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Abstract—In component-based software engineering, software
architectures govern not only software development but also
software evolution. Indeed, to efficiently and accurately manage
software evolution and guarantee its quality, architecture models
should be at the core of the evolution process, be accurately
synchronized with the runtime systems and have their changes
and version information be completely tracked. As architecture
models are often captured by ADLs (Architecture Description
Languages), an ADL supporting architecture-centric evolution
is required. In this paper, we study how architecture-centric
evolution can be supported by the Dedal ADL. We thus propose
a dedicated CDL (Change Description Language) which models
architectural changes as first-class entities and describes them
from a semantic viewpoint.

I. INTRODUCTION

Component-based software development (CBSD) has been
thoroughly studied lately, but there has been less effort to
study component-based software evolution. Architecture are
”fundamental concepts or properties of a system in its en-
vironment embodied in its elements, relationships, and in the
principles of its design and evolution” [1]. Architecture-centric
evolution can both ease software evolution and make it more
controllable than code-based evolution by shifting abstraction
levels. For example, updating a software component to use a
newly available library can be easily achieved by changing its
architectural connections so that it is linked to the new library.
Focusing on high abstraction levels prevents developers from
having to delve into low-level component source code, which
is harder to understand and modify [2].

To efficiently and accurately manage software evolution
and its quality, architecture models must be the core of the
evolution process, be accurately synchronized with the runtime
system, and have their changes and version information be
completely tracked [3]. Software evolution can be triggered
from any architectural abstraction level of component-based
software as modeled in our Dedal ADL (architecture speci-
fication, architecture configuration or component assembly).
A change initiated on a given level might impact others in
a process called architectural co-evolution [3]. To track and
monitor changes during architecture model co-evolution, these

architectural changes firstly need to be explicitly expressed in
the ADL, as first-class entities.

In this paper, we introduce a CDL (Change Description
Language) dedicated to Dedal which models architectural
changes as first-class entities and describes them from a
semantic viewpoint. A version model is also proposed for
software architectures in Dedal that enables to track version
history at all levels.

The remaining of this paper is organized as follows.
Section II presents the context of software architectures in
component-based software development and evolution, and
describes the example used in the paper. Section III presents
how evolution is expressed in Dedal: its CDL and version
model. Section IV discusses existing ADLs how they support
architecture evolution expressions. Section V concludes with
future work directions.

II. SOFTWARE ARCHITECTURES IN CBSD

In this section, we present the context of software architec-
tures from both the development and evolution viewpoints. At
last, an illustrative example to be used throughout the paper
is introduced.

A. Software Architecture Description in Dedal
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Fig. 1. Component-based software development process



CBSD is characterized by its implementation of the ”reuse in
the large” principle. Reusing existing (off-the-shelf) software
components therefore becomes the central concern during
development. In the context of CBSD, traditional software
development life-cycles have to be adapted [4], [5]. Fig. 1
illustrates our vision of such a development life-cycle, with
the supporting Dedal ADL [6].

Our CBSD life-cycle deliberately focuses on the produced
artifacts: architecture models for each development step. Three
kinds of architecture models are produced:

1) Architecture specification. After a classical requirement
analysis step, architects establish the abstract archi-
tecture requirement model – architecture specification,
which are composed by abstract component types (as-
wished components) called component roles.

2) Architecture configuration. In a second step, architects
design the concrete architecture model, called architec-
ture configuration. To do so, he searches the component
repository and selects component classes that implement
the component roles that come from the specification,
and connect them with connector classes. These com-
ponent classes now are concrete component types (as-
found components).

3) Instantiated component assembly. In a third step, con-
figurations are instantiated into runtime models, called
instantiated component assemblies, and deployed to ex-
ecutable software applications. Instantiated component
assemblies are composed by component and connector
instances that are instantiated from the component and
connector classes.

B. Software Evolution in CBSD

Software system maintenance is a major phase in their life-
cycle as it is both technically challenging and costly relatively
to development. Indeed, software systems are always required
to evolve after their release, in order to correct bugs, improve
their performance, enhance their functionality, etc. Software
evolution is also tightly linked to software architectures. The
evolution that concerns a collection of software architectural
activities to change a software from its old version to a new
version and is activated by architecture changes is said to be
architecture-centric [7]. During architecture-centric evolution,
the architecture of a system can be modified at each of its lev-
els. Thus, as a prerequisite of architecture- centric evolution,
the applied architecture changes should be described together
with software architectures themselves, in ADLs, which gather
the important information on software architectures.

C. Example of a Bicycle Rental System

Fig. 2 shows the example used throughout the paper: the
architecture specification of a bicycle rental system (BRS). A
BikerGUI component manages a user interface. It cooperates
with a Session component which handles user commands.
The Session component in turn cooperates with the Account
and Bike&Course components to identify the user, check the
balance of its account, assign him an available bike and then

calculate the price of the trip when the rent bike is returned.
In the following sections, we will use a part of this system
(BikeCourse and BikeCourseDB) to illustrate our concepts.

The left part of Fig. 3 presents an architecture configuration
implementing the above architecture specification. In this
example, architecture changes are initiated at the architecture
configuration level, with the objective to transform the original
configuration from left to right by adding the StationData
component class.

III. EVOLUTION DESCRIPTION EXTENDED DEDAL

This section presents how Dedal is extended to integrate
evolution description. This extension has two facets: architec-
ture change descriptions with our CDL and architecture version
tracking.

A. Modeling Changes with a Change Description Language

Based on Dedal, we propose a dedicated CDL (Change De-
scription Language) to describe architecture changes. Change
descriptions should capture the different facets of software
changes that affect architecture evolution decisions. CDLs re-
semble ADLs, but from the viewpoint of architecture changes.
Our Dedal-CDL is designed to specifically model software
architecture changes by:

1) describing changes using the same syntax as that of the
ADL,

2) treating changes as first-class entities in architecture
descriptions,

3) modeling changes from a semantic (declarative) view
rather than from an operational (procedural) one.

Using Dedal-CDL, software evolution can be tracked
through all software architecture models. Architecture changes
become explicit. Quality of software architectures can be
evaluated.

In order to model architecture changes from the semantic
viewpoint, the characteristics of changes should be part of
the description language. Various information can be used
to characterize architecture changes. To identify meaningful
characteristic among those from the state-of-the art, we used
a simple heuristic proposed by Buckley et al. [8] 1. According
to this strategy, we identified seven orthogonal characteristics
of architecture changes: time of change, anticipation, change
type, change operation, change purpose, subject of change
and nature of change. These and their possible values are
collected in Table. I.

1) Time of change: Based on when changes happen, three
categories of changes can be deduced: static, load-time and
dynamic [8]. As far as architecture evolution is concerned,
changes are often either static or dynamic. Static changes
can produce architecture pendency [7]. Unmanaged dynamic
changes often result in architecture drift or erosion [9]2.

1This heuristic recommends to put the characteristic in a simple sentence
of the form: “The change is <characteristic>”.

2Architecture pendency, erosion and drift denote possible mismatches
between the different architecture levels. This occurs when either of them
evolves without its changes being propagated to other levels.



Fig. 2. BRS abstract architecture specification
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Fig. 3. BRS architecture configuration

TABLE I
CHANGE CHARACTERISTIC NAMES AND VALUES IN CDL

Change Characteristics Values

time of change static, dynamic
anticipation anticipated, unanticipated
affected level specification, configuration, assembly
change operation addition, removal, substitution, modification
subject of change elements of architectures in three levels
change purpose corrective, perfective, adaptive
nature of change given, generated, propagateda

a If generated or propagated, using from
indicates the original change

2) Anticipation: This characteristics refers to the time when
the change model requires software changes to be foreseen.
Two types of changes from this viewpoint: anticipated and
unanticipated changes [10]. When they concern architectures,
anticipated changes are changes that can be foreseen during
the initial development of the system: optional components are
predefined that are to be deployed into the system as needed.
On the contrary, unanticipated changes cannot be foreseen
during development: they arise later and are to be reacted to
as unpredictable components are added or deleted.

3) Level of Change: With Dedal, software architectures
are described at three levels: specification, configuration and
assembly. Changes can be initiated on any of these description
levels. Changes initiated at a given level can affect any of the
two others. Knowing where some change comes from thus
impacts how the change is going to be propagated among
architecture levels.

4) Change Type and Operation: Change type refers to how
the change affects a software. Architecture changes might
affect a software’s semantics or its structure. Semantic changes
are confined to the interior of a component or a connector.
They sometimes correspond to replacing one or more compo-
nents or connectors by their newer versions, or modifying the
architecture behavior description. Structural changes alter the
structure of the configuration (the graph formed by compo-
nents and connectors) by adding or removing a component
or a connector. Change types can further be refined into

different architecture change operations i.e., addition, removal,
substitution, or modification of architecture elements.

5) Subject of change: Artifacts subject to change (what
changes?) in a software system’s architecture are its build-
ing blocks, such as components, connectors or connections
(bindings) between them. At different architecture levels, these
elements take specific forms. Sujects of change are component
roles, connections and architecture behavior in specifications;
component classes and connector classes in configurations;
and component instances, connector instances and assembly
constraints3 in assemblies.

6) Change purpose: According to the ISO/IEC 14764 Stan-
dard for Software Maintenance [11], change purposes can be
categorized into four types, depending on what motivates the
changes: corrective, perfective, adaptive and preventive. For
component substitution, change purpose can be used as a test
criterion to evaluate whether a new version meets the change
request. We adapt their definitions to architecture changes:

• Corrective changes mean that the changed architecture
corrects errors / bugs identified in the old one.

• Perfective changes mean that the changed software alters
the code of a component or connector to improve its non-
functional qualities (such as performance).

• Adaptive changes adapt components or connectors to fit
changes in either their environment or requirements.

• Preventive changes are undertaken to prevent side-effects
of other changes. For example, adding a new component
often requires that its connected component be adapted.

7) Nature of change: The nature of change represents the
situation indicating how the change is triggered by being
given, generated or propagated.

• Given changes. When a change is prescribed by architects
or maintenance engineers, it is a given change.

• Generated changes. When a change is generated from
and triggered by a given change to complete its action in

3These three levels of architecture descriptions and the elements each level
can be composed of are defined in Dedal [6].



the same architecture level, it is defined as a generated
change. For example, the additions of a new component
role will cause one or more addition of connections
between the new added component role and the existing
component roles.

• Propagated changes. When a change is created because
of and propagated from a given or generated change in
a different level, it is said to be a propagated change.
For example, the addition of a component class in a
configuration can imply the addition of a component role,
propagating bottom-up to the specification, or the addition
of a component instance, propagating top-down to the
assembly.

For generated and propagated changes, the source of the
change should be indicated, using the from key word (see
Fig. 4).

Among these characteristics of changes, some constraints
apply. Firstly, change levels and subject of change should be
coherent: the subject of change must be included in the level
where the change initiated. For example, in the specification
level, change artifacts are either component roles, connections
or architecture behaviors. Secondly, the different artifacts
subject to change have their own permitted operations. For
example architecture behaviors can only be modified.

Based on the above seven characteristics of architecture
changes, Dedal-CDL defines its architecture change model as
shown in Fig. 4. Its syntax is detailed in [7]. Fig. 4 also gives
an example of change description: the additionStationData
change adds the StationData component class in the BRS
configuration.

change::=
change change_name
time change_time
anticipation

change_anticipation
level initial_level
operation change_operation
subject element

is element_name
purpose change_purpose
nature change_nature

( from change )?

change additionStationData
time dynamic
anticipation unanticipated
level configuration
operation addition
subject component_class

is StationData
purpose perfective
nature given

Fig. 4. Syntax of the CDL (left) and a change description (right)

B. Version Model

Dedal integrate versioning capabilities to its three archi-
tecture levels. Only components can be versioned (version-
ing connectors is a perspective). Versioning architectures as
wholes can help track their evolution over time. The reason
why we chose to version only component classes is twofold.
First, our work targets to component-based software where
connectors are often automatically generated and do not con-
tain specific information. Second, versioning components can
aid and ensure the evolution test [12] by explicitly tracking
all differences between two successive versions. For example,
version 2.0 is modified to perform better than version 1.0.

Versioning architectural elements requires to record both
the versionID and the identity of the previous version

(pre version). Pre version’s value is composed by the pre-
decessor’s version name and versionID. If a version’s name
is identical to its predecessor’s, the name can be omitted as
shown in the example on the right of Fig 5.

configuration BRSConfig
implements BRSSpec (1.0)
component_classes
BikeTrip (1.0)
as BikeCourse;

BikeCourseDBClass (1.0)
as BikeCourseDB

versionID 1.0

configuration BRSConfig
implements BRSSpec (2.0)
component_classes
BikeTrip (1.0)
as BikeCourse;

BikeCourseDBClass (1.0)
as BikeCourseDB;

StationData (1.0) as GIS
versionID 2.0;
pre_version 1.0;

by additionStationDataList;

Fig. 5. Example of a configuration description before (left) and after
(right) evolution and versioning.

As we know changes as first class information, it becomes
easy to draw a change-based version tree of software systems
according to their architecture descriptions. Fig. 6 shows an
example of such a version tree for the BRS.

Fig. 6. Version tree of the BRS

IV. EVOLUTION IN MAJOR ADLS

In this section, we give an overview on how existing
ADLs express architecture evolution from the viewpoints of
architecture changes and versioning.

1) Change Description: Most existing ADLs do not support
change description. Darwin [13], [14] and C2SADEL [15]
are exceptions. Darwin uses change specifications to describe
changes (create, remove, link, unlink). C2SADEL uses A ML
(an architecture modification language) which focuses on de-
scribing changes to architecture descriptions [16], [17]. It has
more actions than Darwin (createComponent, createConnector,
weld, unweld, etc.) [18]. However, AMLs are imperative
languages that aim in modifying architectures, but no ADL
exists that provide a full and formal description language for
evolution covering all its characteristics. Furthermore, these
existing ADLs miss another important point: they do not treat
changes as first-class entities.

2) Version Model: Versioning problems including variants,
evolving artifacts, forking and branching have been studied by
software engineering for years, mainly targeted to source code
versioning but also, sometimes, to model elements [19]. The
main application of these work is configuration management.
However, versioning software architectures is less studied.



TABLE II
COMPARISON OF CHANGE CHARACTERISTICS IN EXISTING ADLS

Characteristics of
change

C2 Darwin Dynamic
Wright

SOFA2.0 xADL2.0 MAE Dedal

Time of change Dynamic Dynamic Dynamic Dynamic Dynamic Dynamic Dynamic
Anticipation Unanticipated Anticipated,

Unanticipated
Anticipated Anticipated Unanticipated Unanticipated Anticipated,

Unanticipated
Change type Structural Structural Structural Structural Structural Semantical Structural, Semantical
Change purpose — — — — — Perfective Perfective, corrective
Level of change Configuration Configuration Configuration Configuration Configuration Configuration Specification,

configuration, assembly
Change operation Addition,

removal
Addition,
removal

Addition,
removal

Addition, removal Addition,
removal

Substitution Addition, removal,
substitution

Subject of change Components,
connectors,
connections

Components,
connections

Components,
connections

Components, connections,
interfaces of composite
components

Components,
connectors,
connections

Components Components, connectors
in three levels

Version model — — — State-based — Change-based Change-based

Ménage [20] is the first work to integrate configuration man-
agement into ADLs to control the versioning of architectural
artifacts. MAE [21] and xADL2.0 [22] both use the version
model proposed by Ménage. However, they focus on the
version control of architectural elements, such as component
types and connector types. The versioning whole architectures
is not studied. SOFA 2.0 [23] enables to version software
architectures which are treated as composite components, but
its version model is too simple and cannot capture enough
information on evolution. A simple solution proposed by
Taylor et al. [9] is to use CVS [24] or Subversion (SVN) [25]
on the texts that describe architectures. This approach does
not work well for creating or maintaining component-based
software architectures as it is designed to capture the ver-
sioning of source codes. Only MAE and xADL can model
version histories with branching version trees. These version
trees unfortunately apply only on architecture element types.

V. CONCLUSION

In this paper, we discuss architecture-centric evolution in
Dedal. Dedal-CDL, a language extension dedicated to describ-
ing changes, and a version model for software architectures
are proposed to model the evolution information explicitly.
With the explicit evolution description capability of Dedal,
architecture-centric evolution can be better performed and its
quality better guaranteed.

Perspectives for this work are to formalize Dedal and Dedal-
CDL using model-driven engineering techniques and migrate
our implementation of Dedal and its companion tools for them
to become an eclipse plugin.
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