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Abstract

Many efficient super-resolution methods have been presented in the past for

improving resolution of images degraded by global blurs. Unfortunately, in

video, more complex situations can be observed where local blurs appear in

each frame which are mainly caused by object motions. To address this prob-

lem, we propose in this article a local super-resolution method which allows

the restoration of such local blurs. Moreover, the motion of objects in video

sequences may be very complex and particularly in very low-resolution se-

quences it is difficult to estimate their motion exactly enough to superimpose

them for super-resolution. To this end, we present a generic method: An in-

terpolation method is proposed to improve the resolution of moving objects

and we derive from this a super-resolution method for the scene background.
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1. Introduction1

Super-resolution (SR) is the process of combining a sequence of low-2

resolution (LR) images in order to produce a higher resolution image or3

sequence, the so-called SR image or sequence. SR is still a very active re-4

search area due to ever expanding application domains. For instance, SR5

methods have been adopted for still construction from video [38], video for-6

mat conversion [30], demosaicking [26], improving the video resolution in a7

camera [4], reduction of compression artifacts [16], and deinterlacing [37]. A8

good overview of existing SR approaches is given in [36, 14] for raw video9

and in [41] for compressed video.10

Even though powerful SR methods have been presented, only few of them11

address the problem of estimating and restoring spatially variant blurs. These12

blurs are mainly caused by object motions or atmospheric turbulence. One of13

the first methods for object-based SR was presented in [23] where an object14

with dominant motion is tracked over several frames assuming 2D parametric15

motion to improve its resolution. However, the method does not account for16

local blurs. The general approach of [3] is similar to [23], but incorporates17

motion blurring. The authors of [12] propose a SR method accounting for18

motion blur by extending the method [38] to the case of multiple moving19

objects in the scene. In [13], the method [12] is reused in the context of20

mesh-based object representation. For both, results are only shown for rigid21

objects. Other methods use optical flow to describe object motion [30] or22

atmospheric distortions [51]. A gradient-based shift estimator is used in [48]23

for object motion. Moreover, in [48, 31] the problem of super-resolving very24

small objects is addressed. The authors of [48] state that for small moving25
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objects the amount of information inside the moving object is too small for26

appropriate registration. In order to overcome this problem, they propose a27

polygon-based SR approach [49] in order to super-resolve very small objects.28

Nevertheless, they still assume rigid object motion. [31] proposes to super-29

resolve small objects by non-uniform interpolation followed by restoration.30

Objects are assumed to undergo affine motion, but the problem of local blur31

is neglected, the shape of the object is approximated by a rectangle and needs32

to be initialized by the user. A different approach to handle object motions33

are block-based methods such as [4, 2]. Recently, a new class of local SR34

methods have been derived from noise filters such as moving least squares35

[6], kernel regression [45], non-local means [39], or restoration filters like the36

Wiener filter [19]. [32] proposes a SR method based on locally adaptive37

bilateral total variation in order to keep edges sharp and flat regions smooth.38

As this kind of approaches are at the beginning of investigation, few of them39

account for local motion [39, 45] and none for local blur.40

The motion of objects in real video sequences can be very complex. For41

example consider the sequence shown in Fig. A.4(a) with a walking person42

undergoing local motions. Particularly in the case of very LR images the43

objects are typically represented by only few pixels. For that reason, it is44

very difficult to estimate the motion of moving objects and to superimpose45

them accurately enough for SR, as also stated in [48]. Thus, the computation46

of a parametric motion model [23, 31] or optical flow [30] is not appropriate47

in that case. Furthermore, in contrast to [48, 49] where rigid object motion48

is assumed, our aim is to propose a generic method which can handle small49

objects with complex motions. Therefore, we present in this paper an inter-50
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polation method to improve the the resolution of moving objects and derive51

from this a SR method to super-resolve the scene background.52

Recently, blind SR has become in the focus of interest [44, 35, 20, 21].53

That means that the blur function and its parameters used in the SR process54

are estimated from the image data itself. Typically, the proposed SR meth-55

ods rely on blind deconvolution methods. Although several methods for blind56

deconvolution have been proposed [28, 29, 7], at present only few methods57

have been presented for the case of spatially variant blurs as well. In [46],58

the image scene is segmented into regions where the blur is approximated as59

locally spatial invariant. The authors of [34] assume piece-wise constant blur60

functions which are stitched together by interpolation to obtain a continuous61

blur function. The method presented in [47] allows the blur to vary at each62

pixel location whereas the blur size is derived from the estimated displace-63

ment vector. In [1], a framework is presented which jointly handles motion64

estimation, moving object detection, and motion blur deconvolution. A mo-65

tion blur model is incorporated which is consistent at motion singularities66

(caused by the moving object occluding and uncovering the background),67

but the method can only handle one single moving object. The method of68

[8] estimates motion blur kernels, segmentation, and motion simultaneously69

allowing multiple moving objects. A different approach is presented in [43]70

where blur variations due to different depths are considered. The method71

[25] computes the motion blur from a transparency map. In [22, 18], a block-72

based method for local blur restoration is presented. The authors of [10]73

present a method to track motion-blurred targets in video. To this end, local74

motion blurs are identified by a learning-based scheme.75
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In our recent work [27], we presented an efficient SR method for the blind76

restoration of global blurs due to the camera motion. The main drawback of77

this method is that restoration is performed in frequency domain which does78

not allow for processing local blurs. Here, we address these shortcomings.79

The SR method we present in this article performs restoration in spatial80

domain and thus enables the restoration of local blurs induced by the motion81

of objects. Based on a segmentation of moving objects, our SR method is82

able to estimate and locally restore blur. To this end, we extend our blur83

estimation method [27] for global motion blur due to the camera motion to84

the case of local blurs. This enhanced method can handle both, motion blur85

of the camera occurring in the static scene background and motion blurs of86

various moving objects.87

We apply our SR method to the construction of super-resolved mosaics88

(SR mosaicing) from compressed video. The construction of mosaics from89

compressed video has become important as still new application domains90

emerge. First of all, a mosaic image can be efficiently used for visually sum-91

marizing compressed video content which is our case. Furthermore, mosaic-92

ing, specifically for compressed content, is a powerful tool for the reconstruc-93

tion of a global scene view from compressed LR videos captured with mobile94

phones, e.g. document images [17]. In both applications SR mosaicing is a95

must for the efficient use of LR video data.96

This article is organized as follows: In Sect. 2, we present the estimation of97

local blurs, namely on moving objects and the scene background, and the SR98

method which allows their restoration. Some results are shown and discussed99

in Sect. 3. Conclusions and perspectives are given in Sect. 4. Moreover,100
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Appendix A presents the derivation of our SR method.101

2. Local Object-based Super-resolution102

As stated above, it is very difficult to superimpose moving objects in103

very LR images. To this end, we propose to super-resolve separately mov-104

ing objects and the scene background. This requires preliminary motion105

estimation in order to determine the geometric transformations of the back-106

ground between the images of the sequence and the reference image, as well107

as segmentation and tracking of moving objects. Here, we suppose that this108

is already accomplished. We used [27] for registration and [33] for moving109

object segmentation and tracking.110

2.1. Local Super-resolution in Spatial Domain111

Basic iterative restoration techniques can be easily adapted to the case

of local blurs. For this reason, we chose the basic iterative image restoration

method [9, 24] as a basis for our SR algorithm. In order to derive from [9, 24]

(see also Appendix A) a SR method to restore local blurs, we formulate a

degradation model for an arbitrarily shaped region of interest (ROI) consid-

ering local motion and downsampling. Indeed, the image formation model

[9, 24] was formulated for an ideal unknown image and its observed blurred

version of the same resolution. In our case, when zooming on the mosaic,

the ideal image is of high resolution, namely SR, and its observed blurred

version is of LR. Hence, the ROI in the LR image G can be modelled as:

G = S−1.B ∗ [T.F ] + V (1)

6



where F is the ROI in the SR image, B the point spread function (PSF)112

defining the blur of the ROI, T the geometric transformation describing the113

local motion of the ROI, S−1 the downsampling operator by the factor z,114

and V the noise.115

Based on this degradation model, we derive an iterative algorithm to

restore and increase the resolution of a ROI:

F i = F i−1 + T−1.S
(

G− S−1
[

B ∗
(

T.F i−1
)])

(2)

where F i is the ROI in the SR image at the ith iteration and S the upsampling116

operator. The proof can be found in Appendix A.1.117

Considering a sequence of K LR images where each frame represents the

same ROI G(k), 1 ≤ k ≤ K, the following iterative SR algorithm can be

derived from (2) for a SR mosaic (see Appendix A.2):

M i = M i−1 + µ(K)
K
∑

k=1

T−1(k).S
(

G(k)− S−1
[

B(k) ∗
(

T (k).M i−1
)]

)

(3)

where M i is the ROI in the SR mosaic at the ith iteration and µ(p, K) = 1
|p|

118

with |p| as the number of available pixels at position p. We can notice that119

this equation is quite similar to the SR method we presented in [27], but the120

restoration operator is absent. The advantage here is, if we can identify the121

blurring operator, the restoration is straight forward and does not require122

the synthesis of a restoration filter as e.g. in the case of Wiener filtering.123

A problem in (2) and (3) is that B is defined for the SR image which is

unknown. Our objective is to directly use the LR PSF instead of making an
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assumption on it for the SR image as we did in [27]. It can be shown that

for small blurs (see Appendix A.3):

(S−1.B) ∗ (S−1.F ) ≈
1

z
S−1(B ∗ F ) (4)

This relation means that the convolution of LR image with the LR PSF can124

be approximated for small blurs by 1/z times the downsampled blurred SR125

image. Thus, 1/z corresponds to a normalization factor. Since we use a126

normalized convolution mask it is omitted in our computations.127

Taking into account (4), we can reformulate the Eqs. (2) and (3). Fur-128

thermore, the additional problem of strong aliasing occurs in very LR im-129

ages. This means that images can not be exactly superimposed on edges130

and textures in the SR method and a strong motion compensation error131

G(k) − [(S−1.B(k)) ∗ (S−1.T (k).M i−1)] results in such regions. This error132

amplifies along the iterations and causes spurious artefacts in the SR mo-133

saic. To mitigate these artefacts, we incorporate the regularization operator134

A [27] in the SR method (3) which penalizes the contribution of edges and135

textures. The Eqs. (2) and (3) become:136

F i = F i−1 + T−1.S
(

G−
[

(S−1.B) ∗
(

S−1.T.F i−1
)])

(5)

M i = M i−1 + µ(K)

K
∑

k=1

T−1(k).S.A(k)
(

G(k)−
[(

S−1.B(k)
)

∗
(

S−1.T (k).M i−1
)]

)

(6)
137

Note, that T in (5) is not used for motion compensation, but for the estima-138

tion of the local blur B as we will describe below. Moreover, there is no need139

for A in (5) because its computation is based on motion compensation.140

In fact, the Eqs. (5) and (6) resemble the steepest descent algorithm [11].141
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If we solve Eq. (1) in the least-square sense and apply the steepest descent142

algorithm, there will be a convolution with the transposed PSF BT before S143

in the Eqs. (5) and (6). Thus, our method is less costly than the steepest144

descent algorithm as one convolution at high resolution is omitted. Similar145

to [24] and the steepest descent algorithm, we introduced a gain factor β1146

and β2 in the Eqs. (5) and (6) respectively.147

2.2. Local Blur Estimation148

Thanks to moving object segmentation we already know the regions of149

local blurs contrary to [10]. We assume like in [46] that the blur in the150

segmented regions can be locally approximated by a spatially invariant blur151

model. Thus, the shape of the blur operator is unknown beforehand and its152

parameters can vary in each image. Blur can be due to different reasons such153

as motions due to the camera or objects, out-of-focus, the imaging system, or154

compression. Thus, the overall blur corresponds to the sum of the different155

blurs. Therefore, we consider three different PSFs.156

Isotropic Gaussian. It is modelled by a 2D Gaussian function:

BGauss2D(x, y, σα) =
1

2πσ2
α

exp
− 1

2

(

x
2+y

2

σ
2
α

)

(7)

where σα is the standard deviation in motion direction.157

Anisotropic Gaussian in motion direction. The anistropic Gaussian in

motion direction can be expressed as [15]:

BGauss(x, y, σα, σα⊥, α) =
1

2πσασα⊥

exp
− 1

2

(

(x cosα+y sinα)2

σ
2
α

+
(−x sinα+y cosα)2

σ
2
α⊥

)

(8)
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where σα⊥ is the standard deviation in orthogonal motion direction. BGauss158

is anisotropic when σα 6= σα⊥.159

Linear motion blur. Let v be the velocity of the motion according to the

direction d. Then, the PSF in motion direction for linear motion is:

Bbox(ν) =

∫ E/2

−E/2

δ(ν − vt) dt (9)

where E is the exposure time and ν is the directional variable.160

Let us consider a displacement vector d in motion direction developed as

d = ~dx + ~dy where ~dx and ~dx are the components in x-y orthogonal basis.

We suppose that this motion is translational. Let us denote by α the angle

with the x-axis (see Fig. 1(b)), then the 1D motion blur in d direction can be

represented as a composition of two motion blurs in horizontal and vertical

direction:

Bbox(x, y) =

∫ E/2

−E/2

δ (x− v cos(α)t) dt ·

∫ E/2

−E/2

δ (y − v sin(α)t) dt (10)

Here v cos(α) and v sin(α) respectively represent the horizontal and verti-

cal components, vx and vy, of the velocity v (orthogonal projection). Hence:

Bbox(x, y, bx, by) =

∫ E/2

−E/2

δ (x− bx) dt ·

∫ E/2

−E/2

δ (y − by) dt (11)

with b as the size of the blur in motion direction with bx, by as its horizontal161

and vertical components, and bx = vxt and by = vyt.162

The problem now consists in estimating the parameters σα, σα⊥, bx, by163

of Eqs. (7), (8), and (11). Assuming that b = 3σ (3σ-property), all blur164
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models are defined by the blur sizes b, bx, by, and b⊥ which is the blur165

size in orthogonal motion direction. To estimate these blur sizes, we extend166

our global blur estimation method [27] which is based on the computation167

of the edge response in motion direction only on edges orthogonal to the168

motion direction. Similarly to [47], the motion vector dictates the direction169

of the blur. For local blur estimation, we distinguish two cases: (i) the170

blur estimation for the background and (ii) the blur estimation for a moving171

object. Thus, we propose an adaptation of our blur estimation method [27]172

for each case.173

In order to estimate the blur parameters of the image background, we174

only take into account the pixels belonging to the scene background obtained175

from moving object segmentation. We first locate edges by computing the176

first derivative∇G of the LR image G using the Sobel operator. Non-maxima177

suppression and a threshold are applied to the gradient magnitude in order178

to extract significant edges E∇. To determine the edges which are orthogonal179

to the motion direction, E∇,⊥, we compute the angle between the gradient180

and the motion vector d and retain only the pixels for which the angle is181

smaller than a threshold. The motion vector d is known from the geometric182

transformation resulting from motion estimation T and thus no additional183

computation is needed to determine the direction of the blur.184

For each point of E∇,⊥ a local estimation of the edge response is accom-185

plished. The edges in a blurred image have the form shown in Figure 1(a).186

They are limited by a local minimum and a local maximum determining the187

rise of the edge. Then, the width of the edge response e is defined by the 10%188

to 90%-distance [42]. Let m denote the position in the LR image G which189
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indicates the center of the edge, situated between the local minimum and the190

local maximum. A discrete straight line segment on a pixel grid according191

to the direction d is considered, centered on m. The local maximum and192

minimum are searched along the line segment in the LR image G. Then, the193

10% and 90%-limits can be determined using the same method.194

The local edge response in motion direction e(m), m ∈ E∇,⊥, is computed195

as the Euclidean distance between the 10% and 90%-limits. Now, its hori-196

zontal and vertical components, ex(m) and ey(m), can be determined using197

trigonometric triangle rules. Finally, b, bx, by are, respectively, computed as198

the average of local values e(m), ex(m), ey(m) for all m ∈ E∇,⊥. We compute199

b⊥ in the same way than to b, but we use the orthogonal vector of d in the200

computations in order to compute the edge response of in orthogonal motion201

direction on edges in motion direction. The result is a locally constant PSF202

of the background.203

In the case of very LR, objects are typically represented by only few204

pixels. Therefore, an edge detection inside the object is not reasonable and205

we directly use the boundary of the segmented region as significant edges206

E∇. To determine the motion vector d at each pixel of the object boundary,207

a rough guess of the motion is sufficient which can be obtained from object208

tracking. Furthermore, the computations of the edge response and the blur209

sizes are the same as described for the background.210

2.3. Convolution of the ROI211

Instead of convolving the ROI with a 1D convolution kernel in motion di-212

rection which is complex and costly, e.g. in [47] bilinear interpolation is used213

to compute the convolution in motion direction, we propose here to compute214
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a 2D convolution kernel using the horizontal and vertical components of the215

blur size, bx and by, and compute then a traditional convolution.216

We denote K as the 2D convolution kernel of the size Kx × Ky. In the

case of the Gaussian blur model, we determine the kernel size with respect

to the 3σ-property:

Kx = ⌈3σα⌉+ 1 = ⌈bx⌉+ 1 Ky = ⌈3σα⊥⌉+ 1 = ⌈by⌉+ 1 (12)

where σα = σα⊥ = σα for the isotropic Gaussian, and ⌈·⌉ is the ceil operator.217

Kx does not necessarily equal Ky in case of the anisotropic model. Never-218

theless, we fix 3 × 3 as the minimum size of the kernel in both cases. We219

prefer a slightly larger convolution kernel, therefore also the ceil operator, to220

avoid a hard cut-off of the convolution kernel. Then, having determined the221

size of the kernel K, its values K(x, y) are computed by Eq. (7) for isotropic222

Gaussian and by Eq. (8) for the anisotropic Gaussian. K is normalized af-223

terwards.224

In case of linear motion blur the kernel is computed as:

Kx = round(bx) + 1 Ky = round(by) + 1 (13)

K(x, y) =











0.5 if round(bx) even and x = 0 or x = Kx − 1

0.5 if round(by) even and y = 0 or y = Ky − 1

1 otherwise
(14)

Then, K is normalized. We choose 3× 1 or 1× 3 as the minimum kernel size225

depending on whether bx > by or not. It happens that bx < 1 and by < 1 in226

our computations since bx and by are, respectively, computed as the average227

of several estimated values. Thus, fixing the minimal the kernel size to 3× 1228
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or 1×3 for the linear motion blur means that we make the critical assumption229

that there is a minimal blur of one pixel in horizontal or vertical direction230

in the ROI. Using this blur model we can not treat blur sizes smaller than231

one pixel due to the discretisation as the linear motion blur is a constant232

function. This is different for the Gaussian blur model. As the Gaussian is a233

continuous declining function, we can handle blur sizes smaller than 1. This234

only results in a value near 1 in the center of the convolution kernel and in235

small values near 0 at the borders.236

The segmented objects can be of arbitrary form with irregular boundaries.237

For the convolution on object boundaries, we chose MPEG-4-like padding238

for boundary macroblocks [40] to extrapolate the object in the region of239

undetermined pixels underlying the convolution mask.240

3. Results241

In this section, we show some results obtained using the presented SR242

method for mosaic construction of compressed video. We evaluate the con-243

vergence of our algorithms using quadratic error measures and analyze the re-244

sults in terms of visual quality, spectrum widening and computational times.245

3.1. Mosaic Construction246

We used DC images of MPEG-2 compressed streams as LR image se-247

quence. They are a good example of very LR images as they are 8-fold248

smaller than the original frames. They are strongly aliased, and contain blur249

due to camera or object motions, and block averaging during compression.250

For registration, moving object segmentation and tracking, we refer the read-251

ers to [27] and [33] respectively. The SR background mosaic is constructed252
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using (6), some of the foreground objects are restored using (5) and inserted253

into the SR background mosaic. We used a zoom factor z = 2 for all exper-254

iments. Then, the resulting mosaic gives an appropriate scene overview for255

video summarization.256

In some cases, additional postprocessing is applied. First, holes can ap-257

pear in the mosaic due to the exclusion of objects during the blending. As258

they are usually of small size, we interpolate the lacking pixels from the259

neighborhood. Furthermore, to remove visual artefacts in the vicinity of260

background borders, we apply a simple median filtering which removes high261

frequency noise while preserving edges. Finally, the insertion of an object262

causes typically seams at the borders of the object. For realistic object in-263

sertion, we apply a 3× 3 mean filter on the object borders.264

3.2. Evaluation of the Proposed Method265

The quadratic error measure for the SR background mosaic (6) is:

ǭi =
1

K

K
∑

k=1

(

1

N(k)

∑

m

∥

∥G(m, k)−
[(

S−1.B(k)
)

∗
(

S−1.T (k).M i−1
)]

(m)
∥

∥

2

)

(15)

where N(k) is the number of pixels m in G(k). We consider color images266

G(k) and compute here the squared norm of vector difference. We use the267

error measure (15) additionally as stopping criterion for (6). The maximum268

number of iterations is achieved when ǭ converges.269

Similarly, we define an error criterion for moving objects (see Eq. (5)):

ǫi =
1

N

∑

m

∥

∥G(m)−
[

(S−1.B) ∗
(

S−1.T.F i−1
)]

(m)
∥

∥

2
(16)

where N is the number of pixels m in G.270
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Since the type of blur is unknown in our LR image sequence and to test271

the performance of the blur models in our SR method, we compare the PSFs272

presented in Sect. 2.2. Fig. 2(a) shows the graphs of error measures for273

the three different PSFs for the restoration of the background mosaic of the274

sequence “Comportements”. One image of the LR sequence is illustrated in275

(a). The anisotropic Gaussian PSF BGauss gives the best results according276

to error measure ǭ. The isotropic Gaussian PSF BGauss2D is close to the277

BGauss as we deal only with small blur in this sequence. The result obtained278

with the linear motion blur PSF Bbox is not satisfying. This is due to the279

discretization of the convolution kernel. We made the assumption that at280

least one pixel blur appears in horizontal or vertical direction. As there is281

only small blur in this sequence (b < 1), the blur model is not appropriate282

and ringing artefacts appear in the mosaic. For all blur models convergence is283

achieved after few iterations. The error measure (16) of the object restoration284

is shown in Fig. 2(b). We observe similar characteristics for the three PSFs.285

Fig. A.4 shows some results of mosaic construction for the sequence ”Com-286

portements”. The corresponding computational times1 are shown in Tab. 1.287

The initial mosaic (initial background mosaic combined with the bilinearly288

interpolated object) before applying the SR method is shown in (b). Its result289

after applying our method is shown in (c) which is much less blurred (see also290

the difference image (c)). If we compare the spectrum (b) and (c), we can291

see that the spectrum has widened after SR. There is only an increase of 8s292

for the iterations of the SR algorithm. This means that the concatenation of293

1They were obtained on a 3.2 GHz Intel Core 2 Duo processor using a non optimized
C++ code and the VXL image library [50].
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motion models in the geometric transform and motion compensation vector294

field computation is quite expensive. The motion estimation method we used295

computes a motion model for each I- and P-Frame. However, DC images are296

extracted at I-Frame basis, so that for each pair of DC images 5 motion mod-297

els have to be concatenated. The use of another motion estimation method298

might improve those computational times.299

Method Iterations Time

(b) Initial mosaic 0 13.34s
(c) Proposed method 19 (+9) 16.36s
(d) Accelerate gradient descent 18 (+19) 18.74s
(e) Upsampled mosaic + deblurring 0 3.84s
(f) Downsampled frames 0 13.98s

Tab. 1: Computational times for the SR mosaics of Fig. A.4.

To improve the computational times of the SR iterations we implemented300

the gradient descent algorithm for the L2-norm of Eq. (2) for the objects and301

for the background mosaic similar to [11]. In [5], it was shown that the con-302

jugated gradient method is much slower than the steepest descent method,303

but the accelerate gradient descent was shown to be two times faster than304

the steepest descent method. Therefore, we compare our method with an ac-305

celerate gradient scheme similar to that one of [5]. The gradient is computed306

at the initial point and we keep the same gradient while the error functional307

decreases. The result is shown in (d). Visually there is no difference with308

respect to our method, Moreover, the computational time is the higher be-309

cause on the one hand its needs more iterations until convergence and on310

the other hand it is more complex due to an additional convolution with the311

transposed PSF and convolution at high resolution.312
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Additionally, we show in (e) the result for the interpolated mosaic con-313

structed at LR which was deblurred afterwards by a pseudo-inverse filter. We314

used the isotropic Gaussian PSF and the parameters were estimated from the315

interpolated mosaic itself [27]. The result is not satisfying as strong ringing316

artefacts appear on the image border as well on strong edges (also visible317

in the difference image). This is due to the restoration which causes an318

amplification of lower and middle frequencies, but a cutoff of high frequen-319

cies. The computational time is low as the computation of motion vector320

fields is achieved at LR, and the computation of regularization operator and321

iterations of the SR algorithm are omitted.322

Furthermore, we show the mosaic constructed from downsampled full-323

resolution frames in (e). Downsampling was achieved by a Gaussian pyramid.324

If we compare the resulting mosaic with that one obtained by the proposed325

method, more less middle and high frequencies are present in the spectrum326

which lets the mosaic appear less sharper. In the difference image we notice327

an elevated error of the blue channel in the background which might be due328

to video compression.329

Fig. A.3 shows the result for the sequence ”Hiragasy” which contains two330

moving objects. One image of the LR sequence is illustrated in (a). We tested331

on this sequences as well the three blur models with similar results than for332

the previous example. The SR mosaic after 9 iterations for the background333

and 3 iterations for the objects of our method using the anisotropic Gaussian334

PSF is shown in (b). Both objects contain more high frequency details than335

in the LR image.336

We used β1 = 2.5 and β2 = 1.5 for the computation of the results shown337
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in Figs. A.3 and A.4. This choice seems to be a good compromise between338

precision and convergence for these images. If β1, β2 are chosen to small,339

convergence is very slow. If they are chosen to high, a high error of (15) and340

(16) results, and the SR mosaic is blurred.341

4. Conclusion and Perspectives342

We presented in this article a generic super-resolution method which per-343

forms blind restoration of local blurs in spatial domain. Thus, this method344

allows taking into account moving objects. Based on a segmentation of mov-345

ing objects, background and moving objects are processed separately. As346

it is often impossible in very low-resolution image sequence to superimpose347

moving objects accurately enough for super-resolution, we proposed an in-348

terpolation method to improve the resolution of moving objects and a super-349

resolution method for the scene background. Consequently, we proposed a350

blur estimation method to estimate local blurs in motion direction.351

We tested several blur functions in our restoration scheme. Best results352

were obtained for the anisotropic Gaussian blur whereas the results for the353

isotropic Gaussian blur were quite close. In case of small blurs, the linear mo-354

tion blur does not seem an appropriate blur model due to our discretization355

of the convolution kernel.356

Visual results are quite satisfying. High frequencies could be restored in357

our experiments for the background as well as moving objects. Computa-358

tional times are fast, but can still be improved by optimizing the source code.359

Our super-resolution method assumes that the type of the blur function is360

known. Thus, future work will focus on the computation of the blur function361
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from the low-resolution image itself.362

Appendix A. Proofs363

In this section, we present the mathematical derivation of the spatial

domain restoration methods presented in Sect. 2. Both methods are derived

from the deconvolution method [9, 24]. They model the blurred image as:

F̃ (γ) =

∫ +∞

−∞

F (x)B(γ − x) dx (A.1)

where F̃ is the blurred image, F the unknown optimal image and B the PSF.364

Then, by approximating successively the desired optimal image as:

F (γ) = F̃ (γ) + ∆(γ) (A.2)

The following iterative scheme results:

F i(γ) = F i−1(γ) +

[

F̃ (γ)−

∫ +∞

−∞

F i−1(x)B(γ − x) dx

]

(A.3)

In the following, we first derive the interpolation method (2) from the365

deconvolution method [9, 24]. Then, we derive the SR method (3) from the366

latter. Finally, we derive a relationship between the convolution of a LR367

image with a LR PSF and the downsampled blurred SR image.368

Appendix A.1. Image Interpolation369

Here, we demonstrate the derivation of the spatial domain restoration370

method (2) allowing to increase resolution from the successive approxima-371

tions (A.2). Therefore, we consider an extended image formation model372
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relating a SR image with a LR image by incorporating motion and down-373

sampling: SR image → motion → blur → downsampling → LR image374

Hence, we can rewrite Eqs. (A.1) and (A.2) as:375

G(y) = S−1

∫ +∞

−∞

(T.F (x))B(γ − x) dx (A.4)

F (γ) = T−1 (S.G(y) + ∆(γ)) (A.5)

where y is the position in the observed LR image G, γ is the corresponding376

position in the SR image F , T is the geometrical transformation from F377

to the G, T−1 is the inverse geometric transformation, S is the upsampling378

operator, S−1 is the downsampling operator, and B the PSF.379

Inserting (A.5) in (A.4):

G(y) = S−1

∫ +∞

−∞

(S.G(y))B(γ − x) dx+ S−1

∫ +∞

−∞

∆(x)B(γ − x) dx (A.6)

Denoting:380

G1(y) = S−1

∫ +∞

−∞
(S.G(y))B(γ − x) dx ∆(γ) =

∫ +∞

−∞
∆(x)B(γ − x) dx (A.7)

Then, (A.6) becomes:

G(y) = G1(y) + S−1.∆(γ) ⇔ ∆(γ) = S
(

G(y)−G1(y)
)

(A.8)

Inserting (A.8) in (A.5):

F (γ) = T−1.S.G(y) + T−1.S
(

G(y)−G1(y)
)

(A.9)
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Assuming that:

F 0(γ) = T−1.S.G(y) | T ⇔ T.F 0(γ) = S.G(y) (A.10)

Inserting in (A.7):

G1(y) = S−1

∫ +∞

−∞

(

T.F 0(x)
)

B(γ − x) dx (A.11)

Finally, we derive from (A.9):381

F i(γ) = F i−1(γ) + T−1.S

(

G(y)− S−1

∫ +∞

−∞

(

T.F i−1(x)
)

B(γ − x) dx

)

(A.12)
382

Appendix A.2. Super-resolution383

Here, we demonstrate the derivation of the SR method (3) from the

restoration method (A.12). Thus, we consider now a sequence of LR im-

ages Gk, 1 ≤ k ≤ K and rewrite (A.12) as:

F i
k(γ) = F i−1

k (γ) + T−1

k .S

(

Gk(y)− S−1

∫ +∞

−∞

(

Tk.F
i−1

k (x)
)

Bk(γ − x) dx

)

(A.13)

where Fk is the kth SR image, Gk is the kth LR image, Tk is the geometrical384

transformation from Fk to Gk, T
−1
k is the inverse geometric transformation,385

S is the upsampling operator, S−1 is the downsampling operator, and Bk the386

PSF of kth LR image.387

For the construction of the mosaic M , we assume:

M =
1

K

K
∑

k=1

Fk (A.14)

Thus (A.13) becomes:388
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1

K

K
∑

k=1

F i
j (γ) =

1

K

K
∑

j=1

(

F i−1

k (γ) + T−1

k .S

(

Gk(y)− S−1

∫ +∞

−∞

(

Tk.F
i−1

k (x)
)

Bk(γ − x) dx

))

⇔ M i(γ) = M i−1(γ) +
1

K

K
∑

j=1

T−1

k .S

(

Gk(y)− S−1

∫ +∞

−∞

(

Tk.F
i−1

k (x)

)

Bk(γ − x) dx

)

(A.15)

389

Assuming that Fk is a cut-out of M , then TkFk = TkM :390

M i(γ) = M i−1(γ) +
1

K

K
∑

k=1

T−1

k .S

(

Gk(y)− S−1

∫ +∞

−∞

(

Tk.M
i−1(x)

)

Bk(γ − x) dx

)

(A.16)
391

Appendix A.3. Relationship between Convolution at Low and High Resolution392

Our objective is to establish the relationship between S−1(B ∗ F ) and

(S−1.B) ∗ (S−1.F ) where ∗ is the convolution operator and S−1 is the down-

sampling operator by the factor z. Considering the PSF B and the SR image

F , then the blurred SR image F̃ is:

F̃ (γ) =

∫ +∞

−∞

F (x)B(γ − x) dx (A.17)

Denoting Bz and Fz as the subsamples of B(γ) and F (γ) by the factor z.

If we neglect the aliasing effect, then:

Bz(γ) = B(zγ) Fz(γ) = F (zγ) (A.18)

Denoting F̃z(γ) as the result of the convolution (S−1B) ∗ (S−1F ):393

F̃z(γ) =

∫ +∞

−∞

Fz(x)Bz(γ − x) dx =

∫ +∞

−∞

F (zx)B(z(γ − x)) dx

=

∫ +∞

−∞

F (zx)B(zγ − zx) dx =
1

z

∫ +∞

−∞

F (zx)B(zγ − zx) dzx (A.19)
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Replacing y = zx:394

F̃z(γ) =
1

z

∫ +∞

−∞

F (y)B(zγ − y)) dy =
1

z
F̃ (zγ)

⇔ (S−1.B) ∗ (S−1.F ) =
1

z
S−1(B ∗ F ) (A.20)

The constant 1/z corresponds to a normalization factor and in case of a395

normalized convolution mask it can be neglected. In reality, Eq. (A.20) is an396

approximation which only holds for small blurs as we did not consider the397

spectrum folding in Eq. (A.18).398
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Fig. A.1: (a) Edge response in motion direction of a blurred edge, (b) Computation of the
edge response in horizontal and vertical direction.
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Fig. A.2: The error measure versus the number of iterations for sequence “Comporte-
ments”: (a) for the background mosaic with β1 = 1, (b) for the moving object with
β2 = 1.

(a) (b)

Fig. A.3: Mosaicing results for the sequence “Hiragasy” (5 LR images): (a) one image of
the LR sequence, (b) the SR mosaic. c© CERIMES-SFRS
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Fig. A.4: Mosaicing results for the sequence “Comportements” (10 LR images): (a) one
image of the LR sequence, (b) the initial SR mosaic, (c) the SR mosaic for the proposed
method, (d) the SR mosaic for the accelerate gradient descent, (e) the upsampled LR mo-
saic after deblurring, (f) the mosaic constructed from downsampled full-resolution frames.
c© CERIMES-SFRS
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