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Abstract

The study of interactions through direct contact between blade-tips and outer
casings in modern turbomachines may be very time-consuming when the
classical finite element method is used. The construction of reduced-order
models using component mode synthesis (CMS) methods generally allows for
dramatic increase in computational efficiency and may be used in order to
improve the knowledge over these interaction phenomena. Among the avail-
able approaches, both a fixed-interface method and a free-interface method
are considered here in an original manner to reduce the size of a realistic
two-dimensional model. The equations of motion are solved using an explicit
time integration scheme with the Lagrange multiplier method where friction
is accounted for. This method offers energy momentum conserving which is
a critical point to ensure the convergence of the algorithm. Moreover, it is
shown that even in a non-linear framework the reduced-order models con-
verge to the finite element solution as the number of modes included in the
models increases. Considering the fixed-interface method of Craig-Bampton
(CB) and the free-interface method of Craig-Chang-Martinez (CCM), it is
shown that a method with fast displacement convergence may be less efficient
in terms of motion convergence.

Nomenclature

β Angle between two blades

F Force vector

K Stiffness matrix
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M Mass matrix

q Degrees of freedom vector

η Craig-Bampton (CB) reduction parameter: number of fixed-interface
modes kept in the reduced model.

µ Friction coefficient

Ω Angular velocity of the bladed disk

ωc(k) Critical angular velocity for a k-nodal diameter load

φ Craig-Chang-Martinez (CCM) reduction parameter: number of nor-
mal modes kept in the reduced model.

ΦCB Craig-Bampton (CB) transformation matrix

B Subscript referring to boundary dof

I Subscript referring to internal dof

fb Eigenfrequency of the bladed disk

fc Eigenfrequency of the casing

h Time step

nd Number of nodal diameters

ufe Finite element reference solution

1 Introduction

In modern turbomachines such as aircraft jet engines, structural contacts
between the casing and the bladed disk can initiate nonlinear vibrations that
can be responsible for severe damages. The power of such engines can be
increased by reducing the clearance between the blade tips and the casing.
Unfortunately, this may lead to more frequent contacts between the two
components.

In this study, we focus on a specific kind of interaction, commonly named
“modal interaction”. Previous theoretical studies [1, 2, 3] have been achieved
on these interactions (experimental results are also presented in [3]) that can
arise for cyclic and axi-symmetric structures under certain conditions:

1. both structures (bladed disk and casing) must vibrate over a vibration
mode with the same number of nodal diameters.
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2. both structures must vibrate at the eigenfrequency of the mode of
interest.

3. the rotating modes of the bladed disk may travel at the same absolute
speed as the forward rotating mode in the casing.

These three conditions can be summarized as [4]:

fc =
ndΩ
2π

− fb (1)

with fc eigenfrequency of the casing, fb eigenfrequency of the bladed disk,
nd number of diameters of the associated vibration modes and Ω angular
velocity of the bladed disk. Equation (1) allows us to define critical speeds
for each configuration of bladed disk and casing.

The point of present work is to analyze modal interaction using 2D planar
models with the use of component mode synthesis (CMS) methods. Such
methods are required in order to reduce computation time. Among the very
large number of available CMS methods [5, 6, 7, 8] only the ones compatible
with contact algorithms may be considered. Indeed, treatment of contact
forces and correction of displacements on certain degrees of freedom (dof)
implies to keep these dof in the reduced system to avoid backward and
forward between the reduced-order model and the full finite element model
that would be dreadfully time consuming. Considering that most of the
CMS methods lead to a reduced order model governed by modal dof with
no explicit physical meaning, only a few methods are actually eligible for this
study. The Craig-Bampton (CB) method [6] and the Craig-Chang-Martinez
(CCM) method [9] are the most popular methods that match our criteria.
The objective of this study is to evaluate the sensitivity of modal interaction
detection toward the CMS method used.

The convergence of CMS methods toward the finite element solution is
analyzed in terms of displacement convergence or motion convergence. Dis-
placement convergence refers to the convergence of the displacement field
while motion convergence refers to the convergence in terms of type of mo-
tions detected and interaction between the casing and the bladed disk.

2 Modeling

The 2D finite element models of the bladed disk and the casing are now pre-
sented. The model allows both normal contact and friction forces treatment
(friction coefficient is set to µ = 0.2) between the casing and the tip of the
blades. Both casing and bladed disk models are introduced in [10].

Bladed disk

The bladed disk, as depicted in Fig. 1, is composed of 22 blades and its de-
scription is similar to the one used in [2]. In many studies about bladed disks
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blades are modeled using pretwisted tapered beams [11, 12, 13]. However,
we focus on contact treatment on the tip of the blades and the application
of CMS methods combined with the contact algorithm which leads to con-
sidering simpler modeling. That is why each blade is discretized with the
usual Euler-Bernoulli straight beams. The global curvature of the blade is
achieved through an angle ai between finite elements. The inter blade phase
angle is denoted by β = 2π

22 . The total number of dof for the bladed disk in
this study is 748. In the flexural direction v, the local shape functions are:

N1(s) = 1 − 2s2 + 2s3; N2(s) = lb(s − 2s2 + s3)

N3(s) = 3s2 − 2s3; N4(s) = lb(−s2 + s3)
(2)

while they are linear along the axial displacement u:

M1(s) = 1 − s; M2(s) = s, s ∈ [0, 1] (3)

The discretized displacement field of element i whose nodes are denoted i

and i + 1 is written as:

vi
r(s) = N1(s)vi

r + N2(s)θi
r + N3(s)vi+1

r + N4(s)θi+1
r

θi
r(s) = N1,s(s)vi

r + N2,s(s)θi
r + N3,s(s)vi+1

r + N4,s(s)θi+1
r

ui
r(s) = M1(s)ui

r + M2(s)ui+1
r

(4)

Casing

The casing is modeled as a ring and is discretized using two-noded curved
beam finite elements, as pictured in Fig. 1. There are 40 curved beam finite
element around the casing, with a total number of 160 dof.

A polar coordinate system with unit vectors erc
and eθc

is assigned to the
casing. The finite element description involves four dof per node: uc, uc,s,
vc and vc,s. The initial location of node i is given by the doublet (Rc,θi

c),
Rc stands for the radius of the casing and lc the length of the element. The
shape functions are similar to those of the bladed disk, by replacing x by
s and lb by the length lc of a finite element of the casing in Eq. (2) where
s ∈ [0,1] is the local path variable. This formulation is taken from [14]
where it is shown that such finite element are locking free. The discretized
displacement field of element i whose nodes are denoted i and i+1 is written
as:

ui
c(s) = N1(s)ui

c(n) + N2(s)ui
c(n),s + N3(s)ui+1

c(n) + N4(s)ui+1
c(n),s

vi
c(s) = N1(s)vi

c(n) + N2(s)vi
c(n),s + N3(s)vi+1

c(n) + N4(s)vi+1
c(n),s

(5)

Characteristics of the model

Table 1 summarizes the mechanical properties of the model, that match
certain criteria such as the fact that the eigenfrequencies of the casing are
larger than those of the bladed disk.
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Casing Bladed disk

Y.Modulus Ec = 2.8 · 103 Eb = 8.3 · 106

mass ρc = 2800 ρb = 7800
thickness hc = 5 hb = 5
width wc = 50 wb = 50
radius Rc = 250.5 Rb = 250
d.o.f nc = 160 nb = 748
modal damping ξc = 0.03 ξb = 0.005
number of blades N = 22

Table 1 – Characteristics of the model

3 Solution method

Time integration

The numerical methods are introduced in this section and described in the
general framework of the finite element methods. This part is devoted to
the computation of the reference solution. The general problem to be solved
may be written as:

Mq̈ + Dq̇ + Kq = F

q(t = t0) = q0

q̇(t = t0) = q̇0

(6)

The contact conditions, referred to as the Kuhn-Tucker optimality condi-
tions take the form:

∀x ∈ Γm
c , tN ≥ 0, g ≥ 0, tNg = 0 (7)

where Γm
c is the master surface (bladed disk) and tN stands for the contact

pressure, assumed positive, acting on the slave surface Γs
c (casing). This

problem is solved using the explicit central differences scheme together with
the forward increment Lagrangian method [15, 16] and more details about
the algorithm used in this work may be found in [2].

Component mode synthesis

In most industrial applications, very large finite element models lead to cum-
bersome computation times. One way to reduce these computation times
relies in the use of component mode synthesis procedures [10]. Many studies
of these CMS methods have been carried out by coupling them to substruc-
turing approaches [5]. Only the modal reduction aspect is considered here:
CB method is applied on the bladed disk and on the casing considering each
of them as on substructure. The interface dof are related to each other in a
strongly nonlinear fashion through unilateral contact and friction conditions.

CB and CCM methods first require the distinction of the dof of the
structure within two groups: the internal dof and the boundary dof. In
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general the definition of these groups is closely related to the loadings applied
on the structures. In this study the boundary is supposed to contain all
the dof that might be supporting any contact force during the interaction,
meaning the two dof u and v at the tip of each blade1 for the bladed disk
and the u and v dof for each node of the casing.

Application

A reorganization of Eq. (6) is necessary, separating the dof in two groups:
the internal dof (qI) and the interface (qB) yielding:
[

MII MBI

MIB MBB

](

q̈I

q̈B

)

+

[

DII DBI

DIB DBB

](

q̇I

q̇B

)

+

[

KII KBI

KIB KBB

](

qI

qB

)

=

(

FI

FB

)

(8)
Applying a CMS method consists in finding a reduction basis which dimen-
sion is smaller than the number of dof of the structure reduced. This basis
is represented through a rectangular matrix Φ. This matrix is defined by
the choice of the CMS technique.

Craig-Bampton method

The reduction basis of the CB method is composed of the following modes [6,
10]:

1. fixed interface modes: Φfix

2. constraint modes: Φcons

The reduction matrix of the Craig Bampton method ΦCB is:

ΦCB = [ΦfixΦcons] (9)

The number of fixed-interface modes η kept in the reduction basis is the
parameter of reduction:

(

qI

qB

)

= ΦCB

(

uη

qB

)

(10)

The projection of the equations of motion in the reduced space consists in
the following operations2:

K̂ = ΦT
CB

KΦCB and M̂ = ΦT
CB

MΦCB (11)

1Rotational θ on the tip of the blades is also considered as part of the boundary in the
case of the CCM method in order to enrich the space of the attachment modes. This does
not modify contact treatment.

2Damping matrix D̂ is usually computed directly from reduced stiffness and mass
matrices K̂ and M̂
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Consequently, the dynamic equation in the reduced-order space becomes:
[

M̂ηη M̂Bη

M̂ηB M̂BB

](

üη

q̈B

)

+

[

D̂ηη D̂Bη

D̂ηB D̂BB

](

u̇η

q̇B

)

+

[

K̂ηη K̂Bη

K̂ηB K̂BB

](

uη

qB

)

=

(

Fη

FB

)

(12)

Craig-Chang-Martinez method

This method is an enriched Craig-Martinez method [8, 17]. The reduction
basis is composed of the following modes [18, 10]:

1. free vibration modes

2. attachment modes

From a theoretical point of view, there is no restriction in the choice of these
modes. From Eq. (6), the projection of the displacements q onto the modal
coordinates leads to:

q = Φ1u1 + Φ2u2 (13)

where Φ1 represents the free vibration modes kept in the reduction basis
and Φ2 the modes that will be discarded for the reduction (high frequency
modes).

Considering the following approximation:

∀ ω2
2 ∈ diag(Ω2), ω2

≪ ω2
2 ⇒ Ω2u2 = ΦT

2 F (14)

and using the notation R = K−1 − Φ1Ω−1
1 ΦT

1 , the projection introduced in
Eq. (13) can be written as:

q = Φ1u1 + RF (15)

With Eq. (8), q = (qB, qI)T

(

qB

qI

)

=

[

Φ1B

Φ1I

]

u1 +

[

RB

RI

]

F (16)

This projection leads to the final equation:
(

qB

qI

)

=

[

IBf 0

RIR
−1
B

Φ1i − RIR
−1
B

Φ1B

]

︸ ︷︷ ︸

PCM

(

qB

u1

)

(17)

where PCM is defined as the reduction matrix for the Craig-Martinez method.
An alternative formulation of the Craig-Martinez method consists in adding
attachment modes to the matrix Φ1 in Eq. (15). This enrichment leads to
the CCM method which is used in this paper.
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4 Results

Note: displacements and time have been normalized and no unit is provided
in the sequel.

Convergence analysis

beam i

beam i + 1

y0

xj-1yj-1

x0

xjyj

blade j + 1

blade j

blade j − 1

φ

lb
x

Casing

Curved beam
finite element

ai

Figure 1 – Two-dimensional model used in the study

The interface of the bladed disk contains 44 dof where contact constraints
are treated, namely u and v at the tip of each blade. The casing is not
reduced since its contact is managed on every node of the structure. The
initial clearance between the tip of the blades and the casing is 1 mm.
The rotational velocity of the bladed disk is constant for each simulation.
Modal damping is applied for both structures. At time t = 0, an external
loading is applied on the casing. The deformation of the casing under this
loading depends on the nd parameter: number of nodal diameters of the two
free vibration modes on which the kinematic of the casing is reduced. The
loading is applied over t = 2 · 10−4 s.

With similar conditions, three specific interaction motions were detected
in [2] where models were projected in the modal space along two nd-nodal
diameter vibration modes subsequently implying strong kinematic restric-
tions.

In total, three kinds of motions were observed in [2], namely damped,
sustained and divergent motions respectively pictured in Figs. 2(a), 2(b)
and 2(c). Among the different sustained motions observed, a specific kind
involving locking was detected: a few blades come in permanent contact
with the casing, as illustrated in Fig. 2(c), and push a forward rotating
mode.
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Beside of these three motions, relations have been established between
the number of blades and the kind of modal interaction detected. Precisely,
it has been noticed that the interaction depends on the divisibility of the
number of blades N by the number of diameters nd of the load exerted on
the casing. A 3-nodal diameter load on the casing might lead to locked
sustained motions with a 30 blades bladed disk while it could only lead to
unlocked sustained motions with a 29 blades bladed disk. These results
match geometrical observations: a stable interaction configuration can only
occur if the geometry of the deformed casing and bladed disk are compatible.
It was also noticed that when the geometry allows for the system to be
perfectly symmetric in terms of N and nd, the contact points will remain at
the same blade tips for all times.

All these considerations are explored in more details with new models in
the sequel.

Time convergence

The time step of the explicit central differences scheme is h = 2.5 · 10−7 s.
This value has been obtained by considering both a convergence study for
damped and locked motions, respectively depicted in Figs. 3(a) and 3(b),
and the following condition which is classical in linear analysis:

h <
2

ωmax
= 8.49 · 10−7 s (18)

Both Figs. 3(a) and 3(b) show blade tip/casing distance for a single blade
and different time steps. While convergence is easily observed as soon as
h < 10−5 s in Fig. 3(a), it can be seen that the motion detected in Fig. 3(b)
requires a smaller time step and convergence is only reached when h <

5 · 10−7 s: this shows that linear condition (18) is not restrictive enough for
non-linear systems.

Convergence regarding to the reduction basis

The convergence of reduced-order models constructed with CB and CCM
techniques is shown for each of the three interaction motions pictured in
Figs. 2(a), 2(b) and 2(c). While damped and locked motions are obtained
with nd = 2, the sustained motion is obtained for nd = 3 only. Indeed,
it has been notice [2] that locked motions may only be observed when the
value of nd divides the number of blades. If not, sustained motion is more
likely to occur.

Craig-Bampton method

The convergence of the results for CB reduced-order models when η increases
is shown in Figs. 4(a), 4(b) and 4(c)3. One may clearly observe the high

3Results are shown as blade tip/casing distances for a blade randomly chosen. Results
in terms of convergence are similar for other blades.
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(a) Damped motion: Ω = 0.4, nd = 2
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(b) Sustained motion: Ω = 1.75, nd = 3
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(c) Locked motion: Ω = 0.55, nd = 2

Figure 2 – Blade tip/casing distances, initial clearance ( )

sensitivity of the results to the reduction basis in the case of locked and
sustained motions in Figs. 4(b) and 4(c). The quality of the approximation
of the blade tip displacements directly depends on the modal reduction basis.
As a consequence, the reduction basis will influence the blades that will lock
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(a) Damped motion, blade 9, nd = 3
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(b) Locked motion, blade 2, nd = 2

Figure 3 – Blade tip/casing distance for two blades and two different
simulations when time steps varies: h = 10−5 s ( ), h = 5 · 10−6 s
( ), h = 10−6 s ( ), h = 5 · 10−7 s ( ), h = 2.5 · 10−7 s ( ) and
h = 10−7 s ( )

on the casing. If the locking blades change, then all the displacements on
the bladed disk are modified which causes the variation of vibration level
observed in Figs. 4(b) and 4(c).

Craig-Chang-Martinez method

Results of the convergence of the reduced-order-models are shown for damped,
locked and sustained motions in Fig. 5(a), 5(b) and 5(c), respectively. Dif-
ferences observed in terms of convergence with the CB method are not sig-
nificant since convergence seems faster for locked motions and slower for
damped motions. However, as previously observed for the CB method, a
very high number of modes is required to ensure convergence in terms of
blade tip displacements.

Results obtained for the two CMS methods show that the convergence
toward the finite element solution is fairly slow. For the CB method, it
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(c) Sustained motion, blade 2

Figure 4 – Convergence of the results obtained with CB method for each
kind of interaction η = 0 ( ); η = 44 ( ); η = 88 ( ); η = 220 ( );
ufe(t) ( )

is noticeable that for low η (η = 0 and η = 44), the results are strongly
different from the finite element solution. In comparison, for similar φ, the
CCM reduced-order models lead to better results. However, while η and φ
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(c) Sustained motion, blade 2

Figure 5 – Convergence of the results obtained with CCM method for
each kind of interaction φ = 0 ( ); φ = 44 ( ); φ = 88 ( );
φ = 220 ( ); ufe(t) ( )

increase, convergence is observed more rapidly for the CB method than for
the CCM method as it can be seen in Fig. 6 for a sustained motion.

For both methods, η = 88 and φ = 88 seem to be the minimum threshold
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Figure 6 – Comparison of CB (CB) and CCM results ( ) to the finite
element solution ( ) with η = 220 and φ = 220

to get good results at the exception of the locked motion with CB reduced-
order models η = 88 is a lower bound. Comparatively to the total number
of dof of the bladed disk, these values of η and φ may appear very high
(≃ 12%). Such a ratio might not be acceptable in the case of complex
industrial 3D models containing several millions of dof. Consequently, it is
of interest to ensure that displacement convergence requires higher η and φ

than motion convergence in terms of type of detected motions.

Motion convergence

In order to assess the convergence in terms of motions, reduced-order models
are built with η = 44, η = 88, φ = 44 and φ = 88. Several simulations are
performed while increasing the rotational velocity Ω and friction coefficient
µ. Resulting maps, illustrated in Figs. 7 and 8 allow for an estimation of
the influence of detected motions to parameters η and φ for nd = 2. Areas
in black ( ) represent divergent motions, areas in grey ( ) represent
locked motions and white areas show damped motions. The comparisons
displayed in Figs. 7 and 8 suggest that motion convergence is easily reached
with the CB method. For both CB and CCM reduced-order models, it can
be observed that a smaller modal description (η = 44 and φ = 44) tends to
favor damped motions. In the specific case of the CB reduced-order model,
the value of η does not disturb the transition between the locked motion
and the divergent motion areas. However, for CCM reduced-order models,
this transition is modified and the locked motion area is less homogeneous
for φ = 44.

The results for the CCM reduced-order models put into perspective the
results pictured in Figs. 5(a), 5(b) and 5(c) emphasizing the importance of
a large φ to reach motion convergence. Only a few differences are distin-
guishable between the maps for η = φ = 88, particularly for low rotating
speeds and low friction coefficients. The fact that these two maps match –
and because they are obtained with two different CMS methods using dif-
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Figure 7 – Motions detected with CB method for η = 44 and η = 88
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Figure 8 – Motions detected with CCM method for φ = 44 and φ = 88
function of µ and Ω

ferent reduction basis – justifies that results converged in terms of motions.
A similar map with finite element models cannot be obtained since it would
lead to prohibitive computation times.
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5 Conclusions

The combination of component mode synthesis methods with a contact algo-
rithm based on the Lagrange multiplier technique was introduced in [10, 19].
Our study shows that the use of a CMS method minimizes computation
times depending the type of convergence sought. For planar finite element
models, it was shown that a reasonable number of modes in the modal re-
duction basis – such as η = 44 in CB method – are necessary to precisely
determine the different motions. However, in order to get a good accuracy
in terms of displacements, the size of the modal reduction basis has to be
increased due to the high numerical sensitivity of the locking phenomenon.
In that case, CCM gives better results with a smaller reduction basis.

Considering these results, work is in progress to evaluate the influence
of the kinematic restrictions used in our study on the casing and their role
in modal interaction detection.
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