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Many efficient super-resolution methods have been presented in the past for improving resolution of images degraded by global blurs. Unfortunately, in video, more complex situations can be observed where local blurs appear in each frame which are mainly caused by object motions. To address this problem, we propose in this article a local super-resolution method which allows the restoration of such local blurs. Moreover, the motion of objects in video sequences may be very complex and particularly in very low-resolution sequences it is difficult to estimate their motion exactly enough to superimpose them for super-resolution. To this end, we present a generic method: An interpolation method is proposed to improve the resolution of moving objects and we derive from this a super-resolution method for the scene background.

Introduction

Super-resolution (SR) is the process of combining a sequence of lowresolution (LR) images in order to produce a higher resolution image or sequence, the so-called SR image or sequence. SR is still a very active research area due to ever expanding application domains. For instance, SR methods have been adopted for still construction from video [START_REF] Patti | Superresolution video reconstruction with arbitrary sampling lattices and nonzero aperture time[END_REF], video format conversion [START_REF] Kunter | Super-resolution mosaicing for object based video format conversion[END_REF], demosaicking [START_REF] Komatsu | Super-resolution sharpening-demosaicking method for removing image blurs caused by an optical low-pass filter[END_REF], improving the video resolution in a camera [4], reduction of compression artifacts [START_REF] Gunturk | Multiframe resolutionenhancement methods for compressed video[END_REF], and deinterlacing [START_REF] Patti | Robust methods for high quality stills from interlaced video in the presence of dominant motion[END_REF]. A good overview of existing SR approaches is given in [START_REF] Park | Super-resolution image reconstruction: a technical overview[END_REF][START_REF] Farsiu | Advances and challenges in super-resolution[END_REF] for raw video and in [START_REF] Segall | High-resolution images from low-resolution compressed video[END_REF] for compressed video.

Even though powerful SR methods have been presented, only few of them address the problem of estimating and restoring spatially variant blurs. These blurs are mainly caused by object motions or atmospheric turbulence. One of the first methods for object-based SR was presented in [START_REF] Irani | Motion analysis for image enhancement: Resolution, occlusion, and transparency[END_REF] where an object with dominant motion is tracked over several frames assuming 2D parametric motion to improve its resolution. However, the method does not account for local blurs. The general approach of [3] is similar to [START_REF] Irani | Motion analysis for image enhancement: Resolution, occlusion, and transparency[END_REF], but incorporates motion blurring. The authors of [START_REF] Eren | Robust, object-based high resolution image reconstruction from low-resolution video[END_REF] propose a SR method accounting for motion blur by extending the method [START_REF] Patti | Superresolution video reconstruction with arbitrary sampling lattices and nonzero aperture time[END_REF] to the case of multiple moving objects in the scene. In [START_REF] Eren | Bi-directional 2-d mesh representation for video object rendering, editing and superresolution in the presence of occlusion[END_REF], the method [START_REF] Eren | Robust, object-based high resolution image reconstruction from low-resolution video[END_REF] is reused in the context of mesh-based object representation. For both, results are only shown for rigid objects. Other methods use optical flow to describe object motion [START_REF] Kunter | Super-resolution mosaicing for object based video format conversion[END_REF] or atmospheric distortions [START_REF] Yaroslavsky | Superresolution in turbulent videos: making profit from damage[END_REF]. A gradient-based shift estimator is used in [START_REF] Van Eekeren | Super-resolution on moving objects and background[END_REF] for object motion. Moreover, in [START_REF] Van Eekeren | Super-resolution on moving objects and background[END_REF][START_REF] Létienne | Fast super-resolution on moving objects in video sequences[END_REF] the problem of super-resolving very small objects is addressed. The authors of [START_REF] Van Eekeren | Super-resolution on moving objects and background[END_REF] state that for small moving objects the amount of information inside the moving object is too small for appropriate registration. In order to overcome this problem, they propose a polygon-based SR approach [START_REF] Van Eekeren | Multiframe superresolution reconstruction of small moving objects[END_REF] in order to super-resolve very small objects.

Nevertheless, they still assume rigid object motion. [START_REF] Létienne | Fast super-resolution on moving objects in video sequences[END_REF] proposes to superresolve small objects by non-uniform interpolation followed by restoration.

Objects are assumed to undergo affine motion, but the problem of local blur is neglected, the shape of the object is approximated by a rectangle and needs to be initialized by the user. A different approach to handle object motions are block-based methods such as [4,2]. Recently, a new class of local SR methods have been derived from noise filters such as moving least squares

[6], kernel regression [START_REF] Takeda | Super-resolution without explicit subpixel motion estimation[END_REF], non-local means [START_REF] Protter | Generalizing the non-local-means to super-resolution reconstruction[END_REF], or restoration filters like the Wiener filter [START_REF] Hardie | A fast image super-resolution algorithm using an adaptive wiener filter[END_REF]. [START_REF] Li | A multi-frame image superresolution method[END_REF] proposes a SR method based on locally adaptive bilateral total variation in order to keep edges sharp and flat regions smooth.

As this kind of approaches are at the beginning of investigation, few of them account for local motion [START_REF] Protter | Generalizing the non-local-means to super-resolution reconstruction[END_REF][START_REF] Takeda | Super-resolution without explicit subpixel motion estimation[END_REF] and none for local blur.

The motion of objects in real video sequences can be very complex. For example consider the sequence shown in Fig. A.4(a) with a walking person undergoing local motions. Particularly in the case of very LR images the objects are typically represented by only few pixels. For that reason, it is very difficult to estimate the motion of moving objects and to superimpose them accurately enough for SR, as also stated in [START_REF] Van Eekeren | Super-resolution on moving objects and background[END_REF]. Thus, the computation of a parametric motion model [START_REF] Irani | Motion analysis for image enhancement: Resolution, occlusion, and transparency[END_REF][START_REF] Létienne | Fast super-resolution on moving objects in video sequences[END_REF] or optical flow [START_REF] Kunter | Super-resolution mosaicing for object based video format conversion[END_REF] is not appropriate in that case. Furthermore, in contrast to [START_REF] Van Eekeren | Super-resolution on moving objects and background[END_REF][START_REF] Van Eekeren | Multiframe superresolution reconstruction of small moving objects[END_REF] where rigid object motion is assumed, our aim is to propose a generic method which can handle small objects with complex motions. Therefore, we present in this paper an inter-polation method to improve the the resolution of moving objects and derive from this a SR method to super-resolve the scene background.

Recently, blind SR has become in the focus of interest [START_REF] Sroubek | A unified approach to superresolution and multichannel blind deconvolution[END_REF][START_REF] Nguyen | A computationally efficient image superresolution algorithm[END_REF][START_REF] He | A regularization framework for joint blur estimation and super-resolution of video sequences[END_REF][START_REF] He | Blind super-resolution image reconstruction using a maximum a posteriori estimation[END_REF].

That means that the blur function and its parameters used in the SR process are estimated from the image data itself. Typically, the proposed SR methods rely on blind deconvolution methods. Although several methods for blind deconvolution have been proposed [START_REF] Kundur | Blind image deconvolution[END_REF][START_REF] Kundur | Blind image deconvolution revisited[END_REF][START_REF] Bronstein | Blind deconvolution of images using optimal sparse representations[END_REF], at present only few methods have been presented for the case of spatially variant blurs as well. In [START_REF] Trussell | Identification and restoration of spatially variant motion blurs in sequential images[END_REF], the image scene is segmented into regions where the blur is approximated as locally spatial invariant. The authors of [START_REF] Nagy | Restoring images degraded by spatially variant blur[END_REF] assume piece-wise constant blur functions which are stitched together by interpolation to obtain a continuous blur function. The method presented in [START_REF] Tull | Iterative restoration of fast-moving objects in dynamic image sequences[END_REF] allows the blur to vary at each pixel location whereas the blur size is derived from the estimated displacement vector. In [1], a framework is presented which jointly handles motion estimation, moving object detection, and motion blur deconvolution. A motion blur model is incorporated which is consistent at motion singularities (caused by the moving object occluding and uncovering the background), but the method can only handle one single moving object. The method of [START_REF] Cho | Removing non-uniform motion blur from images[END_REF] estimates motion blur kernels, segmentation, and motion simultaneously allowing multiple moving objects. A different approach is presented in [START_REF] Sorel | Space-variant restoration of images degraded by camera motion blur[END_REF] where blur variations due to different depths are considered. The method [START_REF] Jia | Single image motion deblurring using transparency[END_REF] computes the motion blur from a transparency map. In [START_REF] Hu | Adaptive image restoration based on local robust blur estimation[END_REF][START_REF] Har-Noy | Lcd motion blur reduction: A signal processing approach[END_REF], a blockbased method for local blur restoration is presented. The authors of [START_REF] Dai | Tracking motion-blurred targets in video[END_REF] present a method to track motion-blurred targets in video. To this end, local motion blurs are identified by a learning-based scheme.

In our recent work [START_REF] Krämer | Superresolution mosaicing from MPEG compressed video[END_REF], we presented an efficient SR method for the blind restoration of global blurs due to the camera motion. The main drawback of this method is that restoration is performed in frequency domain which does not allow for processing local blurs. Here, we address these shortcomings.

The SR method we present in this article performs restoration in spatial domain and thus enables the restoration of local blurs induced by the motion of objects. Based on a segmentation of moving objects, our SR method is able to estimate and locally restore blur. To this end, we extend our blur estimation method [START_REF] Krämer | Superresolution mosaicing from MPEG compressed video[END_REF] for global motion blur due to the camera motion to the case of local blurs. This enhanced method can handle both, motion blur of the camera occurring in the static scene background and motion blurs of various moving objects.

We apply our SR method to the construction of super-resolved mosaics (SR mosaicing) from compressed video. The construction of mosaics from compressed video has become important as still new application domains emerge. First of all, a mosaic image can be efficiently used for visually summarizing compressed video content which is our case. Furthermore, mosaicing, specifically for compressed content, is a powerful tool for the reconstruction of a global scene view from compressed LR videos captured with mobile phones, e.g. document images [START_REF] Hannuksela | Document image mosaicing with mobile phones[END_REF]. In both applications SR mosaicing is a must for the efficient use of LR video data. This article is organized as follows: In Sect. 2, we present the estimation of local blurs, namely on moving objects and the scene background, and the SR method which allows their restoration. Some results are shown and discussed in Sect. 3. Conclusions and perspectives are given in Sect. 4. Moreover, Appendix A presents the derivation of our SR method.

Local Object-based Super-resolution

As stated above, it is very difficult to superimpose moving objects in very LR images. To this end, we propose to super-resolve separately moving objects and the scene background. This requires preliminary motion estimation in order to determine the geometric transformations of the background between the images of the sequence and the reference image, as well as segmentation and tracking of moving objects. Here, we suppose that this is already accomplished. We used [START_REF] Krämer | Superresolution mosaicing from MPEG compressed video[END_REF] for registration and [START_REF] Manerba | Multiple moving object detection for fast video content description in compressed domain[END_REF] for moving object segmentation and tracking.

Local Super-resolution in Spatial Domain

Basic iterative restoration techniques can be easily adapted to the case of local blurs. For this reason, we chose the basic iterative image restoration method [START_REF] Cittert | Zum Einfluß der Spaltbreite auf die Intensitätsverteilung in Spektrallinien[END_REF][START_REF] Jansson | Method for determining the response function of a highresolution intrared spectrometer[END_REF] as a basis for our SR algorithm. In order to derive from [START_REF] Cittert | Zum Einfluß der Spaltbreite auf die Intensitätsverteilung in Spektrallinien[END_REF][START_REF] Jansson | Method for determining the response function of a highresolution intrared spectrometer[END_REF] (see also Appendix A) a SR method to restore local blurs, we formulate a degradation model for an arbitrarily shaped region of interest (ROI) considering local motion and downsampling. Indeed, the image formation model [START_REF] Cittert | Zum Einfluß der Spaltbreite auf die Intensitätsverteilung in Spektrallinien[END_REF][START_REF] Jansson | Method for determining the response function of a highresolution intrared spectrometer[END_REF] was formulated for an ideal unknown image and its observed blurred version of the same resolution. In our case, when zooming on the mosaic, the ideal image is of high resolution, namely SR, and its observed blurred version is of LR. Hence, the ROI in the LR image G can be modelled as:

G = S -1 .B * [T.F ] + V (1)
where F is the ROI in the SR image, B the point spread function (PSF)

defining the blur of the ROI, T the geometric transformation describing the local motion of the ROI, S -1 the downsampling operator by the factor z, and V the noise.

Based on this degradation model, we derive an iterative algorithm to restore and increase the resolution of a ROI:

F i = F i-1 + T -1 .S G -S -1 B * T.F i-1 (2)
where F i is the ROI in the SR image at the ith iteration and S the upsampling operator. The proof can be found in Appendix A.1.

Considering a sequence of K LR images where each frame represents the same ROI G(k), 1 ≤ k ≤ K, the following iterative SR algorithm can be derived from (2) for a SR mosaic (see Appendix A.2):

M i = M i-1 + µ(K) K k=1 T -1 (k).S G(k) -S -1 B(k) * T (k).M i-1 (3)
where M i is the ROI in the SR mosaic at the ith iteration and µ(p, K) = 1 |p| with |p| as the number of available pixels at position p. We can notice that this equation is quite similar to the SR method we presented in [START_REF] Krämer | Superresolution mosaicing from MPEG compressed video[END_REF], but the restoration operator is absent. The advantage here is, if we can identify the blurring operator, the restoration is straight forward and does not require the synthesis of a restoration filter as e.g. in the case of Wiener filtering.

A problem in (2) and (3) is that B is defined for the SR image which is unknown. Our objective is to directly use the LR PSF instead of making an assumption on it for the SR image as we did in [START_REF] Krämer | Superresolution mosaicing from MPEG compressed video[END_REF]. It can be shown that for small blurs (see Appendix A.3):

(S -1 .B) * (S -1 .F ) ≈ 1 z S -1 (B * F ) (4) 
This relation means that the convolution of LR image with the LR PSF can be approximated for small blurs by 1/z times the downsampled blurred SR image. Thus, 1/z corresponds to a normalization factor. Since we use a normalized convolution mask it is omitted in our computations.

Taking into account (4), we can reformulate the Eqs. ( 2) and (3). Furthermore, the additional problem of strong aliasing occurs in very LR images. This means that images can not be exactly superimposed on edges and textures in the SR method and a strong motion compensation error

G(k) -[(S -1 .B(k)) * (S -1 .T (k).M i-1 )
] results in such regions. This error amplifies along the iterations and causes spurious artefacts in the SR mosaic. To mitigate these artefacts, we incorporate the regularization operator A [START_REF] Krämer | Superresolution mosaicing from MPEG compressed video[END_REF] in the SR method (3) which penalizes the contribution of edges and textures. The Eqs.

(2) and (3) become:

F i = F i-1 + T -1 .S G -(S -1 .B) * S -1 .T.F i-1
(5)

M i = M i-1 + µ(K) K k=1 T -1 (k).S.A(k) G(k) -S -1 .B(k) * S -1 .T (k).M i-1 (6)
Note, that T in (5) is not used for motion compensation, but for the estimation of the local blur B as we will describe below. Moreover, there is no need for A in (5) because its computation is based on motion compensation.

In fact, the Eqs. ( 5) and (6) resemble the steepest descent algorithm [START_REF] Elad | A fast super-resolution reconstruction algorithm for pure translational motion and common space-invariant blur[END_REF].

If we solve Eq. (1) in the least-square sense and apply the steepest descent algorithm, there will be a convolution with the transposed PSF B T before S in the Eqs. ( 5) and (6). Thus, our method is less costly than the steepest descent algorithm as one convolution at high resolution is omitted. Similar to [START_REF] Jansson | Method for determining the response function of a highresolution intrared spectrometer[END_REF] and the steepest descent algorithm, we introduced a gain factor β 1 and β 2 in the Eqs. ( 5) and ( 6) respectively.

Local Blur Estimation

Thanks to moving object segmentation we already know the regions of local blurs contrary to [START_REF] Dai | Tracking motion-blurred targets in video[END_REF]. We assume like in [START_REF] Trussell | Identification and restoration of spatially variant motion blurs in sequential images[END_REF] that the blur in the segmented regions can be locally approximated by a spatially invariant blur model. Thus, the shape of the blur operator is unknown beforehand and its parameters can vary in each image. Blur can be due to different reasons such as motions due to the camera or objects, out-of-focus, the imaging system, or compression. Thus, the overall blur corresponds to the sum of the different blurs. Therefore, we consider three different PSFs.

Isotropic Gaussian. It is modelled by a 2D Gaussian function:

B Gauss2D (x, y, σ α ) = 1 2πσ 2 α exp -1 2 x 2 +y 2 σ 2 α (7)
where σ α is the standard deviation in motion direction.

Anisotropic Gaussian in motion direction. The anistropic Gaussian in motion direction can be expressed as [START_REF] Geusebroek | Fast anisotropic gauss filtering[END_REF]:

B Gauss (x, y, σ α , σ α⊥ , α) = 1 2πσ α σ α⊥ exp -1 2 (x cos α+y sin α) 2 σ 2 α + (-x sin α+y cos α) 2 σ 2 α⊥ ( 8 
)
where σ α⊥ is the standard deviation in orthogonal motion direction. B Gauss is anisotropic when σ α = σ α⊥ .

Linear motion blur. Let v be the velocity of the motion according to the direction d. Then, the PSF in motion direction for linear motion is:

B box (ν) = E/2 -E/2 δ(ν -vt) dt ( 9 
)
where E is the exposure time and ν is the directional variable.

Let us consider a displacement vector d in motion direction developed as 

d = d x +
B box (x, y) = E/2 -E/2 δ (x -v cos(α)t) dt • E/2 -E/2 δ (y -v sin(α)t) dt (10) 
Here v cos(α) and v sin(α) respectively represent the horizontal and vertical components, v x and v y , of the velocity v (orthogonal projection). Hence: The problem now consists in estimating the parameters σ α , σ α⊥ , b x , b y of Eqs. ( 7), [START_REF] Cho | Removing non-uniform motion blur from images[END_REF], and [START_REF] Elad | A fast super-resolution reconstruction algorithm for pure translational motion and common space-invariant blur[END_REF]. Assuming that b = 3σ (3σ-property), all blur models are defined by the blur sizes b, b x , b y , and b ⊥ which is the blur size in orthogonal motion direction. To estimate these blur sizes, we extend our global blur estimation method [START_REF] Krämer | Superresolution mosaicing from MPEG compressed video[END_REF] which is based on the computation of the edge response in motion direction only on edges orthogonal to the motion direction. Similarly to [START_REF] Tull | Iterative restoration of fast-moving objects in dynamic image sequences[END_REF], the motion vector dictates the direction of the blur. For local blur estimation, we distinguish two cases: (i) the blur estimation for the background and (ii) the blur estimation for a moving object. Thus, we propose an adaptation of our blur estimation method [START_REF] Krämer | Superresolution mosaicing from MPEG compressed video[END_REF] for each case.

B box (x, y, b x , b y ) = E/2 -E/2 δ (x -b x ) dt • E/2 -E/2 δ (y -b y ) dt (11 
In order to estimate the blur parameters of the image background, we only take into account the pixels belonging to the scene background obtained from moving object segmentation. We first locate edges by computing the first derivative ∇G of the LR image G using the Sobel operator. Non-maxima suppression and a threshold are applied to the gradient magnitude in order to extract significant edges E ∇ . To determine the edges which are orthogonal to the motion direction, E ∇,⊥ , we compute the angle between the gradient and the motion vector d and retain only the pixels for which the angle is smaller than a threshold. The motion vector d is known from the geometric transformation resulting from motion estimation T and thus no additional computation is needed to determine the direction of the blur. In the case of very LR, objects are typically represented by only few pixels. Therefore, an edge detection inside the object is not reasonable and we directly use the boundary of the segmented region as significant edges E ∇ . To determine the motion vector d at each pixel of the object boundary, a rough guess of the motion is sufficient which can be obtained from object tracking. Furthermore, the computations of the edge response and the blur sizes are the same as described for the background.

Convolution of the ROI

Instead of convolving the ROI with a 1D convolution kernel in motion direction which is complex and costly, e.g. in [START_REF] Tull | Iterative restoration of fast-moving objects in dynamic image sequences[END_REF] bilinear interpolation is used to compute the convolution in motion direction, we propose here to compute a 2D convolution kernel using the horizontal and vertical components of the blur size, b x and b y , and compute then a traditional convolution.

We denote K as the 2D convolution kernel of the size K x × K y . In the case of the Gaussian blur model, we determine the kernel size with respect to the 3σ-property:

K x = ⌈3σ α ⌉ + 1 = ⌈b x ⌉ + 1 K y = ⌈3σ α⊥ ⌉ + 1 = ⌈b y ⌉ + 1 ( 12 
)
where σ α = σ α⊥ = σ α for the isotropic Gaussian, and ⌈•⌉ is the ceil operator.

K x does not necessarily equal K y in case of the anisotropic model. Nevertheless, we fix 3 × 3 as the minimum size of the kernel in both cases. We prefer a slightly larger convolution kernel, therefore also the ceil operator, to avoid a hard cut-off of the convolution kernel. Then, having determined the size of the kernel K, its values K(x, y) are computed by Eq. ( 7) for isotropic Gaussian and by Eq. ( 8) for the anisotropic Gaussian. K is normalized afterwards.

In case of linear motion blur the kernel is computed as: The segmented objects can be of arbitrary form with irregular boundaries.

K x = round(b x ) + 1 K y = round(b y ) + 1 (13) K(x, y) =      0 
For the convolution on object boundaries, we chose MPEG-4-like padding for boundary macroblocks [START_REF] Richardson | H.264 and MPEG-4 Video Compression[END_REF] to extrapolate the object in the region of undetermined pixels underlying the convolution mask.

Results

In this section, we show some results obtained using the presented SR method for mosaic construction of compressed video. We evaluate the convergence of our algorithms using quadratic error measures and analyze the results in terms of visual quality, spectrum widening and computational times.

Mosaic Construction

We used DC images of MPEG-2 compressed streams as LR image sequence. They are a good example of very LR images as they are 8-fold smaller than the original frames. They are strongly aliased, and contain blur due to camera or object motions, and block averaging during compression.

For registration, moving object segmentation and tracking, we refer the readers to [START_REF] Krämer | Superresolution mosaicing from MPEG compressed video[END_REF] and [START_REF] Manerba | Multiple moving object detection for fast video content description in compressed domain[END_REF] respectively. The SR background mosaic is constructed using (6), some of the foreground objects are restored using (5) and inserted into the SR background mosaic. We used a zoom factor z = 2 for all experiments. Then, the resulting mosaic gives an appropriate scene overview for video summarization.

In some cases, additional postprocessing is applied. First, holes can appear in the mosaic due to the exclusion of objects during the blending. As they are usually of small size, we interpolate the lacking pixels from the neighborhood. Furthermore, to remove visual artefacts in the vicinity of background borders, we apply a simple median filtering which removes high frequency noise while preserving edges. Finally, the insertion of an object causes typically seams at the borders of the object. For realistic object insertion, we apply a 3 × 3 mean filter on the object borders.

Evaluation of the Proposed Method

The quadratic error measure for the SR background mosaic (6) is:

ǭi = 1 K K k=1 1 N (k) m G(m, k) -S -1 .B(k) * S -1 .T (k).M i-1 (m) 2 (15)
where N (k) is the number of pixels m in G(k). We consider color images G(k) and compute here the squared norm of vector difference. We use the error measure (15) additionally as stopping criterion for (6). The maximum number of iterations is achieved when ǭ converges.

Similarly, we define an error criterion for moving objects (see Eq. ( 5)):

ǫ i = 1 N m G(m) -(S -1 .B) * S -1 .T.F i-1 (m) 2 ( 16 
)
where N is the number of pixels m in G.

Since the type of blur is unknown in our LR image sequence and to test the performance of the blur models in our SR method, we compare the PSFs presented in Sect. 2.2. Fig. 2(a) shows the graphs of error measures for the three different PSFs for the restoration of the background mosaic of the sequence "Comportements". One image of the LR sequence is illustrated in (a). The anisotropic Gaussian PSF B Gauss gives the best results according to error measure ǭ. The isotropic Gaussian PSF B Gauss2D is close to the B Gauss as we deal only with small blur in this sequence. The result obtained with the linear motion blur PSF B box is not satisfying. This is due to the discretization of the convolution kernel. We made the assumption that at least one pixel blur appears in horizontal or vertical direction. As there is only small blur in this sequence (b < 1), the blur model is not appropriate and ringing artefacts appear in the mosaic. For all blur models convergence is achieved after few iterations. The error measure [START_REF] Gunturk | Multiframe resolutionenhancement methods for compressed video[END_REF] of the object restoration is shown in Fig. 2(b). We observe similar characteristics for the three PSFs. To improve the computational times of the SR iterations we implemented the gradient descent algorithm for the L2-norm of Eq. (2) for the objects and for the background mosaic similar to [START_REF] Elad | A fast super-resolution reconstruction algorithm for pure translational motion and common space-invariant blur[END_REF]. In [5], it was shown that the conjugated gradient method is much slower than the steepest descent method, but the accelerate gradient descent was shown to be two times faster than the steepest descent method. Therefore, we compare our method with an accelerate gradient scheme similar to that one of [5]. The gradient is computed at the initial point and we keep the same gradient while the error functional decreases. The result is shown in (d). Visually there is no difference with respect to our method, Moreover, the computational time is the higher because on the one hand its needs more iterations until convergence and on the other hand it is more complex due to an additional convolution with the transposed PSF and convolution at high resolution.

Additionally, we show in (e) the result for the interpolated mosaic constructed at LR which was deblurred afterwards by a pseudo-inverse filter. We used the isotropic Gaussian PSF and the parameters were estimated from the interpolated mosaic itself [START_REF] Krämer | Superresolution mosaicing from MPEG compressed video[END_REF]. The result is not satisfying as strong ringing artefacts appear on the image border as well on strong edges (also visible in the difference image). This is due to the restoration which causes an amplification of lower and middle frequencies, but a cutoff of high frequencies. The computational time is low as the computation of motion vector fields is achieved at LR, and the computation of regularization operator and iterations of the SR algorithm are omitted.

Furthermore, we show the mosaic constructed from downsampled fullresolution frames in (e). Downsampling was achieved by a Gaussian pyramid.

If we compare the resulting mosaic with that one obtained by the proposed method, more less middle and high frequencies are present in the spectrum which lets the mosaic appear less sharper. In the difference image we notice an elevated error of the blue channel in the background which might be due to video compression. We used β 1 = 2.5 and β 2 = 1.5 for the computation of the results shown in Figs. A.3 and A.4. This choice seems to be a good compromise between precision and convergence for these images. If β 1 , β 2 are chosen to small, convergence is very slow. If they are chosen to high, a high error of ( 15) and ( 16) results, and the SR mosaic is blurred.

Conclusion and Perspectives

We presented in this article a generic super-resolution method which performs blind restoration of local blurs in spatial domain. Thus, this method allows taking into account moving objects. Based on a segmentation of moving objects, background and moving objects are processed separately. As it is often impossible in very low-resolution image sequence to superimpose moving objects accurately enough for super-resolution, we proposed an interpolation method to improve the resolution of moving objects and a superresolution method for the scene background. Consequently, we proposed a blur estimation method to estimate local blurs in motion direction.

We tested several blur functions in our restoration scheme. Best results

were obtained for the anisotropic Gaussian blur whereas the results for the isotropic Gaussian blur were quite close. In case of small blurs, the linear motion blur does not seem an appropriate blur model due to our discretization of the convolution kernel.

Visual results are quite satisfying. High frequencies could be restored in our experiments for the background as well as moving objects. Computational times are fast, but can still be improved by optimizing the source code.

Our super-resolution method assumes that the type of the blur function is known. Thus, future work will focus on the computation of the blur function from the low-resolution image itself.

1 K K k=1 F i j (γ) = 1 K K j=1 F i-1 k (γ) + T -1 k .S G k (y) -S -1 +∞ -∞ T k .F i-1 k (x) B k (γ -x) dx ⇔ M i (γ) = M i-1 (γ) + 1 K K j=1 T -1 k .S G k (y) -S -1 +∞ -∞ T k .F i-1 k (x) B k (γ -x) dx (A.15)
Assuming that F k is a cut-out of M , then T k F k = T k M :

M i (γ) = M i-1 (γ) + 1 K K k=1 T -1 k .S G k (y) -S -1 +∞ -∞
T k .M i-1 (x) B k (γx) dx (A.16)

Appendix A.3. Relationship between Convolution at Low and High Resolution

Our objective is to establish the relationship between S -1 (B * F ) and 

  d y where d x and d x are the components in x-y orthogonal basis. We suppose that this motion is translational. Let us denote by α the angle with the x-axis (see Fig. 1(b)), then the 1D motion blur in d direction can be represented as a composition of two motion blurs in horizontal and vertical direction:

  ) with b as the size of the blur in motion direction with b x , b y as its horizontal and vertical components, and b x = v x t and b y = v y t.

For each point

  of E ∇,⊥ a local estimation of the edge response is accomplished. The edges in a blurred image have the form shown in Figure 1(a). They are limited by a local minimum and a local maximum determining the rise of the edge. Then, the width of the edge response e is defined by the 10% to 90%-distance [42]. Let m denote the position in the LR image G which indicates the center of the edge, situated between the local minimum and the local maximum. A discrete straight line segment on a pixel grid according to the direction d is considered, centered on m. The local maximum and minimum are searched along the line segment in the LR image G. Then, the 10% and 90%-limits can be determined using the same method. The local edge response in motion direction e(m), m ∈ E ∇,⊥ , is computed as the Euclidean distance between the 10% and 90%-limits. Now, its horizontal and vertical components, e x (m) and e y (m), can be determined using trigonometric triangle rules. Finally, b, b x , b y are, respectively, computed as the average of local values e(m), e x (m), e y (m) for all m ∈ E ∇,⊥ . We compute b ⊥ in the same way than to b, but we use the orthogonal vector of d in the computations in order to compute the edge response of in orthogonal motion direction on edges in motion direction. The result is a locally constant PSF of the background.

  .5 if round(b x ) even and x = 0 or x = K x -1 0.5 if round(b y ) even and y = 0 or y = K yis normalized. We choose 3 × 1 or 1 × 3 as the minimum kernel size depending on whether b x > b y or not. It happens that b x < 1 and b y < 1 in our computations since b x and b y are, respectively, computed as the average of several estimated values. Thus, fixing the minimal the kernel size to 3 × 1 or 1×3 for the linear motion blur means that we make the critical assumption that there is a minimal blur of one pixel in horizontal or vertical direction in the ROI. Using this blur model we can not treat blur sizes smaller than one pixel due to the discretisation as the linear motion blur is a constant function. This is different for the Gaussian blur model. As the Gaussian is a continuous declining function, we can handle blur sizes smaller than 1. This only results in a value near 1 in the center of the convolution kernel and in small values near 0 at the borders.

Fig. A. 4

 4 Fig. A.4 shows some results of mosaic construction for the sequence "Comportements". The corresponding computational times 1 are shown in Tab. 1.The initial mosaic (initial background mosaic combined with the bilinearly interpolated object) before applying the SR method is shown in (b). Its result after applying our method is shown in (c) which is much less blurred (see also the difference image (c)). If we compare the spectrum (b) and (c), we can see that the spectrum has widened after SR. There is only an increase of 8s for the iterations of the SR algorithm. This means that the concatenation of

Fig. A. 3

 3 Fig. A.3 shows the result for the sequence "Hiragasy" which contains two moving objects. One image of the LR sequence is illustrated in (a). We tested on this sequences as well the three blur models with similar results than for the previous example. The SR mosaic after 9 iterations for the background and 3 iterations for the objects of our method using the anisotropic Gaussian PSF is shown in (b). Both objects contain more high frequency details than in the LR image.

(S - 1 FFFzFF

 1 Fig. A.1: (a) Edge response in motion direction of a blurred edge, (b) Computation of the edge response in horizontal and vertical direction.

  Fig. A.2: The error measure versus the number of iterations for sequence "Comportements": (a) for the background mosaic with β 1 = 1, (b) for the moving object with β 2 = 1.

They were obtained on a 3.2 GHz Intel Core

Duo processor using a non optimized C++ code and the VXL image library[START_REF] Vxl | C++ Libraries for Computer Vision Research and Implementation[END_REF].

Appendix A. Proofs

In this section, we present the mathematical derivation of the spatial domain restoration methods presented in Sect. 2. Both methods are derived from the deconvolution method [START_REF] Cittert | Zum Einfluß der Spaltbreite auf die Intensitätsverteilung in Spektrallinien[END_REF][START_REF] Jansson | Method for determining the response function of a highresolution intrared spectrometer[END_REF]. They model the blurred image as:

where F is the blurred image, F the unknown optimal image and B the PSF.

Then, by approximating successively the desired optimal image as:

The following iterative scheme results:

In the following, we first derive the interpolation method (2) from the deconvolution method [START_REF] Cittert | Zum Einfluß der Spaltbreite auf die Intensitätsverteilung in Spektrallinien[END_REF][START_REF] Jansson | Method for determining the response function of a highresolution intrared spectrometer[END_REF]. Then, we derive the SR method (3) from the latter. Finally, we derive a relationship between the convolution of a LR image with a LR PSF and the downsampled blurred SR image. 

where y is the position in the observed LR image G, γ is the corresponding position in the SR image F , T is the geometrical transformation from F to the G, T -1 is the inverse geometric transformation, S is the upsampling operator, S -1 is the downsampling operator, and B the PSF.

Inserting (A.5) in (A.4):

Denoting:

Then, (A.6) becomes:

Inserting (A.8) in (A.5):

Assuming that:

Inserting in (A.7):

Finally, we derive from (A.9):

. Super-resolution

Here, we demonstrate the derivation of the SR method (3) from the restoration method (A.12). Thus, we consider now a sequence of LR images G k , 1 ≤ k ≤ K and rewrite (A.12) as:

where F k is the kth SR image, G k is the kth LR image, T k is the geometrical

S is the upsampling operator, S -1 is the downsampling operator, and B k the PSF of kth LR image.

For the construction of the mosaic M , we assume:

Thus (A.13) becomes:

Replacing y = zx:

The constant 1/z corresponds to a normalization factor and in case of a normalized convolution mask it can be neglected. In reality, Eq. (A.20) is an approximation which only holds for small blurs as we did not consider the spectrum folding in Eq. (A.18).