct = 1/3 to reach the same reduction; this result is consistent Wwétptoposed criterior4@).

In Figure 6 and Figure7, the numerical experiments concern both planar Delaunagdd symbols
with variance) and ’'cross-triangle quadrilateral’ mesk@sen symbols) for the casgéy = Ct: as
antecedently expected in the previous section, Fi§amed Figurer show that relations3g) are rigorous
lower bounds foiisotropic meshes (Delaunay) and convenient estimatesefuiar meshes. Note that
these regular meshes exhibit a higher added compliancadbizapic ones. Moreover, these numerical
results clearly show that the criterid#, & > 20 and¢,, > 20, ensure that the overall added compliance
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Figure 5: Effect of the tangential-to-normal cohesivefiséiés ratio on the overall behaviour: Young
apparent reduction vs the rati@/Ct using a square regular meghmesh = 0.05mm). M = 0.3
(circular symbols)y™ = 0.14 (diamond symbol)y™ = 0 (square symbols) ane = —0.7 (triangular
symbols).

do not exceed% (dashed lines in Figuré and Figure?).

O — ' — n—
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'3

Figure 6: Normalized overall bulk modulus of a cohesivednoétric formulation with intrinsic CZMs
(caseCy = Cft): lower bounds 36) (thick gray line), criteria 87) (dashed line), numerical results
for Delaunay meshes (closed symbols with variance) andréssetriangle quadrilateral meshes (open
symbols).
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Figure 7: Normalized overall shear modulus of a cohesidaraetric formulation with intrinsic CZMs
(caseCy = Ct): lower bounds %6) (thick gray line), criteria 87) (dashed line), numerical results
for Delaunay meshes (closed symbols with variance) andrémsetriangle quadrilateral meshes (open
symbols).
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4 Practical criteria on cohesive stiffnesses

Criteria on cohesive stiffnesses obtained from micromeidlad models have been firstly discussed by
Acary and Moneri€2006. Hereafter, use will be made of engineer’s moduli (Younglmiband Poisson
ratio):

mo 9EMuM m o 3EM —2,M
= v and v'=_—m— "1
SEM + 1 6EM + 21 (38)
Ehom B gkhom‘uhom and hom 3khom _ 2Iuhom

- 3} hom 4 Mhom - 6L:hom 4 QIuhom'

The additional compliance due to the presence of intringb1€ is measured by two relative apparent
reductionsk = EMN™/EM andr = v"°™ /M| so that cohesive zones do not affect the overall behaviour
if, ideally, R = 1 andr = 1. Combining 86) and @38) gives for the proposed micromechanical model:

B Ehom fE 5 Cn

= — = h =
R="r =1y e E=Trumceen < Bz

(39)

and

vom 150N M + (=1 + 20N /Cr) EMZ
M N 15C|\|I/M + (3 + 4CN/CT)EMZVM '
The equation39) extends the 1D-equatioB)(with a prefactor orf and the use of the densifinstead

of the mesh sizd..esh. This equation shows again that without tangential coleesiiffness ¢+ — 0)

an overall no tension material is expectdd¥™ — 0). Moreover, the situatiolR = 1 can not be
reached (the overall Young’'s modulus is always disturbedhigypresence of CZMs using a Hashin
Shtrikman estimate). However, for a given value®fe [0, 1], equation 89) leads to an implicit
lower bound on the key parametél/(EMZ) involving the normal-to-tangential cohesive stiffness
ratio C\/Cr:

r =

(40)

CN 1 R <1+4CN>.

> SN 41
EMZ = 51—-R 3CT (“41)
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Fortunately, reductiom = 1, i.e. "™ = M, can be reached int() fixing the ratioCy/Ct and thus
defining ’invisible’ intrinsic CZMs for the Poisson ratio:
Cn  1143M
hom M N
=M D= T 42
Y YT T 21— oM (42)
It is worth noting that the condition4@) ensures same elastic reduction for bulk, shear and Young

moduli:

khom hom Ehom

= MM" = — (43)

We underline that relationshipgd3) were proposed byi and Wang(2004 as a closure condition in
their self-consistent estimate for pure hydrostatic lnggi The present approach can thus be seen as an
improvement of the results &f and Wang(2004) to arbitrary type of loadings.

As before mentioned, the cohesive interface dengityorresponds to the 'specific’ interface surface:
Z = A/S where A is the total edge length (resp. area) in 2-D (resp. in 3-D) &nsl the total area
(resp. volume) of the 2-D (resp. 3-D) meshed body. For argrefization characterized by a mesh size
Lmesh, A is proportional t(ﬂ’_lh of the mesh and is proportional taL! _ . whereq is the considered

mes mes
dimension; density is thus inversely proportional to the mesh size and can beesgpd as:

B
Lmesh

7 —

; (44)

where the realy depends on the spatial distribution of the considered méstnce, relations4(l),
(42) and @4) allow to define a practical criterion on the ratity Lmesn/EM extending semi-empirical
criteria previously proposed in the literaturespinosa and Zavattier2003 Tomar et al. 2004 Turon
et al, 2007):
CNLmesh > R 1
> .

EM 1-R3(1-2vM)
Moreover, the intermediate criteridl) and @2) together with the apparent reductioRs< 1 andr = 1
allow to ensure accurate estimates of the elastic wave spieidct better than of the apparent compli-
ance. The apparent dilatational and shear wave speedsvaretgjcgom = 4/(Ahom 2, hom) / ;hom
andcom = /yhom /phom respectively, wher@"™ is the effective Lame’s coefficient and°™ is the
effective density of the cohesive-volumetric medium. Asswg that the finite element discretization
does not affect the densip’®™ = pM (oM being the density of the matrix phase) and since the criterio
(42) ensures that the reduction= 1 is reached for the Poisson ratio, the apparent reductiomiseof
elastic wave speeds read:

(45)

hom )\hom 2) hom Ehom
ch _ M+ MM — 4/ = VR, (46)
cy M4 24u E
hom hom hom
Cg I E
= = =VR. 47

Thus, tolerating for example a reduction %% for the Young’'s modulus, i.eR = 0.95, leads to a
reduction lower thai3% for the elastic wave speeds/'R ~ 0.97).

The application of the previous criterioA5) to the case of planar meshes is studied hereafter where the
influence of the discretization morphology is illustrated.

5 Application to planar meshes

5.1 Regular meshes

We consider the case of a '2-D cross-triangle quadrildterakhes: each element square is divided into
four isosceles triangles as shown in Fig@8r@). Note that for such case of mesh geometry, the property
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of the orientational equi-probability of inclusions is mespected since the mesh is not really isotropic.
The obtained criterion3g) should be thus understood as an estimate and not as a lowed.bd he
parametery is equal in that case tp = 2(1 + /2) = 4.83 (see AppendiXd), this result combined with
the relation 42) and the inequality45) provides a2-D practical 5% criteria’ (R = 0.95) for regular
meshes:

CNLmesh 30 Ct 1—2M
> and — =2——— 48
EM T 1-2M CnN 1+ 3uM (48)

For a bulk material withM = 0.2, these criteria givelt = 0.75Cy andCy > 50EM / Liesh, Which
corresponds to the numerical criterion proposediayon et al(2007). Conversely, combiningd@) and
(45) shows that, for a bulk material with™ = 0.2, the criterion proposed bspinosa and Zavattieri
(2003, % > 10, corresponds to a reductiaR = 0.78, which guaranties only that the loss in
apparent Young's modulus is less than akizijg.

5.2 Delaunay meshes

In Delaunay-type discretizations (see Figr€b)), the length of an edge has a probability density
function depending on the density of the underlying nodietpprocess $toyan et al.1995 Mucheg
1996. The parametey is thus a stochastical parameter given by a mean and a vari&oc a chosen
mesh generation, a node-point density is obtained and ttienea of Z can be computed. The mean
value of Z can be estimated using statistical resultdofche (1996 and introducing a reference edge
length (corresponding to an equivalent equilateral tiieng

y

7 =
Lmesh

where ~ =2.97 (49)

This result combined with the relatioAZ) and the inequality45) provides d2-D practical 5% criteria’
(R = 0.95) for Delaunay meshes:

ONLmesh 19 Ct 1— M
> and — =2——— 50
EM T 1 _9yM Cn 14 3vM (50)

The result obtained by application of the criteréB) and 60) is plotted in Figure8 where the elastic
energy of a medium containing embedded CZMs is compareceteléstic energy of a medium without
CZMs (standard finite element method). The obtained reshitsv that both regular and Delaunay
meshes induce a global loss of elastic energy that does needx”% when the cohesive stiffnesses are
suitably calibrated following48) and 60). When the density is fixed at the same value, the difference
between the two types of meshes is not significant as showigimd38. This result validates the fact that
the overall behaviour obtained with the Hashin-Shtrikmelmesne 86) is a convenient estimate even if
the property of isotropic meshes is not respected.

6 Concluding remarks

The overall constitutive behaviour of an elastic mediumhvéimbedded cohesive inclusions has been
studied. An equivalent 'matrix-inclusions’ composite @nsidered as a representation of a cohesive-
volumetric finite element modelling. As result of this miorechanical model, the following points can
be highlighted:

e Rigorous lower bounds on the normaély, and the tangentialy, cohesive stiffness have been
obtained for isotropic planar meshes as well as conveniégtia for regular meshes. The practi-
cal criteria are given as function of bulk material propestiZ™, M) for a given mesh density
(mesh size.nesn and mesh morphology parametgr
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Figure 8: Overall elastic energy (area under the streafsturve) of a square cell during a shear test:
standard finite element modeling without CZMs (continudng)| cohesive-volumetric finite element
modeling using a Delaunay mesh (lower dot-dashed curve$iogwa Regular mesh (upper dot-dashed
curve).

¢ Intermediate results of this study show that a cohesivamaetric approach with a vanishing tan-
gential cohesive stiffnes€¢ — 0) leads to an overall no shear material.

e The accuracy of these results has been numerically testdmbfio Delaunay and regular meshes.
The numerical part shows a consistence between numergdtgaind analytical analysis.
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A Expression of the cohesive density for the case of 2-D regular meshes

We consider a square cell meshed with regular squares diuide four isosceles triangles. We denote
by N; the number of the triangular elemenfs, sy the length of the larger side of each triangle and
Lot the total length of the boundaries between the underlyinghe® (total length of the cohesive
interfaces). Associating to the cohesive zones a fictittbicknesse, the volume fractionf = eZ of
cohesive interfaces reads:

eLiot
_ 7 51
eLior + Nt(L%esh/zl) 1)
hence, the expression of the density param&ter asymptotically obtaine¢e — 0):
L
tot (52)

L= ———.
Nt(LQmesh/4)

The total cohesive length; is linked to the mesh lengthsn and the triangles numbéy; by the
relationship:

N,
Ltot =2 (\/5 + 1) thmesh + Nthesh7 (53)
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which allows deriving an approximation &f for large number of mesh elemenits; — oo):

7= with fy:2<1+¢§). (54)
Lmesh
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