
HAL Id: hal-00714812
https://hal.science/hal-00714812

Submitted on 5 Jul 2012

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Artificial compliance inherent to the intrinsic cohesive
zone models: criteria and application to planar meshes

Nawfal Blal, Loïc Daridon, Yann Monerie, Stéphane Pagano

To cite this version:
Nawfal Blal, Loïc Daridon, Yann Monerie, Stéphane Pagano. Artificial compliance inherent to the
intrinsic cohesive zone models: criteria and application to planar meshes. International Journal of
Fracture, 2012, 178, pp.71-83. �10.1007/s10704-012-9734-y�. �hal-00714812�

https://hal.science/hal-00714812
https://hal.archives-ouvertes.fr


Artificial compliance inherent to the intrinsic cohesive zone
models: criteria and application to planar meshes

BLAL Nawfal 1,2,3 -DARIDON Loïc 1,3

MONERIE Yann2,3 -PAGANO Stéphane1,3
1 Laboratoire de Mécanique et Génie Civil, Montpellier

2 Institut de Radioprotection et de Sûreté Nucléaire, Cadarache
3 Laboratoire de Micromécanique et d’Intégrité des Structures

MIST Laboratory, IRSN-CNRS-Université Montpellier 2
{nawfal.blal, loic.daridon, stephane.pagano}@univ-montp2.fr

yann.monerie@irsn.fr

Abstract

In this study, criteria on the artificial compliance due to intrinsic cohesive zone models are pre-
sented. The approach is based on a micromechanical model fora collection of cohesive zone models
embedded between each mesh of a finite element-type discretization. The overall elastic behaviour
of this cohesive volumetric medium is obtained using homogenization techniques and is given in a
closed-form as function of bulk properties of the relevant material and mesh parameters (the mesh
type and size). Practical criteria are obtained for the calibration of the cohesive stiffnesses bounding
the additional compliance inherent to intrinsic cohesive zone models by lower value. For isotropic
planar discretizations (e.g. Delaunay mesh), a rigorous bound is derived whereas convenient esti-
mates are given for non-isotropic discretizations (e.g. regular mesh).

Keywords: Micromechanics; Damage; Cohesive Zone Models; Homogenization; Planar meshes

1 Introduction

Since the pioneering works ofDugdale(1960) andBarenblatt(1962), cohesive approaches had emerged
as one of the most efficient methods used for numerical fracture mechanics. Their numerical simplicity
as their capacity to simulate numerical fracture processesfrom crack initiation to overall failure without
any ad hoc criteria are the most appealing features of these models. However, their numerical imple-
mentation exhibits a strong mesh sensitivity which is stillan issue of concern: as shown inTijssens
et al. (2000), the fracture paths depend on the mesh geometry and size. Despite this path sensitivity,
the authors show therein that the overall force-displacement response is not very sensitive to the mesh
size and can be predicted with reasonable accuracy. Anotheraspect of this mesh sensitivity concerns the
intrinsic Cohesive Zone Models (CZM), i.e. traction-separation laws with initial slope: incorporating
cohesive zones between each couple of adjacent elements of afinite element-type discretization leads
to an additional compliance since the density of the cohesive interfaces increases as the mesh is refined.
This aspect can be illustrated on a simple 1D case (see Figure1), where a linear elastic intrinsic CZM is
inserted between two bulk elements. In that case, the equilibrium condition reads:

F

S
= EMε = CN[[u]], (1)

whereF is the applied force,ε the strain in the bulk elements (mesh sizeLmesh, cross sectionS), EM

the Young’s modulus used in the bulk element constitutive behaviour,CN the initial cohesive stiffness of
the intrinsic model and[[u]] is the displacement jump across the cohesive zone.The overall strain of this
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composite is:

ε̃ =
F/S

EM +
F/S

CNLmesh
. (2)

Since the equilibrium condition requiresF/S = Ẽε̃, whereẼ denotes the apparent Young’s modulus
of the assemblage, one can deduce the normalized apparent Young’s modulus:

Ẽ

EM =
F/S

EMε̃
=

ξ

1 + ξ
with ξ =

CNLmesh

EM . (3)

According to this last equation, the ratioξ appears as the key adimentional parameter in controlling
the mesh sensitivity of intrinsic CZMs. More precisely, theadded compliance vanishes (Ẽ → EM)
whenξ → +∞, see Figure1 (b). In other words, the overall elastic behaviour is not affected by the
introduction of intrinsic CZMs between bulk elements and therefore the mesh sensitivity effect vanishes.

(a) (b)

Figure 1: Illustration of the relationship between apparent Young’s modulus and mesh size in 1D-case:
(a) a representative part of 1D finite element mesh with embedded cohesive zone model, (b) overall
Young’s modulus normalized by bulk modulus vs mesh size.

Following the same type of ideas, various authors have proposed semi-empirical bound for the ratioξ in
order to define ’invisible’ CZMs at the scale of a structure. Equation (3) results from similar mechanical
considerations in the work ofTuron et al.(2007) concerning the numerical simulation of delamination:
taking ξ larger than50 (ξ > 50) ensures that the apparent loss of stiffness is less than2%, hence the
composite is not affected by the presence of cohesive interfaces. Performing numerical tension and
shear tests,Espinosa and Zavattieri(2003) have noticed that the elastic wave speeds remain unchanged
across a cohesive line between two elastic and isotropic media whenξ ≥ 10. Estimating the added
compliance for cross-triangle elements arranged in quadrilateral pattern submitted to uniaxial tension,
biaxial uniform tension and pure shear,Tomar et al.(2004) obtain (νM being the Poisson ratio of the
bulk material):

ξ ≫ α

√
2 + 1

1− νM
. (4)

with α = 1 for plane stress andα = 1/
(
1− (νM )2

)
for plane strain. The aim of this work is to forth

fully generalize these criteria to three dimensional situations and to any type of loadings.

2 Micromechanical model

We focus in the sequel oncohesive-volumetric finite element approach withintrinsic cohesive zone
model: each volumetric element of a standard finite element discretization is connected to each cou-
ple of adjacent elements using intrinsic CZMs as boundary conditions. Recent developments suggest
to replace the cohesive-volumetric approach with the coupling between CZMs and X-FEM, e.g.Ben-
venuti (2008), but this cumbersome technic is not widely spread in commercial codes. Moreover, the
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cohesive-volumetric approach can be used with extrinsic cohesive models, i.e. initially rigid or ’shifted’
models (Hille et al., 2004). But most of the time, loading-unloading situations lead to elastic reload of
the cohesive zones and the intrinsic case should anyway be considered. Intrinsic cohesive zone mod-
els embedded within a standard finite element discretization is thus investigated in the following as a
reference case.

2.1 Cohesive discretization as a "matrix-inclusion" composite

Following Blal et al.(2011), the main idea is to replace a cohesive-volumetric finite element discretiza-
tion by a continuousmatrix containing penny-shaped cohesiveinclusions (Figure2). The matrix has

(a) (b)

Figure 2: Principle of the approach: a cohesive-volumic finite element mesh is replaced by a continuous
matrix corresponding to bulk elements and a collection of penny-shaped cohesive inclusions correspond-
ing to the edges of the underlying mesh; (a) 2-D illustration, (b) 3-D illustration.

the same behaviour as the bulk finite element behaviour whereas the penny-shaped inclusions have a
cohesive behaviour defined by a traction-separation law. The spatial distribution of the cohesive inclu-
sions corresponds to those of the edges of the underlying mesh and has the same density, denoted byZ.
In particular, in the case of a statistical isotropic mesh, e.g. a Delaunay-type mesh, the inclusions are
randomly distributed in space and in orientation. The density Z corresponds to the specific ’surface’ of
the interface between the meshes: in two dimensions,Z is equal to the ratio of the total length of the
edges to the area of the meshed surface; in three dimensions,Z is equal to the ratio of the total area of
the edges to the volume of the meshed body. Moreover, the nextassumption is made concerning the
shape of the inclusions:

Hypothesis 1. The inclusions are assumed to be penny-shaped (Figure 2). In two dimensions, the
straight edges of the mesh are thus replaced by zero thickness whiskers and this assumption has no con-
sequence. In three dimensions, the polygonal edges are replaced by disks (with the same spatial density):
the two situations are admittedly close to each other but are different when considered rigorously.

2.2 Phases properties

In the sequel, we restrict our attention to linear elastic behaviours. Moreover, the matrix phase is con-
sidered as isotropic and its constitutive relation reads:

σ = CM : ε with CM = 3kMJ+ 2µMK, (5)

whereσ (resp.ε) is the stress field (resp. strain),CM is a fourth order stiffness tensor,kM andµM are
the bulk and the shear modulus respectively. The symmetric tensorsJ andK define the generic basis of
the fourth order isotropic symmetric tensors:

J =
1

3
i⊗ i and K = I− J with 2Iijkl = (iikijl + iilijk) (6)
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wherei is the second order identity tensor. The previous constitutive law (5) can be written in a matrix
form as follows:




σxx

σyy

σzz√
2σxy√
2σxz√
2σyz



=




(
kM + 4µM

3

) (
kM − 2µM

3

) (
kM − 2µM

3

)
0 0 0(

kM − 2µM

3

) (
kM + 4µM

3

) (
kM − 2µM

3

)
0 0 0(

kM − 2µM

3

) (
kM − 2µM

3

) (
kM + 4µM

3

)
0 0 0

0 0 0 2µM 0 0

0 0 0 0 2µM 0

0 0 0 0 0 2µM







εxx

εyy

εzz√
2εxy√
2εxz√
2εyz




(7)

The cohesive traction-separation law corresponds to a linear relation between the cohesive stress vector
R

coh and the opening displacement vector[[u]] = u+ − u− whereu+ (resp.u−) is the displacement
of the points located on the top (resp. bottom) side of the interface. In the local normal-tangent basis
oriented by the normal vectorn, the jump displacement vector can be decomposed to a normal,uN, and
a tangential,uT, component, so that:[[u]] = uNn+ uT. The cohesive constitutive relation reads:

R
coh = K · [[u]] with K = CNn⊗ n+ CT (i− n⊗ n) , (8)

whereCN (resp.CT) is the normal (resp. tangential) initial ’stiffness’ of the cohesive law. The cohesive
stress tensor is given thus combining (8) and the relationshipRcoh = σcoh ·n as proposed inAcary and
Monerie(2006):

σcoh = (CNEl +CTKl) : ([[u]]⊗s n) , (9)

where⊗s is the symmetric dyadic product (2a ⊗s b = aibj + ajbi for any vectora andb) andEl, Kl

are two components of the fourth order transversely isotropic and symmetric tensors frame:

El = n⊗ n⊗ n⊗ n and Kl = 2(js ⊗ js + jt ⊗ jt) (10)

with j
s
= n ⊗s s andj

t
= n ⊗s t, wheres andt are two orthogonal vectors defining the transversal

plane (n, t, s define the local orthogonal basis of the cohesive inclusion). Defining the cohesive ’strain’
with the help of a small lengthe (Michel et al., 1994):

εcoh =
[[u]]⊗s n

e
, (11)

a fourth order stiffness tensorCcoh can be deduced for the cohesive phase. The constitutive relation thus
reads for the inclusions:

σcoh = Ccoh : εcoh with Ccoh = e (CNEl + CTKl) . (12)

According to the local frame(n, t, s), the cohesive governing equation (12) reads in a reduced form:



σnn

σtt

σss√
2σnt√
2σns√
2σst



= e




CN 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 CT 0 0
0 0 0 0 CT 0
0 0 0 0 0 0







εnn

εtt

εss√
2εnt√
2εns√
2εst




(13)

The small lengthe, that should tend to zero, is a fictitious thickness associated to the cohesive zone.
Since oblate ellipsoids tend to penny-shaped inclusions when their thickness tends to zero, the cohesive
inclusions are now considered as oblate ellipsoids and their volume fractionf is the product of the
densityZ (inversely proportional to a length, namely the mesh sizeLmesh) and of the fictitious thickness
e:

f = eZ

where the cylindrical hypothesis of inclusions instead of oblate one has no consequence whene→ 0.
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2.3 The overall homogeneous behaviour: Hashin-Shtrickman estimate

A Hashin-Shtrikman estimate (Hashin and Shtrikman, 1963) is used in order to establish an analytical
expression of the overall elastic stiffness, denoted byChom. The considered matrix-inclusion composite
(Figure2) is composed of an isotropic elastic matrix (volume fraction 1− f ) following the constitutive
relation (5) and of a collection of transversely isotropic oblate ellipsoids (volume fractionf ) with the
largest semi-axisa varying fromA− toA+, with the same aspect ratiow = b/a ≪ 1 (b is the smallest
semi-axis, i.e. along the dimension of the ellipsoids alongthe symmetry axis) and following the consti-
tutive relation (8). The orientation of these ellipsoids is characterized by the direction of their symmetry
axis, i.e. a vectorn of the unit sphereS of R3 (measure4π). This collection of inclusions is splitted
intoN − 1 familiesr (r = 2, . . . , N ), ther-th family being defined by a radius included in(a, a + da)
and an orientation lying within the elementary solid angleds centered onn. Defining the inclusion
densityφ(a,n) such thatφ(a,n)dads is the number of inclusions of ther-th family in a unit volume,
the volume fraction by unit volumecr of ther-th family reads:

cr = φ(a,n)
4π

3
a2b dads = φ(a,n)

4π

3
a3w dads (r = 2, . . . , N),

with f =
N∑

r=2

cr =

∫

S

∫ A+

A−

φ(a,n)
4π

3
a3w dads. (14)

For this situation, the following generalization of the Hashin-Shtrikman’s result is considered (Willis ,
1977):

CHS(C0) =
[
(1− f)CM :

(
I+ P : (CM − C0)

)−1

+

N∑

r=2

crC
coh
r :

(
I+ P : (Ccoh

r − C0)
)−1

]

:

[
(1 − f)

(
I+ P : (CM − C0)

)−1

+

N∑

r=2

cr

(
I+ P : (Ccoh

r − C0)
)−1

]−1

(15)

whereC0 (resp. Ccoh
r ) is the fourth order stiffness tensor of a reference medium (resp. of ther-th

family of inclusions) andP is the Hill polarization tensor which characterizes the stress that the infinite
surrounding reference medium applies on a single ellipsoidhaving a homogeneous eigenstrain. The Hill
tensorP depends on the shape of the inclusionw, on its orientationn and on the stiffness tensor of the
reference mediumC0. FollowingWillis (1977), this reference medium is a homogeneous material such
that the constitutive relations (5) and (12) are replaced respectively withσ = C0 : ε+τ andσcoh = C0 :
εcoh + τ coh where the polarizationsτ andτ coh reads:τ = (C−C0) : ε andτ coh = (Ccoh −C0) : εcoh.
Using the Hill influence tensorC∗ = P−1 − C0, and introducing the two fourth order tensorsV1 =
(C∗ + CM)−1 andVr = (C∗ +Ccoh

r )−1, one obtains:

I+ P : (CM − C0) = I+ (C∗ + C0)−1 : (CM −C0)

= (C∗ + C0)−1 : (C∗ + CM)

= (C∗ + C0)−1 : V−1
1

and the same relation holds for

I+ P : (Ccoh
r − C0) = (C∗ + C0)−1 : V−1

r .

Combining these two last relations and simplifying by(C∗ + C0), equation (15) is rearranged as:

CHS(C0) =

[
(1− f)CM : V1 +

N∑

r=2

crC
coh
r : Vr

]
:

[
(1− f)V1 +

N∑

r=2

crVr

]−1

(16)
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IntroducingTr = Vr : V−1
1

and remarking that the cohesive stiffness depends only on the orientation
n, i.e.Ccoh

r = Ccoh(n), and that tensorTr depends only on the aspect ratiow and the directionn, i.e.

Tr = T(w,n) = (C∗(w,n) + Ccoh(n))−1 : (C∗(w,n) + CM) (17)

the estimate (16) is rewritten with the help of the densityφ(a,n), equation (14) and an integration over
the radius and the orientation:

CHS(C0) =

[
(1− f)CM +

∫

S

∫ A+

A−

φ(a,n)
4π

3
a3wCcoh(n) : T(w,n)dads

]

:

[
(1− f)I+

∫

S

∫ A+

A−

φ(a,n)
4π

3
a3wT(w,n)dads

]−1

. (18)

Sincew is assumed to be constant andCcoh(n) andT(w,n) do not depend on the radiusa, integrating
overa leads to:

CHS(C0) =

[
(1− f)CM + w

∫

S

ψ(n)Ccoh(n) : T(w,n)ds

]
:

[
(1− f)I+ w

∫

S

ψ(n)T(w,n)ds

]−1

(19)

where

ψ(n) =

∫ A+

A−

4

3
πa3φ(a,n)da.

If the underlying mesh contains specific orientations (e.g.anisotropic meshes), they have to be taken
into account through the densityψ(n). For simplicity, isotropic meshes (e.g. Delaunay-type meshes)
are considered in the next section.

2.4 Lower bound for isotropic meshes

We now specialize (19) for the case of an isotropic microstructure: both matrix and the mesh distribution
are isotropic. Hence, the orientations of inclusions are assumed to have an equi-probability property
(randomly oriented inclusions corresponding to isotropicoverall meshes), the densityψ(n) is reduced
to f/(4πw) and the estimate (19) becomes (f = eZ):

CHS(C0) =

[
f

4π

∫

S

Ccoh : T(w,n)ds+ (1− f)CM
]
:

[
f

4π

∫

S

T(w,n)ds + (1− f)I

]−1

=

[
eZ
〈
Ccoh : T

〉
	

+ (1− eZ)CM
]
:
[
eZ〈T〉

	
+ (1− eZ)I

]−1

(20)

where〈.〉
	

indicates the average over all orientations. FollowingGatt et al.(2005), this orientational
average is equivalent to a projection over the isotropic frame for the fourth order symmetric tensors:

〈D〉
	
=

J :: D

J :: J
J+

K :: D

K :: K
K for any fourth order tensorD, (21)

and the overall stiffness tensor is obtained after the passage to the limit:Chom = lime→0C
HS(C0).

At this stage, according to the choice of the reference mediumC0, different bounds and estimates can be
derived. Since, the normal and the tangential cohesive stiffnessesCN andCT have bounded values, the
cohesive stiffness tensorCcoh tends to zero when the small lengthe tends to zero (see equation (12)). At
the limit e→ 0, Ccoh is thus always smaller in a quadratic sense than the matrix elastic tensorCM. The
choice of the reference mediumC0 = CM corresponds to the Hashin-shtrickman upper bound (or the
Mori-Tanake estimate) and gives the trivial resultChom = CM at the limite→ 0. The same trivial result
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is obtained for the self-constitent scheme (C0 = Chom). Thus, by focusing on the caseC0 = Ccoh, i.e.
using the most compliant phase as a reference medium the Hashin-Shtrickman lower bound is defined
CHS- = CHS(Ccoh):

Chom = lim
e→0

CHS-

= lim
e→0

[
eZ
〈
Ccoh : T

〉
	

+ (1− eZ)CM
]
:
[
eZ〈T〉

	
+ (1− eZ)I

]−1
.

(22)

where the tensorT is reduced in this case to:

T = T(Ccoh) = I+ P(Ccoh) :
(
CM − Ccoh

)
. (23)

The explicit analytical expression of the fourth order tensor Chom can be conveniently obtained by
representing the different tensors in terms of the components of the generic basis of transversely isotropic
symmetric and fourth order tensors. Any transversely isotropic symmetric and fourth order tensorsC
can be linearly decomposed as follows (seeBornert et al.(2001) for example):

C = C1El + C2Jt +C3(F+ TF) + C5Kt +C6Kl, (24)

whereEl andKl are previously introduced in (10) and the other components of the transversely isotropic
tensor frame are given by:

it = i− n⊗ n Jt =
1

2
it ⊗ it,

F =
1√
2
it ⊗ n⊗ n Kt = It − Jt.

(25)

with It being the fourth order transversal identity andn the main axis of the transversely isotropic
medium (heren coincides with the outward normal of the penny-shaped cohesive inclusions). It follows
that the sum and the product of two tensorsC andQ are immediately given by:

C+Q = (C1 +Q1)El + (C2 +Q2) Jt + (C3 +Q3) (F+ TF) + (C5 +Q5)Kt

+(C6 +Q6)Kl,

C : Q = (C1Q1 + C3Q3)El + (C2Q2 + C3Q3) Jt + (C1Q3 + C3Q2)F

+(C3Q1 + C2Q3)
TF+ C5Q5Kt +C6Q6Kl.

(26)

Moreover, the inverse of a tensorC can be obtained using simple algebraic manipulations:

C−1 =
C1

∆
El +

C2

∆
Jt +

−C3

∆
(F+ TF) +

1

C5

Kt +
1

C6

Kl (27)

where∆ = C1C2 − C2
3 .

As first step, the cohesive stiffness tensor is re-written inthe transversely isotropic frame:

Ccoh = e
(
CNEl + CAJt + CB(F+ TF) + CCKt + CTKl

)
, (28)

where the coefficients,CA, CB andCC do not have any physical sense and are introduced in order to
calculate the inverse tensors occurring in the expression of the Hashin-Shtrikman estimate; indeed, these
coefficients will naturally disappear whene tends to zero. The expression of the polarization tensorP is
then derived for penny-shaped inclusions (radiusR) with the cohesive inclusions (28) as the reference
medium using the method proposed inSevostianov et al.(2005):

P (e,n) =
1

CN
eEl +

3π

4
√
2CNR

(F+ TF)− π

CTR
(Jt +Kt)

+
1

CTe
Kt +

CA + 2CC

4C2
TR

πKl.
(29)
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The Projection of the matrix stiffness tensorCM in the transversely isotropic frame:

CM =

[
kM +

4µM

3

]
El +

[√
2

(
kM − 2µM

3

)]
(F+ TF)

+

[
2kM +

2µM

3

]
Jt + 2µM(Kt +Kl),

(30)

and the substitution of equations (5), (28) and (29) into (23) leads to:

T =

[
9eπ + 12R

12CNeR
kM +

(
4

3CNe
− π

2CNR

)
µM
]
El

+

[
− 3CAeπ

4
√
2CNR

+
(18eπ + 24R)

12
√
2CNeR

kM +

(
− 2

√
2

3CNe
+

π

2
√
2CNR

)
µM

]
(F+ TF)

+

[
1 +

CAeπ

CTR
+

(−24CNπ + 9CTπ)

12CNCTR
kM +

(
− π

2CNR
− 2π

3CTR

)
µM
]
Jt

+

[
CCeπ + CTR

CTR
− 2πµM

CTR

]
Kt

+

[
1− CAeπ + 2CCeπ + 4CTR

4CTR
+

(CAeπ + 2CCeπ + 4CTR)µ
M

2C2
TeR

]
Kl.

(31)

The Hashin-Shtrikman lower bound (22) involves the quantityCcoh : T which can be obtained using the
formulas (12), (31) and the elementary operations introduced in (26):

Ccoh : T =

[
kM +

4µM

3
+

3kM − 2µM

4R
πe

]
El

+
√
2

[
kM − 2µM

3
+

3kM + µM

4R
πe

]
F

+

[
CA(−24k + 16µM)

12
√
2CTR

πe+
CA(9CTk

M + 12CTµ
M)

12
√
2CNCTR

πe

]
TF

+

[
CAπ(3k

M − 2µM)

4CNR
e− CA(6k

Mπ − 3CTR+ 2πµM)

3CTR
e

]
Jt

+

[(
CC − 2CCπµ

M

CTR

)
e

]
Kt +

[
2µM +

(CA + 2CC)µ
M

2CTR
πe

]
Kl

+ o(e)

(32)

Then, to calculate the expression

CHS- =

[
eZ
〈
Ccoh : T

〉
	

+ (1− eZ)CM
]
:
[
eZ〈T〉

	
+ (1− eZ)I

]−1
,

use is made of the average over all spatial orientations (see(21)) and the inversion relationship (27).
Noting that 




El :: J = 1

3
, Jt :: J = 2

3
,

F :: J = TF :: J =
√
2

3
, Kt :: J = Kl :: J = 0,

El :: K = 2

3
, Jt :: K = 1

3
,

F :: K = TF :: K = −
√
2

3
, Kt :: K = Kl :: K = 2,

(33)

the power series expansion ofCHS- around the pointe = 0 at the first order reads:

CHS- =

([
3kM − 2ZkMe

]
J+

[
2µM − 14

15
ZµMe

]
K+ o(e)

)
:

([
CN

CN + kMZ
+ g(e)

]
J+

[
15CNCTµ

M

15CNCT + 12CNZµM + 4CTZµM + h(e)

]
K+ o(e)

) (34)
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where

g(e) =
2C2

Nk
MπZ

CTR(CN + ZkM)2
e+

−9kMπ + 2CNR

6R(CN + ZkM)2
CNZe

and

h(e) =
15
(
3C2

Tπµ
M + CN

(
8C2

TR− 3(CA + 2CC)πµ
M + 14CTπµ

M
))

R(4CTZµM + 3CN(5CT + 4ZµM))2
CNZe.

Finally, the passage to the limite → 0 allows to derive the analytical expression of the homogeneous
Hashin-Shtrikman lower bound:

Chom = 3
CNk

M

CN + kMZ
J+ 2

15CNCTµ
M

15CNCT + 12CNZµM + 4CTZµMK. (35)

Hence, the expression of the bulk and shear homogeneous moduli khom andµhom are:





khom

kM =
ξk

1 + ξk
with ξk =

CN

ZkM ,

µhom

µM =
ξµ

1 + ξµ
with ξµ =

15

4(1 + 3CN/CT)

CN

ZµM .

(36)

It is worth noting that equations (36) show that a cohesive-volumetric formulation with vanishing tan-
gential cohesive stiffness (CT → 0) leads to a macroscopic no shear material (µhom → 0). Moreover,
the lower bounds (36) allow to definecriteria on the overall loss of stiffnesses, e.g. assuming that a
reduction of5% on the apparent bulk and shear moduli is admissible:





khom

kM ≥ 0.95 is ensured forξk ≥ 20

µhom

µM ≥ 0.95 is ensured forξµ ≥ 20.
(37)

Since the geometrichypothesis 1 has no influence for the case of 2-D discretization, it shouldbe men-
tioned that, for planar isotropic meshes, (36) is a lower bound and (37) is a ’rigorous’ criteria. For
regular meshes, (36) is an estimate. The accuracy of the obtained results is illustrated in the next section
and practical criteria are derived in the section4.

3 Numerical experiments

All calculation presented hereafter were done using the software XPER (Perales et al., 2008, 2010).
The analysis is based on embedded linear elastic cohesive-volumetric elements and isotropic medium
under plane strain conditions. In Figure4, the dependency of the overall elastic moduli on the normal-
to-tangential cohesive stiffness ratio is studied for regular meshes (see Figure3, left). Bulk material
properties are as follows: Young’s modulusEM = 117.5 GPa and Poisson coefficientνM = 0.3. The
evolution of the overall elastic properties as function of the normal cohesive stiffness is illustrated for
different normal-to-tangential cohesive stiffness ratios CN/CT. Numerical experiments show clearly
that the overall bulk moduluskhom is not sensitive to the ratioCN/CT, as predicted by the theoretical
bounds (36). The overall shear modulusµhom decreases with the ratioCN/CT, and again these results
are compatible with the bounds (36). It should be noticed that these bounds are sharper when thenormal-
to-tangential cohesive stiffness ratio decreases. Numerically speaking, the bounds (36) are thus not very
accurate for large values of the ratioCN/CT as expected.
The results presented in Figure5 show that the apparent reduction associated to the Young’s modulus
Ehom/EM depends on the normal-to-tangential cohesive stiffness ratio as expected by (39). Moreover,
we observe that the ratioCN/CT leading to an apparent Young’s modules reductionEhom/EM increases
with the Poisson ratio: the dashed lines show that for a material with νM = 0.3, the Young’s modulus

9
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Figure 3: Examples of Regular (left) and Delaunay-type (right) meshes.
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Figure 4: Normalized overall elastic moduli for different cases of the normal-to-tangential cohesive
stiffness ratio: bulk modulus (top) and shear modulus (bottom). Numerical results:CN/CT = 1/3
black bullets,CN/CT = 1 gray crosses,CN/CT = 3 gray dashed squares. Theoretical bounds (36):
CN/CT = 1/3 black curve,CN/CT = 1 gray curve,CN/CT = 3 gray dashed curve.

reduction reaches0.77 when the ratioCN/CT = 1, whereas a material withνM = 0 needs a ratio
CN/CT = 1/3 to reach the same reduction; this result is consistent with the proposed criterion (42).
In Figure 6 and Figure7, the numerical experiments concern both planar Delaunay (closed symbols
with variance) and ’cross-triangle quadrilateral’ meshes(open symbols) for the caseCN = CT: as
antecedently expected in the previous section, Figure6 and Figure7 show that relations (36) are rigorous
lower bounds forisotropic meshes (Delaunay) and convenient estimates forregular meshes. Note that
these regular meshes exhibit a higher added compliance thanisotropic ones. Moreover, these numerical
results clearly show that the criteria (37), ξk ≥ 20 andξµ ≥ 20, ensure that the overall added compliance
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Figure 5: Effect of the tangential-to-normal cohesive stiffness ratio on the overall behaviour: Young
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(circular symbols),νM = 0.14 (diamond symbol),νM = 0 (square symbols) andνM = −0.7 (triangular
symbols).

do not exceed5% (dashed lines in Figure6 and Figure7).
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Figure 6: Normalized overall bulk modulus of a cohesive-volumetric formulation with intrinsic CZMs
(caseCN = CT): lower bounds (36) (thick gray line), criteria (37) (dashed line), numerical results
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11



ôô
ôô

ô

ô

ô

ô

ô

ô
ôç

ç
ç

ç
ç

ç

çç

ç

0 10 20 30 40 50
0.0

0.2

0.4

0.6

0.8

1.0

ΞΜ

Μ
ho

m
�Μ

M
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(caseCN = CT): lower bounds (36) (thick gray line), criteria (37) (dashed line), numerical results
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4 Practical criteria on cohesive stiffnesses

Criteria on cohesive stiffnesses obtained from micromechanical models have been firstly discussed by
Acary and Monerie(2006). Hereafter, use will be made of engineer’s moduli (Young moduli and Poisson
ratio):

EM =
9kMµM

3kM + µM and νM =
3kM − 2µM

6kM + 2µM ,

Ehom =
9khomµhom

3khom + µhom and νhom =
3khom − 2µhom

6khom + 2µhom .

(38)

The additional compliance due to the presence of intrinsic CZMs is measured by two relative apparent
reductionsR = Ehom/EM andr = νhom/νM, so that cohesive zones do not affect the overall behaviour
if, ideally,R = 1 andr = 1. Combining (36) and (38) gives for the proposed micromechanical model:

R =
Ehom

EM =
ξE

1 + ξE
where ξE =

5

1 + (4/3)(CN/CT)
× CN

EMZ
, (39)

and

r =
νhom

νM =
15CNν

M + (−1 + 2CN/CT)E
MZ

15CNνM + (3 + 4CN/CT)EMZνM . (40)

The equation (39) extends the 1D-equation (3) with a prefactor onξ and the use of the densityZ instead
of the mesh sizeLmesh. This equation shows again that without tangential cohesive stiffness (CT → 0)
an overall no tension material is expected (Ehom → 0). Moreover, the situationR = 1 can not be
reached (the overall Young’s modulus is always disturbed bythe presence of CZMs using a Hashin
Shtrikman estimate). However, for a given value ofR ∈ [0, 1[, equation (39) leads to an implicit
lower bound on the key parameterCN/(E

MZ) involving the normal-to-tangential cohesive stiffness
ratioCN/CT:

CN

EMZ
≥ 1

5

R

1−R

(
1 +

4

3

CN

CT

)
. (41)
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Fortunately, reductionr = 1, i.e. νhom = νM, can be reached in (40) fixing the ratioCN/CT and thus
defining ’invisible’ intrinsic CZMs for the Poisson ratio:

νhom = νM ⇒ CN

CT
=

1

2

1 + 3νM

1− 2νM . (42)

It is worth noting that the condition (42) ensures same elastic reduction for bulk, shear and Young
moduli:

khom

kM =
µhom

µM =
Ehom

EM . (43)

We underline that relationships (43) were proposed byLi and Wang(2004) as a closure condition in
their self-consistent estimate for pure hydrostatic loadings. The present approach can thus be seen as an
improvement of the results ofLi and Wang(2004) to arbitrary type of loadings.
As before mentioned, the cohesive interface densityZ corresponds to the ’specific’ interface surface:
Z = A/S whereA is the total edge length (resp. area) in 2-D (resp. in 3-D) andS is the total area
(resp. volume) of the 2-D (resp. 3-D) meshed body. For any discretization characterized by a mesh size
Lmesh, A is proportional toLq−1

mesh of the mesh andS is proportional toLq
mesh whereq is the considered

dimension; densityZ is thus inversely proportional to the mesh size and can be expressed as:

Z =
γ

Lmesh
, (44)

where the realγ depends on the spatial distribution of the considered mesh.Hence, relations (41),
(42) and (44) allow to define a practical criterion on the ratioCNLmesh/E

M extending semi-empirical
criteria previously proposed in the literature (Espinosa and Zavattieri, 2003; Tomar et al., 2004; Turon
et al., 2007):

CNLmesh

EM ≥ γ
R

1−R

1

3(1 − 2νM)
. (45)

Moreover, the intermediate criteria (41) and (42) together with the apparent reductionsR < 1 andr = 1
allow to ensure accurate estimates of the elastic wave speeds, in fact better than of the apparent compli-
ance. The apparent dilatational and shear wave speeds are given bychom

d =
√

(λhom + 2µhom)/ρhom

andchom
s =

√
µhom/ρhom respectively, whereλhom is the effective Lame’s coefficient andρhom is the

effective density of the cohesive-volumetric medium. Assuming that the finite element discretization
does not affect the densityρhom = ρM (ρM being the density of the matrix phase) and since the criterion
(42) ensures that the reductionr = 1 is reached for the Poisson ratio, the apparent reductions ofthe
elastic wave speeds read:

chom
d

cM
d

=

√
λhom + 2µhom

λM + 2µM =

√
Ehom

EM =
√
R, (46)

chom
s

cM
s

=

√
µhom

µM =

√
Ehom

EM =
√
R. (47)

Thus, tolerating for example a reduction of5% for the Young’s modulus, i.e.R = 0.95, leads to a
reduction lower than3% for the elastic wave speeds (

√
R ≃ 0.97).

The application of the previous criterion (45) to the case of planar meshes is studied hereafter where the
influence of the discretization morphology is illustrated.

5 Application to planar meshes

5.1 Regular meshes

We consider the case of a ’2-D cross-triangle quadrilateral’ meshes: each element square is divided into
four isosceles triangles as shown in Figure3 (a). Note that for such case of mesh geometry, the property
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of the orientational equi-probability of inclusions is notrespected since the mesh is not really isotropic.
The obtained criterion (36) should be thus understood as an estimate and not as a lower bound. The
parameterγ is equal in that case toγ = 2(1 +

√
2) = 4.83 (see AppendixA), this result combined with

the relation (42) and the inequality (45) provides a’2-D practical 5% criteria’ (R = 0.95) for regular
meshes:

CNLmesh

EM ≥ 30

1− 2νM and
CT

CN
= 2

1− 2νM

1 + 3νM (48)

For a bulk material withνM = 0.2, these criteria giveCT = 0.75CN andCN ≥ 50EM/Lmesh, which
corresponds to the numerical criterion proposed byTuron et al.(2007). Conversely, combining (42) and
(45) shows that, for a bulk material withνM = 0.2, the criterion proposed byEspinosa and Zavattieri
(2003), CNLmesh

EM ≥ 10, corresponds to a reductionR = 0.78, which guaranties only that the loss in
apparent Young’s modulus is less than about22%.

5.2 Delaunay meshes

In Delaunay-type discretizations (see Figure3 (b)), the length of an edge has a probability density
function depending on the density of the underlying node-point process (Stoyan et al., 1995; Muche,
1996). The parameterγ is thus a stochastical parameter given by a mean and a variance. For a chosen
mesh generation, a node-point density is obtained and the variance ofZ can be computed. The mean
value ofZ can be estimated using statistical results ofMuche(1996) and introducing a reference edge
length (corresponding to an equivalent equilateral triangle):

Z =
γ

Lmesh
where γ = 2.97 (49)

This result combined with the relation (42) and the inequality (45) provides a’2-D practical 5% criteria’
(R = 0.95) for Delaunay meshes:

CNLmesh

EM ≥ 19

1− 2νM and
CT

CN
= 2

1− 2νM

1 + 3νM (50)

The result obtained by application of the criteria (48) and (50) is plotted in Figure8 where the elastic
energy of a medium containing embedded CZMs is compared to the elastic energy of a medium without
CZMs (standard finite element method). The obtained resultsshow that both regular and Delaunay
meshes induce a global loss of elastic energy that does not exceed5% when the cohesive stiffnesses are
suitably calibrated following (48) and (50). When the densityZ is fixed at the same value, the difference
between the two types of meshes is not significant as shown in Figure8. This result validates the fact that
the overall behaviour obtained with the Hashin-Shtrikman scheme (36) is a convenient estimate even if
the property of isotropic meshes is not respected.

6 Concluding remarks

The overall constitutive behaviour of an elastic medium with embedded cohesive inclusions has been
studied. An equivalent ’matrix-inclusions’ composite is considered as a representation of a cohesive-
volumetric finite element modelling. As result of this micromechanical model, the following points can
be highlighted:

• Rigorous lower bounds on the normal,CN, and the tangential,CT, cohesive stiffness have been
obtained for isotropic planar meshes as well as convenient criteria for regular meshes. The practi-
cal criteria are given as function of bulk material properties(EM, νM) for a given mesh densityZ
(mesh sizeLmesh and mesh morphology parameterγ).
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modeling using a Delaunay mesh (lower dot-dashed curve) or using a Regular mesh (upper dot-dashed
curve).

• Intermediate results of this study show that a cohesive-volumetric approach with a vanishing tan-
gential cohesive stiffness (CT → 0) leads to an overall no shear material.

• The accuracy of these results has been numerically tested for both Delaunay and regular meshes.
The numerical part shows a consistence between numerical results and analytical analysis.
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A Expression of the cohesive density for the case of 2-D regular meshes

We consider a square cell meshed with regular squares divided into four isosceles triangles. We denote
by Nt the number of the triangular elements,Lmesh the length of the larger side of each triangle and
Ltot the total length of the boundaries between the underlying meshes (total length of the cohesive
interfaces). Associating to the cohesive zones a fictitiousthicknesse, the volume fractionf = eZ of
cohesive interfaces reads:

f =
eLtot

eLtot +Nt(L2
mesh/4)

, (51)

hence, the expression of the density parameterZ is asymptotically obtained(e→ 0):

Z =
Ltot

Nt(L2
mesh/4)

. (52)

The total cohesive lengthLtot is linked to the mesh lengthLmesh and the triangles numberNt by the
relationship:

Ltot = 2
(√

2 + 1
) Nt

4
Lmesh +

√
NtLmesh, (53)
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which allows deriving an approximation ofZ for large number of mesh elements(Nt → ∞):

Z =
γ

Lmesh
with γ = 2

(
1 +

√
2
)
. (54)
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