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Effective Use of Frequent Itemset Mining for

Image Classification

Basura Fernando, Elisa Fromont and Tinne Tuytelaars

K.U. Leuven, Univ. Saint Ettiene

Abstract. In this paper we propose a new and effective scheme for ap-
plying frequent itemset mining to image classification tasks. We refer to
the new set of obtained patterns as Frequent Local Histograms or FLHs.
During the construction of the FLHs, we pay special attention to keep
all the local histogram information during the mining process and to se-
lect the most relevant reduced set of FLH patterns for classification. The
careful choice of the visual primitives and some proposed extensions to
exploit other visual cues allow us to build better bag-of-FLH-based image
representations. We show that these bag-of-FLHs are more discrimina-
tive than traditional bag-of-words and yields state-of-the art results on
various image classification benchmarks.

1 Introduction

Even though frequent itemset mining techniques (FIM) and variants thereof are
well-established in the data-mining community [1, 2], they are, to date, not com-
monly used in state-of-the-art image classification methods. This is surprising,
since it has been shown that these mining methods allow the construction of
high-level sets of compound features which can, in many cases, capture more
discriminative information [3]. Nevertheless, most attempts so far applying FIM
to image classification [4–7] were not able to demonstrate competitive results
on standard datasets. In this paper, we propose a new and effective scheme for
applying FIM to image classification task by adapting the generic FIM tools to
the specific context of visual features extracted from images.

In most state-of-the art image classification methods, images are represented
with bag-of-visual-words (BOW), i.e. histograms over vector-quantised local fea-
tures [8]. These can be computed either globally (BOW) or locally in a neigh-
bourhood around an interest point (LBOW, e.g. [6, 7, 9, 10]). In the context of
FIM-based image classification, local bag-of-words are usually preferred, since
they result in sparse representations, a better signal-to-noise ratio and an in-
creased robustness to image clutter. But before FIM can be applied, these bags
(histograms) need to be converted into sets of items known as transactions. Usu-
ally [4, 5, 7, 11, 10], this is done by considering each visual word as an item, ignor-
ing how many times it appears in the bag (only consider the absence/presence
of the visual word) which can lead to a huge loss of information.

Moreover, FIM typically generates a large number of patterns, of which only
a subset is relevant for classification. Relevant pattern discovery is studied in the
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Fig. 1. FLH mining and image representation

data mining community for the case where each transaction is generated from a
different source [3, 12]. However, when using local bag-of-words to create trans-
actions, each source (image) generates multiple transactions and a pattern that
is found only in a relatively small number of images can still be frequent. Ap-
plying standard relevant pattern discovery methods under these circumstances
may not be the best strategy [5–7, 13].

In this paper we also start from the local bag-of-words representation. Our
three major contributions are the following: Firstly, we propose a method for
histogram mining that discovers a novel set of local patterns called Frequent
Local Histograms or FLH s, avoiding the loss of information during the conversion
to transactions. We experimentally show that using less discriminative visual
primitives and including histograms extracted from larger neighbourhoods result
in larger and more discriminative FLH patterns. Secondly, we propose a new
relevant pattern mining method to select discriminative, representative and non-
redundant FLH patterns taking into account the fact that each image generates
multiple transactions. Using this selected set of FLH patterns, we build a new
image representation called bag-of-FLHs and we propose a suitable kernel for
classification. The bag-of-FLHs process is shown in Figure 1. Thirdly, we propose
a couple of variants to our basic scheme, integrating additional visual cues such as
colour or global spatial information. The novel bag-of-FLHs and its variants yield
powerful image representations, leading to state-of-the-art results on various
image classification datasets.

The rest of the paper is organised as follows. First, we review related work
in section 2. Section 3 provides details on the construction of relevant FLHs and
shows how they can be used for image classification. In Section 4 we show how
additional visual cues can be incorporated. Section 5 describes the experimen-
tal validation, demonstrating the power of our method for challenging image
classification problems. Finally, Section 6 concludes the paper.

2 Related work

Frequent pattern mining techniques have been used to tackle a variety of com-
puter vision problems, including image classification [7, 4], action recognition [14,
13], scene understanding [5], object recognition and object-part recognition [6].
Apart from the application, these methods mostly differ in the image represen-
tation used, the way they select relevant or discriminative patterns, and the way
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they convert the original image representation into a transactional description
suitable for FIM techniques.

Image representations In [5], Yao et al. present a structured image representation
called group-lets. To find discriminative group-lets, they mine for frequent class
association rules. Most other methods [6, 7, 10, 14, 15] start from local bag-of-
words as image representations. Spatial configuration mining based on LBOW
was shown by Quack et al. [6], but they did not use these configurations for
classification. More structured patterns such as sequences and graphs capturing
the spatial distribution of visual words have been used by [4], while [11] uses
boosting on top of binary sets of visual words discovered by FIM. Gilbert et
al. [13] have applied itemset mining to action recognition using rather primitive
features like corners, while in [16] high level features such as attributes [17] are
successfully used with mining techniques.

Mining relevant patterns With an appropriate selection criterion, frequent pat-
terns can be more discriminative than individual features (e.g. visual words),
since a pattern is a combination of several primitives and therefore likely to
capture more of the underlying semantics of the data. However, many works
applying FIM in computer vision ignore issues such as redundancy and (lack of)
repeatability across images of the mined patterns. They use simple class-based
association rules [5, 6, 13, 14] or other supervised methods [4, 11]. In [7], Yuan et
al. present a semantically meaningful visual pattern mining algorithm based on
a likelihood ratio test to find relevant patterns in an unsupervised manner. How-
ever, none of these works considers the issue of repetitive structures in images,
causing frequent yet not representative patterns.

Transforming bags to transactions As indicated earlier, most methods simply
use individual visual word as an item in a transaction. Transactions are created
in such a way that if a visual word is present in the histogram, then it is also
present in the transaction (i.e. an itemset). In [15], Sangkyum et al. use a new
representation called Bag-to-set (B2S) to transform a histogram into a trans-
actional form without loosing information. The B2S representation is, to our
knowledge, the only unsupervised effort to explicitly avoid information loss in
the conversion to transactions. However it can generate artificial visual patterns
that do not exist in the image database. Another possibility could be to give each
visual word a weight depending on how many times it appears in the histogram
and apply weighted itemset mining [18]. However, this method only postpones
the loss of information instead of really solving it, as it then simply sums all the
itemset weights together to discover useful patterns.

Spatial configurations without mining Apart from pattern mining techniques,
other methods have been proposed to exploit local spatial information as well.
However, most of them are limited to the use of pairs or triplets of features. Other
approaches have used higher-order statistics (co-occurrence of visual words),
either on a single image [19] or pairs of images [20]. Unlike FIM, they do not
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exploit database-wide statistics. FLH patterns are somewhat similar to the mid-
level features learnt by [21]. However, FLH patterns are loosely coupled to the
local geometry and robust to spatial deformations, occlusions and image clutter.

Also related is the work on hyper-features of Agarwal and Triggs [9]. Like us,
they start from local-bag-of-words but cluster them recursively (in a hierarchical
fashion) to find a new set of spatial features called hyperfeatures. Then they
represent each image as a bag-of-hyperfeatures. While this also captures larger
patterns, it does not have the same flexibility in local geometry as our scheme.

3 FLH-based Image Representation and Classification

After introducing some notations, we explain how we mine frequent local his-
tograms (FLHs) (section 3.1). We then proceed to show how we select the most
relevant set of FLHs for image classification (section 3.2) and present a suitable
kernel for frequent relevant pattern-based image classification (section 3.3).

In the flowing, each image I is described by a set of key points {fi|i = 1 . . . nI}
and a class label c, c ∈ {1 . . . C}. We assume that all the image descriptors have
been clustered to obtain a set of so-called visual words. Then, each key point
fi is given a label wi ∈ W known as the visual word index. |W | is the visual
word dictionary size. In our approach, for each key point fi we compute a local
histogram also called a local bag-of-words (LBOW), xi ∈ N

|W | by counting the
labels of the K nearest neighbours of fi (based on the distance between image
coordinates and also including fi itself as a neighbour). The set of all the local
histograms xi created from all images is denoted by Ω.

3.1 Frequent local histogram mining

Items, Transactions and Frequencies : In order to avoid a loss of information
during the transaction creation process we propose the following new definition
of an item. An item is defined as a pair (w, s), w ∈ W and s ∈ N, with s being
the frequency of the visual word w in the local histogram. Note that 0 < s ≤ K.
We define Γ as the set of all possible items, so |Γ | = K · |W |. We create the set
of transactions X from the set of local histograms Ω. For each x ∈ Ω there is
one transaction x (i.e. a set of items). This transaction x contains all the items
(wj , sj) such that the bin corresponding to wj in x has the nonzero value sj . A
local histogram pattern is an itemset t ⊆ Γ . For any local histogram pattern t,
let X(t) = {x ∈ X|t ⊆ x} be the set of transactions that include the pattern t.
The frequency of t is |X(t)| also known as the support of the pattern t or supp(t).

Frequent Local Histogram : For a given constant T , also known as the minimum
support threshold, a local histogram pattern t is frequent if supp(t) ≥ T . Two
patterns t and t′ are said to be equivalent if X(t) = X(t′). This implies that
supp(t) = supp(t’). Each collection of equivalent patterns forms an equivalent
class. The largest element (i.e. the one with the highest number of items) of an
equivalent class is called a closed pattern. The set of frequent closed patterns
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is a compact representation of the frequent patterns (i.e we can derive all the
frequent patterns from the closed frequent ones). In this work we refer to a
frequent and closed local histogram pattern as a Frequent Local Histogram or
FLH. Υ is the set of all FLHs.

FLH Mining: We can use any existing frequent mining algorithm to find the set
of FLHs Υ . What is specific to our method is that i) the input of our algorithm
is a set of local histograms Ω, and ii) a preprocessing step is performed building
the set of transactions X from the local histograms xi as described above. Items
(wk, sk) in a transaction x ∈ X can then be regarded as standard items in
itemset mining. To directly mine closed frequent histogram patterns we use the
optimised LCM algorithm [2].

Encoding local-bag-of-words using FLH: Given a key point, we compute a LBOW
around it, considering its K nearest neighbours. Given this LBOW x, we convert
it into a transaction x and check for each FLH pattern t ∈ Υ whether t ⊆ x. If
t ⊆ x is true, then x is an instance of the FLH pattern t. The frequency of a
pattern t in a given image Ij (i.e., the number of instances of t in Ij) is denoted
as F (t|Ij).

3.2 Finding the best FLHs for image classification

We want to use the FLH set Υ as a new set of mid-level features to represent an
image. However, we first need to select the most useful FLH patterns from Υ be-
cause i) the number of generated FLH patterns is huge (several millions) and ii)
not all discovered FLH patterns are equally relevant for the image classification
task. Usually, relevant pattern mining selects those patterns that are discrimi-
native and not redundant. On top of that, we introduce a new selection criterion,
representativity, that takes into account that, when using LBOW, a single image
generates multiple transactions. As a result, some patterns may be frequent and
considered discriminative but they may occur in very few images (e.g. due to
repetitive structures). We believe that such features are not representative and
therefore not the best choice for image classification. A good FLH pattern should
be at the same time discriminative, representative and non-redundant. In this
section we discuss how do we select such patterns.

Relevance criterion: We use two criteria for pattern relevance: a discriminativity
score D(t) [3] and a new representativity score O(t). The overall relevance of a
pattern t is denoted S(t) where S(t) = D(t) × O(t). We claim that if a pattern
t has a high relevant score S(t), it is likely to be discriminative and repeatable
across images, hence suitable for classification.

Discriminativity score: To find discriminative patterns, we follow the entropy-
based approach of [3], where a discriminativity score D(t) (0 ≤ D(t) ≤ 1) for
pattern t is defined as :

D(t) = 1 −

∑

c p(c|t) · log p(c|t)

log C
, (1)
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with p(c|t) the probability of class c given the pattern t, computed as follows :

p(c|t) =

∑N

j=1 F (t|Ij) · p(c|Ij)
∑N

i=1 F (t|Ii)
. (2)

Here, Ij is the jth image and N is the total number of images in the dataset.
p(c|I) is 1 if the class label of Ij is c and 0 otherwise. A high value of D(t) implies
that the pattern t occurs only in very few classes. Note that in Eq. 1, the term
log C is used to make sure that 0 ≤ D(t) ≤ 1.

Representativity score: We compare the distribution of the patterns over all
the images with the optimal distribution with respect to a class c. This opti-
mal distribution is such that i) the pattern occurs only in images of class c,
i.e. P (c|t∗) = 1 (giving also a discriminativity score of 1), and ii) the pattern
instances are equally distributed among all the images of class c, i.e. ∀Ij , Ik in
class c, p(Ij |t

∗) = p(Ik|t
∗) = (1/Nc) where Nc is the number of images of class

c. To find patterns with distributions close to the optimal one, we define the
representativity score of a pattern t denoted by O(t). It considers the divergence
between the optimal distribution P (I|t∗c) and P (I|t), and then takes the best
match over all classes:

O(t) = max
c

(exp−[DKL(P (I|t∗c)||P (I|t))]) (3)

where DKL(.||.) is the Kullback-Leibler divergence between two distributions,
P (I|t∗c) is the optimal distribution for the class c and P (I|t) is the distribution
for pattern t. P (I|t) is computed empirically from the frequencies F (t|Ij) of the
pattern t.

Redundant patterns: We propose to remove redundant patterns in order to obtain
a compact representative set of FLHs. We take a similar approach as in [22] to
find affinity between patterns. Two patterns t and s ∈ Υ are redundant if they
follow similar document distributions, i.e if P (I|t) ≈ P (I|s) ≈ P (I|{t, s}) where
P (I|{t, s}) gives the document distribution given both patterns {t, s}. We define
the redundancy R(s, t) between two patterns s, t as follows :

R(s, t) = exp−[p(t) · DKL(P (I|t)||P (I|{t, s})) + p(s) · DKL(P (I|s)||P (I|{t, s}))]
(4)

Note that 0 ≤ R(s, t) ≤ 1 and R(s, t) = R(t, s). For redundant patterns,
DKL(P (I|t)||P (I|t, s)) ≈ DKL(P (I|s)||P (I|t, s)) ≈ 0 which increases the value
of R(s, t).

Finding the most suitable patterns for classification: We are interested in finding
the most suitable pattern subset χ where χ ⊂ Υ for classification. To do this we
define the gain of a pattern t denoted by G(t) s.t. t /∈ χ and t ∈ Υ as follows:

G(t) = S(t) − maxs∈χ{R(s, t) · min(S(t), S(s))} (5)



Effective Use of Frequent Itemset Mining for Image Classification 7

In Eq. 5, a pattern t has a higher gain G(t) if it has a higher relevance S(t)
(i.e. it is discriminative and representative) and if the pattern t is non redundant
with any pattern s in set χ (i.e. R(s,t) is small). To find the best k number of
patterns we use the following process. First we add the most relevant pattern to
the relevant pattern set χ. Then we search for a pattern with the highest gain
(non redundant but relevant) and add this pattern into the set χ until k number
of patterns are added (or until no more relevant patterns can be found).

3.3 Kernel function for effective pattern classification

After computing the k most relevant and non-redundant FLHs, we can represent
each image using a new representation called bag-of-FLHs by counting the oc-
currences of such FLHs in the image. Let L be such a bag-of-FLHs for the image
IL and M be the bag-of-FLHs for the image IM . We propose to use the kernel
function K(L, M) =

∑

i min(
√

L(i),
√

M(i)) to find the similarities between
the bag-of-FLHs of L and M . This kernel provides good classification accura-
cies for frequent pattern-based image representation. It is a standard histogram
intersection kernel but with non-linear weighting. This reduces the importance
of highly frequent patterns and it is necessary since there is a large variabil-
ity in pattern frequencies. Similar power-low normalization methods are used in
improved Fisher-Vector based methods[23].

4 Extending FLH

Exploiting both local and global spatial information using FLH: In order to take
advantage of both global and local spatial information, we extend the FLH min-
ing process. We build on the spatial pyramid idea [24] and apply it in our FLH
mining framework. First we create LBOW for each spatial grid in the spatial
pyramid. Then we discover grid-specific relevant FLHs using the process de-
scribed in Section 3. Then, for each image, we concatenate these grid-specific
bag-of-FLH representations to create a new representation called GRID(FLH).
The GRID(FLH) is a more structured local-global representation with a lot of
flexibility.

Combining multiple cues using FLH: The influence of color and shape is different
for different object classes. We show two ways to fuse multiple cues such as shape
and color using our FLH-based method. One way is to fuse shape-based bag-of-
FLHs (denoted by FLHS) with a color-based bag-of-FLHs (denoted by FLHC)
using a simple average Kernel. We denote this approach “FLHC+FLHS”. In the
second approach, we concatenate a local color histogram with the corresponding
local shape BOW and then mine for frequent local color-shape BOW. After that
we represent an image using a bag-of frequent local color-shape histograms. We
call this approach FLHCS . The advantage of FLHCS is that both color and
shape information are fused spatially in local neighbourhoods. This allows us to
discover useful combinations of local color-shape patterns with a high degree of
flexibility.



8 B. Fernando, E. Fromont and T. Tuytelaars

Fig. 2. FLH patterns using shape information where each red dot represents the central
location and the blue square represents the size of the FLH pattern

Table 1. Datasets

Dataset # Classes # Train. Imgs per class # Test. Imgs per class Evaluation Criterion
GRAZ-01 2 same setup as in [24] as in [24] ROC Equal Error Rate
Oxford-Flower 17 60 20 Classification accuracy
15-Scenes 15 100 Rest of the images Mean class-based accuracy
VOC2007 20 varies varies Mean average precision

5 Experimental Setup and Evaluations

In this section we introduce the datasets used to evaluate our FLH-based
method; we compare our method with the most relevant baselines; and we
present an analysis on parameter selections and design choices. Finally we com-
pare the extensions proposed in Section 4 with the state-of-the-art.

5.1 Datasets and evaluation criteria

We evaluate the new bag-of-FLH (hereafter denoted by just FLH) approach
on several challenging natural image datasets: GRAZ-01 [25], Oxford-Flowers
17 [26], 15-Scenes [24] and the PASCAL-VOC2007 dataset [27]. Details of these
datasets and evaluation criteria are summarised in Table 1.

For all experiments (and all the datasets), we start from SIFT-128 descrip-
tors [28] densely sampled over the image with 16×16 patches and a grid spacing
of 8 pixels. For the Oxford-Flower dataset we experiment not only with SIFT
but also with the ColorName descriptors of [29]. We use the K-means algorithm
to create the visual dictionaries and LIBSVM1 to train an SVM with a constant
cost parameter (C = 1). For our methods, the kernel used is the one presented
in Section 3.

1 http://www.csie.ntu.edu.tw/∼cjlin/libsvm/
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Table 2. Comparison with baseline methods. Classification accuracies for GRAZ-01
and Oxford-Flower for a local neighbourhood size (K=5)

Dict. Baselines Mining Methods
size BOW SPM FIM B2S FLH FLH + BOW

GRAZ-Person 200 79.4 ± 1.1 79.7 ± 1.4 80.5 ± 2.2 81.8 ± 2.1 83.5 ± 1.8 84.0 ± 1.6

GRAZ-Bike 200 76.8 ± 2.5 79.6 ± 2.1 78.0 ± 2.1 78.4 ± 1.9 81.3 ± 2.4 82.5 ± 2.2

Flower-(SIFT) 200 56.4 ± 2.5 57.3 ± 2.3 54.7 ± 2.6 55.3 ± 2.9 59.0 ± 3.4 71.1 ± 2.4

Flower-(CN) 100 59.4 ± 1.7 61.5 ± 1.6 61.5 ± 2.7 62.4 ± 2.4 69.5 ± 2.5 72.9 ± 2.4

5.2 Comparison with baseline methods

We compare our FLH -based method using some default settings with BOW-
based image classification, spatial pyramid matching (SPM) [24], visual word-
based standard frequent itemset mining called FIM (with binarized local bag-of-
words) and the B2S [15] representation. We also report results for the FLH -based
method combined with BOW using an average Kernel (BOW+FLH). For the
other baseline methods, we use an intersection kernel. The baseline results are
shown in Table 2.

FIM is comparable with SPM while B2S (which is a lossless histogram trans-
formation approach) outperforms FIM. The FLH -based method outperforms all
the baseline methods. This result shows the importance of not loosing infor-
mation during the transaction creation time. We believe that our FLH-based
method improves the results over B2S because it does not generate artificial vi-
sual patterns (i.e. patterns not actually present in the data set) while B2S does.
The combination of BOWs and bag-of-FLHs gives better results compared to all
other methods and is an indication of the complementary nature of both repre-
sentations. Especially the increase for the case of SIFT features on the Flowers
dataset is remarkable.

5.3 Parameter selection and optimization

In this set of experiments we analyse the effect of several parameters of our
method: dictionary size, SIFT feature size, and local neighbourhood size. We
use a three-fold cross-validation on training data to optimize our parameters. In
the remaining experiments (sections 5.4 and 5.5), we then use the found optimal
parameters to test our FLH-based methods on the test sets.

Smaller dictionaries: We first evaluate the effect of the dictionary size on our
FLH -based method using the Oxford-Flower dataset. We report results for FLH
and FLH+BOW with different dictionary sizes (Table 3). Note that when com-
bining FLH and BOW we do not reduce the dictionary size for BOW. For the
CN descriptor, results improve when the dictionary size is reduced. For SIFT,
we see the opposite trend. However, in both cases, the results improve with re-
duced dictionaries for FLH+BOW, indicating that with a smaller dictionary for
FLH, the complementarity to BOW increases. Smaller dictionaries reduce the
discriminativity of the visual primitives. However, this does not seem to affect
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Table 3. The effect of dictionary size on FLH-based methods. Classification accuracy
on Oxford-Flowers using cross-validation.

Descriptor Dict. Size FLH FLH + BOW Descriptor Dict. Size FLH FLH + BOW
SIFT 800 64.4 ± 2.9 64.8 ± 2.9 CN 300 69.1 ± 2.4 70.4 ± 2.2
SIFT 200 56.2 ± 2.7 68.9 ± 2.7 CN 100 69.9 ± 2.1 71.1 ± 2.4
SIFT 100 54.7 ± 2.6 70.3 ± 2.8 CN 20 72.0 ± 1.9 76.2 ± 2.3

Table 4. The effect of SIFT feature size on FLH. Classification accuracy on Oxford-
Flowers using cross-validation.

SIFT-D Dict. Size FLH FLH + BOW
128 100 54.7 ± 2.6 70.3 ± 2.8
32 100 72.7 ± 1.8 80.7 ± 1.4

the discriminativity of the FLH patterns, which may even become more robust
and stable. Therefore, smaller dictionaries created using even less discriminative
features might be better suited for FLH. This is tested in the next experiment.

Less discriminative features: We evaluate the effect of less discriminative fea-
tures on FLH using the Oxford-Flower dataset with a small dictionary of 100
words and a local neighbourhood size of 5 (Table 4). For this we use SIFT32
features that are extracted like the standard SIFT (referred to as SIFT128) but
performing spatial binning of (2× 2) instead of (4× 4). Surprisingly, FLH using
the less discriminative SIFT32 features and a smaller dictionary performs as
good as the ColorName descriptor in the previous experiment (72.0% for CN
and 72.7% for SIFT32). When combined with BOW (using SIFT128 and a
800 dimensional vocabulary for the BOW) we obtain a classification accuracy of
80.7%, outperforming the ColorName descriptor.

Larger local neighbourhoods We believe that the use of smaller dictionaries and
less discriminative SIFT features allows the FLH -based method to exploit larger
neighbourhoods. To evaluate this relation, we run some further experiments on
the Oxford-Flower dataset – see Fig. 3. The best results are obtained when
reducing both SIFT feature size and dictionary size while increasing the neigh-
bourhood size of the local spatial histograms. The best classification accuracy we
obtain with SIFT features is 91.0% for a dictionary size of 100 words, SIFT32
features and a neighbourhood size of 25. Note that this is a larger neighbourhood
size than what is typically used in the literature [6, 7, 13].

We can conclude that the FLH -based method obtains its best results when
exploiting larger local patterns with smaller dictionaries and less discriminative
features. From now on, for all FLH -based experiments we propose to use the
SIFT32 descriptor and a neighborhood size of 25 neighbours. For Oxford-Flower
and PASCAL-VOC2007 datasets a SIFT32 dictionary of 100 words is used. For
all other datasets we propose to use a SIFT32 dictionary of 25 words.
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Fig. 3. Effect of neighbourhood size(K), dictionary size (|W |) and SIFT descriptor size
(B) on classification accuracy for the Oxford-Flower using cross-validation.

Table 5. Effect of relevant
pattern mining

Criterion Frq. Rps. Disc. Rel.
GRAZ-01 83.1 90.3 90.9 91.6

Flower 65.6 84.2 90.9 92.5

Table 6. Effect of the choice of the kernel in pattern
classification

K(x, y) = x.yt
√

x.
√

yt
P

i
min(xi, yi)

P

i
min(

√
xi,

√
yi)

15-Scenes 80.4 81.3 85.9 86.2

Flower 89.5 92.0 91.2 92.5

5.4 Effect of relevant pattern mining and of the kernel functions

FLH mining algorithms can generate a large number of FLH patterns (in our
case, 1-20 million). Some of these patterns are not relevant for classification.
Therefore, we select the most relevant-non-redundant ones, as described in Sec-
tion 3.2. Here we evaluate the importance of this pattern selection step by com-
paring different criteria: the most frequent (Frq.), the most representative-non-
redundant(Rps.)(eq. 3), the most discriminative-non-redundant (Disc.)(eq.1) and
the most relevant-non-redundant (Rel.) (i.e. representative, discriminative and
non-redundant) patterns (see Table 5). We always select the top 10.000 patterns
for each criterion which we believe is sufficient to obtain good results. These
results clearly show that only selecting the top-k most frequent patterns (as
usually done) is not a good choice for classification. Both representativity and
discriminativity criteria alone also do not provide the best results. It’s the rele-
vant non-redundant FLH patterns that are the most suitable for classification.
Some of these relevant and non-redundant FLH patterns are shown in Fig. 2.
These selected FLH patterns are semantically meaningful and capture most of
the relevant shape information in an image.

In Table 6, we evaluate the effect of the square root intersection kernel. For
this experiment we use relevant non-redundant FLH patterns on Oxford-Flower
and 15-Scenes. The proposed square-root weighting increases in both the linear
kernel and the non-linear intersection kernel the classification accuracy for both
datasets.

5.5 Comparison to state of the art methods

In this section we compare FLH using the parameters optimised as above with,
to the best of our knowledge, the best results reported in the literature. Here, we
also evaluate the extensions proposed in section 4, integrating shape and color
information, or local and global spatial information.
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Table 7. Equal Error Rate for categorization on GRAZ-01 dataset

State-of-the-art Our results

Class SPCK+ [19] NBNN[30] HF[20] FLH FLH+BOW GRID(FLH)

Person 87.2 87.0 84.0 94.0 ± 1.8 95.0 ± 1.6 95.8 ± 1.8

Bike 91.0 90.0 94.0 89.2 ± 1.6 90.1 ± 1.8 91.4 ± 1.1

AVG. 89.1 88.5 89.0 91.6 92.6 93.8

Table 8. Results on Flower dataset using both color and shape information

Our results Using Shape - SIFT Our results Using Color - ColorName
F LH F LH + BOW GRID(F LH) F LH F LH + BOW GRID(F LH)

92.5 ± 1.6 92.7 ± 1.2 92.9 ± 1.6 72.1 ± 1.9 74.4 ± 2.4 74.8 ± 1.9

State-of-the-art Our results Using Color and Shape
Nilsback [26] CA[31] L1 − BRD[32] F LHC+F LHS F LHCS F LHCS+BOW

88.3 ± 0.3 89.00 89.02 ± 0.60 93.0 ± 2.0 93.4 ± 1.5 94.5 ± 1.5

GRAZ-01: We report equal error rates averaged over 20 runs in Table 7. On aver-
age all FLH -based methods outperform the state-of-the-art. The GRID(FLH)
representation, combining local and global spatial information, yields the best
results.

Oxford-Flower: Classification accuracy averaged over 20 runs is shown in Table 8.
Note that only using shape information (SIFT32 features) we get a classification
accuracy of 92.5%, outperforming the state-of-the-art. Combining color and
shape information further improves these results to 94.5 ± 1.5 (using FLHCS

+ SIFT-128 dictionary of 800 and ColorName dictionary of 300 words). Adding
global spatial information on this dataset only gives an insignificant improvement
of 0.4%.

15-Scenes: Results on the 15 Scenes dataset are shown in table 9. This dataset
is strongly aligned. FLH does not exploit this and therefore by itself cannot
obtain state-of-the-art results. However, the GRID(FLH) method described in
section 4 does take the global spatial information into account and achieves close
to state-of-the-art results (86.2%). This is only outperformed by [16] who report
87.8% using CENTRIST and SIFT features along with LLC coding. However,
our method uses only simple SIFT features. As far as we know the previous
best classification accuracy using SIFT features was reported by Tuytelaars et
al. in [33] combining a NBNN kernel and a SPM method.

Pascal-VOC2007: In this dataset FLH alone reported a mAP of 60.41 and with
combination of BOW of 5000 words we are able obtain state of the art 62.76. Ad-
ditionally, the scores for individual classes often vary a lot between FLH+BOW
and Fisher Vector[23] method, with our method doing especially well on what are
known to be ’hard’ classes: bottle (+34% improvement), dining table (+11%),
potted plant (+16%), tv monitor (+23%). This suggests that both methods are
complementary and combination of both could yield even better results.
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Table 9. Results on 15-Scenes dataset

State-of-the-art Our results

SP M SP CK++[19] NBNN Kernel+SPM[33] (AND/OR)[16] F LH FLH+BOW GRID(FLH)

80.9 82.5 85.0 87.8 70.9 ± 0.44 83.0 ± 0.54 86.2 ± 0.37

Table 10. VOC 2007 Results.

Class

FV[23, 34] 78.97 67.43 51.94 70.92 30.79 72.18 79.94 61.35 55.98 49.61

FLH 67.86 70.64 41.00 54.58 64.87 60.87 85.81 56.55 59.63 40.04

FLH+BOW 69.23 72.95 42.72 56.33 64.91 60.91 86.62 58.90 63.26 41.75

m.AP

58.40 44.77 78.84 70.81 84.96 31.72 51.00 56.41 80.24 57.46 61.69

64.68 47.34 56.60 65.69 80.69 46.27 41.75 54.6 71.01 77.63 60.41

74.28 48.36 61.81 68.38 81.15 48.46 41.81 60.40 72.11 80.80 62.76

6 Conclusion

In this paper we show an effective method for using itemset mining to discover a
new set of mid-level features called Frequent Local Histograms. Extensive exper-
iments have proved that the proposed bag-of-FLH representation, the proposed
relevant pattern mining method and the chosen kernel all improve the classifi-
cation results on various datasets. We have also experimentally shown that the
best results for FLH methods are obtained when exploiting a large local neigh-
bourhood with a small visual vocabulary and less discriminative descriptors.
Finally, we have shown that extending a local approach such as FLH to exploit
other cues such as global spatial information or colour information allows us to
obtain state-of-the-art results in many datasets. As future work we propose to
investigate how to push the relevant and non redundant constraints directly into
the local histograms mining process to make it particularly efficient.
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