Jean-Guillaume Dumas
email: jgdumas@imag.fr

Dominique Duval
email: dduval@imag.fr

Laurent Fousse
email: lfousse@imag.fr

Jean-Claude Reynaud
email: jcreynaud@imag.fr

Adjunctions for exceptions

Keywords: Computational effects, Semantics of exceptions, Adjunction, Categorical fractions, Limit sketches, Diagrammatic logics, Morphisms of logics, Decorated proof system

The exceptions form a computational effect, in the sense that there is an apparent mismatch between the syntax of exceptions and their intended semantics. We solve this apparent contradiction by defining a logic for exceptions with a proof system which is close to their syntax and where their intended semantics can be seen as a model. This requires a robust framework for logics and their morphisms, which is provided by diagrammatic logics.

Introduction

Exceptions form a computational effect, in the sense that a syntactic expression f : X → Y is not always interpreted as a function f : X → Y : for instance a function which raises an exception has to be interpreted as a function f : X → Y + E where E is the set of exceptions. In a computer language usually exceptions differ from errors in the sense that it is possible to recover from an exception while this is impossible for an error; thus, exceptions have to be both raised and handled. Besides, the theory of diagrammatic logics forms a new paradigm for understanding the nature of computational effects; in this paper, diagrammatic logics are applied to the denotational semantics of exceptions.

To our knowledge, the first categorical treatment of computational effects is due to Moggi [START_REF] Moggi | Notions of Computation and Monads[END_REF]; this approach relies on monads, it is implemented in the programming language Haskell [START_REF] Wadler | The essence of functional programming[END_REF][START_REF]The Haskell Programming Language[END_REF]. The examples proposed by Moggi include the states monad T X = (X × S) S where S is the set of states and the exceptions monad T X = X + E where E is the set of exceptions. Later on, using the correspondence between monads and algebraic theories, Plotkin and Power proposed to use Lawvere theories for dealing with the operations and equations related to computational effects, for instance the lookup and update operations for states and the raising and handling operations for exceptions [START_REF] Plotkin | Notions of Computation Determine Monads[END_REF][START_REF] Hyland | The Category Theoretic Understanding of Universal Algebra: Lawvere Theories and Monads[END_REF]. In the framework of Lawvere theories, an operation is called algebraic when it satisfies some relevant genericity properties; the operations lookup and update for states and the operation for raising exceptions are algebraic in this sense, while the operation for handling exceptions is not [START_REF] Plotkin | Algebraic Operations and Generic Effects[END_REF]. This difficulty can be overcome, as for instance in [START_REF] Schröder | Generic Exception Handling and the Java Monad[END_REF][START_REF] Blain | Monads and adjunctions for global exceptions[END_REF][START_REF] Plotkin | Handlers of Algebraic Effects[END_REF]. Nevertheless, from these points of view the handling of exceptions is inherently different from the updating of states.

In this paper we use another method for dealing with computational effects. This method has been applied to a parametrization process in [START_REF] Domínguez | Diagrammatic logic applied to a parameterization process[END_REF][START_REF] Domínguez | A parameterization process: from a functorial point of view[END_REF] and to the states effect in [START_REF] Dumas | Decorated proofs for computational effects: States[END_REF]. It has led to the discovery of a duality between states and exceptions, briefly presented in [START_REF] Dumas | A duality between exceptions and states[END_REF]. Our approach also provides a notion of sequential product, which is an alternative to the strength of a monad for imposing an evaluation order for the arguments of a n-ary function [START_REF] Dumas | Cartesian effect categories are Freydcategories[END_REF]. With this point of view the fact that the handling operation for exceptions is not algebraic, in the sense of Lawvere theories, is not an issue. In fact, the duality between the exceptions effect and the states effect [START_REF] Dumas | A duality between exceptions and states[END_REF] implies that catching an exception is dual to updating a state. It should be noted that we distinguish the private operation of catching an exception from the public operation of handling it (also called "try/catch"), which encapsulates the catching operation.

Our idea is to look at an effect as an apparent mismatch between syntax and semantics: there is one logic which fits with the syntax, another one which fits with the semantics, and a third one which reconciles syntax and semantics. This third logic classifies the language features and their properties according to the way they interact with the effect; we call this kind of classification a decoration. For this conciliation, as the features of the different logics are quite different in nature, we will use morphisms from the decorated logic to each of the two other logics, in a relevant category.

This approach thus requires a robust framework for dealing with logics and morphisms between them. This is provided by the category of diagrammatic logics [START_REF] Duval | Diagrammatic Specifications[END_REF][START_REF] Domínguez | Diagrammatic logic applied to a parameterization process[END_REF]. The main ingredient for defining this category is the notion of categorical fraction, as introduced in [START_REF] Gabriel | Calculus of Fractions and Homotopy Theory[END_REF] for dealing with homotopy theory. Fractions are defined with respect to an adjunction. The syntactic aspect of logics is obtained by assuming that this adjunction is induced by a morphism of limit sketches [START_REF] Ehresmann | Esquisses et types de structures algébriques[END_REF], which implies that the adjunction connects locally presentable categories. For each diagrammatic logic we define models as relevant morphisms, inference rules as fractions and inference steps as composition of fractions. Thus, diagrammatic logics are defined from well-known categorical ingredients; their novelty lies in the importance given to fractions, in the categorical sense, for formalizing logics.

The category of diagrammatic logics is introduced in Section 1. In Section 2 we look at exceptions from an explicit point of view, by introducing a type of exceptions in the return type of operations which may raise exceptions. With this explicit point of view we formalize (by Definition 2.13) the intended semantics of exceptions as provided in the documentation of the computer language Java [START_REF] Gosling | The Java Language Specification, Third Edition[END_REF] and reminded in Appendix A. We also introduce the distinction between the core operations and their encapsulation: typically, between the catching and the handling of exceptions. This explicit point of view is expressed in terms of a diagrammatic logic denoted L expl : the intended semantics of exceptions can be seen as a model with respect to L expl . Then in Section 3 we look at exceptions from a decorated point of view, which fits with the syntax much better than the explicit point of view, since the return type of operations does not mention any type of exceptions. The key point in this logic is that the operations and equations are decorated according to their interaction with exceptions. This decorated point of view corresponds to another diagrammatic logic denoted L deco . We build a morphism of diagrammatic logics from L deco to L expl , called the expansion, from which our main result (Theorem 3.15) follows: the intended semantics of exceptions can also be seen as a model with respect to L deco .

L deco expansion / / model (Section 3) O O O O O L expl model (Section 2) O O O O O semantics (Theorem 3.15) semantics
Then we prove some properties of exceptions using the rules of the decorated logic and the duality between exceptions and states. We conclude in Section 4 with some remarks and guidelines for future work.

The category of diagrammatic logics

This paper relies on the robust algebraic framework provided by the category of diagrammatic logics [START_REF] Domínguez | Diagrammatic logic applied to a parameterization process[END_REF][START_REF] Duval | Diagrammatic Specifications[END_REF].

In Section 1.1 we provide an informal description of diagrammatic logics which should be sufficient for understanding most of Sections 2 and 3. Let us also mention the paper [START_REF] Domínguez | A parameterization process: from a functorial point of view[END_REF] for a detailed presentation of a simple application of diagrammatic logics. Precise definitions of diagrammatic logics and their morphisms are given in Section 1.2; these definitions rely on the categorical notions of fractions and limit sketches.

A diagrammatic logic is a left adjoint functor

In this Section we give an informal description of diagrammatic logics and their morphisms; the formal definitions will be given in Section 1.2. In order to define a diagrammatic logic we have to distinguish its theories, which are closed under deduction, from its specifications, which are presentations of theories. On the one hand, each specification generates a theory, by applying the inference rules of the logic: the specification is a family of axioms and the theory is the family of theorems which can be proved from these axioms, using the inference system of the logic. On the other hand, each theory can be seen as a ("large") specification.

Then, clearly, a morphism of logics has to map specifications to specifications and theories to theories, in some consistent way. The diagrammatic logics we are considering in this paper are variants of the equational logic: their specifications are made of (some kinds of) sorts, operations and equations. Each sort, operation or equation can be seen as a specification, hence every morphism of logics has to map it to a specification. However it is not required that a sort be mapped to a sort, an operation to an operation or an equation to an equation. Thanks to this property, rather subtle relations between logics can be formalized by morphisms of diagrammatic logics. This is the case for the expansion morphism, see Figure 3.

A diagrammatic logic is a left adjoint functor L from a category S of specifications to a category T of theories, with additional properties that will be given in Section 1.2. Each specification generates a theory thanks to this functor L and each theory can be seen as a specification thanks to the right adjoint functor R : T → S. In addition, it is assumed that the canonical morphism ε Θ : LRΘ → Θ is an isomorphism in T, so that each theory Θ can be seen as a presentation of itself. The fact that indeed the functor L describes an inference system is due to additional assumptions on the adjunction L ⊣ R, which are given in the next Section.

Although this point will not be formalized, in order to understand the definition of the models of a specification it may be helpful to consider that one is usually interested in two kinds of theories: the theories LΣ which are generated by a "small" (often finite) specification Σ, and the "large" theories Θ which are provided by set theory, domain theory and other mathematical means, to be used as interpretation domains. However, formally this distinction is useless, and the models of any specification Σ with values in any theory Θ are defined as the morphisms from LΣ to Θ in T. Thanks to the adjunction L ⊣ R, there is an alternative definition which has a more constructive flavour: the models of Σ with values in Θ are the morphisms from Σ to RΘ in S.

The definition of morphisms between diagrammatic logics derives in an obvious way from the definition of diagrammatic logics: a morphism F : L 1 → L 2 is made of two functors F S : S 1 → S 2 and F T : T 1 → T 2 with relevant properties.

In this paper we consider several diagrammatic logics which are variants of the equational logic: the specifications are defined from sorts, operations and equations, and the inference rules are variants of the usual equational rules. Exceptions form a computational effect, in the sense that a syntactic expression f : X → Y may be interpreted as a function f : X → Y + E (where E is the set of exceptions) instead of being interpreted as a function f : X → Y . We will define a logic L deco for dealing with the syntactic expressions and another logic L expl for dealing with exceptions in an explicit way by adding a sort of exceptions (also denoted E). The key feature of this paper is the expansion morphism form the logic L deco to the logic L expl , which maps a syntactic expression f : X → Y to the expression f : X → Y + E in a consistent way.

Diagrammatic logics, categorically

The notion of diagrammatic logic is an algebraic notion which captures some major properties of logics and which provides a simple and powerful notion of morphism between logics. Each diagrammatic logic comes with a notion of models and it has a sound inference system.

A category is locally presentable when it is equivalent to the category Real(E) of set-valued models, or realizations, of a limit sketch E [START_REF] Ehresmann | Esquisses et types de structures algébriques[END_REF][START_REF] Gabriel | Lokal präsentierbar Kategorien[END_REF]. The category Real (E) has colimits and there is a canonical contravariant functor Y from E to Real (E), called the contravariant Yoneda functor associated with E, such that Y(E) generates Real(E) under colimits, in the sense that every object of Real(E) may be written as a colimit over a diagram with objects in Y(E).

Each morphism of limit sketches e : E → E ′ gives rise, by precomposition with e, to a functor G e : Real(E ′) → Real (E), which has a left adjoint F e [START_REF] Ehresmann | Esquisses et types de structures algébriques[END_REF]. Let Y and Y ′ denote the contravariant Yoneda functors associated with E and E ′ , respectively. Then F e extends e, which means that F e • Y = Y ′ • e up to a natural isomorphism. We call such a functor F e a locally presentable functor. Then the three following properties are equivalent: the counit ε : F e • G e ⇒ Id is a natural isomorphism; the right adjoint G e is full and faithful; the left adjoint F e is (up to an equivalence of categories) a localization, i.e., it consists of adding inverses to some morphisms from Real (E), constraining them to become isomorphisms in Real(E ′) [START_REF] Gabriel | Calculus of Fractions and Homotopy Theory[END_REF]. Then it can be assumed that e is also a localization: it consists of adding inverses to some morphisms from E. Definition 1.1. A diagrammatic logic is a locally presentable functor which is a localization, up to an equivalence of categories.

It follows that a diagrammatic logic is a left adjoint functor such that its counit is a natural isomorphism: these properties have been used in Section 1.1. Definition 1.2. Let L : S → T be a diagrammatic logic with right adjoint R.

• The category of L-specifications is S.

• The category of L-theories is T.

• A model of a specification Σ with values in a theory Θ is a morphism from LΣ to Θ in T, or equivalently (thanks to the adjunction) a morphism from Σ to RΘ in S.

The bicategory of fractions associated to L has the same objects as S and a morphism from Σ 1 to Σ 2 in this bicategory is a fraction τ \σ : Σ 1 → Σ 2 , which means that it is a cospan (σ :

Σ 1 → Σ ′ 2 ← Σ 2 : τ) in S such that Lτ is invertible in T.
Then σ is called the numerator and τ the denominator of the fraction τ \σ. It follows that we can define L(τ \σ) = Lτ -1 • Lσ. The composition of consecutive fractions is defined as the composition of cospans, using a pushout in S. Definition 1.3. Let L : S → T be a diagrammatic logic with right adjoint R.

• A rule with hypothesis H and conclusion C is a fraction from C to H with respect to L.

• An instance of a specification Σ 0 in a specification Σ is a fraction from Σ 0 to Σ with respect to L.

• The inference step applying a rule ρ : C → H to an instance ι : H → Σ of H in Σ is the composition of fractions ι • ρ : C → Σ; it yields an instance of C in Σ.

Definition 1.4. Let L : S → T be a diagrammatic logic with right adjoint R.

• Each morphism of limit sketches e : E S → E T which gives rise to the adjunction L ⊣ R and which is a localization is called an inference system for L.

• Then a rule τ \σ is elementary if σ and τ are the images, by the canonical contravariant functor Y, of arrows s and t in E S such that e(t) is invertible in E T ; otherwise the rule τ \σ is derivable.

Remark 1.5. An inference rule is usually written as a fraction H1...H k

C

, it is indeed related to a categorical fraction, as follows (however from the categorical point of view the numerator is on the conclusion side and the denominator on the hypothesis side!). First let us remark that each H i can be seen as a specification, as well as C, and that the common parts in the H i 's and in C are indicated by using the same names. Then let H be the vertex of the colimit of the H i 's, amalgamated according to their common names. The fraction (σ : C → H ′ ← H : τ) is defined as the pushout of H and C over their common names. Then the rule H1...H k C corresponds to the categorical fraction τ \σ : C → H (see Example 1.6). In an inference system e : E S → E T for a logic L, the limit sketch E S describes the syntax and the morphism e provides the inference rules of L. Thus, the description of a diagrammatic logic via one of its inference systems can be done algebraically by defining e or the image of e by the canonical funtor Y (examples can be found in [START_REF] Domínguez | A parameterization process: from a functorial point of view[END_REF]). A diagrammatic logic can also be defined more traditionally by giving a grammar and a family of rules. Moreover, when the logic is simple enough, it may be sufficient in practice to describe its theories.

Example 1.6 (Monadic equational logic). The monadic equational logic L meq can be defined from its theories. A monadic equational theory is a category where the axioms hold only up to some congruence relation. Precisely, a monadic equational theory is a directed graph (its vertices are called types and its edges are called terms) with an identity term id X : X → X for each type X and a composed term g • f : X → Z for each pair of consecutive terms (f : X → Y, g : Y → Z); in addition it is endowed with equations f ≡ g : X → Y that form an equivalence relation on parallel terms which is a congruence with respect to the composition and such that the associativity and identity axioms hold up to congruence. The category of sets forms a L meq -theory Set where types, terms and equations are the sets, functions and equalities. We can look at a rule, for instance the transitivity rule for equations f ≡g g≡h f ≡h , as a categorical fraction τ \σ : C → H, as follows.

C H ′ H X f)) h 5 5 Y f ≡h σ / / X f)) g / / h 5 5 Y f ≡g, g≡h, f ≡h τ o o X f)) g / / h 5 5 Y f ≡g, g≡h
Remark 1.7. Diagrammatic logics generalize E-doctrines, in the sense of [START_REF] Wells | Sketches: Outline with references[END_REF]. Let E be a type of sketch, determined by what sorts of cones and cocones are allowed in the sketch. Then E determines a type of category, required to have all (co)limits of the sorts of (co)cones allowed by E, and it determines a type of functor, required to preserve that sorts of (co)limits. Following [START_REF] Wells | Sketches: Outline with references[END_REF], the E-doctrine is made of these sketches, categories and functors. Each E-doctrine corresponds to a diagrammatic logic L E : S E → T E , where S E is the category of E-sketches (with the morphisms of E-sketches), T E is the category of E-categories and E-functors, and L E is the left adjoint functor which maps each E-sketch to its theory. For instance the E-doctrine made of finite products sketches, cartesian categories and functors preserving finite products corresponds to the equational logic.

An important feature of diagrammatic logics is their simple and powerful notion of morphism, which is a variation of the notion of morphism in an arrow category. Definition 1.8. Given diagrammatic logics L : S → T and L ′ : S ′ → T ′ , a morphism of diagrammatic logics F : L → L ′ is made of two locally presentable functors F S : S → S ′ and F T : T → T ′ such that the square of left adjoints (L, L ′ , F S , F T) is induced by a commutative square of limit sketches. It follows that the right adjoints form a commutative square and that the left adjoints form a square which is commutative up to a natural isomorphim. This means that a morphism from L to L ′ maps (in a coherent way) each specification of L to a specification of L ′ and each proof of L to a proof of L ′ . Moreover, it is sufficient to check that each elementary specification (i.e., each specification in the image of the functor Y) of L is mapped to a specification of L ′ and that each elementary proof (i.e., each inference rule) of L is mapped to a proof of L ′ . The next result is the key point for proving Theorem 3.15; its proof is a straightforward application of the properties of adjunctions.

Proposition 1.9. Let F = (F S , F T) : L → L ′ be a morphism of diagrammatic logics and let G T be the right adjoint of F T . Let Σ be a L-specification and Θ ′ a L ′ -theory. Then there is a bijection, natural in Σ and Θ ′ :

Mod L (Σ, G T Θ ′) ∼ = Mod L ′ (F S Σ, Θ ′) .

Denotational semantics of exceptions

In this Section we define a denotational semantics of exceptions which relies on the semantics of exceptions in Java. Syntax is introduced in Section 2.1 as a signature Sig exc . The fundamental distinction between ordinary and exceptional values is discussed in Section 2.2. Sections 2.3 and 2.4 are devoted to the definitions of a logic with an explicit type of exceptions and a specification Σ expl for exceptions with respect to this logic. Then in Section 2.5 the denotational semantics of exceptions is defined as a model of this specification. This is extended to higher-order constructions in Section 2.6.

We often use the same notations for a feature in a signature and for its interpretation. So, the syntax of exceptions corresponds to the signature Sig exc , while the semantics of exceptions is defined as a model of a specification Σ expl . But the signature underlying Σ expl is different form Sig exc : this mismatch is due to the fact that the exceptions form a computational effect. The whole paper can be seen as a way to reconcile both points of view. This can be visualized by Figure 1, with the signature for exceptions Sig exc on one side and the specification Σ expl with its model M expl on the other side; the aim of Section 3 will be to fill the gap between Sig exc and Σ expl by introducing new features in the middle, see Figure 2.

syntax semantics Sig exc ? ←→ ? Σ expl M expl Θ expl

Signature for exceptions

The syntax for exceptions in computer languages depends on the language: the keywords for raising exceptions may be either raise or throw, and for handling exceptions they may be either handle, try-with or try-catch, for instance. In this paper we rather use throw and try-catch. More precisely, the syntax of our language may be described in two parts: a pure part and an exceptional part.

The pure part is a signature Sig pure . The interpretation of the pure operations should neither raise nor handle exceptions. For simplicity we assume that the pure operations are either constants or unary; general n-ary operations will be mentioned in Section 4.

The signature Sig exc for exceptions is made of Sig pure together with the types and operations for raising and handling exceptions. In order to deal with several types of exceptions which can be parameterized, we introduce a set of indices I and for each index i ∈ I we choose a pure type P i called the type of parameters for the exceptions of index i. The new operations in Sig exc are the operations for raising and handling operations, as follows.

Definition 2.1. Let Sig pure be a signature. Given a set of indices I and a type P i of Sig pure for each i ∈ I, the signature for exceptions Sig exc is made of Sig pure together with, for each i ∈ I: a raising (or throwing) operation for each type Y in Sig pure : throw Y,i :

P i → Y ,
and a handling (or try-catch) operation for each Sig exc -term f : X → Y , each non-empty list of indices (i 1 , . . . , i n) in I and each family of Sig exc -terms g 1 :

P i1 → Y , . . . , g n : P in → Y : try{f } catch {i 1 ⇒ g 1 | . . . |i n ⇒ g n } : X → Y .
Remark 2.2. The precise meaning of these operations is defined in Section 2.5. Roughly speaking, relying for instance on Java see appendix A, raising an exception signals an error, which may be "catched" by an exception handler, so that the evaluation may go on along another path. For raising an exception, throw Y,i turns some parameter of type P i into an exception of index i, in such a way that this exception is considered as being of type Y . For handling an exception, the evaluation of try{f } catch {i ⇒ g} begins with the evaluation of f ; if the result is not an exception then it is returned; if the result is an exception of index i then this exception is catched, which means that its parameter is recovered and g is applied to this parameter; otherwise the exception is returned, which usually produces an error message like "uncaught exception. . . ".

The evaluation of try{f } catch {i 1 ⇒ g 1 | . . . |i n ⇒ g n } for any n > 1 is similar; it is checked whether the exception returned by f has index i 1 or i 2 . . . or i n in this order, so that whenever i j = i k with j < k the clause i k ⇒ g i k is never executed.

Ordinary values and exceptional values

In order to express the denotational semantics of exceptions, a major point is the distinction between two kinds of values: the ordinary (or non-exceptional) values and the exceptions. It follows that the operations may be classified according to the way they may, or may not, interchange these two kinds of values: an ordinary value may be tagged for constructing an exception, and later on the tag may be cleared in order to recover the value; then we say that the exception gets untagged. Let us introduce a set E called the set of exceptions. For each set X we consider the disjoint union X + E. The denotational semantics of exceptions relies on the following facts. Each type X in Sig exc is interpreted as a set X. Each term f : X → Y is interpreted as a function f : X → Y + E, and whenever f is pure this function has its image in Y . The fact that a term f : X → Y is not always interpreted as a function f : X → Y implies that the exceptions form a computational effect.

Definition 2.3. For each set X, an element of X + E is an ordinary value if it is in X and an exceptional value if it is in E. A function f : X → Y + E or f : X + E → Y + E raises an exception if there is some x ∈ X such that f (x) ∈ E and f recovers from an exception if there is some e ∈ E such that f (e) ∈ Y . A function f : X + E → Y + E propagates exceptions if f (e) = e
for every e ∈ E.

Remark 2.4. Clearly, a function f : X + E → Y + E which propagates exceptions may raise an exception but cannot recover from an exception. Such a function f is characterized by its restriction f | X : X → Y + E.

In addition, every function f 0 : X → Y can be extended in a unique way as a function f :

X + E → Y + E which propagates exceptions; then f | X is the composition of f 0 with the inclusion of Y in Y + E.
Remark 2.5. An important feature of a language with exceptions is that the interpretation of every term is a function which propagates exceptions; this function may raise exceptions but it cannot recover from an exception. Indeed, the catch block in a try-catch expression may recover from exceptions which are raised inside the try block, but if an exception is raised before the try-catch expression is evaluated, this exception is propagated. Thus, the untagging functions that will be introduced in Section 2.3 in order to recover from exceptions are not the interpretation of any term of the signature Sig exc . In fact, this is also the case for the tagging functions that will be used for raising exceptions. These tagging and untagging functions are called the core functions for exceptions; they are private in the sense that they do not appear in Sig exc , but they are used for defining the public operations for raising and handling exceptions which are part of Sig exc .

Explicit logic for exceptions

Let us define a logic with a type of exceptions by describing its theories.

Definition 2.6. A theory of the explicit logic for exceptions L expl is a monadic equational theory (as in Example 1.6) with a distinguished type E called the type of exceptions and with a cocone (normal X : X → X + E ← E : abrupt X) for each type X, which satisfies the coproduct universal property up to congruence: for every cocone (f :

X → Y ← E : k) there is a term [f |k] : X + E → Y , unique up to equations, such that [f |k] • normal X ≡ f and [f |k] • abrupt X ≡ k.
Definition 2.7. Let E denote a set, then Set E,expl denotes the L expl -theory where types, terms and equations are the sets, functions and equalities, where E is the set of exceptions and where for each set X the cocone (X → X + E ← E) is the disjoint union.

Remark 2.8. In addition, it can be assumed that there is an initial type 0 (up to congruence) in each explicit theory, hence a unique term [] X : 0 → X for each type X such that the cocone (id X : X → X ← 0 : [] X) is a coproduct up to congruence.

Explicit specification for exceptions

In order to express the meaning of the raising and handling operations we introduce new operations (called the core operations) and equations in such a way that the functions for raising and handling exceptions are now defined in terms of the core operations.

Definition 2.9. Let Sig pure be a signature. Given a set of indices I and a type P i in Sig pure for each i ∈ I, the explicit specification for exceptions Σ expl is the L expl -specification made of Sig pure together with for each i ∈ I: an operation t i : P i → E called the exception constructor or the tagging operation of index i and an operation c i : E → P i + E called the exception recovery or the untagging function of index i, together with the equations c i • t i ≡ normal Pi and c i • t j ≡ abrupt Pi • t j for all j = i. Then for each i ∈ I the raising and handling functions are respectively defined using these two core operations as follows: the raising function throw Y,i for each type Y in Sig pure is:

throw Y,i = abrupt Y • t i : P i → Y + E
and the handling function:

try{f } catch {i 1 ⇒ g 1 | . . . |i n ⇒ g n } : X → Y + E
for each term f : X → Y + E, each non-empty list of indices (i 1 , . . . , i n) and each terms g j : P ij → Y + E for j = 1, . . . , n is defined in two steps:

(try) the function try{f } k : X → Y + E is defined for any function k : E → Y + E by: try{f } k = normal Y | k • f (catch) the function catch {i 1 ⇒ g 1 | . . . |i n ⇒ g n } : E → Y + E is obtained by setting p = 1 in the family of functions k p = catch {i p ⇒ g p | . . . |i n ⇒ g n } : E → Y + E (for p = 1, . . . , n + 1
) which are defined recursively by:

k p = abrupt Y when p = n + 1 g p | k p+1 • c ip when p ≤ n
Remark 2.10. When n = 1 we get simply:

try{f } catch {i ⇒ g} = normal Y | g|abrupt Y • c i • f
which can be illustrated as follows, with try{f } k on the left and k = catch {i ⇒ g} on the right:

Y normal normal + + W X f / / Y + E [normal |k] / / = = Y + E E abrupt O O k 3 3 g P i normal g + + V E ci / / P i + E [g|abrupt] / / = = Y + E E abrupt O O abrupt 3 3 h Remark 2.11. About the handling function try{f } catch {i 1 ⇒ g 1 | . . . |i n ⇒ g n },
it should be noted that each g i may itself raise exceptions and that the indices i 1 , . . . , i n form a list: they are given in this order and they need not be pairwise distinct. It is assumed that this list is non-empty because it is the usual choice in programming languages, however it would be easy to drop this assumption.

The intended semantics of exceptions

As usual, a Sig-algebra M , for any signature Sig, is made of a set M (X) for each type X in Sig and a function

M (f) : M (X 1) × • • • × M (X n) → M (Y)
for each operation f : X 1 , . . . , X n → Y . As in Definition 2.9, let Sig pure be a signature and let Σ expl be the explicit specification for exceptions associated to a family of pure types (P i) i∈I . Definition 2.12. Given a Sig pure -algebra M pure , the model of exceptions M expl of Σ expl extending M pure has its values in Set E,expl ; it coincides with M pure on Sig pure , it interprets the type E as the disjoint union E = i∈I P i and the tagging operations t i : P i → E as the inclusions.

It follows that the interpretation of the tagging operation maps a non-exceptional value a ∈ P i to an exception t i (a) ∈ E (for clarity we keep the notation t i (a) instead of a). Then, because of the equations, the interpretation of the untagging operation c i : E → P i must proceed as follows: it checks whether its argument e is in the image of t i , if this is the case then it returns the parameter a ∈ P i such that e = t i (a), otherwise it propagates the exception e. It is easy to check that the next Definition corresponds to the description of the mechanism of exceptions in Java: see remark 2.2 and Appendix A. Definition 2.13. Given a signature Sig pure and a Sig pure -algebra M pure , the intended semantics of exceptions is the model M expl of the specification Σ expl extending M pure .

Remark 2.14. Let Sig exc be the signature for exceptions as in Definition 2.1. It follows from Definition 2.13 that the intended semantics of exceptions cannot be seen as a Sig exc -algebra. Indeed, although there is no type of exceptions in Sig exc , the operation throw Y,i : P i → Y in Sig exc has to be interpreted as a function throw Y,i : P i → Y + E, where the set of exceptions E is usually non-empty.

About higher-order constructions

Definition 2.13 can easily be extended to a functional language. In order to add higher-order features to our explicit logic, let us introduce a functional type Z W for each types W and Z. Then each ϕ : W → Z + E gives rise to λx.ϕ : 1 → (Z + E) W , which does not raise exceptions. It follows that try{λx.ϕ} catch {i 1 ⇒ g 1 | . . . |i n ⇒ g n } ≡ λx.ϕ, which is the intended meaning of exceptions in functional languages like ML [START_REF] Milner | The Definition of Standard ML, Revised Edition[END_REF].

Exceptions as a computational effect

According to Definition 2.13, the intended semantics of exceptions can be defined in the explicit logic as a model M expl of the explicit specification Σ expl . However, by introducing a type of exceptions, the explicit logic does not take into account the fact that the exceptions form a computational effect: the model M expl cannot be seen as an algebra of the signature Sig exc for exceptions (Definition 2.1) since (denoting X for M expl (X) for each type X) the operation throw Y,i : P i → Y is interpreted as a function from P i to Y + E instead of from P i to Y : this is a fundamental remark of Moggi in [START_REF] Moggi | Notions of Computation and Monads[END_REF].

In this Section we build another logic L deco , called the decorated logic for exceptions, and a decorated specification Σ deco for exceptions which reconciles the syntax and the semantics: Σ deco fits with the syntax since it has no type of exceptions, and it provides the intended semantics because this semantics can be seen as a model M deco of Σ deco . In the decorated logic the terms and the equations are classified, or decorated, and their interpretation depends on their decoration.

The decorated logic is defined in Section 3.1. In Section 3.2 we define the decorated specification Σ deco and the model M deco of Σ deco and we prove that M deco provides the intended semantics of exceptions. Besides, we show in Section 3.4 that it is easy to relate the decorated specification Σ deco to the signature for exceptions Sig exc ; for this purpose we introduce a logic L app , called the apparent logic, which is quite close to the monadic equational logic. This is illustrated by Figure 2, which extends Figure 1 by filling the gap between syntax and semantics. This is obtained by adding two morphisms of logic, F d : L deco → L app on the syntax side and F e : L deco → L expl on the semantics side. The rules of the decorated logic are used for proving some properties of exceptions in Section 3.5. The decorated logic is extended to higher-order features in Section 3.6.

syntax syntax k s semantics k s + 3 semantics L app L deco F d o o Fe / / L expl Sig exc ⊆ Σ app Σ deco F d o o Fe / / M deco Σ expl M expl Θ deco Θ expl Ge o o

Decorated logic for exceptions

Here we define the decorated logic for exceptions L deco , by giving its syntax and its inference rules, and we define a morphism from L deco to L expl for expliciting the meaning of the decorations. The syntax of L deco consists in types, terms and equations, like L meq in Example 1.6, but with three kinds of terms and two kinds of equations. The terms are decorated by (0), (1) and (2) used as superscripts, they are called respectively pure terms, propagators and catchers. The equations are denoted by two distinct relational symbols, ≡ for strong equations and ∼ for weak equations. The expansion functor is the locally presentable functor F e,S : S deco → S expl defined in Figure 3 by mapping each elementary decorated specification (type, decorated term, decorated equation) to an explicit specification. Note: in the explicit specifications the type of exceptions E may be duplicated for readability, and the superscript (d) stands for any decoration. Thus, the expansion provides a meaning for the decorations:

(0) a pure term may neither raise exceptions nor recover form exceptions, (1) a propagator may raise exceptions but is not allowed to recover from exceptions,

(2) a catcher may raise exceptions and recover form exceptions.

(≡) a strong equation is an equality of functions both on ordinay values and on exceptions (∼) a weak equation is an equality of functions only on ordinay values, maybe not on exceptions. Remark 3.1. It happens that the image of a decorated term by the expansion morphism can be characterized by a term, so that we can say "for short" that the expansion of a catcher f (2) : X → Y "is" f : X +E → Y +E, the expansion of a propagator f (1)

: X → Y "is" f 1 : X → Y + E where f 1 = f • normal X ,
and the expansion of a pure term f (0) : X → Y "is" f 0 : X → Y . In a similar way, we say that the expansion of a type Z "is" Z. This is stated in the last column of Figure 3. However this may lead to some misunderstanding. Indeed, while the image of a specification by the expansion morphism must be a specification, the image of a type does not have to be a type and the image of a term does not have to be a term.

The rules of L deco are given in Figure 4. The decoration properties are often grouped with other properties: for instance, "f (1) ∼ g (1) " means "f (1) and g (1) and f ∼ g"; in addition, the decoration (2) is usually dropped, since the rules assert that every term can be seen as a catcher. According to Definition 1.8, the expansion morphism maps each inference rule of L expl to a proof in L expl ; this provides the meaning of the decorated rules:

(a) The first part of the decorated monadic equational rules for exceptions are the rules for the monadic equational logic; this means that the catchers satisfy the monadic equational rules with respect to the strong equations.

Σ deco F e,S Σ deco F e,S Σ deco "for short" type

Z Z normal Z + E E abrupt O O Z catcher X f (2) / / Y X Y X + E f / / Y + E E O O E O O X + E f / / Y + E propagator X f (1) / / Y X Y X + E f / / Y + E E O O id / / ≡ E O O X f1=f • normal / / Y + E pure term X f (0) / / Y X f0 / / ≡ Y X + E f / / Y + E E O O id / / ≡ E O O X f0 / / Y strong equation f (d) ≡ g (d) : X → Y f ≡ g : X + E → Y + E f ≡ g weak equation f (d) ∼ g (d) : X → Y f • normal X ≡ g • normal X : X → Y + E f 1 ≡ g 1
X are the initial type 0 and the term [] X , respectively, as in remark 2.8.

(e) The pure coproduct (id X : X → X + 0 ← 0 : [] X) has decorated coproduct properties which are given by the rules for the case distinction with respect to X + 0. The expansion of [g|k] (2) : X → Y is the case distinction [g 1 |k] : X + E → Y + E with respect to X + E (where 0 + E is identified with E, so that k : E → Y + E). This can be illustrated as follows, by a diagram in the decorated logic (on the (a) Monadic equational rules for exceptions (first part)

f : X → Y g : Y → Z g • f : X → Z X id X : X → X f : X → Y g : Y → Z h : Z → W h • (g • f) ≡ (h • g) • f f : X → Y f • id X ≡ f f : X → Y id Y • f ≡ f f f ≡ f f ≡ g g ≡ f f ≡ g g ≡ h f ≡ h f : X → Y g 1 ≡ g 2 : Y → Z g 1 • f ≡ g 2 • f : X → Z f 1 ≡ f 2 : X → Y g : Y → Z g • f 1 ≡ g • f 2 : X → Z (b)
Monadic equational rules for exceptions (second part)

f (0) f (1) f (1) f (2) X id (0) X f (0) g (0) (g • f) (0) f (1) g (1) (g • f) (1)
f (1) ∼ g (1) f ≡ g

f ≡ g f ∼ g f f ∼ f f ∼ g g ∼ f f ∼ g g ∼ h f ∼ h f (0) : X → Y g 1 ∼ g 2 : Y → Z g 1 • f ∼ g 2 • f f 1 ∼ f 2 : X → Y g : Y → Z g • f 1 ∼ g • f 2 (c) Rules for the propagation of exceptions k (2) : X → Y k (1) : X → Y k (2) : X → Y k ∼ k (d) Rules for a decorated initial type 0 X [] X : 0 → X X [] (0) X f : 0 → Y f ∼ [] Y
(e) Rules for case distinction with respect to X + 0 g (1) :

X → Y k (2) : 0 → Y [g | k] (2) : X → Y g (1) : X → Y k (2) : 0 → Y [g | k] ∼ g g (1) : X → Y k (2) : 0 → Y [g | k] • [] X ≡ k g (1) : X → Y k (2) : 0 → Y f (2) : X → Y f ∼ g f • [] X ≡ k f ≡ [g | k]
(f) Rules for a constitutive coproduct (q

(1) i : X i → X) i (f (1) i
:

X i → Y) i [f i] (2) i : X → Y (f (1) i
: g (1) +

X i → Y) i [f j] j • q i ∼ f i (f (1) i : X i → Y) i f (2) : X → Y ∀i f • q i ∼ f i f ≡ [f j] j
+ W X [g|k] (2) / / ∼ ≡ Y 0 [] (0) O O k (2) 3 3 g X normal g1 + + W X + E [g1|k] / / ≡ ≡ Y + E E abrupt O O k 3 3 g (1)
(f) The rules for a constitutive coproduct build a catcher from a family of propagators. Whenever (q

(1) i : X i → X) i is a constitutive coproduct the family (q i,1 : X i → X + E) i is a coproduct with respect to the explicit logic. Remark 3.2. Let us give some additional information on the expansion of the decorated rules (e) in Figure 4, i.e., the decorated rules for case distinction with respect to X +0. According to the definition of the expansion morphism on specifications (Figure 3) since the cocone (id

(0) X : X → X + 0 ← 0 : [] (0)
X) is made of pure terms, we can say "for short" that its expansion "is" simply (id X,0 : X → X + 0 ← 0 : [] X,0). However in order to check that the decorated rules (e) in Figure 4 are mapped by the expansion morphism to explicit proofs we have to take into account another coproduct in the explicit logic. Rules (e) state that for each propagator g (1) : X → Y and each catcher k (2) : 0 → Y there is a catcher h (2) : X → Y (h is denoted [g|k] in Figure 4) such that h ∼ g and h • [] X ≡ k, and that in addition h is, up to strong equivalence, the unique catcher satisfying these conditions. Thus, according to Figure 3, the expansion of these rules must be such that for each terms g 1 :

X → Y + E and k : E → Y + E there is a term h : X + E → Y + E such that h • normal X ≡ g • normal X and h • abrupt X ≡ k,
and that in addition h is, up to equivalence, the unique term satisfying these conditions. Clearly, this is satisfied when h = [g 1 |h] is obtained by case distinction with respect to the coproduct (normal X : X → X + E ← E : abrupt X). It follows that we can also say, "for short", that the image of the coproduct (id X : X → X + 0 ← 0 : [] X) by the expansion morphism "is" the coproduct (normal X : X → X + E ← E : abrupt X), as in diagram [START_REF] Domínguez | Diagrammatic logic applied to a parameterization process[END_REF].

The decorated rules are now used for proving a lemma that will be used in Section 3.2. Lemma 3.3. For each propagator g (1) :

X → Y we have g • [] X ≡ [] Y and g ≡ [g | [] Y].
Proof. In these proofs the labels refer to the kind of rules which are used: either (a), (b), (d) or (e). First, let us prove that g

• [] X ≡ [] Y : X (d) [] X : 0 → X g : X → Y (a) g • [] X : 0 → Y (d) g • [] X ∼ [] Y g (1)
X (d) [] (0) X (b) [] (1)
X (b) (g • [] X) (1) Y (d) [] (0) Y (b) [] (1)
Y (b) g • [] X ≡ [] Y
This first result is the unique non-obvious part in the proof of g ≡

[g | [] Y]: g (1) : X → Y Y (d) [] (0)
Y : 0 → Y (b) [] (1)
Y : 0 → Y (b) [] (2)
Y : 0 → Y g (1) :

X → Y (b) g (2) : X → Y g (b) g ∼ g . . . g • [] X ≡ [] Y (e) g ≡ g | [] Y
Remark 3.4. The morphism of limit sketches e : E S → E T which induces the decorated logic is easily guessed. This is outlined below, more details are given in a similar exercice in [START_REF] Domínguez | A parameterization process: from a functorial point of view[END_REF]. The description of E S can be read from the second column of Figure 3. There is in the limit sketch E S a point for each elementary decorated specification and an arrow for each morphism between the elementary specifications, in a contravariant way. For instance E S has points type and catcher, and it has arrows source and target from catcher to type, corresponding to the morphisms from the decorated specification Z to the decorated specification f (2) : X → Y which map Z respectively to X and Y . As usual, some additional points, arrows and distinguished cones are required in E S . The description of e can be read from Figure 4. The morphism e adds inverses to arrows in E S corresponding to the inference rules, in a way similar to Example 1.6 but in a contravariant way.

Remark 3.5. In the short note [START_REF] Dumas | A duality between exceptions and states[END_REF] it is checked that, from a denotational point of view, the functions for tagging and untagging exceptions are respectively dual, in the categorical sense, to the functions for looking up and updating states. This duality relies on the fact that the states are observed thanks to the lookup operations while dually the exceptions are constructed thanks to the tagging operations. Thus, the duality between states and exceptions stems from the duality between the comonad X × S (for some fixed S) and the monad X + E (for some fixed E). It happens that this duality also holds from the decorated point of view.

Most of the decorated rules for exceptions are dual to the decorated rules for states in [START_REF] Dumas | Decorated proofs for computational effects: States[END_REF]. For instance, the unique difference between the monadic equational rules for exceptions (parts (a) and (b) of Figure 4) and the dual rules for states in [START_REF] Dumas | Decorated proofs for computational effects: States[END_REF] lies in the congruence rules for the weak equations: for states the replacement rule is restricted to pure g, while for exceptions it is the substitution rule which is restricted to pure f . The rules for a decorated initial type and for a constitutive coproduct (parts (d) and (f) of Figure 4) are respectively dual to the rules for a decorated final type and the rules for an observational product in [START_REF] Dumas | Decorated proofs for computational effects: States[END_REF]. The rules for the propagation of exceptions and for the case distinction with respect to X + 0 (parts (c) and (e) of Figure 4) are used only for the construction of the handling operations from the untagging operations; these rules have no dual in [START_REF] Dumas | Decorated proofs for computational effects: States[END_REF] for states. Remark 3.6. For a while, let us forget about the three last families of rules in Figure 4, which involve some kind of decorated coproduct. Then any monad T on any category C provides a decorated theory C T , as follows. The types are the objects of C, a pure term f (0) : X → Y is a morphism f : X → Y in C, a propagator f (1) : X → Y is a morphism f : X → T Y in C, a catcher f (2) : X → Y is a morphism f : T X → T Y in C. The conversion from pure to propagator uses the unit of T and the conversion from propagator to catcher uses the multiplication of T . Composition of propagators is done in the Kleisli way. A strong equation f (2) ≡ g (2) : X → Y is an equality f = g : T X → T Y in C and a weak equation f (2) ∼ g (2) : X → Y is an equality f • η X = g • η X : X → T Y in C, where η is the unit of the monad. It is easy to check that the decorated monadic equational rules of L deco are satisfied, as well as the rules for the propagation of exceptions if k = k • η X : X → T Y for each k : T X → T Y .

Decorated specification for exceptions

Let us define a decorated specification Σ deco for exceptions, which (like Σ expl in Section 2.4) defines the raising and handling operations in terms of the core tagging and untagging operations. Definition 3.7. Let Sig pure be a signature. Given a set of indices I and a type P i in Sig pure for each i ∈ I, the decorated specification for exceptions Σ deco is the L deco -specification made of Sig pure with its operations decorated as pure together with, for each i ∈ I, a propagator t (1) i : P i → 0 and a catcher c

(2) i : 0 → P i with the weak equations c i • t i ∼ id : P i → P i and c i • t j ∼ [] • t j : P j → P i for all j = i. Then for each i ∈ I the raising propagator (throw Y,i) (1) : P i → Y for each type Y in Sig pure is:

throw Y,i = [] Y • t i
and the handling propagator (try{f } catch {i 1 ⇒ g 1 | . . . |i n ⇒ g n }) (1) : X → Y for each propagator f (1) : X → Y , each non-empty list of indices (i 1 , . . . , i n) and each propagators g (1) j : P ij → Y for j = 1, . . . , n is defined as:

try{f } catch {i 1 ⇒ g 1 | . . . |i n ⇒ g n } = TRY {f } catch {i 1 ⇒ g 1 | . . . |i n ⇒ g n } from a catcher TRY {f } catch {i 1 ⇒ g 1 | . . . |i n ⇒ g n } : X → Y
which is defined as follows in two steps:

(try) the catcher TRY {f } k : X → Y is defined for any catcher k : 0 → Y by:

(TRY {f } k) (2) = id (0) Y | k (2) (2)
• f (1) (catch) the catcher catch {i 1 ⇒ g 1 | . . . |i n ⇒ g n } : 0 → Y is obtained by setting p = 1 in the family of catchers k p = catch {i p ⇒ g p | . . . |i n ⇒ g n } : 0 → Y (for p = 1, . . . , n + 1) which are defined recursively by:

k (2) p =    [] (0) Y when p = n + 1 g (1) p | k (2) p+1 (2)
• c

(2) ip

when p ≤ n Remark 3.8. Let h = try{f } catch {i 1 ⇒ g 1 | . . . |i n ⇒ g n } and H = TRY {f } catch {i 1 ⇒ g 1 | . . . |i n ⇒ g n }.
Then

try{f } catch {i ⇒ g} ≡ id Y | g • c i • f (2) try{f } catch {i ⇒ g | j ⇒ h} ≡ id | [g | h • c j] • c i • f (3)
When n = 1 this can be illustrated as follows, with TRY {f } k on the left and k = catch {i ⇒ g} on the right:

Y id (0) id (0) + + W X f (1) / / Y [id |k] (2) / / ∼ ≡ Y 0 [] (0) O O k (2)
3 3 g

P i id (0)
g (1) + +

V E c (2) i / / P i [g|[]] (2) / / ∼ ≡ Y 0 [] (0) O O [] pure 3 3 h
Lemma 3.10. Let Sig pure be a signature, I a set and P i a type in Sig pure for each i ∈ I. Let Σ expl be the corresponding explicit specification for exceptions (Definition 2.9) and Σ deco the corresponding decorated specification for exceptions (Definition 3.7). Then Σ expl = F e Σ deco .

Proof. This is easy to check: in Definition 2.9 Σ expl is described as a colimit of elementary specifications, and F e , as any left adjoint functor, preserves colimits.

Proposition 3.11. The functor F e,S : S deco → S expl defined in Figure 3 is locally presentable and it determines a morphism of logics F e : L deco → L expl .

Proof. The fact that F e,S is locally presentable is deduced from its definition in Figure 3. It has been checked that F e,S maps each decorated inference rule to an explicit proof, thus it can be extended as F e,T : T deco → T expl in such a way that the pair F e = (F e,S , F e,T) is a morphism of logics.

Definition 3.12. The morphism F e : L deco → L expl is called the expansion morphism.

The decorated model provides the intented semantics of exceptions

Following Definition 2.13, the intended semantics of exceptions is a model with respect to the explicit logic. Theorem 3.15 will prove that the intended semantics of exceptions can also be expressed as a model with respect to the decorated logic.

Definition 3.13. For any set E, called the set of exceptions, we define a decorated theory Set E,deco as follows. A type is a set, a pure term f

(0) : X → Y is a function f : X → Y , a propapagator f (1) : X → Y is a function f : X → Y + E, and a catcher f (2) : X → Y is a function f : X + E → Y + E. It follows that in Set E,deco every pure term f : X → Y gives rise to a propagator normal Y • f : X → Y + E and that every propagator f : X → Y + E gives rise to a catcher [f |abrupt Y] : X + E → Y + E.
By default, f stands for f (2) . The equations are defined when both members are catchers, the other cases follow thanks to the conversions above. A strong equation f ≡ g : X → Y is the equality of functions f = g : Our main result is the next theorem, which states that the decorated point of view provides exactly the semantics of exceptions defined as a model of the explicit specification for exceptions in Definition 2.13. Thus the decorated point of view is an alternative to the explicit point of view, as it provides the intended semantics, but it is also closer to the syntax since the type of exceptions is no longer explicit.

X + E → Y + E and a weak equation f ∼ g : X → Y is the equality of functions f • normal X = g • normal X : X → Y + E.
To prove this, the key point is the existence of the expansion morphism from the decorated to the explicit logic. Within the category of diagrammatic logics, the proof is simple: it uses the fact that the expansion morphism, like every morphism in this category, is a left adjoint functor. Proof. According to Definition 2.13, the intended semantics of exceptions is the model M expl of Σ expl with values in Set E,expl in the explicit logic. In addition, M deco is a model of Σ deco with values in Set E,deco in the decorated logic. Furthermore, we know from Lemmas 3.10 and 3.14 that Σ expl = F e Σ deco and Set E,deco = G e Set E,expl , where G e is right adjoint to F e . Thus, it follows from proposition 1.9 that there is a bijection between Mod L expl (Σ expl , Set E,expl) and Mod L deco (Σ deco , Set E,deco). Finally, it is easy to check that M deco corresponds to M expl in this bijection.

The decorated syntax provides the syntax of exceptions

The signature Sig exc from Definition 2.1 can easily be recovered from the decorated specification Σ deco by dropping the decorations and forgetting the equations. More formally, this can be stated as follows. Let us introduce a third logic L app , called the apparent logic, by dropping all the decorations from the decorated logic; thus, the apparent logic is essentially the monadic equational logic with an empty type. The fact of dropping the decorations is a morphism of logics F d : L deco → L app . Therefore, we can form the apparent specification Σ app = F d Σ deco which contains the signature for exceptions Sig exc . Note that, as already mentioned in Remark 2.14, the intended semantics of exceptions cannot be seen as a set-valued model of Σ app .

Some decorated proofs for exceptions

According to Theorem 3.15, the intended semantics of exceptions can be expressed as a model in the decorated logic. Now we show that the decorated logic can also be used for proving properties of exceptions in a concise way. Indeed, as for proofs on states in [START_REF] Dumas | Decorated proofs for computational effects: States[END_REF], we may consider two kinds of proofs on exceptions: the explicit Proof. According to Equation (3

): try{f } catch {i ⇒ g | j ⇒ h} ≡ ([id | [g | h • c j] • c i] • f). Thus, the result will follow from [g | h • c j] • c i ≡ [h | g • c i] • c j . It is easy to check that [g | h • c j] ≡ [g | h] • (id Pi + c j), so that [g | h • c j] • c i ≡ [g | h] • (id Pi + c j) • c i . Similarly [h | g • c i] • c j ≡ [h | g] • (id Pj + c i) • c j hence [h | g • c i] • c j ≡ [g | h] • (c i + id Pj) • c j .
Then the result follows from Lemma 3.18.

About higher-order constructions

We know from Section 2.6 that we can add higher-order features in our explicit logic. This remark holds for the decorated logic as well. Let us introduce a functional type Z W (d) for each types W and Z and each decoration (d) for terms. The expansion of Z W (0) is Z W , the expansion of Z W (1) is (Z + E) W and the expansion of Z W (2) is (Z + E) (W +E) . Then each ϕ (d) : W → Z gives rise to λx.ϕ : 1 → Z W (d) , and a major point is that λx.ϕ is pure for every decoration (d) of ϕ. Informally, we can say that the abstraction moves the decoration from the term to the type. This means that the expansion of (λx.ϕ) (0) is λx.ϕ : 1 → F e (Z W (d)), as required: for instance when ϕ (1) is a propagator the expansion of (λx.ϕ) (0) is λx.ϕ : 1 → (Z + E) W , as in Section 2.6. Besides, it is easy to prove in the decorated logic that whenever f is pure we get try{f } catch {i 1 ⇒ g 1 | . . . |i n ⇒ g n } ≡ f . It follows that this occurs when f is a lambda abstraction: try{λx.ϕ} catch {i 1 ⇒ g 1 | . . . |i n ⇒ g n } ≡ λx.ϕ, as expected in functional languages.

Conclusion and future work

We have presented three logics for dealing with exceptions: the apparent logic L app (Section 3.4) for dealing with the syntax, the explicit logic L expl (Section 2.3) for providing the semantics of exceptions as a model in a transparent way, and the decorated logic L deco (Section 3.1) for reconciling syntax and semantics. These logics are related by morphisms of logics F d : L deco → L app and F e : L deco → L expl . A similar approach can be used for other exceptions [START_REF] Domínguez | Diagrammatic logic applied to a parameterization process[END_REF][START_REF] Dumas | Decorated proofs for computational effects: States[END_REF].

Future work include the following topics.

• Dealing with n-ary operations involving exceptions. We can add a cartesian structure to our decorated logic thanks to the notion of sequential product from [START_REF] Dumas | Cartesian effect categories are Freydcategories[END_REF]. This notion is based on the semi-pure products, which are dual to the semi-pure coproducts used in Section 3.5.

• Adding higher-order features. This has been outlined in Sections 2.6 and 3.6, however a more precise comparison with [START_REF] Riecke | Typed Exceptions and Continuations Cannot Macro-Express Each Other[END_REF] remains to be done.

• Deriving a decorated operational semantics for exceptions by directing the weak and strong equations.

• Using a proof assistant for decorated proofs. Thanks to the morphism F d : L deco → L app , checking a decorated proof can be split in two parts: first checking the undecorated proof in the apparent logic, second checking that the decorations can be added. This separation simplifies the definition of the formalization towards a proof assistant: first formalize the syntactic rules of the language, second add computational effects.

• Combining computational effects. Since an effect is based on a span of logics, the combination of effects might be based on the composition of spans.

Figure 1 :

 1 Figure 1: Syntax and semantics of exceptions

Figure 2 :

 2 Figure 2: Syntax and semantics of exceptions, reconciled

Figure 3 :

 3 Figure 3: The expansion morphism

Figure 4 :

 4 Figure 4: Decorated rules for exceptions

Lemma 3 . 14 .

 314 Let G e,T be the right adjoint to F e,T . Then Set E,deco = G e,T Set E,expl . Proof. The morphism of limit sketches ϕ e , corresponding to the locally presentable functor F e,T , is deduced from Figure3. By definition of G e,T we have G e,T Set E,expl = Set E,expl • ϕ e . The lemma follows by checking that the definition of Set E,deco (Definition 3.13) is precisely the description of Set E,expl • ϕ e .

Theorem 3 . 15 .

 315 The model M deco of the specification Σ deco with values in the theory Set E,deco in the decorated logic provides the intended semantics of exceptions.

 h is a propagator and H is a catcher, and the definition of h is given in terms of H, as h = H. The expansions of h and H are functions from X + E to Y + E which coincide on X but differ on E: while h propagates exceptions, H catches exceptions according to the pattern catch {i 1 ⇒ g 1 | . . . |i n ⇒ g n }.Remark 3.9. Since k n+1 = [] Y , by Lemma 3.3 we have [g n |k n+1] ≡ g n . It follows that when n = 1 and 2 we get respectively:

Acknowledgment. We are indebted to Olivier Laurent for pointing out the extension of our approach to functional languages.

This work is partly funded by the HPAC project of the French Agence Nationale de la Recherche (ANR 11 BS02 013). † This work is partly funded by the CLIMT project of the French Agence Nationale de la Recherche (ANR 11 BS02 016).

proofs involve a type of exceptions, while the decorated proofs do not mention any type of exceptions but require the specification to be decorated, in the sense of Section 3. In addition, the expansion morphism, from the decorated logic to the explicit logic, maps each decorated proof to an explicit one. In this Section we give some decorated proofs for exceptions, using the inference rules of Section 3.1.

We know from [START_REF] Dumas | A duality between exceptions and states[END_REF] that the properties of the core tagging and untagging operations for exceptions are dual to the properties of the lookup and update operations for states. Thus, we may reuse the decorated proofs involving states from [START_REF] Dumas | Decorated proofs for computational effects: States[END_REF]. Starting from any one of the seven equations for states in [START_REF] Plotkin | Notions of Computation Determine Monads[END_REF] we can dualize this equation and derive a property about raising and handling exceptions. This is done here for the annihilation catch-raise and for the commutation catch-catch properties.

On states, the annihilation lookup-update property means that updating any location with the content of this location does not modify the state. A decorated proof of this property is given in [START_REF] Dumas | Decorated proofs for computational effects: States[END_REF]. By duality we get the following annihilation untag-tag property (Lemma 3.16), which means that tagging just after untagging, both with respect to the same index, returns the given exception. Then this result is used in Proposition 3.17 for proving the annihilation catch-raise property: catching an exception and re-raising it is like doing nothing. Lemma 3.16 (Annihilation untag-tag). For each i ∈ I:

Proposition 3.17 (Annihilation catch-raise). For each propagator f (1) : X → Y and each i ∈ I:

Proof. By Equation (2) and Definition 3.

and the unicity property of [id

Finally, the transitivity of ≡ yields the proposition.

On states, the commutation update-update property means that updating two different locations can be done in any order. By duality we get the following commutation untag-untag property, (Lemma 3.18) which means that untagging with respect to two distinct exceptional types can be done in any order. A detailed decorated proof of the commutation update-update property is given in [START_REF] Dumas | Decorated proofs for computational effects: States[END_REF]. The statement of this property and its proof use semi-pure products, which were introduced in [START_REF] Dumas | Cartesian effect categories are Freydcategories[END_REF] in order to provide a decorated alternative to the strength of a monad. Dually, for the commutation untag-untag property we use semi-pure coproducts, thus generalizing the rules for the coproduct X + 0.

The coproduct of two types A and B is defined as a type A+B with two pure coprojections q (0)

1 : A → A+B and q (0) 2 : B → A + B, which satisfy the usual categorical coproduct property with respect to the pure morphisms. Then the semi-pure coproduct of a propagator f (1) : A → C and a catcher k (2)

(2) : A + B → C which is characterized, up to strong equations, by the following decorated version of the coproduct property:

Whenever f and g are propagators it can be proved that [f |g] ≡ [f |g]; thus, up to strong equations, we can assume that in this case

Lemma 3.18 (Commutation untag-untag). For each i, j ∈ I with i = j:

(2) i : 0 → P i + P j Proposition 3.19 (Commutation catch-catch). For each i, j ∈ I with i = j:

A Handling exceptions in Java

Definition 2.13 relies on the following description of the handling of exceptions in Java [START_REF] Gosling | The Java Language Specification, Third Edition[END_REF]Ch. 14].

A try statement without a finally block is executed by first executing the try block. Then there is a choice:

1. If execution of the try block completes normally, then no further action is taken and the try statement completes normally.

2. If execution of the try block completes abruptly because of a throw of a value V , then there is a choice:

(a) If the run-time type of V is assignable to the parameter of any catch clause of the try statement, then the first (leftmost) such catch clause is selected. The value V is assigned to the parameter of the selected catch clause, and the block of that catch clause is executed. i. If that block completes normally, then the try statement completes normally; ii. if that block completes abruptly for any reason, then the try statement completes abruptly for the same reason. (b) If the run-time type of V is not assignable to the parameter of any catch clause of the try statement, then the try statement completes abruptly because of a throw of the value V .

3. If execution of the try block completes abruptly for any other reason, then the try statement completes abruptly for the same reason.

In fact, points 2(a)i and 2(a)ii can be merged. Our treatment of exceptions is similar to the one in Java when execution of the try block completes normally (point 1) or completes abruptly because of a throw of an exception of constructor i ∈ I (point 2): indeed, in our framework there is no other reason for the execution of a try block to complete abruptly (point 3). Thus, the description can be simplified as follows.

A try statement without a finally block is executed by first executing the try block. Then there is a choice:

1. If execution of the try block completes normally, then no further action is taken and the try statement completes normally.

2. If execution of the try block completes abruptly because of a throw of a value V , then there is a choice:

(a) If the run-time type of V is assignable to the parameter of any catch clause of the try statement, then the first (leftmost) such catch clause is selected. The value V is assigned to the parameter of the selected catch clause, the block of that catch clause is executed, and the try statement completes in the same way as this block. (b) If the run-time type of V is not assignable to the parameter of any catch clause of the try statement, then the try statement completes abruptly because of a throw of the value V .

This simplified description corresponds to the definition of try{f } catch {i 1 ⇒ g 1 | . . . |i n ⇒ g n } in Definition 2.9, with points 1 and 2 corresponding respectively to (try) and (catch).