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Abstract

Boolean networks are discrete dynamical systems extensively used to model biological regulatory
networks. The dynamical analysis of these networks suffers from the combinatorial explosion of the
state space, which grows exponentially with the number n of components. To face this problem,
a classical approach consists in deducing from the interaction graph of the network, which only
contains n vertices, some information on the dynamics of the network. In this paper, we present
results in this topic, mainly by focusing on the influence of positive and negative feedbacks.

1 Introduction

Biological regulatory networks model the influence of biological components
between each other. While such relations can be deduced through experiments
by biologists, such systems can raise complex global dynamical behaviours and
motivate the use of formal verification techniques to validate a model, and
predict and understand particular behaviours, such as proteins productions
dynamics [9,8].

Boolean Networks (BNs) are a typical formalism used to model biologi-
cal regulatory networks dynamics (see the seminal work of Stuart Kauffman
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[19,20] and René Thomas [46,48]). A BN associates to each component a
Boolean value and a local logical function describing its evolution in front of
the value of other components of the network. The global dynamics is then a
Boolean map applying the local functions on component values, with different
settings of iteration schemes.

Because the size of the state space is exponential with the number of com-
ponents, classical analysis, such as model-checking techniques, may be in-
tractable with large systems. To cope with this combinatorial explosion, an
amount of work establish relationships between the interaction graph of a BN
and some properties on the dynamics. An interaction graph references the
positive and negative influences between components into a signed directed
graph having one vertex per component; and hence is a compact and static
abstraction of BN dynamics.

This paper aims at giving an insight of the different results on the rela-
tionships between the interaction graph and the dynamical properties of BNs.
These kinds of results are of particular interest in the modelling of regulatory
networks: those interaction graphs are generally the most reliable information
on the biological system, while few knowledge on their precise behaviours are
available.

This paper is structured as follows. Sect. 2 presents the main definitions
used in this paper. Sect. 3 details the major results extracting dynamical
properties of a BN from the topology of its interaction graph. Finally, we
discuss these state-of-the-art approaches, and mention other static analysis
techniques for BNs in Sect. 4.

2 Definitions

Notations. Let n be a positive integer, [n] = {1,...,n}, and B = {0,1}. The
ith component of a point x € B" is denoted ;. If I C [n], then T' denotes
the point y € B” such that y; = 1 — x; if ¢« € I, and y; = x; otherwise. T
is an abbreviation for z", and if i € [n], we write 7' instead of . For all
z,y € B", we denote by A(z,y) the set of i € [n] such that z; # y;. Let
f:B™ — B"™. The ith component of f(z) is denoted f;(x). Hence, f; may be
seen as a function from B" to B. For all x € B", we set Af(z) = A(z, f(z)).
Observe that f(z) = z2/@),

2.1 Boolean networks

A Boolean network is a discrete dynamical system that consists in a collection
of n Boolean components evolving along a discrete time by mutual interac-
tions. Dynamics of such a system are usually described by a directed graph
on B" that is constructed from a Boolean function f : B® — B". Several
iteration graphs can be considered. In the scope of this paper, we focus on
the synchronous, asynchronous and generalized iteration graphs.
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Definition 2.1 [Iteration graphs|

* The synchronous iteration graph of f, denoted by S1G(f), is the directed
graph on B" that contains an arc z — y if and only if y = f(x) # =.

o The asynchronous iteration graph of f, denoted by A1G(f), is the directed
graph on B" that contains an arc x — y if and only if there exists i € Af(x)
such that y = 7

e The generalized iteration graph of f, denoted by GIG(f), is the directed
graph on B" that contains an arc x — y if and only if there exists a non
empty set I C Af(z) such that y = z7.

On the one hand, Kauffman [19,20] proposed to model gene (regulatory)
networks with synchronous iteration graphs. One the other hand, Thomas
[46,48,49] argued that it is unlikely that several components change simultane-
ously their value, and he proposed to model gene networks with asynchronous
iteration graphs. In constrast with the synchronous description, the asyn-
chronous description is indeterministic: a state x may have several successors
(the number of successors of z is precisely |Af(z)]). An other interesting fea-
ture of the asynchronous description is that it can been seen has a relevant
approximation of continuous descriptions based on piece-wise linear differential
systems [12,11,40,48,42]. Note that the generalized iteration graph contains,
as subgraphs, both the synchronous and asynchronous iteration graphs.

In these three cases, the interpretation of f : B" — B" as a gene network
is the same: [n] corresponds to a set of genes, and at state x € B": the protein
encoded by the ith gene is present if x; = 1 and absent otherwise, and the
ith gene is expressed (“on”) if f;(z) = 1 and unexpressed (“off”) otherwise.
Hence, the gene expressions depend on the “proteins concentration”, and the
evolution of these concentrations depends on the gene expressions.

Example 2.2 [Running example| n = 3 and f is defined by:

file) =23 A (T1V 22),  folw) =23, f3(x) =210 V22 V23,

The synchronous, asynchronous and generalized iteration graphs of f are:

SIG(f) ATG(f) GIG(f)

01l 111 011%111 011%111
010\ /110 010J‘/— 10 }<‘

001\%101 %101 001 101
000 100 000 <—— 100 ooob 100
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2.2 Fized points and attractors

A point z € B™ is a fized point of f if v = f(x). Fixed points are of particular
interest, since they correspond to stable states (in each iteration graph, z is
a fixed point of f if and only if it has no successor). In the context of gene
networks, fixed points correspond to stable patterns of gene expressions and
are often associated to particular biological functions. In the next definition,
the notion of fixed point is extended to the one of attractor.

Definition 2.3 [Attractors| Let T' be the synchronous, asynchronous or gen-
eralized iteration graph of f. The attractors of I' are the smallest non empty
subsets A C B" without leaving arc, i.e. such that for every arc x — y in T,
if x € A then y € A. An attractor of cardinality at least two is said cyclic.

It derives that a cyclic attractor does not contain any fixed point. As a
consequence, once a the system is inside a cyclic attractor, it cannot reach
a fixed point, and it necessarily describes sustained oscillations. Other easy
observations on attractors follow.

Proposition 2.4 A point = is a fixred point of f if and only if {x} is an
attractor of I'. The non-cyclic attractors of I' can thus be identified to the fixed
points of . Also, for every x in B", there exists at least one path starting from
x that reaches an attractor. Consequently, I' has always at least one attractor.

Example 2.5 [Running example continued] The attractors of AIG(f) and
GIG(f) are the fixed point 000 and the cyclic attractor {001,011,101, 111}.
The attractors of SIG(f) are the fixed point 000 and the cyclic attractor
{011,101, 111},

2.8 Interaction graphs

Inherent to the notion of Boolean network is the one of interaction graph. Such
a graph depicts, in a very coarse way, the qualitative interactions between
components, and is usually represented as a directed graph with [n] as vertex
set. An arc from j to ¢ then means that the evolution of the ith component
depends on the evolution of the jth one. Here, we consider two kinds of
interactions: the positive and negative ones. This hence leads us to consider
signed directed graphs.

Definition 2.6 [Signed directed graph| A signed directed graph on [n] is a
graph G whose the set of vertices is [n], and whose the set of arcs is a subset
of [n] x {4+, =} x [n]. If (4,s,i) is an arc of G, we say that G has an arc from
j toiof sign s. G is simple if, for every i, j € [n], there exists at most one arc
from j to i. A positive (resp. negative) cycle of G is an elementary directed
cycle that contains an even (resp. odd) number of negative arcs. The length
of a cycle is the number of arcs it involves.
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We are now in position to define, in a natural way, the interaction graph
of a network whose the dynamics are described from f : B* — B".

Definition 2.7 [Interaction graph of f] The interaction graph of f, denoted
by G(f), is the signed directed graph on [n] defined by: for all 4, j € [n], there
exists a positive (resp. negative) arc from j to ¢ if and only if there exists
x € B" with z; = 0 such that f;(z) < fi(Z) (resp. fi(x) > fi(T)).

In other words, there exists a positive (resp. negative) arc from j to i if, in
at least one state x, an increase of x; induces an increase (resp. decrease) of
fi(z), i.e. the appearance of the jth protein turns on (resp. off) the ith gene.

Example 2.8 [Running example continued] The interaction graph of f fol-
lows. It has a negative cycle of length one, and a positive cycle of length one,
(two of) two and three. Note also that it is simple.

3 Static analysis based on the interaction graph

3.1 Absence of cycle and convergence toward a unique fixed point

The following fundamental fixed point theorem of Robert [34,35] shows that
the presence of a cycle in the interaction graph is necessary to prevent a simple
synchronous convergence toward a unique fixed point.

Theorem 3.1 If G(f) has no cycle, then f has a unique fized point x, and
every path of SIG(f) reaches this fized point (in at most n steps).

This convergence result was latter proved for asynchronous iteration graphs
by Robert [36], and for generalized iteration graphs by Bahi and Michel [5] (ac-
tually, these authors proved the convergence for a much more general class of
iteration schemes that include delays of communication between components).

Theorem 3.2 If G(f) has no cycle, then f has a unique fized point, and
every path of GIG(f) reaches this fized point.

3.2 Absence of positive cycle and upper bound on the number of fixed points

In 1980, Thomas stated the following general rule: a necessary condition for
a dynamical system to admit several stable states is the presence of a positive

bt
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cycle in its interaction graph [47]. In the context of gene networks, one can
interpret this rule as follow: positive cycles are necessary for differentiation
processes [48]. This rule was first formally stated and proved in continuous
frameworks [27,41,17,6,43,44]. A Boolean version of Thomas’ rule have then
been stated and proved by Remy, Ruet and Thieffry [28].

Theorem 3.3 If G(f) has no positive cycle, then f has at most fized point.

The following theorem, established in [33], shows that positive cycles are
more generally necessary for the presence of several asynchronous attractors.

Theorem 3.4 If G(f) has no positive cycle, then AIG(f) has at most one
attractor.

This theorem is not valid in the synchronous case. Also, since AIG(f) has
always at least one attractor (cf. Proposition 2.4), the theorem remains valid
if “at most one” is replaced by “a unique”. Finally, using it as a base case, one
can obtain an upper bound on the number of asynchronous attractors that
only depends on the structure of connections between positive cycles [3,2,30].

Theorem 3.5 Let I be a subset of [n]. If every positive cycle of G(f) has a
vertex in I, then AIG(f) has at most 21! attractors.

If G(f) has no positive cycle, then I = () satisfies the conditions of the
statement, and the resulting upper bound is one (hence, Theorem 3.5 gener-
alizes Theorem 3.4). The bound shows that it is not the number of positive
cycles which is important to obtain several fixed points (or asynchronous at-
tractors), but much more the structure of the connections between positive
cycles. For instance, if G(f) has a thousand of positive cycles, and if all these
cycles share a same vertex i, then I = {i} satisfies the conditions of the state-
ment, and the resulting upper bound is only two. In other words, in order for f
to have a lot of fixed points, G(f) has to contains a lot of “rather disconnected”
positive cycles.

We have seen that if G(f) has no positive cycle, then f has at most one
fixed point. The following theorem of Aracena [3,2] shows that, under a very
weak additional condition, f has actually no fixed point.

Theorem 3.6 If G(f) has a minimal in-degree at least one and has no posi-
tive cycle, then f has no fixed point.

Aracena proved this theorem under the additional assumption that G(f)
is simple, but this condition can be easily removed. Now, observe that this
theorem implies quite directly Theorem 3.3. Indeed, suppose that G(f) has
no positive cycle. If G(f) has a minimal in-degree at least one and has no
positive cycle, then by Theorem 3.6, f has no fixed point. Otherwise, there
exists a vertex, say n without loss generality, of in-degree zero in G(f). So
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fn=cst =c. Let h: B" ' — B"! defined by h;(x) = fi(z,c) for all z € B"!
and ¢ € [n—1]. It is easy to see that G(h) is a subgraph of G(f). So G(h) has
no positive cycle, and proceeding by induction on the number of components,
one obtains that h has at most one fixed point. Since it is clear that h and f
have the same number of fixed points, we deduce that f has at most one fixed
point.

3.3 Absence of negative cycle and lower bound on the number of fixed points

Thomas also stated a general rule on negative cycles: a necessary condition
for a dynamical system to produce sustained oscillations is the presence of a
negative cycle in its interaction graph [47]. In the context of gene networks, one
can interpret this rule as follow: negative cycles are necessary for homoeostasis
phenomena [48]. The next theorem, proved in [31], may be seen as a Boolean
version of second Thomas’ rule (and it is not valid in the synchronous case).

Theorem 3.7 IfG(f) has no negative cycle, then AIG(f) has no cyclic attrac-
tor. Hence, if G(f) has no negative cycle, then f has at least one fized point.

The second assertion is a consequence of the first one, since if G(f) has
no negative cycle, then A1G(f) has no cyclic attractor, and since AIG(f) has
always at least one attractor, we deduce that AIG(f) has an attractor of size
one, which is a fixed point of f (cf. Proposition 2.4). In [16], Goles and Salinas
provide an algorithm with running time O(n?) to compute, under the absence
of negative cycle in G(f), a fixed point of f (in the general case, the problem
of finding a fixed point is NP-complete).

Note that Theorems 3.3 and 3.7 provides a nice “proof by dichotomy” of
(the first assertion in) the theorem of Robert (Theorem 3.1): if G(f) has no
cycle, then following Theorem 3.3 (resp. 3.7), f has at most (resp. at least)
one fixed point, so f has indeed a unique fixed point.

While Theorem 3.6 provides a sufficient condition for the absence of fixed
point in term of absence of positive cycle, the following theorem, also es-
tablished by Aracena [3,2], provides a sufficient condition for the presence of
multiple fixed points in term of absence of negative cycle.

Theorem 3.8 Let G(f)* be the signed directed graph on [n] that contains an
arc from j toi of sign s if G(f) has an arc of sign s from j to i or from i to j.
If G(f) is simple, has a minimal in-degree at least one, and if G(f)* has no
negative cycle, then there exists x € B™ such that x and T are fixed points of f.

It is easy to see that if G(f) is strongly connected and has no negative cycle,
then G(f) is simple, has a minimal in-degree at least one, and G(f)* has no
negative cycle. Hence, the next theorem is a consequence of the previous one.

7
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Theorem 3.9 If G(f) is strongly connected and has no negative cycle, then
f has at least two fized points.

The following theorem, established in [26], generalizes Theorem 3.8 by
characterizing the number of topological fixed points of f, i.e. the number of
fixed points of f that only depend on G(f).

Theorem 3.10 Let G(f)* be the signed directed graph on [n] that contains
an arc from j to i of sign s if and only if G(f) has an arc from j to i of sign s
and no arc from j to i of sign —s. Let G(f)* be as in Theorem 3.8. Let us say
that x is a topological fixed point of f if it is a fized point of every function
h:B" — B™ such that G(h) = G(f). We have the following two properties:

o Let p be the number of connected components in G(f)#. If the following
three conditions are satisfied then f has exactly 2P topological fixed points,
and otherwise, f has 0 topological fized point: (i) the minimal in-degree
of G(f)* is at least one; (ii) G(f)* has no negative cycle; (iii) for every
i € [n], there exists at most one j € [n] such that G(f) has both a positive
and a negative arc from j to 1.

o Ifx is a topological fized point of f, then T is a topological fized point of f.
Note that if G(f) is simple, then G(f)# = G(f) and the third condition is

trivially satisfied. We then recover Theorem 3.8.

3.4 Comparison of iteration graphs

As said above, there are two principal iteration graphs used to model BNs dy-
namics, the synchronous and asynchronous ones. It is then of great interest to
try to compare them. There are very few results in this topics. However, Noual
[23] recently established the following fundamental theorem, which shows that
under some conditions on the cycles of G(f), every path of the generalized
iteration graph, and in particular every path of the synchronous iteration
graph, can be “imitated” by at least one path of the asynchronous iteration
graph. Other results concerning comparison of iteration schemes are provided
in [45,36,15,4]

Theorem 3.11 Assume that G(f) is simple, has no positive cycle of even
length, and has no negative cycle of odd length. If GIG(f) has an arc x — vy,
then AIG(f) has a path from x toy of length |A(x,y)|. Hence, the number of
attractors in GIG(f) and SIG(f) is at least the number of attractors in AIG(f).

3.5 Network reduction

Since the number of possible states of a BN increases exponentially with the
number n of components, it is interesting to try to reduce the system, typically
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by removing components, without losing too many dynamical properties. The
following theorem, stated with other notations in [21], shows that if the nth
component does not interact with itself, it can be suppressed in a natural way,
without affecting the number of fixed points, the reachability by asynchronous
paths, and the main features of the interaction graph. (For sake of simplicity,
this theorem only deals with the suppression of the nth component, but it can
be very easily adapted to the suppression of any component.)

Theorem 3.12 Let f:B" ! — B! be defined from f : B® — B™ by:

Vo e B" !, Vic[n—1], fi(z) = fi(%), T = (z, fu(x,0)) € B".

If G(f) has no arc from n to itself, then the following three properties hold:

* A point x is a fived point off if and only if T is a fized point of f. As a
consequence, f and f have the same number of fixed points.

* AIG(f) has a path from x to y if and only if AIG(f) has a path from T to j.
As a consequence, the number of attractors in AIG(f) is at least the number
of attractors in AIG(f).

o If G(f) has a path from j to i with an even (resp. odd) number of negative
arcs, then G(f) has a path from j to i with an even (resp. odd) number of
negative arcs. As a consequence, if G(f) has no positive (resp. negative)

cycle, then G(f) has no positive (resp. negative) cycle.

Note that this theorem gives another way to prove the (first assertion in
the) theorem of Robert (Theorem 3.1). Indeed, suppose that G(f) has no
cycle. Then it has no arc from n to itself, so f and f have the same number
of fixed points, and G(f) has no cycle (according to the third point). Using
an induction on the number of components, we deduce that f has a unique

fixed point, so that f has a unique fixed point.

4 Discussion

We have presented several results related to the static analysis of BNs through
the topological analysis of their interaction graphs. First, we have seen that
cycles are necessary to obtain “complex behaviours” (Theorems 3.1 and 3.2).
Then, by focusing on positive and negative cycles, we have seen that necessary
or sufficient conditions for the presence of several attractors or the presence
of cyclic attractors can be obtained (Theorems 3.3-3.10). We have also seen
that conditions on cycles permit to obtain results about the comparison of
iteration schemes or the model reduction (Theorems 3.11 and 3.12).

For the sake of simplicity, we restricted ourself to the Boolean case and
results concerning the global interaction graph. However, Theorems 3.1-3.5,
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3.7 and 3.12 have extensions to the non-Boolean discrete case and/or general-
izations in terms of local interaction graphs [34,36,5,38,37,28,33,29,30,31,32].

All the topics regarding the static analysis based on interaction graphs
have not been covered in this short survey. In particular, a lot of works have
been dedicated to the length of synchronous attractors [14,45,13,7,10,18,15].

With the aim at making tractable the computation of more precise dy-
namical properties from BNs, recent work investigate the use of other static
analysis techniques. For instance, Naldi et al. [22] propose to represent each
function g; defined by g;(z) = 1 iff f;(z) = x; with a binary decision diagram;
leading to an efficient enumeration of all fixed points of f through algebraic
operations on the n resulting decision diagrams. Paulevé et al. developed the
Process Hitting framework into which over-approximations of asynchronous
dynamics of BNs can be encoded. By using abstract interpretation techniques,
very efficient over- and under-approximations of particular reachability prop-
erties within Process Hitting models have been built [24,25], having hence
applications to reachability (static) analysis within BNs.

Overall, a large variety of properties can be statically derived from BNs.
The extension of the presented topological analysis of the interaction graph
to other modelling frameworks for biological regulatory networks is yet chal-
lenging. While, as mention above, several important results have already been
extended to discrete networks, the new degree of freedom brought by discrete
modelling prevents the straightforward extension of many results on BNs with-
out imposing constraints on possible logical expressions (such as Theorems 3.6
and 3.8). Finally, the efficient quantification of dynamical properties within
hybrid models extending discrete networks with time or stochastic features
[39,1,50] calls for innovative static analysis techniques.

Acknowledgements. This work has been partially supported by the French
National Agency for Research (ANR-10-BLANC-0218 BioTempo project).
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