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Using the projector augmented wave method within density functional theory, we present
a systematic study of the layer relaxation, surface energy and surface stress of 3d transition
metals. Comparing the calculated trends for the surface energy and stress with those obtained
for 4d and 5d metals we find that magnetism has a significant effect on the surface properties.
Enhanced surface magnetic moments decrease the size of the surface relaxation, lower the
surface energy and surface stress, leading to compressive stress in Cr and Mn.

Keywords: surface relaxation; surface energy; surface stress; magnetic transition metals;
density functional theory

1. Introduction

Surface energy (γ) and surface stress (τij) are two fundamental physical parameters
of surfaces. For solids, they differ by the excess or residual surface stress τij−γδij =
∂γ/∂εij , where εij stands for the strain within the surface plane. For high symmetry
surfaces, often the scalar surface stress is used (τ), which corresponds to the average
stress along in-plane directions. For liquids, the surface free energy and the surface
stress are equal each other due to the fact that in this case the surface energy does
not change when the surface is strained, i.e. ∂γ/∂ε = 0.

Knowledge of the geometry of solid surfaces is amongst the basic questions of
surface science. This is because in general the surface parameters exhibit strong
structure dependence [1]. Transition metal surfaces are of particular interest, since
they act as catalysts in various chemical reactions. It is well known that real sur-
faces of pure metals can adopt different structures from those of ideally truncated
crystals. Upon layer relaxation only rigid inward or outward displacement of the
atomic layers occurs, while in case of reconstruction, the displacement of atoms
may alter the two-dimensional symmetry of the surface. Experimental studies have
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demonstrated that the surface layer of clean transition metal surfaces relaxes in-
ward [2], i.e. the inter-layer distance between the topmost two atomic layers is
smaller than that of the bulk. Outward expansion of the top layer has also been
found for some surfaces of noble metals. The top layer relaxation is often accom-
panied by relaxation of the subsurface atomic layers, resulting in an oscillatory
behavior of multi-layer relaxation.

Several theoretical models have been proposed to explain the surface relaxation
of transition metals. Generally, the magnitude of relaxation is larger for rough
surfaces than for smooth ones. The model, proposed by Finnis and Heine [3] based
on Smoluchowski smoothing [4], states that when cutting a perfect crystal, charge
redistribution gives rise to an inward electrostatic force on the top layer nuclei.
Since this effect increases with surface roughness, the above model confirms the
general relationship between relaxation and surface roughness. It also explains the
contraction found for most transition metal surfaces, but it fails to describe the
noble metal surface relaxation. Pettifor [5] suggested that the crystal geometry is
determined by the balance of the negative pressure of the localized d bonds and the
homogeneous positive pressure of the sp electrons. According to Heine and Marks
[6], at metal surfaces the mobile sp electrons can flow into the vacuum, while
the d bonds between the first and second layers remain practically unchanged.
Therefore, the d electrons give rise to an inward force on the surface atoms, which
is proportional to the strength of the d bonds. Because the strength of the d
bonds shows a well known parabolic behavior across the transition metal series, the
magnitude of the top layer relaxation is also expected to follow a parabolic trend.
This model predicts positive (outward) relaxation for noble metal surfaces. A third
approach, introduced by Kádas et al. [7] using ab initio results based on the exact
muffin-tin orbitals method [8, 9], gives a quantitative foundation for the model
by Heine and Marks. According to that, the layer relaxation (δ) is proportional to
(V/B)∆nsp, where ∆nsp is the depletion of sp electrons in the surface layer relative
to bulk, V and B are the atomic volume and bulk modulus. Since ∆nsp follows a
parabolic trend across the nonmagnetic transition series [7] the above expression
would indeed dictate a parabolic shape for δ as a function of d-occupation number.
However, due to the large equilibrium volume and the rather small bulk modulus of
the early transition metals, the multiplier V/B is relatively large at the beginning
of the series resulting in large layer relaxations for those elements.

One possible way to approach the problem of surface relaxation is to treat the
surface as a two-dimensional defect with a potential which is screened towards
the bulk metal. It is well known that free surfaces cause Friedel oscillations in the
charge density towards the bulk metal [10]. The periodicity of the Friedel oscillation
is twice the Fermi wave vector kF and it is generally incommensurate with the
relevant lattice constant (inter-layer distance) of the metal. This causes the layer
relaxation to fall off quickly towards the bulk. However, if the lattice constant
and 2kF are commensurate, then the layer relaxation and the Friedel oscillation
strengthen each other, which results in a slowly decaying layer relaxation towards
the bulk. Striking examples are the hexagonal close-packed Tc and Re [1, 11, 12],
where the magnitude of the deep layer relaxations were found to be similar to those
of the top-layers.

Both the surface energy and surface stress are sensitive to the actual surface
geometry. In particular, the layer relaxation dependence of the surface stress is
closely linear whereas that of the surface energy quadratic [1]. Due to the linear
term, any accurate surface stress calculation must be preceded by a precise surface
geometry study. Kwon et al. [1] connected the layer relaxation dependence of γ and
τ to the surface elastic constants. Nichols et al. [13] explained the surface stress
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change during surface relaxation in terms of a jellium model.
According to a simple model described by Ibach [14], upon cleaving a metal

surface the electronic charge density of the broken bonds is redistributed between
surface atoms and their backbonds. Hence, surfaces should possess inward layer re-
laxation as a result of the strengthening of the backbonds of surface atoms. On the
other hand, since lattice constraint by sub-surface layers hinders in-plane relaxation
of surface atoms, the increased charge density between surface atoms is expected to
result in tensile (positive) surface stress on metal surfaces. First-principles calcu-
lations performed for non-magnetic transition metals [1, 11, 15] indeed confirmed
that the surface stress on clean metal surfaces is tensile. However, a recent den-
sity functional study on 3d metals [16] demonstrated that magnetism can overwrite
this normal behavior in magnetic transition metals resulting in compressive surface
stress for some of the close-packed surfaces. The atomic-scale mechanism behind
this anomalous surface stress has been shown to be the enhanced magnetism near
the free surfaces, which favors a larger lattice constant as compared to the bulk.
In this paper, we provide further details of our study performed for 3d metals [16]
by presenting ab initio data on the top layer relaxation, surface energy and sur-
face stress. In Section 2 we outline the method of the surface energy and stress
calculation, while in Section 3 we summarize and discuss the results.

2. Computational method

2.1. Surface energy and stress

The surface stress is defined to be the reversible work per unit area to stretch the
surface elastically. It can be expressed by the Shuttleworth equation [17]

τij =
1

A

∂Aγ

∂εij
= γδij +

∂γ

∂εij
, (1)

where τij denotes the components of the surface stress tensor, A is the surface area,
εij stands for a deformation tensor element, γ denotes the surface energy, and δij

is the Kronecker delta. The surface energy is defined as the reversible work per
surface area to create a surface, and may be determined as

γ =
Es − Eb

A
, (2)

where Es is the total energy of the surface region and Eb is the total energy of
a bulk region, both of them referring to the same number of atoms. Throughout
the paper, upper s index refers to surface and upper b index to bulk quantities. In
equations (1) and (2), all quantities are evaluated for the unstrained lattice, i.e.

for εij = 0. Since around the equilibrium, the variation of the bulk energy E b(ε)
as a function of lattice strain vanishes in linear order, in fact it is the linear strain
dependence of Es(ε) that leads to nonzero stress.

A general expression of the layer relaxation dependence of the above surface
parameters may be formulated as follows. Here for the sake of simplicity we assume
that only the top layer is relaxed, viz. there is only one inter-layer distance λ
different from the ideal bulk value. Using notation ε for the biaxial in-plane strain
[15, 18] and δ = (λ − λ0)/λ0 for the deviation relative to the equilibrium (surface

Page 3 of 16

http://mc.manuscriptcentral.com/pm-pml

Philosophical Magazine & Philosophical Magazine Letters

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review
 O

nly

May 6, 2011 4:19 Philosophical Magazine manuscript

4 M.P.J. Punkkinen, Q.-M. Hu, S. K. Kwon, B. Johansson, J. Kollár, and L. Vitos

or bulk) inter-layer separation λ0, the fully relaxed slab energy relative to the bulk
energy can formally be expanded as

Es(ε, δ) − Eb(ε, δ) ∼ Es(0, 0) − Eb(0, 0) +

+ A0

(

τ0ε +
1

2
γεε

2 +
1

2
γδδ

2 + τ ,
0εδ + ...

)

, (3)

where τ0, γε, γδ and τ ,
0 are constants and A0 is the area of the undistorted surface.

Note that in expansion (3) the pure linear term in δ vanishes because the slab
energy corresponds to the layer relaxed structure (viz. ∂Es(ε = 0, δ)/∂δ = 0 for
δ = 0) and the bulk energy Eb(ε, δ) contains only second and higher order terms
in δ and ε. Using the above expression in connection with definitions (1) and (2),
in the limit ε → 0 we find

γ(δ) = γ(0) +
1

2
γδδ

2 + ... (4)

and

τ(δ) = τ(0) + τ ,
0δ + ..., (5)

where γ(0) = (Es(0, 0) − Eb(0, 0))/A0 and τ(0) = τ0. Equations (4) and (5) are
equivalent to those derived by Kwon et al. [1]. According to these expressions, the
surface energy depends on the layer relaxation only in the second order but the
surface stress due to the mixed term in (3) exhibits a much stronger δ dependence.

2.2. Numerical details

In order to calculate the surface stress, we consider a slab formed by N atomic
layers parallel to the surface. For surface calculations, the slab is embedded in
vacuum, while for bulk calculations the slab is periodically repeated along the
direction perpendicular to the atomic layers. The bulk is relaxed to its equilibrium
with equilibrium inter-layer distance λ0. Next, for the slab with in-plane lattice
parameters fixed to those of the bulk, we perform multi-layer relaxation (apart
from a few central layers, where the inter-layer distance is kept at λ0) and find the
λ inter-layer distances which minimize the total slab energy. In other words, the
only allowed relaxation is the one which is perpendicular to the surface plane, i.e.
we do not consider in-plane relaxation. Starting from the so relaxed slab geometry,
we elongate the lattice vectors lying in the surface plane by ε but keep the inter-
layer distances fixed. For this distortion, the deformation tensor has the form

εij =





ε 0 0
0 ε 0
0 0 0



 . (6)

The total energies of the surface and bulk slabs, i.e. Es and Eb, are computed
for five different deformations (ε = 0, ±0.01 and ±0.02) and fitted by a quadratic
polynomial, i.e.
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Es/b(ε) ≈ Es/b(0) + c
s/b
1 ε + c

s/b
2 ε2. (7)

Here Eb(0) is the total energy of the undistorted bulk and Es(0) is the total energy
of the undistorted slab (corresponding to δ = 0). The surface stress is determined
from the linear coefficients of the slab and bulk energies at ε = 0 (unstrained
lattice), viz.

τ =
cs
1 − cb

1

4A
, (8)

where the factor 4 arises from the two surfaces of the slab and the two deformed
in-plane lattice vectors. In the case of low symmetry surfaces, equation (8) gives
the average of the two main stress tensor components. Obviously, at equilibrium
the bulk stress should vanish (cb

1 = 0) and thus it is expected that the surface stress
reduces to cs

1/(4A). However, due to different numerical parameters in bulk and
slab calculations, this is not always the case and thus equation (8) is recommended
in stress calculations based on the total energy.

In the present application, the free surfaces were modeled by periodically re-
peated slabs separated by vacuum layers. At ambient conditions, V and Fe have
the body centered cubic (bcc) structure; Sc, Ti, Co and Zn have the hexagonal
close-packed (hcp) structure, and Ni and Cu are face centered cubic (fcc) metals.
Chromium has an incommensurable antiferromagnetic state, which however can be
approximated by a commensurable antiferromagnetic state with B2 structure [19].
In the following, when referring to bcc Cr we mean in fact B2 Cr. The ferromag-
netic state was used for Fe, Co and Ni. For each system, the surface properties were
computed for the most stable facet and for some systems also for the second most
stable facet. The slabs were formed by 8 atomic layers for the fcc (111) and (100)
surfaces, 12 atomic layers for the bcc (110) and hcp (0001) surfaces, and 16 atomic
layers for the bcc (100) surface. For these systems, the thickness of the vacuum

layer was set to 22 − 23 Å. Manganese adopts a complex antiferromagnetic struc-
ture (α-Mn) with 58 atoms in the unit cell. The (110) facet of α-Mn was reported
to be the most stable surface [20]. This surface was modeled by a slab containing

130 Mn atoms separated by a vacuum layer of thickness 12.2 Å.
All numerical calculations were performed using density functional theory [21] in

combination with the generalized gradient approximation [22]. The surface geome-
try, surface energy, and surface stress were computed using the projector augmented
wave (PAW) method as implemented in the Vienna Ab initio Simulation Package
(VASP) [23, 24]. In addition to the PAW calculations, we also carried out a series
of tests for the unrelaxed bcc (001) surfaces of V, Cr, Mn and Fe. In these tests we
employed two alternative ab initio total energy approaches. The first tool is based
on the exact muffin-tin orbitals (EMTO) method [8, 9, 25, 26] and the second
one on the full-potential augmented plane wave with local orbitals (FP APW+lo)
method as implemented in WIEN2k package [27, 28].

The EMTO method [26] is a screened Korringa-Kohn-Rostoker type of method
[29–31]. In the present application the one-electron Kohn-Sham equation is solved
within the scalar-relativistic approximation (omitting the spin-orbit term) and us-
ing the Green’s function technique. The one-electron potential is represented by
optimized overlapping muffin-tin potential spheres. By using overlapping spheres,
one describes more accurately the exact crystal potential, compared to the con-
ventional muffin-tin or non-overlapping approach [25, 32]. In combination with the
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Table 1. Calculated bulk lattice parameters (in Å) and optimized c/a ratios for the 3d metals. For comparison,

the experimental data are given in parentheses [48, 49].

Metal Structure a c/a
Sc hcp 3.32 (3.31) 1.55 (1.59)
Ti hcp 2.94 (2.95) 1.59 (1.59)
V bcc 2.99 (3.03)
Cr bcca 2.87 (2.88)
Mn bccb 2.80

α-Mn 8.64 (8.88)
Fe bcc 2.84 (2.87)
Co hcp 2.49 (2.51) 1.62 (1.62)
Ni fcc 3.52 (3.52)
Cu fcc 3.64 (3.61)
Zn hcp 2.66 (2.66) 1.86 (1.86)

acommensurable antiferromagnetic state with B2 structure [19].
bhypotetical ferromagnetic structure.

full charge density technique [33–35] for the total energy calculation [9, 25], the
EMTO method is also suitable to describe accurately the total energy with respect
to anisotropic lattice distortions. The EMTO method has been applied success-
fully in the theoretical study of the thermophysical properties of metallic alloys
[9, 25, 36–41] and complex oxides [42–45]. The FP APW+lo method treats the po-
tential and charge density without any shape-approximations inside the muffin-tin
spheres and in the interstitial region [46]. The wave-function is expressed as the
augmented plane wave (APW) plus local orbitals for the semicore states [28]. The
APW with each radial wave function is computed at a fixed linearization energy.
The local orbitals are evaluated at the same energy as the APW’s and vanish at
the muffin-tin boundary. The APW+lo scheme leads to significantly smaller basis
sets and therefore reduces the computation time as compared to the linearized
augmented plane wave method without losing accuracy.

In PAW calculations, for all slabs, the in-plane lattice constant was fixed to the
theoretical bulk equilibrium value, and the inter-layer distances, except for the
central layers, were allowed to relax to their equilibrium values. The optimization
of the atomic structure was performed using conjugate-gradient minimization of
the total energy with respect to the atomic coordinates. The atoms were relaxed
until the remaining forces were less than 20 meV/Å. The Brillouin zone sampling
was performed by the Monkhorst-Pack scheme [47]. The chosen plane wave cut-
off energy (450-500 eV) in PAW calculations and the k-mesh in EMTO and FP
APW+lo calculations assured ∼ 1 meV per atom convergence in the total energy.
For each surface, the mean surface stress was determined from the variation of the
surface energy upon biaxial in-plane strain [15, 18].

3. Results and discussion

3.1. Layer relaxation

The calculated bulk equilibrium lattice parameters and c/a-ratios for the 3d met-
als including Zn are listed in Table 1. They are in good agreement with former
theoretical results obtained using the same exchange-correlation functional [50] as
well as with the quoted experimental data [48, 49].

In Table 2, we give our results for the multi-layer relaxation obtained for some
low-index surfaces of 3d transition metals. Examining the layer relaxations, we
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Table 2. Calculated layer relaxations (in percent) for some low-index surfaces of 3d transition metals. In the

case of Mn, the numbers in parenthesis represent the relaxations for the first two close-packed layers, viz. δ13

and δ34.

Surface Relaxation
δ12 δ23 δ34

Sc hcp(0001) -2.58 1.19 0.29
Ti hcp(0001) -7.14 2.87 -0.49
V bcc(100) -12.41 0.24 2.87

bcc(110) -5.24 0.58 0.01
Cr bcc(100) -5.06 3.62 -1.04

bcc(110) -1.95 0.44 0.20
Mn α(110) -6.95 12.30 -1.83

(0.99) (-1.83)
Fe bcc(100) -0.18 2.88 0.78

bcc(110) -0.05 0.71 -0.15
Co hcp(0001) -2.89 1.85 -0.72
Ni fcc(100) -3.74 0.55 0.04

fcc(111) -1.31 -0.09 0.11
Cu fcc(100) -1.61 1.48 1.25

fcc(111) -0.31 0.04 0.31
Zn hcp(0001) 0.69 -0.65 -0.10

see that for most 3d metals the relaxation decays relatively fast with the distance
from the surface. For most of the systems, especially where the expected crystal
structure is not altered by magnetic effects, the top layer relaxation follows similar
trend as those observed for the 4d and 5d metals [11]. Exceptions are the bcc (110)
surfaces of Cr and Fe, where the calculated relaxations of -1.95 % and -0.05 %
are significantly smaller than those obtained for the other metals from the same
groups. In particular, for the top layer relaxation of the close-packed surfaces of W
and Os, Zolyomi et al. [11] predicted -3.76 % and -3.72 %, respectively, whereas
for Mo and Ru Kwon et al. [1] obtained -4.74 % and -3.96 %, respectively. Note
that the same is true for the bcc (100) surface of Cr when compared to that of Mo
or W [1, 11]. Manganese is a somewhat special case. If atomic layers are defined
for the (110) surface of α-Mn, there will be a less dense layer between the first two
relatively close-packed layers. The inter-layer distance between this loosely packed
second layer and the third layer is small, which explains the large δ23 from Table
2. Omitting this less dense layer, the first two inter-layer separations for α-Mn
relax by δ13 = 0.99% and δ34 = −1.83%, respectively. These figures are close to
those obtained for Cr and Fe. Thus, according to the present ab initio calculations,
the close-packed surfaces of the magnetic 3d metals show unusually small layer
relaxation. We suggest that the relatively small surface relaxation obtained for
some of the magnetic metals is attributed to the positive magnetic pressure around
the free surfaces (see Section 3.3).

3.2. Surface energy

The calculated surface energy, stress, and excess surface stress are listed in Table
3 for some low index surfaces of 3d transition metals. For the thermodynamically
stable surfaces, the present surface energies (γ3d) are compared to those obtained
for the 4d (γ4d) and 5d (γ5d) metals in Figure 1. We observe that the three tran-
sition metal series possess rather similar surface energies both in magnitude and
in trend as a function of d-occupation. This similarity is even more interesting if
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Table 3. Calculated surface energy (γ), total (τ) and excess (τ − γ) surface stress (in J/m2) for 3d transition

metals. The results correspond to the fully layer-relaxed geometry (except bcc Mn, where the ideal unrelaxed

geometry was used).

Surface γ τ (τ − γ)
Sc hcp(0001) 1.26 0.73 -0.53
Ti hcp(0001) 1.97 0.65 -1.32
V bcc(100) 2.40 2.12 -0.28

bcc(110) 2.41 2.12 -0.29
Cr bcc(100) 3.06 -0.32 -3.38

bcc(110) 3.10 0.79 -2.31
Mn bcc(100) 2.14 -2.24 -4.38

α(110) 2.59 -0.22 -2.81
Fe bcc(100) 2.50 1.39 -1.11

bcc(110) 2.45 1.56 -0.89
Co hcp(0001) 2.11 2.20 0.09
Ni fcc(100) 2.22 1.73 -0.49

fcc(111) 1.92 2.16 0.24
Cu fcc(100) 1.44 2.55 1.11

fcc(111) 1.30 1.87 0.57
Zn hcp(0001) 0.32 1.44 1.12

we realize that there are differences in the morphology of the most stable surfaces.
For instance, Cr has as the most stable surface the bcc (100) facet compared to
the bcc (110) facet of Mo and W. All three bcc metals from the Cr group possess
the largest surface energy across the transition series.

The local maximum (minimum) seen for Ru and Os (Tc and Re) is missing
from γ3d. However, this deviation may be ascribed to the complex crystallographic
structure of α-Mn. Indeed, the surface energies calculated for the hypothetical bcc
(100) facet show a shallow minimum around Mn. These results were obtained for
the unrelaxed bcc (100) surface and are shown in Figure 2. We find that all three
ab initio methods (PAW, EMTO and FP APW+lo) give the same surface energy
trends as going from V to Fe.

For illustration of the magnetic contribution in the surface energy, Figure 2
displays also the bcc (100) surface energies obtained from nonmagnetic PAW and
EMTO calculations. Clearly, there is a large drop in the surface energy of bcc Mn
due to the magnetism: 1.200 J/m2 calculated in PAW and 1.102 J/m2 in EMTO.
The magnetic effect is somewhat smaller for Cr and Fe: 0.750 J/m2 and 0.490 J/m2

in PAW (0.529 J/m2 and 0.746 J/m2 in EMTO).
Another important feature of the theoretical data from Figure 2 is that in all

three calculations and for both magnetic states, the surface energy of Cr turns
out to be larger than that of bcc V. This might be in apparent contradiction with
previous theoretical calculations based on the linear muffin-tin orbitals method
[51, 52]. However, if we consider the same bcc (100) or bcc (110) crystallographic
facets for V and Cr, then the four sets of theoretical results are consistent with each
other. Interestingly, none of the theoretical set of results confirms the experimental
estimate by Tyson and Miller [53], as it was inspired in Ref. [51]. The estimated
surface energies (γest

3d ) for V, Cr, Mn, and Fe are 2.62, 2.35, 1.54, and 2.42 J/m2,
respectively. The deep local minimum in these ”experimental” surface energies is
absent from γ3d from Figures 1 and 2. Although theory might predict a weak local
minimum in γ3d near Mn when calculating for the same crystallographic facet (bcc
(100), Figure 2), this theoretical minimum is much shallower than that in γ est

3d .
Using continuum model approach [54], Punkkinen et al. [16] demonstrated that
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the deep minimum in the estimated surface energies for bcc 3d metals is, to a large
extent, a consequence of the compressive surface stress of Cr and Mn (see Section
3.3).

3.3. Surface stress

For the thermodynamically stable surfaces, the present surface stresses (τ3d) are
compared to those obtained for the 4d (τ4d) and 5d (τ5d) metals in Figure 3. While
τ4d and τ5d are relatively similar, we observe that τ3d exhibits a rather different
behavior as a function of d-occupation (Nd). For Nd ≤ 3 and Nd ≥ 7 the present τ3d

and (τ3d − γ3d) follow similar trends as those calculated for the 4d and 5d metals.
However, for Cr, Mn and Fe we can see a deep minimum in τ3d. Most surprisingly,
for Cr and Mn the surface stress of the thermodynamically most stable surfaces
becomes compressive: −0.32 J/m2 for Cr and −0.22 J/m2 for Mn. That is, the
thermodynamically stable surfaces of Cr and Mn prefer a larger lattice constant
than their bulk counterparts. Apparently, these two systems are the only transition
metal surfaces where the Ibach’s model fails.

Recently, we demonstrated that the marked deviation between τ3d and its 4d
and 5d counterparts is due to the enhanced surface magnetism in Cr, Mn, Fe, Co
and Ni as compared to their bulk [16]. We define the magnetic contribution to the
surface stress (τm) as the difference between the nonmagnetic (NM) and magnetic
(Mag) values. It turns out that the magnetic surface stress for Cr, Mn, and Fe is
of order of the corresponding NM surface stress. Namely, τ m

Cr = 5.41 Jm−2 (102%
of NM τCr), τm

Mn = 5.00 Jm−2 (99%) and τm
Fe = 3.88 Jm−2 (71%). That is, surface

magnetism drastically reduces the surface stress of Cr, Mn and Fe. For Co and Ni
we have somewhat smaller magnetic effects, τ m

Co = 1.11 Jm−2 (30%) and τm
Ni = 0.44

Jm−2 (15%).
In order to visualize the impact of magnetism on the surface stress, we realize that

the decrease of the surface stress is associated with the excess magnetic pressure
(Pmag) around the free surface. For 3d itinerant ferromagnetic systems, using the
Stoner model and the atomic sphere approximation, we can estimate the magnetic
pressure contribution relative to the non-polarized case as [55]

3PmagV = −µ2I∆dS
2 + α∆E(µ) (9)

where I,∆d, S stand for the Stoner exchange parameter, the width of the 3d band,
and the atomic radius, respectively. The band energy change with respect to the
non-polarized value, belonging to the actual value of the magnetic moment µ is
denoted by ∆E(µ). The parameter α characterizes the decrease of the d-band width
∆d with increasing volume

α = −
∂ln∆d

∂lnS
. (10)

Here the symbol ∂ indicates a restricted variation during volume change (the po-
tential is kept frozen [55]). Similarly, using these quantities we can express the
energy change during spin polarization as

Emag = −
1

4
µ2I + ∆E(µ). (11)
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In leading order in µ2 we have

∆E(µ) ∼
µ2

4N(εF )
, (12)

so the magnetic energy becomes

Emag ∼
µ2

4N(εF )
[1 − IN(εF )] . (13)

When the Stoner condition is satisfied, i.e. IN(εF ) > 1, Emag is always negative,
as it should be. Finally, for the leading term in the pressure we obtain

3PmagV ∼
µ2∆dS

2

N(εF )

[

α

4∆dS2
− IN(εF )

]

. (14)

For the 3d elements where magnetism occurs from Cr to Ni the values of the α
parameter lies between 4 and 5, and thus the first term in the expression of 3PmagV
is typically 10 (usually lies between 8 an 11). This should be compared with the
values of IN(εF ), which is the largest for bcc Fe when equals to 2 and usually lies
between 1 and 2. Thus we can generally say that the first term in equation (14)
is roughly an order of magnitude larger than the second, which means that the
magnetic pressure contribution for these elements is always positive.

Due to the reduced coordination, the surface magnetization is generally enhanced
compared to the bulk value, resulting in larger surface magnetic moment (µs) than
the bulk counterpart (µb). Hence, according to equation (14), an excess surface
magnetic pressure should appear near free surfaces. Assuming that this excess sur-
face pressure is responsible for the magnetic surface stress, we arrive at τ m ∼ ∆µ2,
where ∆µ2 ≡ µ2

s −µ2
b represents the surface induced enhancement of the square of

the magnetic moment. Punkkinen et al. [16] confirmed the almost perfectly linear
relationship between τm and ∆µ2. Therefore, we can conclude that the enhanced
surface magnetism is the primary factor responsible for the unusually small or neg-
ative surface stress of the magnetic 3d metals. Another consequence of the positive
surface magnetic pressure is the unusually small surface relaxation obtained for Cr
and Fe (and to some extent also Mn).

4. Conclusions

We have presented a systematic theoretical study of the layer relaxation, surface
energy, and surface stress of 3d transition metals, and examined the atomic num-
ber dependence of the above surface parameters. In addition, we have pointed
out the unusually small surface relaxation for some of the magnetic metals, and
the exceptionally low excess surface stress in the middle of the series. Finally, we
have demonstrated that the revealed anomalous trends are the consequence of the
enhanced surface magnetism experienced first of all in Cr, Mn and Fe.
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Figure 1. Theoretical surface energies for 3d metals. For comparison, the theoretical surface energies
obtained for the 4d (squares) and 5d (triangles) series are also shown. Each data corresponds to the
thermodynamically stable facets (see Table 3) of the low temperature crystallographic structures: hcp for
Sc, Ti, Zn, Co, Y, Zr, Tc, Ru, La, Hf, Re and Os; bcc for V, Fe, Nb, Mo, Ta and W; B2 for Cr; α-Mn; and
fcc for Ni, Cu, Rh, Pd, Ag, Ir, Pt and Au.

Figure 2. Comparison between three sets of surface energies calculated for the non-relaxed bcc (001)
surface of V, Cr, Mn and Fe using the VASP, EMTO and WIEN2k computer programs. Results are shown
for non-magnetic (NM) and magnetic (FM) phases.

Figure 3. Theoretical surface stress for 3d metals. For comparison, the theoretical surface stresses obtained
for the 4d (squares) and 5d (triangles) series are also shown. Each data corresponds to the thermodynam-
ically stable facets of the low temperature crystallographic structures (see caption for Figure 2).
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