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ASYMPTOTIC STUDY OF SUBCRITICAL GRAPH CLASSES

MICHAEL DRMOTA∗, ÉRIC FUSY†, MIHYUN KANG‡, VERONIKA KRAUS∗

AND JUANJO RUÉ†

Abstract. We present a unified general method for the asymptotic study of
graphs from the so-called “subcritical” graph classes, which include the classes
of cacti graphs, outerplanar graphs, and series-parallel graphs. This general

method works both in the labelled and unlabelled framework. The main results
concern the asymptotic enumeration and the limit laws of properties of random
graphs chosen from subcritical classes. We show that the number gn/n! (resp.

gn) of labelled (resp. unlabelled) graphs on n vertices from a subcritical graph
class G = ∪nGn satisfies asymptotically the universal behaviour

gn = c n−5/2 γn (1 + o(1))

for computable constants c, γ, e.g. γ ≈ 9.38527 for unlabelled series-parallel

graphs, and that the number of vertices of degree k (k fixed) in a graph chosen
uniformly at random from Gn, converges (after rescaling) to a normal law as
n → ∞.

1. Introduction

Several enumeration problems on classes of labelled planar structures, e.g. la-
belled planar graphs, were solved recently [5, 6, 20]. These results were successfully
used for efficient random generators for labelled planar graphs [17], based on Boltz-
mann samplers [14]. In contrast, less is known about enumerative results on classes
of unlabelled planar structures: the only classes treated so far are forests [25] and
more recently outerplanar graphs [4].

In this paper we present a general framework to enumerate in a unified way a
wide variety of labelled and unlabelled classes of graphs. Our main contribution is
a universal method for rich classes of unlabelled graphs, the so-called “subcritical”
classes of graphs, which is established through the novel singularity analysis of
counting series and yields asymptotic estimates and limit laws for various graph
parameters. In order to make this method more accessible and transparent, we
include a brief analysis of the corresponding labelled classes, which was already
carried out in [21].

Another main contribution is asymptotic estimates and limit laws for various
graph parameters of unlabelled series-parallel graphs. We study the class of unla-
belled series-parallel graphs, firstly as an important subclass of planar graphs whose
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asymptotic study has not been carried out so far and therefore it is interesting in
its own right, and secondly as a concrete prototype-example to illustrate how our
general method is applied. A graph is series-parallel (SP-graphs for conciseness)
if its 2-connected components are obtained from a single edge by recursive sub-
division of edges (series operation) and duplication of edges (parallel operation).
Equivalently, SP-graphs can be defined in terms of minors as graphs which exclude
K4 as a minor. Finally, a graph is series-parallel if and only if its tree-width is at
most 2. Applying our general method, we show that the number gn of unlabelled
SP-graphs on n vertices is asymptotically of the form

gn = c n−5/2 ρ−n (1 + o(1)),

where ρ ≈ 0.10655. Let Gn be a graph chosen uniformly at random among all
unlabelled SP-graphs on n vertices. The random variable Xn counting the number
of edges (blocks, or cut-vertices) in Gn features a central limit law

Xn − EXn√
VarXn

→ N(0, 1),

where EXn = µn+O(1) and VarXn = σ2n+O(1) for computable constants µ and
σ2. In addition, the random variable Xk

n counting the number of vertices of degree
k (for k fixed) in Gn satisfies a central limit law with mean EXk

n = µkn + O(1)
and variance VarXk

n = σ2
kn+O(1) where µk and σ2

k are computable constants. We
also present a simple and general condition assuring σ2 > 0, which holds in a wide
variety of graph families.

Furthermore we show that the same subexponential term n−5/2 appears in other
classes of graphs (in both labelled and unlabelled cases), which is, roughly speaking,
inherited from a tree-like nature. This behaviour appears as a consequence of a
subcritical composition scheme which appears in the specification of the counting
series associated to connected graphs of the class. Such classes of graphs arising
from subcritical composition scheme are called subcritical classes of graphs, whose
formal definition is rather technical and therefore will be suspended to Sections 4
and 5.

We consider block-stable classes of graphs: we say a class G of graphs block-stable
if and only if for each graph G ∈ G, each of its 2-connected components (also called
blocks) belongs to G. The class of cacti graphs, the class of outerplanar graphs,
the class of SP-graphs, and other classes of graphs defined in terms of a class of 2-
connected components are block-stable. Additionally, we consider classes of graphs
which are defined by a finite set of 3-connected graphs. Observe that SP-graphs can
be seen as graphs without 3-connected components. We show that the classes of
cacti graphs, outerplanar graphs, and SP-graphs, are subcritical and prove that the
asymptotic estimates and limit laws for graph parameters of subcritical classes of
graphs follow the same asymptotic pattern and limit laws as the class of SP-graphs.

The asymptotic study of subcritical classes of graphs consists of two steps: formal
and analytic steps. The formal step consists in translating Tutte’s seminal ideas on
decomposing graphs into components of higher connectivity [7, 30, 31] in terms of
the decomposition grammar, which is comparable to the ones introduced in [8] (see
also [19]). This decomposition grammar translates combinatorial conditions into
functional equations satisfied by the counting series of various classes of graphs.
These counting series depend on the connectivity degree and the way how the
graphs are rooted. In the analytic step, we extract singular expansions of the
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counting series from the systems of functional equations. The main ingredient in
this step is from [10], in which precise singular expansions are deduced for very
general systems of functional equations. Finally, we derive asymptotic formulas
from these singular expansions by extracting coefficients, based on the transfer
theorems of singularity analysis [15, 16].

We also study natural parameters on a uniform random graph on n vertices cho-
sen from a subcritical class, such as the number of edges, the number of blocks and
the number of cut-vertices. These parameters satisfy normal limit laws, which come
from the additivity behaviour of these parameters. We compute their expectation
and variance, which characterise completely their limit distribution. These param-
eters were studied in [21] for various labelled classes of graphs. In this paper we
rediscover these results for labelled case and obtain new results for unlabelled case.
Finally, applying the general techniques for systems of functional equations we de-
duce the limit law for the degree distribution of a graph chosen uniformly at random
among all the graphs on n vertices, by analysing in a unified way both labelled and
unlabelled subcritical classes. The present work complement the work [3, 12, 13]
for related problems on labelled graphs. Other non-additive parameters, such as
the size of the largest block are not treated here. This parameter was studied in the
labelled framework in [21] and [26]. In the latter, the theory of Boltzmann samplers
is applied.

Outline of the paper. The paper is organised as follows. In Section 2 we
introduce the notation and the terminology used in this paper. All the analytic
machinery needed in order to deal with systems of functional equations, extraction
of coefficients and limit laws is introduced in Section 3. In this section, we adapt
the results from [10] to our context and recall the transfer theorems of singularity
analysis from [16] and other key results necessary to derive limit laws for graph
parameters. We also introduce a novel result which assures the positivity of the
variance under certain easy conditions. In Section 4 we obtain general results for
the enumeration of labelled subcritical graph classes. These results are generalised
to unlabelled subcritical graph classes in Section 5. These enumerative results we
obtain are consequences of the general framework presented in Section 3. Concrete
examples are studied in Section 6. This section includes the analysis of unlabelled
cacti graphs, unlabelled outerplanar graphs, and unlabelled SP-graphs. We also
obtain general enumerative results for classes of graphs defined by a finite set of
3-connected graphs. Limit laws are studied in Section 7. All parameters studied
in this section give rise to normal distributed random variables, independently of
the class (in either labelled or unlabelled setting). The degree distribution, a tech-
nically more involved and interesting parameter, is studied in Section 8. Finally,
the constant growth for unlabelled SP-graphs is computed in Section 9, using a
numerical method.

2. Graph classes, block-decomposition, and counting

2.1. Combinatorial classes and counting series. As described in [2, 16], a
labelled combinatorial class is a set G = ∪n≥0 Gn of objects such that Gn is finite for
n ≥ 0. Each object g in Gn has n labelled “atoms”(e.g., vertices of a graph) carrying
distinct labels in {1, . . . , n} and n is called the size of g. Two objects of G (of the
same size n) are called isomorphic if one is defined from the other by relabelling.
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It is always assumed that a combinatorial class is stable under relabelling, e.g.,
for a graph class G we assume that a graph g is in G if and only if all graphs
isomorphic to g are also in G. This way the symmetric group Sn acts on Gn: for
σ ∈ Sn and g ∈ Gn, σ · g has the same vertex and edge set as g, but each label
i in g is replaced by σ−1(i) in σ · g and we write σ · g ≡ g. The set of objects of

Gn considered up to isomorphism is denoted by G̃n (in other words G̃n = Gn/Sn),

and the combinatorial class G̃ := ∪n G̃n is called the unlabelled combinatorial class
associated with G. For counting purpose one classically considers the exponential
generating function (shortly the EGF) in the labelled setting:

G(z) :=
∑

n≥0

1

n!
|Gn|zn,

and the ordinary generating function (OGF) in the unlabelled setting:

G̃(z) :=
∑

n≥0
|G̃n|zn.

For unlabelled enumeration, it proves convenient to consider a refinement of the
OGF, called the cycle-index sum, a series in infinitely many variables s1, s2, . . .
defined as

ZG(s1, s2, . . .) :=
∑

n≥0

1

n!

∑

(σ,g)∈Sn×Gn
σ·g=g

wσ,

where wσ := sc11 sc22 · · · scnn is the weight-monomial of a permutation σ of cycle type
1c12c2 · · ·ncn (that is, ci cycles of length i for i = 1, . . . , n). The OGF is recovered
from a specialisation of the cycle index sum [22] by replacing si by zi for each i ≥ 1:

G̃(z) = ZG(z, z
2, z3, . . .).

We will consider classes of graphs of various types depending on whether one marks
vertices or not. All graphs are assumed to be simple (no loops nor multiple edges)
and are labelled at vertices. A (vertex-)rooted graph is a graph with a distinguished
(labelled) vertex. A derived graph or pointed graph is a graph where one vertex
is distinguished but not labelled (the other n − 1 vertices have distinct labels in
{1, . . . , n−1}). Isomorphisms between two pointed graphs (or between two derived
graphs) have to respect the distinguished vertex.

Given a graph class G, the rooted class G• is the class of rooted graphs from G,
and the derived class G′ is the class of derived graphs from G; since |G′n−1| = n|Gn|
and |G•n| = n|Gn|, we have respectively G′(z) = d

dzG(z) and G•(z) = zG′(z).

2.2. Block-decomposition of a graph. For k ≥ 0, a graph is k-connected if one
needs to delete at least k vertices to disconnect it. Obviously, a graph G is a set
of its connected components. For the decomposition from connected graphs into
2-connected graphs we use the block structure of a connected graph. A block of a
graph G is a maximal 2-connected induced subgraph of G. We say a vertex of G
is incident to a block B of G if it belongs to B. The block structure of G yields a
bipartite tree with the vertex set consisting of two types of nodes, i.e. cut-vertices
and blocks of G, and the edge set describing the incidences between the cut-vertices
and blocks of G. This suggests a natural decomposition of connected graphs into
2-connected graphs and this holds also for rooted graphs. The root-vertex v of a
rooted graph G is incident to a set of blocks and to each non-root vertex on these
blocks is attached a rooted connected graph. In other words, a rooted connected
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graph rooted at ! v is uniquely obtained as follows: take a set of derived 2-connected
graphs and merge them at their pointed (distinguished but not labelled) vertices so
that v is incident to these derived 2-connected graphs, then replace each non-root
vertex w in these blocks by a rooted connected graph rooted at w (which is allowed
to consist of a single vertex and in this case it has no effect).

Through the entire paper, given a class of graphs G, we denote by C (resp. B) the
subfamily of connected (resp. 2-connected) graphs in G. In the language of symbolic
combinatorics from [2, 16], the block-decomposition described above translates into
the fundamental equations:

(1) G = Set(C),

(2) C• = Z · Set(B′ ◦ C•),
where the factor Z in the last equation takes account of the root vertex (which
is distinguished and labelled), the symbol · denotes the partitional product on
combinatorial classes, and the symbol ◦ denotes substitution at an atom (see [2]
for definitions). As shown in Table 1, there is a well-known dictionary [2, 16], both
in the labelled and in the unlabelled setting, that translates equations relating
combinatorial classes into equations relating the associated counting series.

Construction Class Labelled setting Unlabelled setting

Sum C = A+ B C(z) = A(z) + B(z) C̃(z) = Ã(z) + B̃(z)
Product C = A · B C(z) = A(z) · B(z) C̃(z) = Ã(z) · B̃(z)

Set C = Set(B) C(z) = exp(B(z)) C̃(z) = exp
(∑

i≥1
1
i B̃(zi)

)

Substitution C = A ◦ B C(z) = A(B(z)) C̃(z) = ZA(B̃(z), B̃(z2), . . .)
Table 1. The dictionary that translates combinatorial construc-
tions into operations on counting series.

A graph class G is called block-stable if it contains the link-graph ℓ, which is a
graph with one edge together with its two (labelled) end vertices, and satisfies the
property that a graph G belongs to G if and only if all the blocks of G belong to G.
Block-stable classes include classes of graph specified by a finite list of forbidden
minors that are all 2-connected, for instance, planar graphs (Forbid(K5,K3,3)),
series-parallel graphs (Forbid(K4)), and outerplanar graphs (Forbid(K4,K3,2)). For
a block-stable graph class, (1) and (2) translates into equations of EGFs in the
labelled setting:

G(z) = exp(C(z)),

C•(z) = z exp(B′(C•(z))),
and into equations of OGFs in the unlabelled setting:

G̃(z) = exp
(∑

i≥1

1
i C̃(zi)

)
,

C̃•(z) = z exp
(∑

i≥1

1
iZB′(C̃•(zi), C̃•(z2i), C̃•(z3i), . . .)

)
.
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A refined version of the last equation will turn out to be useful later, which expresses
(2) in terms of the cycle index sum:

(3) ZC•(s1, s2, . . .) = s1 exp
(∑

i≥1

1
iZB′(ZC•(si, s2i, . . .), ZC•(s2i, s4i, . . .), . . .)

)
.

With these systems of equations of EGFs, OGFs and the cycle index sum,
we will perform singularity analysis under certain general conditions – so-called
“subcriticallity” conditions – in order to get asymptotic results (asymptotic enu-
meration and limit laws for graph parameters). The tools for singularity analysis
are described in the next section.

3. Tools for the asymptotic analysis

The purpose of this section is to collect several facts on solutions of functional
equations. Most of the following properties (and proofs) can be found in [11, 16],
which serve as general references for this subject. For our purposes we, however,
need to adjust several points with additional properties.

3.1. Singular expansions of multivariate series. We consider a power series
of the form y = y(z, v1, . . . , vk) in general with nonnegative coefficients, where z is
singled out as the primary variable and v1, . . . , vk are secondary variables (possibly
there is none). From now on we use the abbreviation v for (v1, . . . , vk). A valuation
v0 of v is called admissible if all components of v0 are positive and if y(z,v0) is a
valid power series in z, i.e., [zn]y(z,v0) <∞ for each n ≥ 0.

Consider a fixed positive valuation (z0,v0) of (z,v). Then y is said to have a
square-root expansion around (z0,v0) if v0 is an admissible valuation, z0 is the
radius of convergence of y(z,v0), and the expansion

y(z,v) = a(z,v)− b(z,v)
√

1− z/ρ(v)

holds in a neighbourhood of (z0,v0) (except in the part where 1 − z/ρ(v) ∈ R
−),

where the functions a(z,v) and b(z,v) are analytic at (z0,v0), b(z0,v0) > 0, ρ(v)
is analytic at v0, and ρ(v0) = z0. The function ρ(v) in the expansion is called the
singularity function of y relative to z.

Moreover, we will be particularly interested in functions y(z,v) with such a
singular behaviour, where ρ(v) is the only singularity on the circle |z| = |ρ(v)| (if v
varies in a suitable neighbourhood of v0) and y(z,v) can be analytically continued
to the region {z ∈ C : |z| < |ρ(v)| + ǫ, 1 − z/ρ(v) 6∈ R

−} (for some ǫ > 0 that
is uniform in this neighbourhood of v0). In this case one can use an asymptotic
transfer principle by Flajolet and Odlyzko [15] (see also Section 3.3) to obtain
asymptotics for the coefficient [zn] y(z,v) of the form

[zn] y(z,v) =
b(ρ(v),v)

2
√
π

n−3/2 ρ(v)−n
(
1 +O

(
n−1

))
.

Similarly, y is said to have a singular expansion of order 3/2 at (z0,v0) if the
expansion is of the form

y(z,v) = a(z,v) + b(z,v) · (1− z/ρ(v))3/2,

with otherwise the same conditions as for square-root expansions.
It is not difficult to show that if a function y(z,v) admits a square-root expansion

around (z0,v0), then the function
∫ z

0
y(x,v) dx admits a singular expansion of order

3/2 at (z0,v0) (see [13]).
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3.2. Singularity analysis of systems of functional equations. Consider a
vector y = (y1, . . . , yr) of formal power series in the formal variables z,v, with
v = (v1, . . . , vk) which is a solution of an equation-system of the form

(E) : y = F(y; z,v),

where F(y; z,v) = (F1(y; z,v), . . . , Fr(y; z,v)) are power series with nonnegative
coefficients. In order to avoid trivial situations as in equations like y = zy2, where
y(z) = 0 is the only solution, we will assume that y = 0 is not a solution. We call
such a system positive system.

The Jacobian matrix JacF of the system is the r×r matrix whose (i, j)-coefficient
is ∂Fj/∂yi. The singularity equation associated with (E) is

(S) : 0 = Det (Ir − JacF) ,

where Ir is the r × r identity matrix. The singularity system of (E) is the system
{(E), (S)}, which has r+1 equations (the first k ones for (E), the last one for (S)).

The dependency graph of F is the directed graph on V = {1, . . . , r} such that
there is an edge from i to j if and only if the jth component Fj of F really involves
yi, that is, the power series ∂Fj/∂yi is not 0. The system (E) is called strongly
recursive if the dependency graph of F is strongly connected (which means that
every pair of vertices (v1, v2) is linked by a directed path).

Informally this condition says that no subsystem of (E) can be solved prior to
the whole system of equations. An equivalent condition is that the correspond-
ing adjacency matrix and, thus, the Jacobian matrix JacF is irreducible. The
most important property of irreducible matrices A with non-negative entries is
the Perron-Frobenius theorem (see [24]) saying that there is a unique positive and
simple eigenvalue λmax = λmax(A) with the property that all other eigenvalues λ
satisfy |λ| ≤ λmax. This unique positive eigenvalue is a strictly increasing func-
tion of the entries of the non-negative matrix. More precisely, if A = (aij) and
A′ = (a′ij) are different irreducible non-negative matrices with aij ≤ a′ij (for all
i, j) then λmax(A) < λmax(A

′). Moreover, every principal submatrix has a smaller
dominant eigenvalue.

Consider an admissible valuation v0 of v and assume that the radius of conver-
gence z0 of z → y1(z,v0) is finite and strictly positive. If the system (E) is strongly
recursive then it is easily shown that, for each i ∈ {1, . . . , r}, z0 is the radius of
convergence of yi (due to the dependency graph being strongly connected) and
yi(z,v0) converges to a finite constant τi > 0 as z → z0 (due to the fact that F is
nonlinear according to y).

Note also that (S) says that λ = 1 is an eigenvalue of JacF. We observe that
if y = y(z,v0) is an analytic solution of a strongly recursive system (E) that is
singular at z = z0 and y0 = y(z0,v0) is a finite vector, then (S) is satisfied for
(y; z,v) = (y0; z0,v0) provided that (y0; z0,v0) is an inner point of the region of
convergence of F. (This explains the term singularity system.) However, in order to
obtain the radius of convergence (in positive and analytically well-founded systems)
we will need the condition that λmax(JacF) = 1 (see [1]).

Definition 1. A system (E) is called analytically well-founded at a fixed positive
valuation v0 if the following conditions are satisfied:

(1) The valuation v0 is admissible for the system of power series F(y; z,v0),
we have [ymzn]Fi(y; z,v0) ≥ 0 for all i, and F(0; z,v0) 6= 0.
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(2) The function F is not affine in y and depends on z, that is, there are i and
j in {1, . . . , r} such that ∂2F/∂yi∂yj 6= 0 and ∂F/∂z 6= 0,

(3) There exist z0 > 0 and a positive vector y0 for which (y0; z0,v0) is an inner
point of the region of convergence of Fi(y; z,v) (for i ∈ {1, . . . , r}) and (E)
and (S) are satisfied for (y; z,v) = (y0; z0,v0) and that all eigenvalues λ
of the Jacobian matrix JacF(y0; z0,v0) satisfy |λ| ≤ 1.

It is not clear that the singularity system (E), (S) has a proper solution. However,
if (E) is a positive and strongly recursive system and if F(y; z,v) is a vector of entire
functions in y and z (for v in a neighbourhood of v0) then it is always solvable.
In particular it is enough to consider the singularity of the power series solution of
(E). We also get the property λmax(JacF(y0; z0,v0)) = 1.

Note that the radius of convergence z0 of the solution y of a positive and strongly
recursive system (E) is always finite. Furthermore, y(z0) is finite, too, if F is not
affine in y.

The following theorem contains the main properties of systems of equations (E)
that we will use in the sequel (for a proof see [11]).

Theorem 2. Suppose that an equation (E) is strongly recursive and analytically
well-founded at a valuation v0. Then there is a unique vector of power series
y = y(z,v) in the variables z,v that satisfies (E). Furthermore, the components of
y have non-negative coefficients [zn] yi(z,v0) (for i ∈ {1, . . . , r}) and a square-root
expansions around (z0,v0).

Moreover, if [zn] y1(z,v0) > 0 for all n ≥ n0 then z0 is the only singularity on the
radius of convergence |z| = z0 and all components y can be analytically continued
to the region D = {z ∈ C : |z| < |ρ(v)| + ǫ, 1 − z/ρ(v) 6∈ R

−}, where ǫ > 0 is
uniform for v in some neighbourhood of v0.

The condition [zn] y1(z,v0) > 0 (for n ≥ n0) is usually verified by using a
combinatorial interpretation of the coefficients. In the case of a single equation
y = F (y; z, v) =

∑
n,m,k an,m,kz

nymvk it is also possible to check this with the
help of conditions on the coefficients an,m,k. For example, if there exist m > 1,
n1, n2, n3 and k1, k2, k3 with an1,m,k1

6= 0, an2,m,k2
6= 0, an3,m,k3

6= 0 such that
n2− n1 and n3− n1 are coprime or if there are n1, n2, m1 > 1, m2 > 1, k1, k2 with
an1,m1−1,k1

6= 0, an2,m2−1,k2
6= 0 such that n1(m2−1)−n2(m1−1) = 1 then it also

follows that [zn] y(z, v0) > 0 (for n ≥ n0) – compare it with [23] and the methods
used in the proof of Lemma 4.

3.3. Transfer theorems of singularity analysis and central limit theorems.

As detailed in the book by Flajolet and Sedgewick [16], the singular behaviour of
a counting series can be translated to an asymptotic estimate of the counting se-
quence, by coefficient extraction (which is done via contour integrals in the complex
plane).

Let z0 be a non-zero complex number, and ǫ and δ positive (real) numbers. Then
the region

∆ = ∆(z0, ǫ, δ) = {z ∈ C : |z| < z0 + ǫ, | arg(z/z0 − 1)| > δ}
is called a ∆-region. The basic observation (see [15]) is that a singular expansion
around the singularity z0 that is uniform in a ∆-region transfers directly to an
asymptotic expansion for the coefficients. Suppose that a function y(z) is analytic
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in a region ∆-region ∆(z0, ǫ, δ) and satisfies

y(z) = C (1− z/z0)
α
+O

(
(1− z/z0)

β
)
, z ∈ ∆(z0, ǫ, δ),

where β > α and α is a non-negative integer. Then we have

(4) [zn] y(z) = C
n−α−1

Γ(−α)z
−n
0 +O

(
z−n
0 nmax{−α−2,−β−1}

)
.

It is an important additional observation that the implicit constants are also effec-
tive which means that the O-constant in the expansion of y(x) provides explicitly
an O-constant for the expansion for [zn] y(z), and that the same statement is true
if we change the O-constants by o-constants. See [15] for details. In particular it
follows that singular expansions that are uniform in some parameter also translate
into asymptotic expansions of the form (4) with a uniform error term. In particular
it applies for functions y(z,v) with square-root expansion around (z0,v0) or with
singular expansion of order 3/2, provided that they can be analytically continued
to a ∆-region.

Next we restrict ourselves to univariate v ∈ C and are interested in bivariate
asymptotic expansions of the coefficients [znvm] y(z, v) when y has a square-root
expansion. We introduce the function µ defined as

µ(v) = −vρ′(v)

ρ(v)
.

We call it regular in a closed interval V of the positive real line if µ(v) is strictly in-
creasing on V . In this case ν = µ−1 denotes the inverse function of µ. Furthermore,
we set σ(v) =

√
vµ′(v) which is positive in the regular case. If we additionally as-

sume that z0 = ρ(v0) is the only singularity of y(z, v) for |z| = z0 and |v| = v0 then
we have uniformly for m/n ∈ ν(V )

[znvm] y(z, v)(5)

=
b(ρ(ν(m/n)), ν(m/n))

2
√
2π (n/m)σ(ν(m/n))mn

ρ(ν(m/n))−nν(m/n)−m
(
1 +O

(
n−1

))
.

(For a proof we refer to [9]). Again it is clear that this has a direct analogue for
functions with a singular expansion of order 3/2.

It is relatively easy to check the condition that z0 = ρ(v0) is the only singularity
of y(z, v) for |z| = z0 and |v| = v0 and also that µ is regular – compare it with the
remark following the proof of Lemma 4.

Suppose that m = µn+O(
√
n). The asymptotic expansion (5) for the coefficient

[znvm] y(z, v) behaves locally like

(6) [znvm] y(z, v) =
b(ρ(1), 1)

2
√
π σ(1)n2

e−(m−µ(1)n)2/(2σ(1)2n)ρ(1)−n
(
1 +O(n−1/2)

)

which suggests that there is a central limit theorem behind. Actually this is true.
Let Xn be a random variable with probability distribution P(Xn = m) =

[znvm] y(z, v)/[zn] y(z, 1), then the asymptotic expansion (6) is indeed a local limit
theorem for Xn. In general, there is a combinatorial central limit theorem. For the
sake of brevity we do not list all possible versions but only for a single equation
and we comment on systems of equations.
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Theorem 3. Suppose that Xn is a sequence of random variables whose probability
generating function is given by

E vXn =
[zn] y(z, v)

[xn] y(z, 1)
,

where y(z, v) is a power series that is the (analytic) solution of the functional equa-
tion y = F (y; z, v), where F (y; z, v) satisfies the assumptions of Theorem 2. In
particular, let z = z0 > 0 and y = y0 > 0 be the proper solution of the system of
equations y = F (y; z, 1), 1 = Fy(y; z, 1)

1. Set

µ =
Fv

z0Fz
,

σ2 = µ+ µ2 +
1

z0F 3
z Fyy

(
F 2
z (FyyFvv − F 2

yv)− 2FzFv(FyyFzv − FyxFyv)

+ F 2
v (FyyFzz − F 2

yz)
)
,

where all partial derivatives are evaluated at the point (y0; z0, 1). Then the asymp-
totic mean and variance of Xn satisfy

EXn = µn+O(1) and VarXn = σ2n+O(1)

and if σ2 > 0
Xn − EXn√

VarXn

→ N(0, 1).

Note that µ = Fv

z0Fz
is the same as the other µ defined above as µ(v) = − vρ′(v)

ρ(v)

when v = 1. Similarly we have σ2 = σ2(1).
The situation for a system of equations is quite similar (even if we additionally

consider a random vector Xn instead of a random variable Xn). Suppose that y =
(y1, . . . , yr) is the solution of a system of equations (E) and that the assumptions
of Theorem 2 are satisfied. Furthermore set y(z,v) = H(y(z,v); z,v) for a power
series F with non-negative coefficients, for which (y0; z0,1) is inner point of the
region of convergence and we have Hy(y0; z0,1) 6= 0. Then the random vector
Xn = (X1;n, . . . , Xk;n) with probability generating function

EvXn = E v
X1;n

1 · · · vXk;n

k =
[zn] y(z,v)

[zn] y(z, 1)

is asymptotically normal with asymptotic mean EXn = nµ+O(1) and covariance
matrix CovXn = nΣ+O(1), where

(7) µ =
1

z0

bTFv(y0; z0,1)

bTFx(y0; z0,1)
,

in which b is (up to scaling) the unique positive left eigenvector of JacF, and Σ

is a positive semi-definite matrix which can be computed with the help of second
derivatives (for details see [11]). In many applications b appears to be (1, . . . , 1)T,
which is due to the special structure of the systems of equations. The source
of the central limit theorem is actually a singular expansion with singular term(
1− z

ρ(v)

)α
with α /∈ N, and thus a central limit theorem with the same mean and

1For convenience we use the notation Fy to denote the partial derivative ∂F/∂y.
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variance follows also for generating functions given by
∫
y(z,v) =

∫
F (y(z,v); z,v),

which have the same singularity, but of order 3
2 .

Finally we comment on the positivity of σ2 = σ2(1) in the case of a single func-
tional equation y = F (y; z, v). (Equivalently this concerns the question whether
µ(v) = vFv(y(ρ(v), v); ρ(v), v)/(ρ(v)Fz(y(ρ(v), v); ρ(v), v)) is regular in a neigh-
bourhood of v = 1.)

Lemma 4. Let y = F (y; z, v) =
∑

n,m,k an,m,kz
nymvk be an analytically well

founded equation for the valuation v0 = 1 as given in Theorem 3. Suppose that
there are three triples (nj ,mj , kj), j = 1, 2, 3, of integers with mj > 0, j = 1, 2, 3,
and ∣∣∣∣∣∣

n1 m1 − 1 k1
n2 m2 − 1 k2
n3 m3 − 1 k3

∣∣∣∣∣∣
6= 0

such that anj ,mj ,kj 6= 0, j = 1, 2, 3. Then σ2 > 0.

Proof. Let x = ρ(v) be the solution of the singular system y = F (y; z, v), 1 =
Fy(y; z, v). We will first show that |ρ(eit)| > ρ(1) for real t 6= 0 that are sufficiently
small. This property will be then used to prove that σ2 > 0.

First it is clear that |ρ(eit)| ≥ ρ(1) for all real t for which ρ(eit) exists. For, if
|ρ(eit)| < ρ(1) then we would have |y(ρ(eit, eit)| < y(ρ(1), 1) and also

(8) |Fy(y(ρ(e
it, eit); ρ(eit), eit)| < Fy(y(ρ(1), 1); ρ(1), 1) = 1

which is a contradiction. (Note that we have used here the assumptions Fyy 6= 0
and Fv 6= 0.)

Now assume that |ρ(eit)| ≤ ρ(1) for some real number t. Then an inequality
similar to (8) implies that for all n,m, k

man,m,kz
nym−1vk = man,m,kz

n
0 y

m−1
0 ,

where we used the abbreviations z0 = ρ(1), y0 = y(ρ(1), 1), z = ρ(eit), y =

y(ρ(eit, eit), and v = eit. In particular, it follows that znjymj−1vkj = z
nj

0 y
mj−1
0 for

j = 1, 2, 3. Hence, if we set z = z0e
ir, y = y0e

is (and v = eit) it follows that

njr + (mj − 1)s+ kjt = 2πlj (j = 1, 2, 3)

for some integers lj , j = 1, 2, 3. This is a regular system and implies that there is a
(unique) solution of the form r = 2πL1/M , s = 2πL2/M , t = 2πL3/M (for integers
L1, L2, L3,M). Hence, if t 6= 0 is sufficiently close to 0 then |ρ(eit)| > ρ(1).

Next consider the Taylor series of the function

g(t) = log ρ(et) =
∞∑

j=0

κj

j!
tj .

By definition we have κ0 = log ρ(1), κ1 = µ, and κ2 = σ2. Note that this represen-
tation and the general property |ρ(eit)| ≥ ρ(1) implies that κ2 ≥ 0. Suppose that
κ2 = 0 and let ℓ0 ≥ 3 be the smallest integer with κℓ0 6= 0.

We use now the fact that the assumptions of Theorem 3 imply that

E etXn =

(
ρ(et)

ρ(1)

)−n (
1 +O

(
n−1

))
.
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(This follows from the singular expansion of the solution y(z, v) and the asymptotic
transfer results – compare it with (4) from above). Hence, by using the Taylor
expansion of g(t) it follows that

E et(Xn−µn)n−1/ℓ0
= e−κℓ0

tℓ0/ℓ0! +O
(
n−1/ℓ0

)
.

This means that the sequence of random variables Yn = (Xn−µn)n−1/ℓ0 converges
weakly (and we have convergence of all moments) to a random variable Y with

Laplace transform E etY = e−κℓ0
tℓ0/ℓ0!. However, such a random variable that has

a non-zero ℓ0-th moment but zero variance does not exist. Hence, we finally have
proved σ2 > 0. �

A slight variation of the above proof shows that if there are three triples (nj ,mj−
1, kj), j = 1, 2, 3, with determinant ±1 then |ρ(eit)| > ρ(1) for all t 6∈ 2πZ. This
shows that z0 = ρ(1) is the only singularity of y(z, v) for |z| = z0 and |v| = 1. This
assumption can be used to obtain bivariate asymptotic of the form (5).

4. Subcritical graph classes: the labelled case

In this section G denotes always a block-stable class of labelled graphs and C
(resp. B) its subclass consisting of connected (resp. 2-connected) graphs.

4.1. Definition of subcriticality. Recall from Section 2.2 that the EGFs of the
block-stable class satisfy

G(z) = exp(C(z)), C•(z) = z exp(B′(C•(z))).
Given a series g(y) it is easy to show that there is a unique series f(z) that is a
solution of the equation

(9) f(z) = z exp(g(f(z))).

In addition f(z) has nonnegative coefficients if g(y) has nonnegative coefficients.
Note that for a block-stable graph class, the solution of (9) is f(z) = C•(z) when
g(y) is taken as B′(y).
Definition 5. Let g(y) be a series with non-negative coefficients such that g(0) = 0.
Let f(z) be the unique solution of (9). Let ρ and η be the radii of convergence of
z 7→ f(z) and y 7→ g(y). Then the pair (f(z), g(y)) is called subcritical if f(ρ) < η.

A block-stable graph class G with C the connected subclass and B the 2-connected
subclass is called subcritical if the pair (C•(z),B′(y)) is subcritical.

Note that the singularity system for (9) is

y = z exp(g(y)), y g′(y) = 1.

In particular, for the pair (C•(z),B′(y)) the latter equation rewrites to yB′′(y) = 1.
Hence, we have subcritiallity if and only if ηB′′(η) > 1, compare with [3].

In what follows we will also consider functions f(z, v), g(y, v) with an additional
parameter v. For example, suppose that we are dealing with a bivariate generating
function where the exponent of v counts the number of edges and the exponent
of z (or y) counts the number of vertices. Suppose further that we already know
that the pair (f(z, 1), g(y, 1)) is subcritical. What can we say then for the pair
(f(z, v), g(y, v)) if v is sufficiently close to 1? Is there some stability of the subcriti-
callity? Actually there is if the the parameter that is counted by the exponent of v
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is at has a linear worst case behaviour in the exponent n of z (or y). The essential
consequence of the following lemma is that radius of convergence z 7→ f(z, v) and
y 7→ g(y, v), respectively, is continuous at v = 1. Hence we have f(ρ(v), v) < η(v)
if v is real and sufficiently close to 12.

Lemma 6. Let A(z, v) =
∑

n,k≥0 an,kz
nvk be a power series with non-negative

coefficients an,k with the property that an,k = 0 for k > Cn for some constant
C > 0. Let R(v) denote the radius of convergence of the mapping z 7→ A(z, v).
Then we have for real v > 0

R(1)min{1, v−C} ≤ R(v) ≤ R(1)max{1, vC}.
Proof. If v ≥ 1 then

∑

k

an,k ≤
∑

k

an,kv
k ≤

(
∑

k

an,k

)
vCn

and consequently R(v) ≥ R(1)v−C . Similarly we argue for 0 < v ≤ 1. �

4.2. Asymptotic estimate for a subcritical graph classes. We start with
a quick analysis of subcritical graph classes and derive their asymptotic number,
compare it with [3].

Lemma 7. Let G be a labelled subcritical block-stable graph class with C the con-
nected subclass and B the 2-connected subclass. Then C•(z) has a square-root sin-
gular expansion around its radius of convergence ρ. Furthermore, if [zn] C•(z) > 0
for n ≥ n0 then ρ is the only singularity on the circle |z| = r and C•(z) can be
continued analytically to the region D = {z ∈ C : |z| < ρ + ǫ, 1 − z/ρ 6∈ R

−} for
some ǫ > 0.

Proof. The function y = C•(z) is a solution of

y = F (y; z), with F (y; z) = z exp(B′(y)).
Let ρ and η be respectively the radii of convergence of C•(z) and of B′(y), and let
τ := C•(ρ). Since G is subcritical, we have τ < η, hence F (y; z) is analytic at (τ, ρ).
We conclude from Theorem 2 that C•(z) has a square-root expansion at ρ and that
C•(z) can be continued analytically to D. �

Theorem 8. Let G be a subcritical block-stable graph class with the property that
[zn] C•(z) > 0 for n ≥ n0. Then there exist constants γ ≥ e ≈ 2.71828 and c > 0
such that

(10) [zn]G(z) = c n−5/2 γn(1 + o(1)) as n→∞.

Proof. The function C(z) satisfies

C(z) =
∫ z

0

C•(t)dt
t
,

hence C(z) has a singular expansion of order 3/2 at ρ. Since G(z) = exp(C(z)) and
exp is analytic everywhere (in particular at C(ρ)), we conclude that G(z) has also a

2Note that it is sufficient to consider real v if we are just interested into (global) central
limit theorem and asymptotics for moments. Namely, in order to prove a theorem of the type
of Theorem 3 one can work with the help of the Laplace transform E etXn that is encoded by
E etXn = [zn]A(z, et)/[zn]A(z, 1) when P(Xn = k) = an,k/an.
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singular expansion of order 3/2 at ρ. The transfer theorems of singularity analysis
(see Section 3.3) yield an estimate of the form (10), where γ = 1/ρ. See also [3]. �

4.3. Sufficient condition for subcriticality. The following lemma gives a simple
sufficient condition for subcriticality:

Lemma 9. Let g(y) be a series with non-negative coefficients and positive radius
of convergence η such that g′(y) → ∞ as y → η−. Let f(z) be the unique solution
of (9). Then the pair (f(z), g(y)) is subcritical.

Proof. Let ρ be the radius of convergence of f(z) and τ := f(ρ). From the definition
of the subcriticality we need to show τ < η.

Assume τ > η. Then, by continuity of f(z), there exists 0 < z0 < ρ such that
f(z0) = η. Since f(z) is regular at z0 with positive derivative and since g(y) is
singular at η, the function g(f(z)) must be singular at z0. Hence z exp(g(f(z)))
must also be singular at z0, in contradiction to the fact that f(z) is regular at z0.
Hence τ ≤ η.

Assume now that τ = η. Differentiating (9), we obtain

f ′(z) =
f(z)

z
+ g′(f(z)) f ′(z)f(z),

which implies f ′(z) ≥ g′(f(z))f ′(z)f(z), for z ∈ (0, ρ). Taking y = f(z), it sim-
plifies to g′(y) ≤ 1/y for y ∈ (0, η). This contradicts the fact that g′(y) → ∞ as
y → η. �

Note that the pair (f(z), g(y)) is subcritical if g(y) has a square-root singular
expansion at η. Therefore, a block-stable graph class G is subcritical if the EGF of
B′ admits a square-root singular expansion.

5. Subcritical classes: the unlabelled case

In this section G̃ denotes a block-stable class of unlabelled graphs and C̃ (resp.

B̃) its subclass consisting of connected (resp. 2-connected) unlabelled graphs in G̃.
5.1. Definition of subcriticality in the unlabelled case. We have seen in
Section 2.2 that a block-stable class satisfies

G̃(z) = exp
(∑

i≥1

1
i C̃(zi)

)
,

C̃•(z) = z exp
(∑

i≥1

1
iZB′(C̃•(zi), C̃•(z2i), C̃•(z3i), . . .)

)
.

The second equation can be rewritten as follows:

(11) f(z) = z exp
(
g(f(z), z) +A(z)

)
,

where

f(z) := C̃•(z)(12)

g(y, z) := ZB′(y, f(z2), f(z3), . . .)(13)

A(z) :=
∑

i≥2

1

i
ZB′(f(zi), f(z2i), . . .).(14)

Note that, given a bivariate series g(y, z) and a univariate series A(z), there is
a unique series f(z) that is a solution of (11) (because the coefficients of f(z) are
determined uniquely iteratively) and f(z) has nonnegative coefficients if g(y, z) and
A(z) have nonnegative coefficients.
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Definition 10. Let g(y, z), A(z) be series with nonnegative coefficients, and let
f(z) be the unique solution of (11) and ρ the radius of convergence of f(z). Then
the triple (f(z), g(y, z), A(z)) is called subcritical if

(i) ρ is non-zero,
(ii) g(y, z) is analytic at (f(ρ), ρ), and
(iii) the radius of convergence of A(z) is larger than ρ.

An unlabelled block-stable graph class G̃ is called subcritical if

(a) the triple (f(z), g(y, z), A(z)) with f(z), g(y, z), A(z) defined as in (12)–
(14) is subcritical, and

(b) the radius of convergence of the series q(z) := ZC(0, z
2, z3, . . .) is strictly

larger than ρ.

Note that for any block-stable graph class G̃, the class C̃• of rooted connected

graphs from G̃ dominates coefficient-wise the class of unlabelled rooted non-plane
trees, whose coefficients grow exponentially; hence, ρ ≤ ρ∗ ≈ 0.33832 (with ρ∗ the
radius of convergence of unlabelled forests). Furthermore, we also have stability
of subcriticallity when we vary an additional variable v locally around 1 if the
parameter that is counted by the exponent of v has at most linear worst case
behaviour.

5.2. Asymptotic estimate for a subcritical class.

Lemma 11. Let G̃ be an unlabelled subcritical block-stable graph class with C̃ the

connected subclass and B̃ the 2-connected subclass. Let ρ be the radius of conver-

gence of f(z) := C̃•(z). Then f(z) has a square-root singular expansion around ρ,
and (y, z) = (f(ρ), ρ) is a solution of the singular system

y = z exp(g(y, z) +A(z)), 1 = y gy(y, z),

with g(y, z) and A(z) defined in (13) and (14). Furthermore, if [zn] C•(z) > 0 for
n ≥ n0 then ρ is the only singularity on the circe |z| = r and we C•(z) can be
continued analytically to the region D = {z ∈ C : |z| < ρ + ǫ, 1 − z/ρ 6∈ R

−} for
some ǫ > 0.

Proof. Recall that the function f(z) = C̃•(z) is a solution of

y = F (y; z) = z exp(g(y, z) +A(z)).

Note that h(z) = ZB′(f(z), f(z2), . . .) is bounded coefficient-wise above by f(z)
and hence the singularity of h(z) is larger than ρ. Since ρ ∈ (0, 1) (by the remark
just after Definition 10), the function A(z) =

∑
i≥2 h(z

i)/i is analytic at ρ. By

definition of subcriticality also, the function g(y, z) is analytic at (f(ρ), ρ). Hence
F (y; z) is analytic at (f(ρ), ρ). Since the system is clearly strongly recursive and the
function f(z) aperiodic, we conclude from Theorem 2 that f(z) has a square-root
expansion at ρ. �

Lemma 12. Let G̃ be an unlabelled subcritical block-stable graph class with C̃ the

connected subclass and B̃ the 2-connected subclass. Let ρ be the radius of conver-

gence of f(z) := C̃•(z). Define R(s, z) := ZC•(s, z2, z3, . . .). Then R(s, z) has a
square-root singular expansion around (ρ, ρ), and the singularity function ξ(z) of
s 7→ R(s, z) has a negative derivative at ρ.
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Proof. The bivariate series R(s, z) is a refinement of C̃•(z), since C̃•(z) = R(z, z).
The equation (3) implies that y = F (y; z, s) := s exp(g(y, z) + A(z)), with g(y, z)
and A(z) defined in (13) and (14). The singular system for R(s, z) is

y = s exp(g(y, z) +A(z)), 1 = y gy(y, z).

This is the same as the singular system of f(z) (given in Lemma 11) except that the
variable z on the left-hand side of exp is replaced by the variable s. By Lemma 11,
(y, z) = (f(ρ), ρ) is a solution of the singular system of f(z), hence clearly (y; z, s) =
(f(ρ); ρ, ρ) is a solution of the singular system of R(s, z), and F (y; z, s) is analytic
at (f(ρ); ρ, ρ), since g(y, z) is analytic at (f(ρ), ρ). Thus, Theorem 2 ensures that
R(s, z) has a square-root singular expansion at (ρ, ρ). In addition, the singularity
function ξ(z) has a negative derivative, since F (y; z, s) depends only on z. �

Theorem 13. Let G̃ be an unlabelled subcritical block-stable graph class such that
[zn] C•(z) > 0 for n ≥ n0. Then there exist constants c > 0 and γ such that

[zn]G̃(z) = c n−5/2 γn(1 + o(1)) as n→∞
for γ ≥ γ∗ ≈ 2.95576, where γ∗ is the growth rate of unlabelled forests.

Proof. First we show that C̃(z) has a singular expansion of order 3/2 at ρ. Define
Q(s, z) := ZC(s, z

2, z3, . . .) (note that C(z) = Q(z, z)). The general relation ZA′ =
∂

∂s1
ZA ensures that R(s, z) = sQs(s, z), hence

Q(s, z) = Q(0, z) +

∫ s

0

R(w, z)
dw

w
.

The term Q(0, z) = ZC(0, z
2, z3, . . .) = q(z) is analytic at ρ, by definition of sub-

criticality. Since R(s, z) has a square-root expansion at (ρ, ρ), the integral term has
a singular expansion of order 3/2 at (ρ, ρ) (see Section 3.1) of the form

Q(s, z) = a(s, z) + b(s, z) · (1− s/ρ(z))3/2.

Therefore, C(z) = Q(z, z) has a singular expansion of the form

C(z) = a(z, z) + b(z, z) ·
(
(ρ(z)− z)/ρ(z)

)3/2
.

Since ξ(z) has a negative derivative at ρ and ξ(ρ) = ρ, there exists a function λ(z)
analytic and nonzero at ρ such that ρ(z)− z = (1− z/ρ) · λ(z). We conclude that
C(z) has a singular expansion of order 3/2, of the form

C(z) = α(z) + β(z) ·
(
1− z/ρ

)3/2
,

with α(z) = a(z, z) and β(z) = b(z, z) ·
(
λ(z)/ρ(z)

)3/2
.

Recall that G̃(z) and C̃(z) are related by

G̃(z) = exp(C̃(z) + E(z)), with E(z) :=
∑

i≥2

1

i
C̃(zi).

Since E(z) is analytic at ρ, the singular expansion of order 3/2 at ρ for C̃(z) yields
also a singular expansion of order 3/2 at ρ for G̃(z). The transfer theorems of

singularity analysis then yield the estimate for [zn]G̃(z). �
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5.3. Sufficient conditions for subcriticality. Similarly as in the labelled case,
we provide a list of conditions that implies subcriticality, but will be convenient to
check on examples (see Section 6 for the application):

Lemma 14. Let G̃ be an unlabelled block-stable graph class with C̃ and B̃ the con-
nected and 2-connected subclasses. Let f(z), g(y, z) be defined as (12) and (13)
and let ρ be the radius of convergence of f(z). For z > 0 let η(z) be the radius of
convergence of y 7→ g(y, z). Assume that

(1) there exist constants c and γ > 0 such that [zn]C̃• ≤ c γn,

(2) the series gy(y, z) :=
∂

∂y
g(y, z) satisfies lim

y→η(ρ)−
gy(y, ρ) = +∞,

(3) the function η(z) is continuous at ρ, and

(4) the radius of convergence of q(z) = ZC(0, z
2, z3 . . . ) is larger than ρ.

Then the unlabelled class G̃ is subcritical.

Proof. We have to show that the list of four criteria above implies that (i) ρ is
non-zero, (ii) A(z) is analytic at ρ, and (iii) g(y, z) is analytic at (f(ρ), ρ). The first
criterion exactly implies (i). It is actually in (0, 1) (see the remark after Definition 10
about ρ being smaller than 1). And we have already shown in Lemma 11 that
ρ ∈ (0, 1) automatically implies that A(z) is analytic at ρ, which proves (ii). Next we
show (iii) holds. First we show that f(ρ) < η(ρ), that is, y 7→ g(y, ρ) is analytic at
f(ρ). If η(ρ) < f(ρ), then g(f(z), z) is infinite at z = ρ, so f(z) = z exp(g(f(z), z)+
A(z)) is also infinite at ρ, which is impossible (any solution of a strongly recursive
system is finite at its radius of convergence). The case η(ρ) = f(ρ) is excluded in
a similar way as in Lemma 9. More precisely, differentiating (11) gives

f ′(z) = f(z)/z +
(
A′(z) + gy(f(z), z)f

′(z) + gz(f(z), z)
)
f(z).

Hence, f ′(z) ≥ gy(f(z), z)f
′(z)f(z) for z ∈ (0, ρ), which yields gy(f(z), z) ≤

1/f(z) = O(1) as z → ρ. This contradicts gy(y, ρ) → ∞ as y → η(ρ). Thus,
η(ρ) 6= f(ρ) since the second criterion says that gy(y, z) is infinite at (η(ρ), ρ). So
we have f(ρ) < η(ρ), which ensures that y 7→ g(y, ρ) is analytic at f(ρ). But we
need to prove a little stronger condition, namely that g(y, z) is analytic at (f(ρ), ρ).
Due to the continuity condition on η(z), f(z0) < η(z) in a small interval around
ρ and therefore g(y, z) converges in a neighbourhood of (f(ρ), ρ), i.e., g(y, z) is
analytic at (f(ρ), ρ). �

6. Examples of subcritical graph classes

Recall that a block-stable graph class is completely determined by its 2-connected
subclass B and that B must contain the link graph ℓ (a graph with one edge together
with its two labelled end vertices). Let M = B\ℓ. We will deal with three block-
stable classes and show subcriticality both in the labelled and unlabelled cases:
the class of cacti graphs, where M consists of (convex) polygons; the class of
outerplanar graphs, whereM consists of dissections of (convex) polygons; and the
class of series-parallel graphs, where M consists of simple graphs obtained from
a double edge by repeatedly choosing an edge to be doubled or to have a vertex
inserted in its middle. Using the subcriticality criteria introduced in Sections 4
and 5 we will show that these three block-stable classes are subcritical and therefore
feature a universal asymptotic behaviour with subexponential term n−5/2.
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Theorem 15. The classes of cacti graphs, outerplanar graphs, and series-parallel
graphs are subcritical both in the labelled and unlabelled cases. As a consequence,
the counting coefficient gn of each of these classes – gn = |Gn|/n! in labelled case,

gn = |G̃n| in unlabelled case – is asymptotically of the form

gn = g n−5/2ρ−n(1 + o(1))

for some constants g > 0, ρ ∈ (0, 1). The first few digits of ρ in labelled case and
the approximate values of ρ in unlabelled case are resumed in Table 3.

We do not claim here the originality of the above asymptotic estimates, except for
unlabelled series-parallel graphs: labelled outerplanar and SP graphs are treated
in [5]; unlabelled outerplanar graphs in [4]; labelled cacti in [27] and unlabelled
cacti in [29]). What is novel, however, is how we have derived these asymptotic
estimates, namely through a unified (firstly for labelled and unlabelled cases and
secondly for various graph classes) method, based on the decomposition grammar,
the singularity analysis and the subcriticality criteria that are easy to check, which
we will show below. Analogous asymptotic estimates hold for classes of graphs that
are stable under taking connected, 2-connected, and 3-connected components, but
have only finite 3-connected subclass (see Subsection 6.4).

To prove Theorem 15, we check whether the sufficient conditions for subcriticality
(Lemma 9 in the labelled case, Lemma 14 in the unlabelled case) are satisfied.
Throughout this section we use the functions and notations in Lemmas 9 and 14.

6.1. Cacti graphs. The asymptotic study of cacti graphs is carried out in [27] for
the labelled case and in [29] for the unlabelled case. Cacti graphs are such that
M = B\ℓ consists of (unoriented convex) polygons. Therefore, the derived class B′
is isomorphic to unoriented sequences of at least two vertices (because the polygon
can be broken at the root-vertex). Thus

B′(y) = y +
y2

2(1− y)
,

where the terms y counts the link-graph with a pointed (i.e. distinguished but unla-
belled) vertex. The series g(y) = B′(y) clearly diverges at its radius of convergence
1. Therefore the class of labelled cacti graphs is subcritical.

In the unlabelled case, we have to take automorphisms into account. The only
possible symmetries of unoriented sequences are the identity and the order-reversing
of the sequence, therefore

ZB′(s1, s2, . . .) = s1 +
s21

2(1− s1)
+

1 + s1
2(1− s2)

,

and the series g(y, z) = ZB′(y, f(z2), f(z3), . . .) satisfies the expression

g(y, z) = y +
y2

2(1− y)
+

1 + y

2(1− f(z2))
.

From this we obtain the equation satisfied by y = f(z):

y = z exp
(∑

i≥1

1
i h(z)

)
, with h(z) = f(z) +

f(z)2

2(1− f(z))
+

1 + f(z)

2(1− f(z2))
.

Since f(ρ) < ∞ and h(z) � f(z) (i.e. h(z) is coefficient-wise dominated by f(z)),
we have h(ρ) <∞, so that f(ρ) < 1. As a consequence 1/(1− f(z2)) is analytic at
ρ. Looking at the expression of g(y, z), we see that the radius η(z) of convergence
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of y 7→ g(y, z) satisfies η(z) = 1 for z close to ρ (in particular η(z) is continuous
at ρ) and gy(y, ρ) goes to infinity (double pole in y) when y → 1. It remains to
check that q(z) is analytic at ρ. The cycle index sum of polygons is well-known
(the automorphism group is the dihedral group for each polygon):

ZB(s1, s2, . . .) = −
s1
2

+
1

2

∑

r≥1

φ(r)

r
log

(
1

1− sr

)
+

s21 + 2s1s2 + s2
4(1− s2)

,

where φ is the Euler totient function. Hence

q(z) =
f(z2)

4(1− f(z2))
+

1

2

∑

r≥2

φ(r)

r
log(1− f(zr)).

This function is clearly analytic at ρ, which concludes the proof that the class of
unlabelled cacti graphs is subcritical.

6.2. Outerplanar graphs. Our second example, outerplanar graphs, has been
studied asymptotically in [5] for the labelled case and in [4] for the unlabelled case.
An outerplanar graph is a graph that can be embedded in the plane such that
all vertices lie in the outer face. It is also defined as the class of graphs avoiding
K4 and K3,2 as minors. A well-known characterisation of 2-connected outerplanar
graphs with at least 3 vertices says that they are dissections of a (unoriented convex)
polygon. So the computation shares some resemblance with the one for cacti graphs,
except that the polygon is filled with chords in a planar way. In the labelled case, the
classical dual construction says that dissections of oriented polygon are in bijection
with rooted plane trees with no node of degree 2. The leaves of the tree correspond
to the edges (minus one) of the dissection, which are themselves equinumerous with
the (non-rooted) vertices of the dissection. Therefore

B′(y) = y +
1

2
T (y), with T (y) =

(T (y) + y)2

1− y − T (y)
,

where the first term y in B′(y) takes account of the derived link-graph. The series

T (y) satisfies T (y) = (1 − 3y −
√

y2 − 6y + 1)/4, therefore it has a square-root

singularity at its radius of convergence ρT := 3 − 2
√
2. This ensures (from the

remark after Lemma 9) that the class of labelled outerplanar graphs is subcritical.
Next consider the unlabelled case. We will first compute ZB′ . The only possible

symmetries are the identity and the reflection along an axis passing by the rooted
vertex. One finds (see [4, 32] for a detailed calculation)

ZB′(s1, s2, . . .) =
1

2
T (s1) +

s1 + s2
2s22

T (s2).

Hence the series g(y, z) = ZB′(y, f(z2), f(z3), . . .) satisfies

g(y, z) =
1

2
T (y) +

y + f(z2)

2f(z2)2
T (f(z2)).

We first observe that g(f(ρ, ρ) is finite, since it is smaller than f(ρ) which is
finite, more precisely, g(f(ρ), ρ) gathers from f(ρ) the connected rooted graphs
with a unique block incident to the pointed vertex. In particular T (f(ρ)) is finite,
which ensures that f(ρ) ≤ ρT . Since ρ < 1, f(z2) is strictly smaller than ρT in
a neighbourhood of ρ, so T (f(z2)) is analytic at ρ. Consequently, for any z close
to ρ the dominant singularity η(z) of y 7→ g(y, z) is ρT (because of the first term
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T (y)/2), hence η(z) is continuous at ρ (it is actually constant equal to ρT around ρ),
so the criterion (2) of subcriticality is satisfied. Moreover, g(y, z) inherits from T (y)
a square-root expansion at ρT , so gy(y, z) diverges as y → ρT , thus the criterion
(3) is satisfied.

It remains to check the criterion (4). To find an expression for ZB one has to
enumerate dissections of a polygon under all possible symmetries (rotation and
reflection), where the duality with trees helps to formulate the decompositions. All
calculations were done (see [4, 32]):

ZB(s1, . . . ) =
s1
4
T (s1)−

1

2

∑

d≥1

log(1−sd−T (sd))+
s21 + s22 + 2s1s2

4s22
T (s2)+P (s1, s2),

where P (s1, s2) is a certain polynomial in s1 and s2. Consequently, the series
q(z) = ZB(0, f(z

2), f(z3), . . .) satisfies

q(z) = −1

2

∑

d≥2

log(1− f(zd)− T (f(zd))) +
T (f(z2))

4
+ P (0, f(z2)).

The argument of log is non-zero around ρ, because for d ≥ 2, f(zd) < ρT in a
neighbourhood of ρ, and T (y) + y is less than 1 at its singularity ρT (precisely
it equals (5ρT + 1)/4 < 1). Hence the criterion (4) is satisfied. In conclusion,
Lemma 14 implies that the class of unlabelled outerplanar graphs are subcritical
class.

6.3. Series-parallel graphs. We use the decomposition grammar for 2-connected
SP-graphs developed in [8] and [19]. More precisely, we will use the decomposition
grammar for the so-called series-parallel networks. A network is a connected SP
graph with two pointed (distinguished but unlabelled) vertices, which are called
the poles and denoted by − and +, such that adding the edge (−,+) results in a 2-
connected SP graph (possibly the two vertices − and + are already adjacent in the
network). We call series-networks those that are not 2-connected (when deleting
the edge between the poles if any) and parallel networks those that are 2-connected
with at least 2 edges. The classes of networks, series-networks and parallel-networks
are denoted respectively D, S, and P. The link-graph consisting of one edge from
− to + is denoted by e to distinguish it from the link-graph ℓ consisting of an edge
and two labelled end vertices.

In the labelled case we obtain the decomposition grammar and its corresponding
system of EGFs (on the right is the associated system for the EGFs, Set≥k means
Set constrained to have at least k components):



D = e+ S + P,
S = D · Z · (e+ P),
P = e · Set≥1(S) + Set≥2(S)

⇒




D(y) = 1 + S(y) + P(y),
S(y) = yD(y)(1 + P(y)),
P(y) = 2 exp(S(y))− S(y)− 2

The system for the EGFs is clearly strongly recursive and the series D(y) is
easily aperiodic. In addition, the function-system F(y1, y2, y3, y) with y1 = D(y),
y2 = S(y), y3 = P(y) defined by the right-hand side of the system is clearly
analytic everywhere (because exp is analytic everywhere). In addition, easy lower
and upper bounds imply that the radius of convergence ηD of D(y) is in (0, 1).
Hence Theorem 2 applies, ensuring that all the series for networks have a square-
root expansion at their common radius of convergence ηD. Now we want to show
that g(y) := B′(y) has radius of convergence ηD and that g′(y) goes to∞ as y → η−D .
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First, note that in the labelled framework the number of networks is at least as large
as the number of vertex-rooted 2-connected SP graphs (because each graph in B′
gives rise to d ≥ 1 networks, with d the degree of the root-vertex). So the series
y2D(y) dominates coefficient-wise the series yB′(y), shortly written B′(y) � uD(y).
Surprisingly the domination also goes the other way. Precisely speaking, we have
the inclusion Z3 · D ⊆ B′, as illustrated in Figure 1, so that y3D(y) � B′(y).

D D

Figure 1. Injection from networks to vertex-rooted 2-connected
SP graphs by adding one vertex and two edges.

We thus have y3D(y) � B′(y) � uD(y), which ensures that B′(y) has the radius
of convergence ηD and that g(y) = B′(y) satisfies g′(y)→∞ as y → η−D , since D(y)
has a square-root expansion and hence D′(y) → ∞ as y → η−D). This concludes
that the class of labelled SP graphs is subcritical.

Now we turn to the unlabelled case, which is technically more involved. For
each class N ∈ {D,S,P} of networks, the automorphisms have to fix each of
the two poles + and −, and the cycle index sum ZN (s1, s2, s3, . . .) is defined as
a sum of monomials over all automorphisms, as in Section 2.1. We define N =
N(y, z) := ZN (y, f(z2), f(z3), . . .). For networks, the automorphisms have to fix
each of the two poles + and −. However, it is also useful to consider networks up
to exchanging the poles and their corresponding series ZN (s1, s2, s3, . . .) defined
similarly as the cycle index sum, but summing over the automorphisms exchanging
+ and − (instead of those fixing + and − as in the series ZN ). Define the bivariate
series N = N(y, z) := ZN (y, f(z2), f(z3), . . .) for each class N ∈ {D,S,P} of
networks. For a bivariate series f(y, z) and k ≥ 1 define f (k)(y, z) := f(yk, zk).
The decomposition for pole-fixing networks and pole-exchanging networks give rise
to explicit systems for the cycle index sums. Under the specialization (s1 = y, s2 =
f(z2), s3 = f(z3), . . .), these yield the two systems (where the argument (y, z) of
the series is omitted):

(PF)





D = 1 + S + P,

S = y ·D · (1 + P ),

P = 2 exp

(∑
i≥1

1

i
S(i)

)
− S − 2,

and for the pole-exchanging networks

(PE)





D = 1 + S + P ,

S = D(2) · (y + f(z2)(1 + P )),

P = 2 exp

(
∑

k≥1

S(2k)

2k
+

S
(2k−1)

2k − 1

)
− S − 2.
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The series g(y, z) := ZB′(y, f(z2), f(z3), . . .) can be expressed in terms of the series
in the above two systems (this is done in [19] using the dissymmetry theorem):

g(y, z) =
1

2
y2(1 + P )D +

1

2
f(z2)D(2) ·

(
1 + y + yP (2) + P

)
+

2y exp

(∑
i≥1

1

i
S(i)

)
− 2y − 2yS − 1

2
yS2 − 1

2
yS(2) − ySP.

As in Lemma 14 we let f(z) := C̃•(z), g(y, z) := ZB′(y, f(z2), f(z3), . . .), and let ρ
be the radius of convergence of f(z) and τ = f(ρ). In addition, we let ηD(z) and
ηD(z) be the singularity functions of y 7→ D(y, z) and y 7→ D(y, z).

Lemma 16. Each of the series D(s, z), S(s, z), P (s, z) admits a square-root expan-
sion at (ηD(ρ), ρ).

Proof. As ZB′(f(z), f(z2), . . .) counts derived connected SP graphs with a unique
block incident to the pointed vertex and f(z) counts all rooted SP graphs, we have
g(f(ρ), ρ) = ZB′(f(ρ), f(ρ2), f(ρ3), . . .) ≤ f(ρ). In addition f(ρ) <∞ since f(z) is
a solution of nonlinear functional equations. Hence g(f(ρ), ρ) <∞. As Z3 ·D ⊆ B′
(see Figure 1) we have

u3 D(y, z) � g(y, z).

Hence, by domination, D(f(ρ), ρ) <∞ and therefore the singularity of y 7→ D(y, ρ)
is larger than f(ρ), which implies in particular that z = ρ is an admissible valua-
tion. The equation-system (PF) F(y; z) for y = (D,S, P, y) satisfies all conditions
required in Theorem 2 (aperiodicity of D, strongly recursive system, analyticity of
the functional system F(y; z) at the required point). Therefore the series D, S, and
P admit singular expansions at (ηD(ρ), ρ). �

Lemma 17. If ηD(ρ) < ηD(ρ) then the series D(s, z), S(s, z), P (s, z) are analytic
at (ηD(ρ), ρ), if not 3, then these series admit a square-root expansion at (ηD(ρ), ρ).

Proof. Note that Figure 1 yields an injection from the pole-exchanging automor-
phisms of D to the automorphisms of B′. As a consequence, s2ZD � ZB′ so that

z2D(y, y) � g(y, z).

Hence, ZB′(f(ρ), f(ρ2), f(ρ3), . . .) = τ < ∞ implies that D(f(ρ), ρ) < ∞. There-
fore ηD(ρ) ≥ f(ρ) so that z = ρ is an admissible valuation for D(y, z). Note that

the functional system (PE) G(y; z) with y = (D,S, P , y) is clearly analytic at a
given point (D,S, P , y; z) (where D, S, P are seen as independent variables) if and
only if D is analytic at (y2, z2) and f is analytic at z2. Since ρ < 1 and ηD(z)
is decreasing in z, G is analytic at any point such that |y| ≤ ηD(ρ) and |z| ≤ ρ.
Therefore, the only cause of singularity for D in this domain is a branch point (i.e.,
a solution of the singularity system). From Theorem 2, we conclude that in such a
situation, D, S, and P have a square-root expansion at (ηD(ρ), ρ). �

Lemma 18. The class of unlabelled series-parallel graphs is subcritical.

Proof. We need to check that all four criteria in Lemma 14 are satisfied. Easy
upper and lower bounds imply that ρ ∈ (0, 1), so the criterion (1) is satisfied.
Let η(z) the singularity function of y 7→ g(y, z). Expression for g(y, z) in terms

3This case is very unlikely to happen, but discarding it would require some numeric computa-
tion of the functions ηD and ηD.
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of the series of networks (pole-fixing and pole-exchanging), ensures that η(z) =
min{ηD(z), ηD(z)} for z > 0. Hence η(z), as the minimum of two continuous
functions, is also continuous at ρ, so the criterion (3) is verified. If η(ρ) = ηD(ρ) (the
most likely case), then limy→η(ρ)− gy(y, ρ) = ∞ because y3D(y, z) � g(y, z) and
because the square-root expansion of D(y, z) at (η(ρ), ρ) yields limDy(y, ρ) = ∞
as y → η(ρ). If η(ρ) = ηD(ρ), then applying Lemma 17 D(y, z) has a square-
root expansion at (η(ρ), ρ). Again we have lim gy(y, ρ) = ∞ as y → η(ρ) because

z2D(y, z) � g(y, z) and because the square-root expansion of D(y, z) at (η(ρ), ρ)
yields limDy(y, ρ) =∞ as y → η(ρ). Thus the criterion (2) is verified.

It remains to check the criterion (4). From the work in [8, 19] one can extract an
expression for K(y, z) := ZB(y, f(z

2), f(z3), . . .) (longer than the one of g(y, z), but
of the same aspect) in terms of the series {D,S, P,D, S, P}. This ensures that the
singularity function ηH(z) of y 7→ H(y, z) satisfies ηH(z) = min{ηD(z), ηD(z)} =
η(z). Since ηH(ρ) ≥ f(ρ) and since ηH is continuous at ρ, we have ηH(z) > 0
for z around ρ. Hence H(0, z) is analytic at ρ. In addition one can show that
ZC(0, z

2, z3, . . .) = ZB(0, f(z
2), f(z3), . . .), see [19] (a combinatorial interpretation

is that if there is no fixed vertex in an automorphism σ of a connected graph, then
there is a unique 2-connected block B fixed by σ, and the automorphism induced
on B has no fixed vertex as well). Hence q(z) = Q(0, z) = H(0, z), which ensures
that q(z) is analytic at ρ. �

6.4. Graphs defined by their 3-connected components. The same arguments
used in the enumeration of the unlabelled SP-graphs can be adapted to get similar
results for families of graphs which are defined by a finite set of 3-connected com-
ponents (see [21] for a proper definition of these families). In these families, the
strategy used is the same as in SP-graphs: we study the enumeration of networks in
order to get the asymptotic counting of the graphs with a lower level of connectivity.
The main difference is that there is an additional line in the equation-system for
networks, which involves the Walsh polynomial (roughly speaking, the cycle index
sum associated to the finite family of 3-connected components; see [18, 19] for a
detailed definition). The Walsh polynomial has two kinds of variables: e1, . . . , er
and e1, . . . , ek. In the equation-system for networks, these variables are to be sub-

stituted by D(1), . . . , D(r) and by D
(1)

, . . . , D
(k)

, respectively (in SP-graphs this
polynomial vanishes, because SP-graphs do not have 3-connected components).
Since the Walsh polynomial is an entire function in all its variables and has posi-
tive coefficients, the system remains positive and the argument of Lemmas 17, 18
can be adapted to this general setting in order to assure a square-root singularity
for the counting series associated to networks, and the rest of the results can be
easily adapted to this general framework.

7. Limit laws

In this section we study the limit distribution of a graph parameter defined on
a uniformly distributed random graph on n vertices. More concretely, let Xn be
the associated random variable. We show that all the parameters under study
invariably converges in distribution to a normal limit distribution in the form

Xn − EXn√
VarXn

→ N(0, 1),
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where EXn = µn + O(1) and VarXn = σ2n + O(1) for computable constants
µ, σ2 > 0. The main results used in this section are Theorem 2.23 of [11] (adapted
in this paper as Theorem 3). In order to decide whether σ2 > 0 we can either
calculate it directly or use Lemma 4. For example, we can check the conditions
of Lemma 4 with the help of small values of n,m, k. This applies for all kinds
of graphs and parameters we consider here. However, in any case (if σ2 = 0 or
σ2 > 0.) these parameters are concentrated around its expected value.

The parameters discussed in this section are the number of edges, the number
of blocks and the number of cut-vertices. All these parameters can be encoded in
the generating function framework of the form

G(z, v) = exp(C(z, v)), C•(z, v) = F (C•(z, v); z, v)
for the labelled case, and

G̃(z, v) = exp
(∑

k≥1
C̃(zk, vk)/k

)
, C̃•(z, v) = F (C̃•(z, v); z, v)

for the unlabelled case. In both cases, z marks vertices and v marks the parameter
under study. The singularity curve z = ρ(v) for the GF associated to general graphs
is the same as the one for connected graphs, because both functions exp and exp
are analytic functions. As a consequence, the same limit law holds for both general
and connected graphs (hence we can restrict our study to connected graphs). In
order to study these limit laws we analyse the characteristic system

(15) y = F (y; z, v), 1 =
∂F

∂y
(y; z, v).

Observe that we recover the univariate system y = F (y; z), 1 = ∂F/∂y(y; z) by
evaluating (15) at v = 1. For the classes under study we have shown that this
univariate system of equations is analytically well-founded (in the sense of Defini-
tion 1), hence by Theorem 2, y(z, 1) is the unique solution and has a square-root
expansion around its smallest real singularity. This expansion can be extended to
a real neighbourhood of v = 1 with expression y(z, v).

In this section we obtain the exact parameters for the labelled case. Unfortu-
nately in the unlabelled framework there are no explicit formulas for the expectation
and the variance, hence we content ourselves with the normal condition derived from
Theorem 3 combined with Lemma 4. Finally, local limit laws are also discussed for
these parameters.

7.1. The labelled case. The labelled case have been partially treated in [21]. In
this section we rediscover these results using a different and more general argument.
Recall that τ = C•(ρ) is the unique solution of the equation yB′′(y) = 1 on the
region where B(y) is analytic, and ρ is the radius of convergence of C(z).

We use a secondary variable v to mark edges. For a graph class G we write
G = ∪n,mGn,m, where n denotes the number of vertices and m denotes the number
of edges. We define the bivariate generating function as

G(z, v) =
∑

n,m

1

n!
|Gn,m|znvm.

The series is exponential according to the (labelled) vertices and ordinary according
to the (unlabelled) edges. A similar definition can be stated for both connected and



ASYMPTOTIC STUDY OF SUBCRITICAL GRAPH FAMILIES 25

2-connected graphs in G (C(z, v) and B(z, v) respectively). For a block-stable graph
class G, the block-decomposition translates to

C•(z, v) = z exp(B′(C•(z, v), v)),
where B′(z, v) denotes the derivative of B(z, v) with respect to the first variable.
Observe that we need to deal with the bivariate GF associated to 2-connected graphs
of the class. All subcritical classes under study are subclasses of planar graphs,
hence the number of edges is linear. Consequently the subcritical condition is stable
under a slight variation of v around v = 1. We denote by B′v(z, v) = ∂

∂vB′(z, v), the
derivative of B′(z, v) with respect to the second variable.

The next parameter considered is the number of blocks, which is coded by the
following equation

C•(z, u) = z exp (uB′(C•(z, u))) ,
where the secondary variable u marks the number of blocks. Finally, for the number
of separating vertices, also called cut-vertices, we consider the bivariate GF

C•(z, w) = z w (exp (B′ (C•(z, w)))− 1) + z.

Observe however that w does not mark exactly the number of separating vertices,
as the root-vertex is always considered as a cut-vertex. However, the limit law for
the number of cut-vertices does not depend on the behaviour of a single vertex.

All the results are contained in Table 2. Despite the methodology used here
(direct application of Theorem 3) is different from the one of [21], the parameters
we obtain are the same.

Parameter F (y; z, v) µ σ2

Edges z exp(B′(y, v)) B′v(τ, 1) 1− (τB′′

v (τ,1))2

1+τ2B′′′(τ)

Blocks z exp(vB′(y)) log
(

τ
ρ

)
log
(

τ
ρ

)
− 1

1+τ2B′′′(τ)

Cut-vertices zv (exp(B′(y))− 1) + z
(
1− ρ

τ

) (
ρ
τ

)2 ( τ
ρ − 1− 1

1+τ2B′′′(τ)

)

Table 2. Parameters with the corresponding value of µ and σ2.

7.2. The unlabelled case. The same results used in the labelled framework work
for GFs in the unlabelled case, and Theorem 3 assures the asymptotic normal limit
distributions (with a non-vanishing variance) for these parameters. However, we
cannot obtain closed expressions (as the ones in Table 2) for both the expectation
and the variance of the resulting random variables, due to the Pólya operator.

Using the techniques introduced in Section 9 one can find numerical approxima-
tions for the derivatives of the function F (y; z, v). Such computations are conducted
in [4] for the number of edges in random unlabelled outerplanar graphs.

7.3. Local limit laws. In addition to the central limit laws described above, (much
stronger) local limit laws hold for the parameters under study, either in the labelled
or the unlabelled framework. The main results used here are (6) and the asymptotic

estimates for both [zn]C•(z) and [zn]C̃•(z). For conciseness, we state the result for
connected graphs, but a similar result is also valid for general graphs.
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Theorem 19. Let G be a subcritical graph class with the property that [zn]C(z) > 0
for n ≥ n0. Let Xn be a random variable for a graph parameter studied above (the
number of edges, blocks, or cut-vertices) defined on a random uniformly distributed
connected graph of G on n vertices and assume that σ2 > 0. Let m = µn+O(n1/2).
Then

P (Xn = m) =
1

2πσ2n
e−(m−µn)2/(2σ2n)

(
1 +O(n−1/2)

)
.

8. Degree distribution

In this section we discuss the degree distribution of graphs of a subcritical graph

family. We denote by Xk
n and X̃k

n the random variables which count the number of

vertices of degree k in a randomly chosen member of size n of the family G and G̃,
respectively. We further denote by dk and d̃k the probability that the root vertex

of a randomly chosen member of G′ or G̃′ is k. The main tool to obtain asymptotic
results is the analogue on systems of equations of Theorem 3.

8.1. The labelled case. Consider the series

B′
j(z,v) =

∑

n,n1,...,nk,n∞

b′j;n;n1,...,nk,n∞
vn1

1 · · · vnk

k vn∞

∞

zn

n!
,

where we use the notation v = (v1, . . . , vk, v∞) and b′j;n;n1,...,nk,n∞

is the number
of derived 2-connected graphs with 1 + n = 1 + n1 + · · · + nk + n∞ vertices such
that one vertex of degree j is marked and the remaining n vertices are labelled by
1, 2, . . . , n and nℓ vertices have degree ℓ, 1 ≤ ℓ ≤ k, and n∞ vertices have degree
greater than k. By definition we have

B′(z) =
∑

2≤j≤∞

B′
j(z,1).

Hence the radius of convergence of the functions B′
j(z,1) is greater or equal than

the radius of convergence of B′(z).
We introduce an analogous series

C ′
j(z,v) =

∑

n,n1,...,nk,n∞

c′j;n;n1,...,nk,n∞
vn1

1 · · · vnk

k vn∞

∞

zn

n!
,

for derived connected graphs. For convenience, we set C ′
0(z,v) = 1, which cor-

responds to the case of a graph consisting of a single derived vertex. We further
set

B′(z, w) =
∑

j

B′
j(z,1)w

j =
∑

n,j

b′n,jz
nwj ,

and b′n,j is the number of derived 2-connected graphs with n + 1 vertices such
that one vertex of degree j is marked and the remaining n vertices are labelled by
1, 2, . . . , n. Analogously, we define the function C ′(z, w) =

∑
j C

′
j(z,1)w

j . Accord-
ing to the block decomposition of connected graphs

C ′(z, w) = exp(B′(zC ′(z), w)).

In the following, we set B′
j(z) := B′

j(z,1). We will also use the series B(z,v), which
is the refined version of the generating function B(z) of unrooted blocks taking into
account all vertex degrees.
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Theorem 20. Let G be a family of random subcritical graphs (such that [zn] C(z) >
0 for n ≥ n0) and G′ be its derived family. Then for k fixed,

(1) the limiting probability dk that the pointed vertex of a member of G′ has
degree k exists and is given by

dk = ρ

(
k∑

i=1

∂

∂z
B′

i(z)
∣∣
z=ρC′(ρ)

C ′
k−i(ρ)

)
.

(2) the random variable Xk
n that counts the number of vertices of degree k in a

randomly chosen member of G satisfies a central limit theorem with mean
EXk

n = dkn+O(1) and variance VarXk
n = σ2

kn+O(1).

Proof of Theorem 20 (1). We use the following lemma, which makes it easy to com-
pute dk. The proof is the same as the one for [11, Theorem 9.17])

Lemma 21. The generating function p(w) =
∑

dkw
k satisfies

p(w) = ρeB
′(z,w) ∂

∂z
B′(z, w)

∣∣∣∣
z=ρC′(ρ)

,

and p(1) = 1, thus the dk’s define indeed a probability distribution.

Therefore, we have

dk = [wk]p(w) = [wk]ρeB
′(z,w) ∂

∂z
B′(z, w)

∣∣∣∣
z=ρC′(ρ)

= ρ

(
k∑

i=0

[wk−i]eB
′(z,w)[wi]

∂

∂z
B′(z, w)

)∣∣∣∣
z=ρC′(ρ)

=

(
k∑

i=1

∂

∂z
B′

i(z)[w
k−i]

(
1 +

∑

k

B′
k(z)w

k +
(
∑

k B
′
k(z)w

k)2

2
+ · · ·

))∣∣∣∣
z=ρC′(ρ)

=

(
k∑

i=1

∂

∂z
B′

i(z)

(
k−i∑

m=1

∑

l1+···lm=k−i

Bl1(z) · · ·Blm(z)

))∣∣∣∣
z=ρC′(ρ)

.

From there the result follows, as the second term is exactly the representation of a
connected graph of root degree k−i according to the block decomposition, evaluated
at z = ρ. �

Proof of Theorem 20 (2). First we derive a system of functional equations which is
satisfied by C ′

j = C ′
j(z,v), and is refinement of

C•(z) = z exp(B′(C•(z))).

Lemma 22. Let Wj = Wj(z,v;C
′
1, . . . , C

′
k, C

′
∞), j ∈ {1, 2, . . . , k, ∞} defined by

Wj =

k−j∑

i=0

vi+jC
′
i(z,v) + v∞




k∑

i=k−j+1

C ′
i(z,v) + C ′

∞(z,v)


 , 1 ≤ j ≤ k,

W∞ = v∞

(
k∑

i=0

C ′
i(z,v) + C ′

∞(z,v)

)
.
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Set W = (W1, . . . ,Wk,W∞). Then the series C ′
1, . . . , C

′
k, C

′
∞ satisfy the system of

equations

C ′
j(z,v) =

∑

ℓ1+···jℓj=j

j∏

r=1

B′
r(z,W)ℓr

ℓr!
, 1 ≤ j ≤ k,

C ′
∞(z,v) = exp

(
k∑

j=1

B′
j(z,W) +B′

∞(z,W)

)
− 1−

∑

1≤ℓ1+···kℓk≤k

k∏

r=1

B′
r(z,W)ℓr

ℓr!
.

Proof. As already indicated, the proof is a refined version of the functional equation
fulfilled by C•(z), which reflects the decomposition of a derived connected graph
into a finite set of derived 2-connected graphs, where every vertex (different from
the root) is substituted by a derived connected graph. The functions Wj serve
the purpose of marking (recursively) the degree of the vertices in the 2-connected
blocks which are substituted by other graphs. In the definition of Wj , the summa-
tion means that we are substituting a vertex of degree i, but since originally the
vertex had degree j, we are creating a new vertex of degree i+ j, which is marked
accordingly by vi+j . The analogous holds for W∞. �

To prove Theorem 20 (2) we observe

C ′(z) =
∑

0≤j≤∞

C ′
j(z,1).

Furthermore, since the above system of equations is strongly connected, all func-
tions C ′

j(z,1) have the same radius of convergence as C ′(z), as mentioned in Section
3.2. By assumption this radius of convergence is smaller than the radius of con-
vergence of B′(z). Hence, by stability if v is sufficiently close to 1 then the the
singularities of B′

j and C ′
j do not interfere, in particular we can apply Theorem 2

and obtain that all functions C ′
j have a square-root singularity. Finally, let

C(k)(z, v) =
∑

n,m

ck;n,mvm
zn

n!

be the generating function for the numbers ck;n,m of unrooted connected outerpla-

nar graphs of size n with m nodes of degree k. Then C(k)(z, v) satisfies

∂C(k)(z, v)

∂z
=

k−1∑

j=1

C ′
j(z, 1, . . . , 1, v, 1) + vC ′

k(z, 1, . . . , 1, v, 1) + C ′
∞(z, 1, . . . , 1, v, 1),

and thus C(k)(z, v) has a singular expansion of order 3
2 around v = 1. Furthermore,

the central limit theorem for the number of vertices of given degrees with mean µkn
and variance σ2

kn follows by the analogue of Theorem 3 for systems of equations.
It immediately follows that dk = µk as there are exactly n possible ways to root
an unrooted object of size n at one of the vertices and thus the probability that
a random vertex has degree k is exactly the same as the probability that the root
vertex has degree k. Despite that, we could also use formula (7) to compute µk, we
would obtain the same value as for dk here.

�
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8.2. The unlabelled case. We introduce cycle index sums

ZB̃′

j
(s1, s2, . . . ; v1,1, v1,2, . . . ; . . . ; vk,1, vk,2, . . . ; v∞,1, v∞,2, . . .)

for the class of pointed blocks, where the pointed vertex has degree j and is not
counted, and where the variables vi,j count the cycles of length j of vertices of degree
i, and v∞,j counts those vertices of degree greater than k. As in Section 8.1 let v =

(v1, . . . , vk, v∞). Denote the corresponding OGFs by B̃′
j(z,v), j ∈ {1, . . . , k,∞}

and let

B̃′(z,v) :=

k∑

j=2

vjB̃
′
j(z,v) + v∞B̃′

∞(z,v).

Note that

ZB̃′(s1, s2, . . . ; 1, 1, . . . ; . . . ; 1, 1, . . . ; 1, 1, . . .) = ZB̃′(s1, s2, . . .),

and thus the singularity ρ1(v) of B̃
′(z,v) is the same as that of B̃′(z) at v = 1, and

ρ1(v) is the dominant singularity of the system B̃′(z,v) = (B̃′
j(z,v))j∈{1,...,k,∞}.

We now introduce the multivariate generating functions

C̃ ′
j(z,v) =

∑

n;n1,...,nk,n∞

c̃i;n;n1,...,nk,n∞
vn1

1 · · · vnk

k vn∞

∞ zn

where the coefficient c̃i;n;n1,...,nk,n∞
denotes the number of elements of size n of C′,

where the pointed vertex has degree j and with ni, i ∈ {1, . . . , k}, vertices of degree
i and n∞ vertices of degree greater than k. We further set

B̃′(z, w) =
∑

j

B̃′
j(z,1)w

j =
∑

n,j

b̃′n,jz
nwj

and

C̃ ′(z, w) =
∑

j

C̃ ′
j(z,1)w

j =
∑

n,j

c̃′n,jz
nwj .

As we need cycle indices for the block decomposition, we set

ZB̃′(s1, s2, . . . ;w) =
∑

j

ZB̃′

j
(s1, s2, . . .)w

j .

Note that the variable w, which counts the degree of the root, is not involved in
any permutation cycle. Then,

C̃ ′(z, w) = exp


∑

ℓ≥1

1

ℓ
ZB̃′(z

ℓC ′(zℓ), z2ℓC ′(z2ℓ), . . . ;wℓ)


 .

Theorem 23. Let G̃ be a family of random subcritical graphs (such that [zn] C(z) >
0 for n ≥ n0) and G̃′ be it’s derived family. Further, let d̃k be the limiting probability

that the root vertex of a member of G̃′ has degree k and let X̃k
n be the random variable

that counts the number of vertices of degree k in a randomly chosen member of G̃.
Then

(1) d̃k = ρ
(∑k

i=1
∂
∂zZB̃′

i
(z, ρ2C̃ ′(ρ2), ρ3C̃ ′(ρ3), . . .)

∣∣
z=ρC′(ρ)

C ′
k−i(ρ)

)
.

(2) X̃k
n satisfies a central limit theorem with mean EX̃k

n = µ̃kn + O(1) and

variance Var X̃k
n = σ̃2

kn+O(1).
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Remark 24. In the unlabelled case, we cannot expect that µ̃k equals d̃k, as vertex-
rooting is only possible at fixed points of permutations, and thus in unlabelled graphs

ng̃n 6= g̃′n.

Proof of Theorem 23 (1). The proof is based on the following lemma:

Lemma 25. The generating function p̃(w) =
∑

d̃kw
k is equal to

ρ
∂

∂u
exp


ZB̃′(u, z

2C ′(z2), . . . ;w) +
∑

ℓ≥2

1

ℓ
ZB̃′(z

ℓC ′(zℓ), z2ℓC ′(z2ℓ), . . . ;wℓ)


 ,

and p̃(1) = 1. That is, it defines indeed a probability distribution.

Proof. We use [11, Lemma 2.26] with

f(z, w) = zC ′(z),

H(z, w, u) = exp


ZB̃′(u, z

2C ′(z2), . . . ;w) +
∑

ℓ≥2

1

ℓ
ZB̃′(z

ℓC ′(zℓ), . . . ;wℓ)


 ,

and the same line of reasoning as in [11, Theorem 9.17] proves the first part of the
lemma. For p̃(1) = Hu(ρ, 1, ρC

′(ρ)) we obtain

ρC ′(ρ)
∂

∂u
ZB̃′(u, ρ

2C ′(ρ2), . . .)

∣∣∣∣
u=ρC′(ρ)

= 1

by the implicit function representation of C ′(z). �

Now we can determine d̃k = [wk]p̃(w), which is equal to

ρ [wk]


exp


∑

ℓ≥1

1

ℓ
ZB̃′(ρ

ℓC̃ ′(ρℓ), . . . ;wℓ)



(

∂

∂u
ZB̃′(u, ρ

2C̃ ′(ρ2), . . . ;w)

)

u=ρC′(ρ)


 .

Recalling ZB̃′ =
∑

l≥1 ZB̃′

ℓ
, we obtain that the previous expression can be written

ρ

k∑

i=1

∂

∂u
ZB̃′

i
(u, ρ2C̃ ′(ρ2), . . .)

∣∣
u=ρC′(ρ)

· [wk−i] exp


∑

ℓ≥1

1

ℓ
ZB̃′(ρ

ℓC̃ ′(ρℓ), . . . ;wℓ)


 .

Observe that the second term translates into C̃ ′
k−i(ρ), as the following equality

holds:

exp


∑

ℓ≥1

1

ℓ
ZB̃′(ρ

ℓC̃ ′(ρℓ), . . . ;wℓ)


 = C̃ ′(ρ, w) =

∑

j

C̃ ′
j(ρ,1)w

j =
∑

j

C̃ ′
j(ρ)w

j .

�

Proof of Theorem 23 (2). As in the labelled case, we observe that the functions

C̃ ′
j(z,v) satisfy a system of equations, using a refinement of the block decomposi-

tion. In the following we will denote by
∑k,∞

i=r Fi =
∑k

i=r Fi + F∞.
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Lemma 26. For each j = 1, 2, . . . , k,∞, let Wj be defined by

Wj(z,v) =

k−ℓ∑

i=0

vj+iC̃
′
j(z,v) + v∞




k,∞∑

i=k−j+1

C̃ ′
i(z,v)


 ,

W∞(z,v) = v∞

(
k,∞∑

i=0

C̃ ′
i(z,v)

)
.

Set Wj,i = Wj(z
i, vi1, . . . , v

i
k, v

i
∞) and

W(l) = (W1,l,W1,2l, . . . ; . . . ;Wk,l,Wk,2l, . . . ;W∞,l,W∞,2l, . . .).

We denote by Sn(s1, s2, . . .) the cycle index of the symmetric group on n elements.
Furthermore Sn[ZB] denotes the substitution sl ← ZB(sl, s2l, . . . ;W

(l)), l ≥ 1 in
Sn(s1, s2, . . .).

Then the series C̃ ′
1, . . . , C̃

′
k, C̃

′
∞ satisfy the system of equations

C̃ ′
j(z,v) =

∑

l1+2l2+···+jlj=j

j∏

r=1

Slr

[
ZB′

r

]
(si=zi)

, 1 ≤ j ≤ k

C̃ ′
∞(z,v) = exp


∑

l≥1

1

l

(
k∑

r=1

ZB′

r

(
zl, z2l, . . . ;W(l)

)
+ ZB′

∞

(
zl, z2l, . . . ;W(l)

))

−

∑

1≤l1+···+klk≤k

j∏

r=1

Slr

[
ZB′

r

]
(si=zi)

.

Remark 27. The functions Wj,i and thus the whole system can also be considered
in terms of cycle index sums, using the cycle index sum

ZC̃′

j
(s1, s2, . . . ; v1,1, v1,2, . . . ; . . . ; vk,1, vk,2, . . . ; v∞,1, v∞,2, . . .)

for rooted connected graphs. The root vertices in Wj,i are fixed and thus have cycle
length 1. We will need this terminology in the proof of Lemma 29.

Proof. As in the labelled case, we refine the recursive decomposition of graphs into
it’s 2-connected components. The functions Wj,i plays the analogous role as in the
labelled case, except that we need a second index for representing the cycles of

different length appearing in the cycle indices. This directly leads to C̃ ′
j(z,v) for

j = 1, . . . k. For C̃ ′
∞(z,v) we obtain

∑

(l1,l2,...,lk,l∞)

k∏

r=1

Slr

[
ZB′

r

(
z, z2, . . . ;W(1)

)]
Sl∞

[
ZB′

∞

(
z, z2, . . . ;W(1)

)]
−

∑

l1+...+klk≤k

k∏

r=1

Slr

[
ZB′

r

(
z, z2, . . . ;W(1)

)]
,

where the first sum rewrites into the exponential term appearing in C̃ ′
∞(z,v). �
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It is easily checked that the system is strongly connected as every C̃ ′
j(z,v)

depends on C̃ ′
∞(z,v) for j ∈ {1, . . . , k} and C̃ ′

∞(z,v) depends on all the values
j ∈ {1, . . . , k}. Obviously,

C̃ ′(z) =




k∑

j=1

vjC̃
′
j(z,v) + v∞C̃ ′

∞(z,v)



v=1

.(16)

Define

C̃ ′(z,v) :=

k∑

j=1

vjC̃
′
j(z,v) + v∞C̃ ′

∞(z,v).

Then the generating function of derived connected graphs of G̃, where the variable

v counts the nodes of degree k, is given by C̃ ′(k)(z, v) = C̃ ′(z,vk), where vk =
(1, 1, . . . , 1, v, 1).

Lemma 28. C̃ ′(k)(z, v) has a square-root singular expansion around its singularity
ρ2(v) in a neighbourhood of v = 1.

Proof. By Equation (16) the singularity of the system C̃′(z,v) at v = 1 is ρ2,

the same as that of C̃ ′(z). As the system is strongly connected, every C̃ ′
j(z,1)

has radius of convergence ρ2. Since C̃ ′(k)(z, 1) is a linear combination of these

functions, it has the same singularity, which fulfills ρ2C̃
′(ρ2) < ρ1 due to the sub-

criticality assumption. By the stability property of subcriticality it follows that

(C̃ ′(k)(z, v), B̃′(k)(z, v)) is subcritical near 1, and hence we obtain a square-root
singular expansion. �

Consider the cycles index sums

ZC̃(s1, s2, . . . ; v1,1, v1,2, . . . ; . . . ; vk,1, vk,2, . . . ; v∞,1, v∞,2, . . .)

for (unpointed) connected graphs of G̃. By taking s1 = s, si = zi for i ≥ 2,
vj,i = 1 for 1 ≤ j < k, i ≥ 1 and vk,i = vi for i ≥ 1 we obtain its corresponding

OGF C̃(k)(z, v) = ZC̃(z, z
2, . . . ; 1, 1, . . . ; . . . ; v, v2, . . . ; 1, 1, . . .), where the variable

v counts the nodes of degree k.

Lemma 29. C̃(k)(z, v) has a singular expansion of order 3
2 around its singularity

ρ2(v) in a neighbourhood of v = 1.

Proof. We have to express the system of equations in Lemma 26 in terms of cycle
index sums and analyze the trivariate generating functions

C̃(k)(s, z, v) = ZC̃(s, z
2, z3, . . . ; 1, 1, . . . ; . . . ; v, v2, . . . ; 1, 1, . . .).

Obviously, C̃(k)(z, z, v) = C̃(k)(z, v). Analogously we define C̃ ′(k)(s, z, v). We ob-
tain

C̃(k)(s, z, v) = C̃(k)(0, z, v) +

∫ z

0

C̃ ′(k)(s, z, v)ds,

by the same arguments as in Section 5. Due to stability, we obtain a square-

root singular expansion for C̃ ′(k)(s, z, v) as before, with a singular term of the
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form (1− s/ρ̄(z, v))1/2. Integration and subcriticality conditions lead to a singular
expansion of the form

C̃(k)(s, z, v) = a(s, z, v) + b(s, z, v)

(
1− s

ρ̄(z, v)

)3/2

.

At s = z we can represent the singular part as
(
1− z

ρ̄(z, v)

)3/2

= κ(z, v)

(
1− z

ρ̃2(v)

)3/2

,

with an analytic factor κ(z, v) and some analytic function ρ̃(v). Since the singular

manifold of C̃ ′(k)(s, z, v) is the same as that of C̃(k)(z, v), that is z = ρ̄(z, v) if and
only if z = ρ2(v), it follows that ρ̃(v) = ρ2(v). �

Now, with the singular expansion in ρ(v) given, we can immediately deduce a
central limit law by the analogue to Theorem 3 for systems of equations. �

To calculate µ̃k we can use Expression (7). The derivatives give

bTFv(C(ρ, 1); ρ, 1) =


E ·

k,∞∑

j=1

k∑

i=1

(B′
j)vi(z,W)yk−i



∣∣∣∣
(C(ρ,1);ρ,1)

,

bTFz(C(ρ, 1); ρ, 1) =


E ·

k,∞∑

j=1

(B′
j)z(z,W)



∣∣∣∣
(C(ρ,1);ρ,1)

,

where yk−i denotes the (k − i)-th coordinate of y satisfying y = F(y; z,v), (B′
j)vi

is the derivative of B′
j with respect to vi and E is the exponential term appearing

in C̃ ′
∞. As the formula includes all partial derivatives of (B̃′

j), we see that the

calculation of µ̃k will be very involved and it is (in general) not equal to d̃k.

9. Computing the growth rate

In this section we show how to compute the exponential growth of unlabelled
2-connected, connected and general SP-graphs, respectively. The main tool is the
decomposition grammar and the systems of functional equations developed in Sec-
tion 6.3.

We will first review the growth constants for subcritical classes of graphs in
Section 9.1. Next we will approximate the exponential growth for the number
of unlabelled SP-graphs in two steps: the first step for 2-connected unlabelled
SP-graphs (Section 9.2) and the second step for unlabelled connected SP-graphs
(Section 9.3). To this end, we start with a functional system of the form y =
FN (y; z), which is a truncated version (combined with iteration) of the original
functional system F(y; z) determining y and provides an approximation of y. The
solution of this system, together with the additional restriction given by a singular
equation (given by the determinant of the Jacobian of the previous system) gives
the desired growth constant.

The error introduced in the computations becomes smaller as soon as we take
a better approximation for y (in other words, more terms on the Taylor series of
its components). We refer the reader to [4] and [28], in which the authors study a
similar iterative scheme.
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9.1. Explicit growth constants. The computation of the growth constant for
the classes under study is based on the subcritical condition. In labelled case, the
singularity ρ is given by the equation ρ = τ exp (−B′(τ)), where τ is the small-
est solution of the equation yB′′(y) = 1. In case of unlabelled case, the growth
constants obtained earlier in the literature are based on explicit expressions for
ZB′(s1, s2, . . . ), e.g. the classes of cacti graphs and outerplanar graphs. Here we
will show how to derive the growth constants of SP graphs, even when there is not
an explicit expression for ZB′(s1, s2, . . . ).

We have shown in Theorem 15 that the asymptotic number of cacti, outerplanar
and SP graphs is of the form c n−5/2 ρ−n n! (1 + o(1)) in the labelled case and
is of the form c n−5/2 ρ−n (1 + o(1)) in the unlabelled case. In both cases (either
labelled or unlabelled) the subexponential term n−5/2 suggests that all these classes
have an arborescent structure. In Table 3 the exponential growth constant ρ−1 for
connected (and general) acyclic, cacti, outerplanar and SP-graphs are shown.

Family Labelled Unlabelled

Acyclic 2.71828 2.95577
Cacti 4.18865 4.50144

Outerplanar 7.32708 7.50360
Series-Parallel 9.07359 9.38527

Table 3. Exponential growth for distinct subcritical classes. All
constants are referred to connected and general classes.

9.2. Parameters for 2-connected SP-graphs. First we compute the growth
constant using the equations for networks (and related classes). Later, the re-
sulting singularity is transferred to the counting series of 2-connected SP-graphs
ZB(z, z

2, z3, . . . ).
Denote by ZS(s1, s2, . . . ), ZP(s1, s2, . . . ) and ZD(s1, s2, . . . ) the cycle index sums

associated to series, parallel and general networks. Let S(z) = ZS(z, z
2, . . . ),

P (z) = ZP(z, z
2, . . . ), D(z) = ZD(z, z

2, . . . ). As it is shown in Section 6, the
system of equations which defines series, parallel and general networks is

(17)





D(z) = 1 + S(z) + P (z),
S(z) = zD(z) (1 + P (z)) ,

P (z) = 2 exp
(∑

i≥1
1
iS

(i)(z)
)
− S(z)− 2.

Let U(z) = exp
(∑

i≥2
1
iS

(i)(z)
)
. This function is analytic at the singularity of

S(z). We can isolate S(z) from System (17) and obtain the implicit relation

S(z) = z (2 exp(S(z))U(z)− 1) (2 exp(S(z))U(z)− 1− S(z)) .

Observe that U(z) depends on S(z). In order to get an approximation of the
smallest singularity of S(z), we start looking for an approximation of S(z). This
can be done in the following way: let S0(z) = 0 and U0(z) = 1. Let N be a
positive integer. For a function f(z), analytic at the origin, define polN {f(z)} as
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the Taylor polynomial of degree N of f(z). Define Sk+1(z) and Uk+1(z) recursively
in the following way:
{

Sk+1(z) = polN {z (2 exp(Sk(z))Uk(z)− 1) (2 exp(Sk(z))Uk(z)− 1− Sk(z))} ,
Uk+1(z) = polN

{
exp

(∑N
i=2

1
iS

(i)
k+1(z)

)}
.

We stop when Sk−1(z) = Sk(z) (equivalently, when Sk(z) = polN{S(z)}). Denote

then u(z) = exp
(∑N

i=2
1
iS

(i)
k (z)

)
, and consider the solution s(z) of the equation

s(z) = z (2 exp(s(z))u(z)− 1) (2 exp(s(z))u(z)− 1− s(z)) .

Taking u(z) instead of U(z) introduces an error, which can be controlled in that the
larger N is, the smaller the error. Under these assumptions, s(z) is defined by an
equation of the form s = H(s; z), with H(y; z) = z(2 exp(y)u(z)−1)(2 exp(y)u(z)−
1 − y). Consequently, we find its smallest singularity by solving the characteristic
system y = H(y; z), 1 = Hy(y; z). In Table 4 the values obtained for several choices
are shown. In particular, one can observe that the accuracy in the computation are
improved by increasing the order of truncation.

N Singular point (ρ)

5 0.12421863192426192376
10 0.12419919715484630978
20 0.12419909378526277564
50 0.12419990937841528588

Table 4. Values for N and the corresponding value for ρ.

These computations give the truncated value of z, ρ1 ≈ 0.12420. This constant
is slightly smaller than the one which is obtained in the labelled case (whose value
is approximately 0.12800. See [5]). This singularity is the same for the parallel
family and for general networks. Using the same ideas one finds that the smallest
singularity for exchanging poles networks is strictly bigger than ρ1. Consequently,
applying the transfer theorems of singularity analysis we conclude that the number

b̃n of 2-connected unlabelled series-parallel graphs on n vertices is

b̃n = b̃ n−3/2 γn
1 (1 + o(1)),

where γ1 = ρ−1
1 ≈ 8.05159 and b̃ is a constant.

9.3. Parameters for connected SP-graphs. In order to approximate the growth
constant for connected SP-graphs, we need to refine the analysis over the cycle in-
dex sum for pointed 2-connected unlabelled SP-graphs, which is defined in terms
of simpler pointed classes using the dissymmetry theorem for tree-decomposable
structures developed in [8]. In particular, we have that ZB′ = ℓ′ + Z, where

Z = ZR + ZM − ZR−M.

Here ℓ′ refers to a pointed link-graph (with cycle index sum s1), and ZR, ZM,
ZR−M are the cycle index sums associated to the classes of pointed 2-connected
graphs with a pointed R-brick, a pointedM-brick and an a pointed edge R−M
in the associated RMT -tree (see [8] for proper definitions). Each one of these
series can be written in terms of the cycle index sum associated to series networks,
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general networks and networks which remains invariant when a change of the pole
is applied. Denoting these series by ZS , ZD and ZD, respectively, we get

(18)





ZR = 1
2

(
s21 (ZD − ZS)

2
ZD + s2

(
Z

(2)
D − Z

(2)
S

)
ZD

)

ZM = s1

(
2 exp

(∑
i>0

1
iZ

(i)
S

)
− 2− 2ZS − 1

2

(
Z2
S + Z

(2)
S

))

ZR−M = s1ZS

(
2 exp

(∑
i>0

1
iZ

(i)
S

)
− 2− ZS

)

Recall that in the previous equation Z
(i)
⋆ = Z⋆(si, s2i, . . . ). We denote by F (z)

the solution of the equation F (z) = z exp(ZB′(F (z), F (z2), . . . )) (exp denotes
the Polya operator for sets in the unlabelled framework). This equation can be
written in the following way: write J(z) = ZB′(F (z), F (z2), . . . ) and A(z) =

exp
(∑

i≥2
1
i J
(
zi
))

. Consequently, F (z) = z exp (J(z))A(z). We define S(z) =

ZS(F (z), F (z2), . . . ) and S(z) = ZS(F (z), F (z2), . . . ). Define also the following

functions: E(z) = exp
(∑

i≥1
1
2iS
(
z2i
))

, M(z) = exp
(∑

i≥1
1

2i+1S
(
z2i+1

))
, and

G(z) = exp
(∑

i≥2
1
i S
(
zi
))

. Observe that all A(z), E(z), G(z) and M(z) are ana-

lytic functions at the singularity of F (z) (which is the same singularity as the one
of J(z)). With these definitions and using System (18) we get the following system
of equations:

J(z) = z exp(J(z))A(z) +

(z exp(J(z))A(z) (2 exp(S(z))G(z)− 1− S(z)))
2
(exp(S(z))G(z)− 1/2) +

F (z2)
(
2 exp(S(z2))G(z2)− 1− S

(
z2
)) (

E(z)M(z) exp(S(z))− 1/2
)
+

z exp(J(z))A(z)
(
2 (exp(S(z))G(z)− 1− S(z))−

(
S(z)2 + S

(
z2
))

/2
)
−

z exp(J(z))A(z)S(z) (2 exp(S(z))G(z)− 2− S(z))

S(z) = (2 exp(S(z))G(z)− S(z)− 1) z exp(J(z))A(z) (2 exp(S(z))G(z)− 1)

S(z) =
(
2 exp(S

(
z2
)
)G
(
z2
)
− 1
)
z exp(J(z))A(z) +

(
2 exp(S

(
z2
)
)G
(
z2
)
− 1
)
F (z2)

(
2E(z)M(z) exp(S(z))− 1− S(z)

)
.

By a fixed-point argument we are able to compute from this system the first terms
in the Taylor development of the series which appear in the previous equations.
The procedure is the same way as in Section 9.2 (taking, for instance, the initial
conditions A(z) = E(z) = G(z) = M(z) = 1 and F (z) = S(z) = S(z) = 0). Later,
we consider the simplified system in which we approximate all analytic functions
by their Taylor series, up to a prescribed index. Consequently, the reduced system
can be written in the compact form (J, S, S) = F(J, S, S; z). In order to find the
critical points, we consider the associated singular system of equations, which is
obtained from the system (J, S, S) = F(J, S, S; z) by considering the determinant of
its Jacobian.

Solving this system using a symbolic manipulator (for instance, Maple), we get
that the singular value of z is ρ2 ≈ 0.10655 for a truncation to order N = 50.
Hence, the numbers c̃n and g̃n of unlabelled connected and general SP-graphs on n
vertices are

c̃n = c̃ n−5/2 γn
2 (1 + o(1)), g̃n = g̃ n−5/2 γn

2 (1 + o(1)),

where γ2 ≈ 9.38527 and c̃, g̃ are constants.
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