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Abstract

A lot of attention has been devoted to multimedia indexing over the past few years. In the literature, we

often consider two kinds of fusion schemes: The early fusion and the late fusion. In this paper we focus on late

classifier fusion, where one combines the scores of each modality at the decision level. To tackle this problem, we

investigate a recent and elegant well-founded quadratic program named MinCq coming from the Machine Learning

PAC-Bayes theory. MinCq looks for the weighted combination, over a set of real-valued functions seen as voters,

leading to the lowest misclassification rate, while making use of the voters’ diversity. We provide evidence that

this method is naturally adapted to late fusion procedure. We propose an extension of MinCq by adding an order-

preserving pairwise loss for ranking, helping to improve Mean Averaged Precision measure. We confirm the good

behavior of the MinCq-based fusion approaches with experiments on a real image benchmark.

Keywords: Machine Learning, Multimedia fusion, Multi-modality search, Ranking and re-ranking

1 Introduction

Combining multimodal information is an important issue in Multimedia and a lot of research effort has been ded-

icated to this problem (see Atrey et al. (2010) for a survey). Indeed, the fusion of multimodal inputs can bring

complementary information, from various sources, useful for improving the quality of any multimedia analysis

method such as for semantic concept detection, audio-visual event detection, object tracking, etc.

The different modalities correspond generally to a relevant set of features that can be grouped into different

views. For example, classical visual or textual features commonly used in multimedia are based on TF-IDF, bag of

words, texture, color, SIFT, spatio-temporal descriptors, etc. Once these features have been extracted, another step

consists in using machine learning methods in order to build classifiers able to discriminate a given concept.

Two main schemes are generally considered Snoek et al. (2005). In the early fusion approach, all the available

data/features are merged into one feature vector before the learning and classification steps. This can be seen as

a unimodal classification. However, this kind of approach has to deal with heterogeneous data or features which

are sometimes difficult to combine. The late fusion model works at the decision level by combining the prediction

scores available for each modality. This is usually called multimodal classification or classifier fusion. Late fusion

may not always outperform unimodal classification. Especially when one modality provides significantly better

results than others or when one has to deal with imbalanced input features. However, late fusion scheme tends to

give better results for learning semantic concepts in case of multimodal video Snoek et al. (2005). Several methods

based on a fixed decision rule have been proposed for combining classifiers such as max, min, product, sum, etc

Kittler et al. (1998). Other approaches, often referred to as stacking Wolpert (1992), need of an extra learning step.

In this paper, we address the problem of late multimodal fusion at the decision level with stacking. Let hi be

the classifier that gives the score associated with the ith modality for any instance x. A classical method consists in

looking for a weighted linear combination of the different scores,

H(x) =

n
∑

i=1

qihi(x),
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1



E. Morvant, A. Habrard, S. Ayache PAC-Bayesian Majority Vote for Late Classifier Fusion

where qi represents the weight associated with hi. It is usually required that 0 ≤ qi ≤ 1 and
∑n

i=1 qi = 1. This

linear weighting scheme can be seen as a majority vote. This approach is widely used because of its robustness,

simplicity and scalability due to small computational costs Atrey et al. (2010). It is also more appropriate when

there exist dependencies between the views Wu et al. (2004). An important issue is then to find an optimal way to

combine the scores. One solution is to use machine learning methods to assess the weights Atrey et al. (2010). From

a machine learning standpoint considering a set of classifiers with a high diversity is generally a desirable property

Dietterich (2000). One illustration is given by the algorithm AdaBoost Freund and Schapire (1996), frequently used

as a multimodal fusion method. AdaBoost weights the classifiers according to different distributions of the training

data, introducing some diversity, but requires at least weak classifiers to perform well. Another recent approach

based on the portfolio theory Wang and Kankanhalli (2010) proposes a fusion procedure trying to minimize some

risks over the different modalities and a correlation measure. While it is well-founded, it needs to define some

appropriate functions and is not completely fully adapted to the classifier fusion problem since it does not directly

take into account the diversity between the outputs of the classifiers.

We propose to study a new machine learning method, namely MinCq, introduced in Laviolette et al. (2011). It

proposes a quadratic program for learning a weighted majority vote over real-valued functions called voters (such as

score functions of classifiers). The algorithm is based on the minimization of a generalization bound that takes into

account both the risk of committing an error and the diversity of the voters, offering strong theoretical guarantees

on the learned majority vote. In this article, our aim is to show the interest of this algorithm for classifier fusion. We

provide evidence that MinCq is able to find good linear weightings but also very performing non-linear combination

with an extra kernel layer over the scores. Since in multimedia retrieval, the performance measure is related to the

rank of positive examples, we propose to extend MinCq to improve the Mean Average Precision. We base this

extension on an additional order-preserving loss for verifying ranking pairwise constraints.

The paper is organized as follows. Section 2 deals with the theoretical framework of MinCq. We extend MinCq

as a late fusion method in Section 3. Before concluding in Section 5, we evaluate empirically the MinCq late fusion

in Section 4.

2 PAC-Bayesian MinCQ

In this section we present the algorithm MinCq of Laviolette et al. Laviolette et al. (2011) for learning a Q-weighted

majority vote of real-valued functions (e.g. classifier scores). This method is based on the PAC-Bayes theory

McAllester (1999). We first recall the setting of MinCq.

We consider binary classification tasks over a feature space X ⊆ R
d of dimension d. The label space is

Y = {−1, 1}. The training sample is S = {(xi, yi)}
m
i=1 where each example (xi, yi) is drawn i.i.d. from a fixed

— but unknown — probability distribution D defined over X × Y . We consider a space of real-valued voters H,

such that ∀hi ∈ H, hi : X 7→ R. Given a voter hi, the predicted label of x ∈ X is given by sign[hi(x)], where

sign[a] = 1 if a ≥ 0 and −1 otherwise. Then, the learner aims at choosing a distribution Q over H — the weights

qi — leading to the Q-weighted majority vote BQ with the lowest risk. BQ is defined by,

BQ(x) = sign [HQ(x)] ,

with HQ(x) =

|H|
∑

i=1

qihi(x).

The associated true risk RD(BQ) is defined as the probability that the majority vote misclassifies an example drawn

according to D,

RD(BQ) = P(x,y)∼D (BQ(x) 6= y) .

In the case of MinCq, H has to be a finite auto-complemented family of 2n real-valued voters H = {h1, . . . , h2n}
such that,

∀x ∈ X, ∀i ∈ {1, . . . , n}, hi+n(x) = −hi(x). (1)

Moreover, the algorithm considers quasi-uniform distributions Q over H, i.e. the sum of the weight of a voter and

its opposite is 1
n

,

∀i ∈ {1, . . . , n}, Q(hi) +Q(hi+n) = qi + qi+1 =
1

n
. (2)
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This constraint is not too restrictive since every distribution over H can be represented by a quasi-uniform dis-

tribution Laviolette et al. (2011). The assumptions (1) and (2) are actually an elegant trick to avoid the use of a

prior distribution over H which is often required by usual PAC-Bayesian method McAllester (1999), making the

algorithm more easily applicable.

We now present the principle of the algorithm MinCq. The core of MinCq is the minimization of the empirical

version of a bound — the C-Bound — over the risk of the Q-weighted majority vote.

Theorem 1 (C-Bound Laviolette et al. (2011)) Given H = {h1, . . . , h2n} a class of 2n functions, for any weights

{qi}
2n
i=1, i.e. distributionQ, onH and any distribution D over X×Y , if E(x,y)∼D HQ(x) > 0 thenRD(BQ) ≤ CD

Q

where,

CD
Q =

Var(x,y)∼D(yHQ(x))

E(x,y)∼D(yHQ(x))2
= 1−

(MD
Q)

2

MD
Q2

,

with MD
Q = E(x,y)∼D

∑2n
i=1 yqihi(x), and MD

Q2 = E(x,y)∼D

∑2n
i=1

∑2n
i′=1 qiqi′hi(x)hi′ (x) are respectively the

first and the second moments of the Q-margin: yHQ(x).

Following some generalization bounds, MinCq proposes to minimize the empirical version of the C-bound, CS
Q =

1−
(MS

Q)

MS

Q2

, over a sample S. The idea is to fix the empirical first moment MS
Q to a margin µ > 0 and to minimize

the empirical second moment MS
Q2 measuring the correlation of the voters. This leads to minimize the bound and

thus the risk of the majority vote by taking into account the diversity between the voters.

Definition 1 (MinCq algorithm Laviolette et al. (2011)) Given a set H = {h1, . . . , h2n} of voters, a training set

S = {(xj , yj)}
m
j=1, and a margin µ > 0, among all quasi-uniform distributions Q of empirical margin MS

Q exactly

equal to µ, the MinCq algorithm consists in finding one that minimizes the empirical MS
Q2 .

Due to the auto-complemented (1) and quasi-uniformity (2) assumptions, the algorithm can be expressed as a

quadratic program (MinCq) by only considering the first n voters hi ∈ H.

argminQ Qt
SMSQ−At

SQ,

s.t. mt
SQ =

µ

2
+

1

2nm

m
∑

j=1

n
∑

i=1

yjhi(xj),

and ∀i ∈ {1, . . . , n}, 0 ≤ qi ≤
1

n
, (MinCq)

where t denotes the transposed function, Q = (q1, . . . , qn)
t is the vector of the first n weights qi, MS is the n× n

matrix formed by 1
m

∑m

j=1 hi(xj)hi′(xj) for i and i′ in {1, . . . , n}, and,

mS =

(

1

m

m
∑

j=1

yjh1(xj), . . . ,
1

m

m
∑

j=1

yjhn(xj)

)t

,

AS =

(

1

nm

n
∑

i=1

m
∑

j=1

h1(xj)hi(xj), . . . ,
1

nm

n
∑

i=1

m
∑

j=1

hn(xj)hi(xj)

)t

.

Finally, the Q-weighted majority vote learned by MinCq is then

BQ(x) = sign[HQ(x)],

with HQ(x) =

n
∑

i=1

(

2qi −
1

n

)

hi(x).

3 MinCq as a Late Fusion Method

PAC-Bayesian MinCq has been proposed in the particular context of binary classification where the objective is

to minimize the misclassification rate of the Q-weighted majority vote by taking into account the diversity of the

voters. From a multimedia indexing standpoint, MinCq thus appears to be a natural way for late classifiers fusion

to combine the predictions of classifiers separately trained from different modalities.

Concretely, given a training sample of size 2m we split it randomly into two subsets S′ and S = {(xj , yj)}
m
j=1

of the same size. Let n be the number of modalities. For each modality i, we train a classifier hi from S′. Let
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H = {h1, . . . , hn,−hi, . . . ,−hn} be the set of the n associated prediction functions and their opposites. At this

step, the fusion is achieved by MinCq: We learn from S the Q-weighted majority vote over H with the lowest

risk. However, in many applications, such as multimedia document retrieval, people are interested in performance

measures related to precision or recall. Since a low-error vote is not necessarily a good ranker, we propose an

adaptation of MinCq to improve the popular Mean Averaged Precision (MAP).

We first recall the definition of the MAP measured on S for a given real-valued function h. Let S+ = {(xj , yj) :

(xj , yj) ∈ S ∧ yj = 1} = {(xj+ , 1)}
m+

j+=1 be the set of the m+ positive examples from S and S− = {(xj , yj) :

(xj , yj) ∈ S ∧ yj = −1} = {(xj− ,−1)}m
−

j−=1 the set of the m− negative examples from S (m+ +m− = m). For

evaluating the MAP, one ranks the examples in descending order of the scores. The MAP of h is,

MAPS(h) =
1

|m+|

∑

j:yj=1

Prec@j,

where Prec@j is the percentage of positive examples in the top j. The intuition behind this definition is that

we prefer positive examples with a score higher than negative ones. To achieve this goal, we propose to learn

with pairwise preference Fürnkranz and Hüllermeier (eds) (2010) on pairs of positive-negative instances. Indeed,

pairwise methods are known to be a good compromise between accuracy and more complex performance measure

like MAP. Especially, the notion of order-preserving pairwise loss was introduced in Zhang (2004) in the context of

multiclass classification. Following this idea, Yue et al. Yue et al. (2007) have proposed a SVM-based method with

a hinge-loss relaxation of a MAP-loss. In our specific case of MinCq for multimedia fusion, we design an order-

preserving pairwise loss for correctly ranking the positive examples. Actually, for each pair (xj+ ,xj− ) ∈ S+×S−,

we want: HQ(xj+) > HQ(xj− ) ⇔ HQ(xj− ) −HQ(xj+) < 0. This can be forced by minimizing (according to

the weights qi) the following hinge-loss relaxation of the previous equation,

1

m+m−

m+

∑

j+=1

m−

∑

j−=1

[

HQ(xj−)−HQ(xj+)
]

+
, (3)

where [a]+ = max(a, 0) is the hinge-loss. In the setting of MinCq, with H auto-complemented (Eq.(1)) and Q
quasi-uniform (Eq.(2)), we reduce the term (3) to,

1

m+m−

m+

∑

j+=1

m−

∑

j−=1

[

n
∑

i=1

(

2qi −
1

n

)

(

hi(xj− )− hi(xj+ )
)

]

+

. (4)

To deal with the hinge-loss of (4), we considerm+×m− additional slack variables ξS+×S− = (ξj+j−)1≤j+≤m+,1≤j−≤m−

weighted by a parameter β > 0. We make a little abuse of notation to highlight the difference with (MinCq): Since

ξS+×S− appear only in the linear term, we simply add (4) after the (MinCq) formulation. We obtain the quadratic

program (MinCqPW ),

argminQ,ξ
S+×S−

Qt
SMSQ−At

SQ+ β IdtξS+×S− ,

s.t. mt
SQ =

µ

2
+

1

2nm

m
∑

j=1

n
∑

i=1

yjhi(xj),

∀j+ ∈ {1, . . . ,m+}, ∀j− ∈ {1, . . . ,m−}, ξj+j− ≥ 0,

ξj+j− ≥
1

m+m−

n
∑

i=1

(

2qi −
1

n

)

(

hi(xj− )− hi(xj+ )
)

,

and ∀i ∈ {1, . . . , n}, 0 ≤ qi ≤
1

n
, (MinCqPW )

where Id is the unit vector of size m+ × m−. However, one drawback of this method is the incorporation of a

quadratic number of additive variables (m+ × m−) which makes the problem harder to solve. To overcome this

problem, we propose to relax the constraints by considering the average score of the negative examples: We force

the positive examples to be higher than the average negative scores. This leads us to the following alternative
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Table 1: MAP obtained on the PascalVOC’07 test sample. On the left, experiments with rbf kernel layer. On the

right, without.
concept MinCq

rbf
PWav MinCqrbf SVMrbf MinCqPWav MinCqPW MinCq Σ ΣMAP best hbest

aeroplane 0 .513 0 .513 0.497 0.487 0.486 0.526 0.460 0.241 0.287 0.382
bicycle 0.273 0.219 0.232 0.195 0.204 0 .221 0.077 0.086 0.051 0.121

bird 0.2659 0.264 0.196 0.169 0.137 0 .204 0.110 0.093 0.113 0.123
boat 0.267 0.242 0.240 0.1593 0.154 0.159 0.206 0.132 0.079 0 .258

bottle 0 .103 0.099 0.042 0.112 0.126 0.118 0.023 0.025 0.017 0.066
bus 0.261 0.261 0.212 0 .167 0.166 0.168 0.161 0.098 0.089 0.116
car 0.530 0.530 0.399 0 .521 0.465 0.495 0.227 0.161 0.208 0.214
cat 0.253 0.245 0.160 0 .230 0.219 0.220 0.074 0.075 0.065 0.116

chair 0.397 0.397 0.312 0 .257 0.193 0.230 0.242 0.129 0.178 0.227
cow 0.158 0.177 0.117 0.102 0.101 0 .118 0.078 0.068 0.06 0.101

diningtable 0.263 0.227 0.245 0.118 0.131 0.149 0 .153 0.091 0.093 0.124
dog 0.261 0.179 0.152 0 .260 0.259 0.253 0.004 0.064 0.028 0.126

horse 0.495 0.4504 0.437 0.3011 0.259 0.303 0 .364 0.195 0.141 0.221
motorbike 0.295 0.284 0.207 0.1412 0.113 0.162 0 .193 0.115 0.076 0.130

person 0.630 0.614 0.237 0 .624 0.617 0.604 0.001 0.053 0.037 0.246
pottedplant 0.102 0.116 0.065 0 .067 0.061 0.061 0.057 0.04 0.046 0.073

sheep 0.184 0.175 0.144 0.0666 0 .096 0.0695 0.128 0.062 0.064 0.083
sofa 0.246 0.211 0.162 0.204 0 .208 0.201 0.137 0.087 0.108 0.147
train 0.399 0.385 0.397 0.331 0.332 0 .335 0.314 0.164 0.197 0.248

tvmonitor 0 .272 0.257 0.230 0.281 0.281 0.256 0.015 0.102 0.069 0.171

Average 0.301 0.292 0.234 0.240 0.231 0 .243 0.151 0.104 0.100 0.165

problem (MinCqPWav) with only m+ additional variables.

argminQ,ξ
S+

Qt
SMSQ−At

SQ+ β IdtξS+ ,

s.t. mt
SQ =

µ

2
+

1

2nm

m
∑

j=1

n
∑

i=1

yjhi(xj),

∀j+ ∈ {1, . . . ,m+}, ξj+ ≥ 0,

ξj+ ≥
1

m+m−

m−

∑

j−=1

n
∑

i=1

(

2qi −
1

n

)

(

hi(xj− )− hi(xj+)
)

,

and ∀i ∈ {1, . . . , n}, 0 ≤ qi ≤
1

n
, (MinCqPWav)

where Id is the unit vector of size m+.

Note that the two approaches still respect the framework of the original MinCq. We simply regularize the search

of the weights for a Q-weighted majority vote leading to an higher MAP.

Finally, for tuning the hyperparameters (µ, β) we use a cross-validation process (CV). Instead of selecting the

parameters leading to the lowest risk, we select the ones leading to the best MAP.

4 Experiments

In this section, we show empirically the interest of MinCq, and our extension, as a late fusion method with stacking

(implemented with MOSEK solver). We experiment the MinCq-based approaches on the PascalVOC’07 bench-

mark Everingham et al. (2007), where the goal is a list of 20 visual concepts to identify in images. The corpus is

constituted of 5000 training and 5000 test images. In general, the ratio between positive and negative examples is

less than 10%. For each concept, we generate a training sample constituted of all the training positive examples and

negative examples independently drawn such that the positive ratio is 1/3. We keep the original test set.

Our objective is not to provide the best results on this benchmark but rather to evaluate if the MinCq-based

methods could be helpful for the late fusion step in multimedia indexing. To do so, we split the training sample into

two subsets, S′ and S, of the same size. We consider 9 different visual features: 1 SIFT, 1 LBP, 1 Percepts, 2 HOG,

2 Local Color Histograms and 2 Color Moments. Then, we train from S′ a SVM-classifier for each visual feature

(with the LibSVM library Chang and Lin (2001) and a rbf kernel with parameters tuned by CV). The final classifier

fusion is learned from S.

In a first series of experiments, the set of voters H is constituted by the 9 SVM-classifiers (MinCq also considers

the opposites). We compare the 3 linear MinCq methods (MinCq), (MinCqPW ), (MinCqPWav) to the following

4 baseline fusion approaches.

Technical Report V 1.0 5



E. Morvant, A. Habrard, S. Ayache PAC-Bayesian Majority Vote for Late Classifier Fusion

• The best classifier of H:

hbest = argmaxhi∈H MAPS(hi).

• The one with the highest margin:

best(x) = argmaxhi∈H |hi(x)|.

• The sum of the classifiers (unweighted vote):

Σ(x) =
∑

hi∈H

hi(x).

• The MAP-weighted vote:

ΣMAP (x) =
∑

hi∈H

MAPS(hi)
∑

hi′∈HMAPS(hi′)
hi(x).

In a second series, we propose to introduce non-linear information with a rbf kernel layer. We represent each

example by the vector of its scores of the 9 SVM-classifiers, H being the set of kernels over the sample S: Each

x ∈ S is seen as a voter k(·,x). We then compare our method to stacking with SVM tuned by CV (SVMrbf ). Note

that we do not report the results of (MinCqPW ) in this context, because the computational cost is much higher and

the performance is lower. The full pairwise version implies too many variables which may penalize the resolution

of (MinCqPW ).

In either case, the hyperparameters of MinCq-based methods are tuned with a grid search by a 5-folds CV. The

MAP-performances are reported on Table 1, we can make the following remarks.

• On the right, for the first experiments, we clearly see that the linear MinCq-based algorithms outperform on

average the linear baselines. At least one MinCq-based method produces the highest MAP, except for “boat”

for which hbest is the best. We note that the order-preserving hinge-loss is not really helpful: The classical

(MinCq) shows the best MAP. In fact, this can be explained by the limited number of voters.

• On the left, with a kernel layer, at least one MinCq-based method achieves the highest MAP and for 17/20

both are better than SVM. Moreover, MinCqrbfPWav with the averaged pairwise preference is the best for 17
concepts, showing the order-preserving loss is a good compromise between improving the MAP and keeping

a reasonable computational cost.

• Globally, kernel-based MinCq methods outperform the other methods. Moreover, at least one MinCq-based

approach is the best for each concept showing PAC-Bayesian MinCq is a good alternative for late classifiers

fusion.

5 Conclusion

We propose in this paper to make use of a well-founded learning quadratic program called MinCq as a novel

multimedia late fusion method. PAC-Bayesian MinCq was originally developed for binary classification and aims

at minimizing the error rate of the weighted majority vote by considering the diversity of the voters Laviolette et al.

(2011). In the context of multimedia indexing, we claim that MinCq thus appears naturally appropriate for late

classifier fusion in order to combine the predictions of classifiers trained from different modalities. Our experiments

show that MinCq is a very competitive alternative for classifier fusion. Moreover, the incorporation of average

order-preserving constraints is sometimes able to improve the MAP-performance measure. Beyond these results,

such PAC-Bayesian methods open the door to define other theoretically well-founded frameworks to design new

algorithms in many multimedia tasks such as multi-modality indexing, multi-label classification, ranking, etc.
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