N
N

N

HAL

open science

A variational study of some hadron bag models
Loic Le Treust

» To cite this version:

Loic Le Treust. A variational study of some hadron bag models. Calculus of Variations and Partial

Differential Equations, 2014. hal-00714457v2

HAL Id: hal-00714457
https://hal.science/hal-00714457v2
Submitted on 18 Jan 2013

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.


https://hal.science/hal-00714457v2
https://hal.archives-ouvertes.fr

A VARIATIONAL STUDY OF SOME HADRON BAG MODELS

LOIC LE TREUST

ABSTRACT. We study, in this paper, some relativistic hadron bag models. We
prove the existence of excited state solutions in the symmetric case and of a
ground state solution in the non-symmetric case for the soliton bag and the
bag approximation models by concentration compactness. We show that the
energy functionals of the bag approximation model are I'-limits of sequences
of soliton bag energy functionals for the ground and excited state problems.
The pre-compactness, up to translation, of the sequence of ground state solu-
tions associated with the soliton bag energy functionals in the non-symmetric
case is obtained combining the I'-convergence theory and the concentration-
compactness principle. Finally, we give a rigorous proof of the original deriva-
tion of the M.I.T. bag equations via a limit of bag approximation ground state
solutions in the spherical case. The supersymmetry property of the Dirac
operator is a key point in many of our arguments.

1. INTRODUCTION AND MAIN RESULTS

Quantum chromodynamics (QCD) is the theory of strong interaction and ac-
counts for the internal structure of hadrons. At low-energy, the quarks are bound
together to form baryons (protons, neutrons) and mesons. Nevertheless, the con-
finement mechanism has not yet been derived from the QCD equations. In order
to study the hadronic properties, physicists introduced phenomenological models
approximating the QCD equations in which the quarks are confined. Among them,
the M.I.T. bag [9, 8, 7, 18] and the bag approximation models [9, 7] have been set
in 1974 and the soliton bag model [11, 12, 20] in 1977.

The solutions of the equations of the soliton bag and the bag approximation
models are critical points of non-linear functionals involving the Dirac operator.
The mathematical techniques used to solved most equations of this type are dif-
ferent from the ones used in a non-relativistic framework (see the review paper
of Esteban, Lewin and Séré [10]). Nevertheless, in our case, the supersymmetric
properties of the Dirac operator with scalar potential [39] allow us to transform a
strongly indefinite variational problem into a minimization one and then to use the
direct method in the calculus of variation [38]. Since the functionals associated with
the ground state problems of the soliton bag and the bag approximation models
without symmetries are invariant under translations, we show the existence of solu-
tions thanks to the concentration compactness method under some restrictions on
the parameters of the models. The originality of the proofs relies on the fact that
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the usual concentration compactness inequalities are not satisfied anymore and we
have to introduce different inequalities to overcome it. We also show the existence
of ground and excited state solutions under some conditions on the parameters,
when the wave functions are supposed to have some symmetries. These are the
first rigorous proofs of existence for these two models. Actually, solving the bag
approximation model is a shape optimization problem on finite perimeter sets of
R3 which is related to the soliton bag model thanks to the gradient theory of phase
transitions [29, 30, 28, 36, 3, 4]. Indeed, we show that the energy functionals of the
bag approximation model are I'-limits of sequences of soliton bag model energy func-
tionals for the ground and excited state problems. We combine the I'—convergence
theory and the concentration compactness method to get the pre-compactness, up
to translation, of the sequence of ground state solutions associated with the soliton
bag energy functionals in the non-symmetric case. As in the existence results, we
have to introduce concentration compactness inequalities different from the classical
ones. Bucur [5], Bucur and Giacomini [6] have already studied shape optimization
problems thanks to the concentration compactness method. But, to our knowledge,
this is the first result using both the gradient theory of phase transition and the
concentration compactness method. We also prove the pre-compactness of the se-
quences of excited state solutions associated with the soliton bag energy functionals
in the symmetric case. Finally, we give a rigorous proof of the original derivation
of the M.I.T. bag equations done by Chodos, Jaffe, Johnson, Thorn and Weisskopf
[9] via a limit of bag approximation ground state solutions in the spherical case.
These are the first proofs which rigorously establish the link between the soliton
bag, the bag approximation and the M.I.T. bag models.
Let us now introduce the different models we study.

1.1. Some bag models.

1.1.1. The soliton bag model. This model has been introduced by Friedberg and
Lee [11, 12] and is sometimes called the Friedberg-Lee model.

Here, we look for a solution (¢1, . ..,%nN, @) of the following system of equations:
Hoi + gBoi = Nithi Vi=1,...,N,
(1.1) [¥ille =1 Vi=1,...,N,

~A¢+U'(9) + 0L, 995 B =0,
where N € N\{0}, ¢ > 0, ¢ : R3 — R and for all i € {1,...,N}, ¢, : R® —
C* Hy = —ia.V + fm = —iag0y + fm is the Dirac operator in the Pauli-Dirac
representation (see [39]) : a = (a1, ag,a3),

(L 0 _ 0 o _
ﬁ—(o 12),ak—(o_k 0 ),fork:—l,2,3,

(01 (0 (1 0
g1 = 1 0 , 02 = i 0 , 03 = 0 —1 )

and m > 0; X* denotes the complex conjugate of X € C* We have used here
Einstein’s convention for the summation.

Solutions of equations (1.1) are called quasi-classical [11, 12].

The potentials of the Dirac operator Hy of the form B¢ are called scalar poten-
tials. The fact that in our problems the potential of the Dirac operator is scalar
is a key point in our study. Indeed, we will see below that the scalar potentials

with
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preserve the symmetry of the spectrum with respect to 0 that the Dirac operator
has. Let us remark moreover that g8¢ acts like a mass term [20] since

Hy + gB¢ = —ia.V + B(m + g¢).

This kind of potential is often considered in QCD [11, 12, 15, 9] to model the strong
interactions between quarks. From the physical point of view, ¢ is a phenomenolog-
ical scalar field that models the QCD vacuum and can be viewed as a representation
of the quantum excitations of the self-interacting gluon field [15].

P1,..., YN are the wave functions of the N valence quarks. N is fixed at 2 for
mesons and 3 for baryons. g is the positive coupling constant between the quark
and the scalar fields. )\; is an eigenvalue of the Dirac operator with scalar potential
Hy + gB¢ and represents the energy of the it’-relativistic particle in the scalar
field ¢, so it has to be non negative for v; to be a physically admissible state (see
chapter 1 of [39] for a physical interpretation of the negative part of the spectrum
of a Dirac operator). Some of the N particles can have the same wave function
and this does not necessarily contradict Pauli’s exclusion principle because quarks
possess others quantum numbers such as color. Let us denote by Ny the maximal
number of particles possible with the same wave function ¥. We will always assume
that the number of these particles is less than Nj.

Physicists [32, 17] have already studied numerically this problem for scalar po-
tential with radial symmetry i.e. when ¢ is radial. In that case, the spin-orbit
operator, the z-component of the angular momentum operator and the Dirac op-
erator commute altogether. Hence, we will look for eigenfunctions of the Dirac
operator with spherically symmetric potential that are also eigenfunctions of the
spin-orbit operator and the z-component of the angular momentum operator. A
particular ansatz is often chosen for the four-vector wave function [32, 17, 27, 9]

1

that is separable in the spherical coordinates (r, 6, ¢) of z. This corresponds to an
eigenfunction of the spin-orbit operator of eigenvalue —1 and of the z-component of
the angular momentum operator of eigenvalue 1/2 (see [39, Section 4.6] for complete
study of the Dirac operator with spherically symmetric potential). Actually, it is
commonly admitted by physicists that the ground state of many problem involving
the Dirac operator has to be searched among those functions, but to our knowledge,
no rigorous proof ensures it. Once this choice is made,
lﬁ*ﬁw — ’U2 _ ’LL2

becomes a radial function which in turn generates a radial potential ¢ in equations
(1.1). The ansatz (1.2) is well-known in physics and has been used in particular by
Soler [35] to describe elementary fermions.

We denote by H. 51357271 (R3,C*) the set of the functions ¢ of this type which belong
to H'/?(R3,C*) and H!,,(R? R) the radial functions of H'(R3 R). The problem of
finding a solution of (1.1) when we sought the scalar potentials among spherically
symmetric functions and the quarks wave functions among functions of the form
(1.2) will be called the symmetric problem. Whereas, when no assumption is done
on the form of the solution, we will say that this is the non-symmetric problem.
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Saly, Horn, Goldflam and Wilets have already found numerical ground [32, 17]
and excited state [33] solutions for the symmetric problem.

Throughout this paper, we will assume that U : R — R is a non-negative C!
function such that U and its derivative U’ vanish at zero and

(H1) |U'(z)] < C(Jz| + |z|P) for x € R with 1 < p < 5,
(H2) U(x) > cx? for all z € R,
for some positive constants ¢ and C.

Remark 1.1. Physically, the presence of the constant ¢ in hypothesis (H2) means
that the scalar field ¢ has a mass whose value is at least 2c.

Our problem has indeed a variational structure: we look for a critical point of
the C' energy functional:

5(¢1a- "awNa(b)
- Vo2
= > (i, Hotsi) + g (v, Bibi) | + + U(¢)
R3 2

i=1

dzx

on the set {(¢1,...,%n,0) € HY/2(R3,CHY x H'(R3R) : ||vi]lz2 = 1}. \; are
the Lagrange multipliers associated with the ||.|| 2-constraints and ( ., . ) is the
complex scalar product.

Remark 1.2. Condition (H1) is just a mathematical constraint for £ to be well-
defined and differentiable. This does not restrict the set of admissible potentials U
considered by the physicists [11].

1.1.2. The bag approximation. This model has been introduced by Chodos, Jaffe,
Johnson, Thorn and Weisskopf [9, 8] to derive the M.I.T. bag model as a limit case.
Here, the scalar field ¢ of the previous model is replaced by a characteristic
function yq but it still models the cavity where the quarks are encouraged to live.
The Lagrangian of the bag approximation is:
N
FWr, -, ¥n, xa) = /RS [Z(%,Howi) — gxe(¥i, Bvi) | dz + aP(2) + |0,
i=1
for a1, ... by in HY2(R3,C*). 41, ..., by still represent the quark wave functions.
The characteristic function xq of Q belongs to {x., € BV (R3 R)}. |Q] denotes the
area of (0 and P(Q) its perimeter. We will write, in this paper, the variation of a
function ¢ € BV (R3,R) on a Borel set A by |V¢|(A), so that:

[Vxel(R?) = P(%).

The constants a, b, m, g are positive.
We look for critical points of F on the set

{(Y1,...,¥n, xa) € H/2(R?,CHN x BV(R?,R) : [[¢]| 2 = 1}
that is to say, points that satisfy (see [14, 16]):

(HO_QXQ)wi =Ny, Vi=1,...,N on R3
(1.3) I3l L2 =1, Vi=1,...,N
aHo +b— vazl gviByY; =0 H2-a.e. in 0*Q
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where Hgq, is the mean curvature of 9*€2, and #H? is the two-dimensional Hausdorff
measure.

1.1.3. The M.I.T. bag model. The M.I.'T. bag model is another model where the
quark wave functions are perfectly confined in a bag [9, 8, 7, 18]. It has been widely
studied and has lead to results fitting the experiments [7].

Let us, for the moment, introduce the equations in a fixed non-empty bounded
regular open set € of R3. In this paper, we will just consider the ground state
problem, so that, we look for a single function %, solution of the following problem:

Hyy =AY on
(1.4) —if(an)yy =1  on N
l¥lle@ =1,

where 1) € H'(Q,C*), A\ > m and n is the exterior normal to 9.
When Q = B(0, R), we look for an eigenfunction ¢ in HJ,,, (Q,C?%) ie. of the
form (1.2). In that case, the boundary condition becomes:

uw=v on 2.

The problem of finding a good Lagrangian formulation for these equations has
been widely studied [18, 19]. This has been a motivation for the physicists to in-
troduce other phenomenological models like the soliton bag model of Friedberg and
Lee [11, 12] and the fractional bag model of Mathieu and Saly [27, 26]. Balabane,
Cazenave and Vazquez [2] already proved the existence of compactly supported
ground state solutions for this latter model thanks to a shooting method.

1.2. Variational formulations. The main difficulty we have to face in the soliton
bag and bag approximation models, is that the functionals considered are strongly
indefinite: they are neither bounded from below nor from above and their critical
points have an infinite Morse index. So, for now, we do not have any satisfactory
formulations of the ground and excited state problems.

The key point to overcome this in all the models, relies on a fine study of the
Dirac operator with scalar potential.

1.2.1. The soliton bag and bag approximation case.

Lemma 1.3. Let ¢ be in LP(R3,R), then Hy = Ho+ gB¢ is a self-adjoint operator
on L?*(R3,C*), with domain H'(R3,C*) and form-domain H'/*(R?,C*) whenever
3 <p< +o0. It satisfies:
Oess(Hp) = 0ess(Ho) = (—o0, —m] U [m, +00).
The proof of this lemma is based on Kato-Rellich theorem and Weyl’s criteria
for essential spectrum and can be found in [39, Chapter 4].

We denote by F the Hilbert space where we search for the quark functions and
F the associated space for ¢ or xyq when no confusion is possible. F X F' can be:

HY?2(R3,C*) x H'(R?,R),
Hi2(R3,CY) x H! ,(R3R),
HY2(R3,C*) x {x, € BV(R3 R)},
HYm(R3,C*) x {xw € BVyaa(R3,R)}.
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We define E;r = X(0,400)(Hg)E where x(o,4o0) is the characteristic function of
(0, +00), d := dim(ker(H,)) and for k € N\{0} :

0 if k<

[\JISH

k -

A (Hy) == inf sup (v, Hyt) if k>
VCE]  ||9]lp2=1
dimV=k—g¢ YeV

(VIS

Remark 1.4. The symmetry of the spectrum with respect to 0 is actually true
not only for the essential spectrum of Dirac operators with scalar potentials as in
Lemma 1.3 but also for the whole spectrum. Moreover, we will see in Section 2
that d is pair so that the definition of A% (Hy) make sense for all k. Then, we will
get that

(£ (Hy)} 1 (=, m)
are the eigenvalues of Hy in (—m, m) counted with multiplicity.

In this paper, the fact that the potentials are scalar is important. Indeed, the
symmetry of the spectrum is not true anymore for the Dirac operator with an
electric potential such as the Coulomb one [39, Section 7.4]. This property is
related to the supersymmetric operator theory which will be an essential tool in
our study, for instance, to give a simpler expression for A\¥ (Hy).

The well-defined minimization problems are then, for 1 < k1 < --- < ky in the
soliton bag model:

(15) mf{zwﬂw/w [@ww] o ¢eF}

and in the bag approximation:

N
(1.6) inf{z AN (H_yq) +aP(Q) +b|Q] - xo € F}
i=1
We get here a good formulation for the ground state problems when k3 = -+ =
kn = 1. The other cases are related to the exited states.

1.2.2. The M.LT. bag case. Let 2 be the euclidean ball B(0, R) of R? with R > 0.
Define
D(Hy) = {¢ € H,,,,(2,C*) : —iB(a.n)ih =1 on 00Q}.

We call (Hy, D(Hyp)) the M.I.T. bag Dirac operator.

Proposition 1.5. The operator (Ho, D(Hy)) is self-adjoint and there is a nonde-
creasing sequence of eigenvalues (Ap)n>1 C (m,+00) which tends to infinity such
that:

O'(Ho) = { N —)\2, —)\1} U {)\1, )\2, . }
We denote for each n, Ny r(Q) = A,
Remark 1.6. The main ideas of the proof of Proposition 1.5 will be given in the
second section.

The variational formulation for the ground state is:
inf {NAy;;7(B(0,R)) + aP(B(0,R)) + b|B(0,R)| : R> 0},
where a,b > 0 and N < Nj.
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1.3. Existence results.

1.3.1. The soliton case. We get the following results:

Theorem 1.7. Let K € N\{0} and m > 0 be fized. Assume that U satisfies
hypothesis (H1) and (H2). There is go > 0 such that if the coupling constant g
satisfies g > go then, for any 1 < ky < --- < ky < K, there exists a solution

(wla"ww]\/'a(b) € H1/2 (R35C4)N X Hl (R3’R)

sym rad

of equations (1.1) with \; = )\]j_i (Hy) € (0,m) where ¢ is a minimum of problem
(1.5). go depends on N,m, K and U.

Let us make some comments:

Remark 1.8. Friedberg and Lee [11] derived some conditions on m, g and U com-
parable to ours for the model to have soliton solutions.

Remark 1.9. They also assumed U to be a non-negative polynomial of degree 4
with two minima at 0 and —¢¢ < 0 such that 0 = U(0) < U(—d¢p). In many
of their proofs, they considered condition (H2) true. Nevertheless, most of the
numerical works were performed by Saly, Horn, Goldflam and Wilets [32, 33, 17]
with U(—¢o) = 0. Actually, the symmetry U(0) = U(—¢p) seems not to prevent
the scalar field to tend to —¢g at infinity and this leads to some mathematical
complications in the minimization. However, ¢ can be chosen as small as we want.

This is the first rigorous proof of the existence of ground and excited states
for wave functions of form (1.2). The symmetry of the functions leads to the
compactness properties established by Strauss [37] and Lions [24]. As we remark
before, no result ensures that the ground state has to possess such a symmetry.
So, in Theorem 1.10, we prove the existence of a ground state with no assumption
made on the form of the quark wave function with the help of the concentration
compactness method.

Theorem 1.10. Let m > 0 be fized. Assume that U satisfies hypothesis (H1) and
(H2). There is go > 0 such that if the coupling constant g satisfies g > go then,
there exist

(¥, ¢) € HY/?(R3,C*) x H'(R*,R)

such that ¢ is a minimum of problem (1.5) for ky =---=kn =1 and
{ Hop + gBop = M
[l =1

where A = A (Hg) € [0,m). go depends on N,m and U.
If0 ¢ o(Hy), then ¢ satisfies

—A¢+U'(¢) + Ngop*fip = 0.

Remark 1.11. The main problem that occurs when 0 € o(Hy) is that ¢ — A} (Hy) is
not necessarily Gateaux differentiable. We will get in Corollary 1.20 that 0 ¢ o(Hy)
under some restrictions on the parameters of the model. From the physical point
of view, the most relevant parameters satisfy the requirements of this corollary
[11, 15].



8 LOIC LE TREUST

1.3.2. The bag approximation. The same method adapted to the BV setting gives
us similar results for the bag approximation model.

Theorem 1.12. Let K € N\{0}. Assume g € (0,m). There is a constant 6 > 0
such that if:
(H3) a, b<é,
then, for any 1 < k1 <--- <ky < K, there exists a solution
(1, ..., %N, xa) € HYZ (R, CHN x BV,.q(R?, R)

sym
of equations (1.3) with
Ai = A§(Hoy,) € (0,m)

where xq is a minimum of problem (1.6).

Theorem 1.13. Assume g € (0,m). There is a constant § > 0 such that if:
(H3) a, b<d,

then, there exists a solution (1, ...V, xa) € H/?(R?,C*N x BV(R?,R) of equa-
tions (1.3) with A = X\; = AL (H_y,,) € (0,m) where xq is a minimum of problem
(1.6) forky=---=ky =1.

Remark 1.14. In this case, the assumption g € (0,m) ensures that 0 ¢ o(H_,,,).

1.4. The bag approximation model as a I'-limit of soliton bag models. The
following results show the link between the soliton bag and the bag approximation
models and are based on the I'-convergence theory.

Let us consider first for € > 0 and b > 0 the following functionals:

Bu) = { Jes [AVOP + W(@) e bloP) de if 6 € H®.R)
ST 4o otherwise

and
o) = PO+ if 6= —xo € BV(R'R)
071 400 otherwise,

where W : R — RT is a C! function which satisfies W~1({0}) = {—1,0}, (H1) and
a= 2f_01 VW (s)ds.

Proposition 1.15. Assume that there are positive constants ¢ and 2 < q such that:
W(t) < c(jt]* +[t]7) Ve

Then, E, T-converges to Ey in L? N L5

This proposition is an adaptation of the result of Modica and Mortola [29, 30]
generalized by Modica [28] (see also Sternberg [36] or Braides [3]) for the gradient
theory of phase transitions in an unbounded setting. Its proof strongly uses the
one of [36].

Let us introduce for € > 0:

£.(6) = NX.(Hy) + Ec(¢) if ¢ € H'(R* R)

T 4o otherwise

and
Eo(¢) = N)\}F(H_XQ) + Eo(—xa) if ¢ = —xo € BV(R%R)
0771 400 otherwise.
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Theorem 1.16. Assume that the condition of Proposition 1.15 is true and that
g € (0,m). Then, & T'— converges to & in L? N L2
Let us assume besides that there are ¢ > 0, t1 < —1 < to < 0 such that W

satisfies:

W (t) > c|t|?
for allt & (t1,t2) and
(1.7) le =inf{&(¢): ¢ =—xa € BV} < Nm.
Then, there is €y > 0 such that for all 0 < € < €, the problem
(1.8) IS =inf{E(p): ¢ € H'} < Nm

has a minimum ¢.. There is a subsequence such that, up to translation, we have:

Wo ¢., = Wo(—xa) strictly in BV
¢, — (—xaq) strongly in LP for p € [2, W]

I =1,
where —xq s a minimum of the problem (1.7) and W : t — 2f0t VW (s)ds.

The constant € in the functionals can be obtained by scale change in some soliton
bag functional.

Remark 1.17. The physicists [11] actually considered potentials U in the soliton
bag model of the form
U: ¢ W(e)+Dblgf

satisfying the conditions of Theorem 1.16.

Remark 1.18. Goldflam and Wilets [15] studying the dependence of the numerical
solutions on the parameters exhibit behaviors of the ¢ field similar to the ones of
the Modica-Mortolla problem [29, 30, 28, 36, 3]. Nevertheless, this is the first result
which shows clearly the link between the two models we studied.

Remark 1.19. The main difficulty here is that the problems are set in an unbounded
domain. We overcome this combining the I'-convergence theory and the concentra-
tion compactness method.

In the next corollary, we give conditions on the parameters of the soliton bag
model that ensure that 0 does not belong to o(Hy) where ¢ is a minimum of the
ground state problem. Hence, ¢ satisfies the last equation of system (1.1).

Corollary 1.20. Assume the hypothesis of Theorem 1.16 true. Then, there are
€0 > 0 and for all € € (0,¢0) a minimizer ¢ of problem (1.8), a function ¢ €
HY(R3, C*) which satisfy

Ho + gBdp = \b a.e. in R3
Iz =1
—eAp+ LD 4 2bg + Ngy* By =0, a.e. in R?

where A = AL (Hy) > 0.

Remark 1.21. From the physical point of view, the most relevant parameters for
the soliton bag model satisfy these requirements [11]. Indeed, Friedberg and Lee
considered a potential U composed of a two well potential W and a mass term.
The two well potential and the restriction € € (0, ¢y) are introduced so as to force
the scalar field ¢ to be almost a characteristic function[11, 15].
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We get a result to the one of Theorem 1.16 in the symmetric case. Let 1 < k1 <
.-+ < kn < K be integers. We define for € > 0:

56,k1,... kN (¢) - { ZZJ\;l )\ﬁj (Hd)) + EE((b) if ¢ € H}ad(RsaR)

400 otherwise
and
for in(d) = | T M (H o) + Bo(—xe) i ¢ = —xo € BVraa(R®,R)
k1, kN 400 otherwise.

Theorem 1.22. Assume the condition of Proposition 1.15 true and that g € (0,m).
Then, Ec k,,...ky I'— converges to Eg k... kx N L?>N LLQIQ).

Let us assume besides that there are ¢ > 0, t1 < —1 < to < 0 such that W
satisfies:

W(t) > c|t]?
for all t & (t1,t2) and
inf{507K7,,,,K(¢) : ¢ =—-Xq € B‘/ru,d} < Nm.

Then, there is ¢g > 0 such that for all 0 < € < €g, the problem
(1.9) 1(kt, ... k) =inf{E k. kn(d) 1 &€ Hlyyl < Nm

has a minimum ¢.. There is a subsequence such that:

Wo ¢, = Wo (—xaq) strictly in BV
o, — (—xq) strongly in LP for p € [2,
l;nr(kl, R 7kN) — lc(k/’l, ceey kN)

where —xq 18 a minimum of problem:
(1.10) le(ki,. .. kn) =inf{E k.. kn(9) 1 &= —xa € BVraa}-

1.5. The M.I.T. bag limit. We study in this paper the M.I.T. bag ground state
problem in the spherical case, i.e. when the open set ) is a ball and the wave
function belongs to H},,, (2, C*). Indeed, our main goal in this section is to give
a rigorous proof of the original derivation of the M.I.T. bag equations done by
Chodos, Jaffe, Johnson, Thorn and Weisskopf [9] via a limit of bag approximation
ground state solutions in the spherical case.

We assume in this section that a,b € Rt and max{a, b} > 0.

3(q+2)]
4

Proposition 1.23. There is a minimizer R > 0 of
inf { Ny rr(B(0, R)) + aP(B(0, R)) +b| B(0, R)| : R > 0}
Theorem 1.24. Let (M), C (0,+00) be an increasing sequence such that:
lim M, = +oo.

n—-+oo
There are Cy, ng > 0, and for n > ng, a minimizer R, > 0 of
I, := inf {N)\}r( B +aP(B(O,R)) +b|B(0,R)| : R > o} < Gy,
a function 1, € HL . (R3,C*) satisfying:

sym
{ Hg(o,Rn)wn = )‘}i-(Hg(O,Rn))w"
¥nllr2 =1,
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where HE = —ia.V + B(mxa + Mpxa-), such that, up to a subsequence:

R, — R >0,
ln — inf {NX};;7(B(0,7)) + aP(B(0,7)) + b|B(0,7)| : 7 > 0},
Y = UXB(0,R) N L?(R3) and in L°°(B(0, R+ ¢)° U B(0, R — ¢€))
for all0 < e < R/2. R comes from Proposition 1.23, the function € H},,,(B(0, R),C*)
satisfies:
Ho — My (BO,R)%  on B0, R)
—if(a.n)p P on B(0, R)
l¥llz2Bo.R) =1

Remark 1.25. Chodos, Jaffe, Johnson, Thorn and Weisskopf impose to the ground
state cavity to be a ball, just as in Theorem 1.24. Nevertheless, if we want to remove
this restriction, some difficulties occur. We will point out in our proof where the
problems arise.

The key point of all this paper is the use of supersymmetry properties of the
Dirac operator studied in the second section. We give in the third section, some
auxiliary results related to the continuity of the eigenvalues of Hy in ¢. We prove
the existence theorems for the soliton bag and the bag approximation models in
the symmetric case in the fourth section. In the fifth section, the pre-compactness,
up to translation, of minimizing sequences for the existence Theorems 1.10 and
1.13 follows from the concentration-compactness method. Supersymmetry allows
us to get rid of the problems occurring with the constraints on the sign of the
eigenvalues A of the operators H, and gives the binding inequalities necessary in
the concentration-compactness argument. The sixth section is related to the proofs
of Proposition 1.15, Theorems 1.16 and 1.22, which are based on I'-convergence and
concentration compactness method. Finally, we give the first rigorous proof of the
derivation of the M.I.T. bag equations in the last section.

2. SUPERSYMMETRY OF THE DIRAC OPERATOR AND SPECTRAL PROPERTIES

The variational formulations (1.5) and (1.6) are not satisfactory because the
definitions of the eigenvalues A% (Hy) and A}, ;1 (€2) are not easy to handle for k > 0,
Q an open set of R? and ¢ € LP for some p > 3. Nevertheless, the supersymmetry
theory for Dirac operators with scalar potentials will allow us to overcome these
problems. We strongly use in this part the introduction to the theory of Thaller
[39, Chapter 5].

Definition 2.1. Let 7 be a non-trivial unitary involution on a Hilbert space H. A
self-adjoint operator @ on H with domain D(Q) is a supercharge with respect to 7

it 7D(Q) C D(Q) and 7Q = —Q7 on D(Q).

2.1. The Dirac operator with scalar potential on R3. We begin by a study
of Dirac operators on L?(R? C*) with a special type of potentials, the scalar ones.
Let ¢ be in LP(R3,R) for some 3 < p < +oco. We define:

1

I i 1 . . « . .
T ﬁ ( Z~I22 2122 ) , Dy = —ia.V +i(m +g¢), Dy = —io.V —i(m+ g¢)

and

0 D
— -1_ é
Qy = TH,T <D¢ 0 >
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where we recall that Hy, = Hy + gB¢. Then, by Lemma 1.3, Q4 is a supercharge
with respect to the involution § whose domain is D(Qy) = TD(Hy). It can be
either H*(R3,C*) in the non-symmetric case or H},, (R* C?)? in the symmetric
case where we denote by HJ,, (R* C?) the subset of H'(R? C?) whose functions
are of the form:

s ( —v(r) + u(r)cosd >

u(r)sinfe’?
in the spherical coordinates (r, 6, ¢) of z.

Remark 2.2. The fact that the potential g8¢ of Hy is scalar is a key point for Q4
to be a supercharge with respect to 3.

Dy is a closed operator on L*(R?, C?) with domain H' such that D} is its adjoint
and vice versa. Let us remark moreover that:

02— Ds'Ds 0
¢ 0 DgDy* )’

is a self-adjoint operator on L? with domain
D(Q}) ={ve H':Qpp € H'},

which can be different from H? if ¢ is not regular enough.
In the following lemma, we show that under some conditions on ¢, 0 is not in
the spectrum of Hy.

Lemma 2.3. Assume that ¢ € LP(R3,R) with 3 < p < +oo satisfies m + gé > 0,
then

ker(Qy) = ker(Qy”) = ker(Dy" Dy) @ ker(DyDy") = {0}.
Proof. Let us assume that there exists w € H'(R?,C?) such that
—i0.Vw £ i(m + gp)w.
We get that

/ (m + go)|w|*dx = i/ (W*o.Vw)dzr = i/ div(w*ow)dz = 0,
RS RS

R3

hence, we have (m + g¢)|w|? = 0 almost everywhere. Moreover, we have

0= / (m + g¢)*|w|*dx = / lo.Vw|?dx = / |Vw|?dz.
R3 R3 R3
Thus, we have the result. O

Remark 2.4. Let us remark that in the bag approximation case, if we assume that
g € (0,m) we get for any xo € BV (R3,R) that m + g(—xq) > 0. So, we have that
ker(H,) = {0}.

The same result is true for the soliton bag model in the symmetric case.

Lemma 2.5. Assume that ¢ € Li:j for € > 0. Then, every eigenvalue of Hy is
simple and 0 ¢ o(Hy).
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Proof. Let A € 0,(Hy), by a standard bootstrap argument, every associated
eigenvector belongs to W19 for any ¢ > 2 and so to L. As we work with functions

of the form:
1
v(r)< 0 >
Y(x) = . cos ’
wu(r) sin fe™¥

(u,v) is a solution of the following system of equation:

v'(r) = —(A+m+go(r)u(r),
{ () + 2= (A= m—gd(n)o(r)
and satisfies:
{ :Tsz()(A m — g¢(s))ds),
( — Jo u(s)(X+m + go(s))ds
By a contraction mapping argument [2 ], the solution is umquely determined by
v(0). So the set of the eigenvectors of Hy of eigenvalue A is of dimension 1.

It remains to prove that 0 does not belong to o(Hy). Let us assume by contra-
diction that there is ¢ € H},,,(R? C*)\{0} such that Hyi = 0. Then, we get that

QsTY =0 and
o= ()

(R3,C?)\{0}. Thus, we have

0
(U(J)l >’<w2>€kerQ¢

and 0 is not simple. This is impossible so 0 ¢ o(Hy). O
Let us give another lemma in the non-symmetric case which study the case where
0 € 0(Hy) and ensures that A\¥ (Hy) is well-defined for all k.

where w1, wy € H},,,

Lemma 2.6. Assume that ¢ € LP(R3,R) for 3 < p < +oco. Then, we have
dim(ker(Dy*Dg)) = dim(ker(DyDy")) = dim(ker(Hy))/2 =: d/2.
Proof. We have
ker(Qg) = ker(Dy*Dy) @ ker(DyDy™).
We suppose that 0 € 0(Dy*Dy) then, there is

w= ( ’;‘ ) € H'(R®,C?)\{0}

such that
—o.Vw+ (m+ gd)w =
We get
—01v + 1020 — D3u + (M + gd)u
—O01u —i0u + O3v + (m + gp)v =0
and

—10 4 1020 — D5l — (M + gd)i = 0
—010 — 109U + O30 — (m + gqﬁ)fj =
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where

< £

&
I
N

Hence, we get
—o.VO — (m+ gp)w =0
s0 0 € 0(DyDy"). This ensures that
dim(ker(Dy*Dy)) < dim(ker(DyDy"))

A similar argument gives us the inverse inequation and the result follows. (]
We are now able to write down the Foldy-Wouthuysen representation of our
supercharge operator. This allows us to give simpler expressions for the eigenvalues.

Theorem 2.7. Define the unitary transformations :

—1
S = (\/DyDy*) "Dy = Dyr/Dy* Dy of ker(Dy)™ onto ker(Dy*)*

s Qo= (g 5 ) of ker(@o)*

We denote the Foldy- Wouthuysen transformation

_ [ 51+ B(sgn Q) on ker(Qy)*
Urw = { i/i on ker(Qg).

and

Then, we have:

—_— _ Dy*Dy 0
UrwQeUpw = BlQq¢| = ( 0 —/DyDy" ) ,
and Dy*Dy = SDyDy*S* on ker(Dgy)L. Moreover, we have:

m? = inf Oess(Dg D)

o) = { (=00, ~m]u | {2/ Dy Do) p Ui + )

k>1

)\ﬁ_(H(z;) = \/)\k(Dd,*Dd,) = infl sup |\D¢w||L2.
VCH weV,

dimV=k |w], =1

and

where

The proof can be found in Thaller [39, Theorem 5.5, Corollary 5.6] and we give
here a sketch of proof for the reader’s convenience.
Sketch of proof. On ker(Qg4)*, we easily get that Upy, = Upy = %(1 -

B(sgn Qy)) and
UrwQgUpw = B(sgn Qg)Q¢ = B|Qgl,

since @y and sgn Q4 commute. sgn (), commutes with Qi too so, we get that
Dy*Dy = SDy"DyS. O
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Remark 2.8. All the results of Theorem 2.7 are also true in the symmetric case if
we replace the spaces

L*(R3,C?), H'(R3,C?),...

involved with those denoted by
Lgym(R35 (C2>5 Hslym(Rga CZ)) s
composed of the functions of the form:
v(r) + u(r)cost

e ( u(r)sinfel® ’

where (1,0, ¢) are the spherical coordinates of .
We give now conditions on the parameters of the soliton bag and the bag approx-

imation models that ensures that the operator H, associated with any minimizer

¢ of (1.5) or (1.6) has enough eigenvalues in [0, m) counted with multiplicity. The
following lemmas are true both in the symmetric and in the general case.

Lemma 2.9. Let k € N\{0} and m > 0 be fized. There exists go > 0 such that for

g > go we have

Vg|?
2

0 < lsg ::inf{N)\i(H@—l—/Rg[ +U(q§)]d$:q§€F}<Nm.

go depends on N, k,m and U.

Proof.
For 0 < R < R, 0 < ¢, let ¢pr p € C(R?,[—m/g,0]) be a radial function such
that

m—+e€
\Y% oo < ——m——
IVor r |1~ < D)
and
b (@) = —m/g for x€ B(0,R)
R 0 for x €R3\B(0,R).
Let wg € H},,,(R? C?) be such that supp(wr) C B(0, R) and |lwgl|r> = 1, where

B(0, R) is the ball centered at 0 in R? of radius R. Then, we have:
||D¢R,R/wR||%2 - ||vaH%2

Now, choosing for wg, a normalized eigenfunction for the k*"-eigenvalue C}% > 0 of
the Dirichlet laplacian on B(0, R), we get:

s _ ok CF
1D, wrllL2 = Cr = 55
Thus, the energy satisfies:
. Voérr |
t5 < N\ WD Do)+ [ E22EE 4 0o i
R

N/CF 4nx(m+¢?R>+RR +R> 4r
< I + + —
€l

3
652 R 3 sup U(r)) R”.

—m/g,0]
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For now, we fix R’ = (1 + v/3)R, the point which minimizes R’ + %
If there exists R > 0 such that :

f(R) = N\]/%CTC . 4m2(36;22¢§)wR+ A(1 +?:/§)37T <

sup ]U(r)> R?

re[-m/g,0
< Nm,

we immediately get the result. Let us fix Ry > 0 such that
N+/ k
G < Nm.
Ry

By hypothesis (H1), U is continuous, U(0) = 0 and we have
lim sup U(r)=0.

9=F0 re[—m/g,0]

so that

lim 4m?2(3 + 2\/§)7TRO N 4(1+V3)3r (

3 _
S 652 3 sup ]U(r)> R; =0.

re[—m/g,0
Thus, there is go > 0 such that if g > gg then

inf Nm.

RS <

O
A similar result holds for the bag approximation case.

Lemma 2.10. Let k € N\{0}. Assume that g € (0,m). There is a constant § > 0
such that if a, b < § then,

0 < lep = inf{NXE(H_,,,) +aP(Q) +bQ| : xo € F} < Nm.

Proof. For 0 < R, we choose xo = xpB(o,r) and wx a normalized eigenfunction
for the k'"-eigenvalue C% > 0 of the Dirichlet laplacian on B(0, R). We get:

Ck
0<lc, <N R—; + (m — g)? + a4nR* + b4/37R?,
and the result follows. O

2.2. The M.I.T. bag Dirac operator. Just as in the previous case, the super-
symmetry gives us a good frame to study the problem of the eigenvalues of the
M.L.T. bag Dirac operator. We set 2 = B(0, R) with R > 0,

D=—ioc.V+im, DD)={weH., (QC?) : —0onw=wondN},

sym

D* = —ic.V —im, D(D*)={we H},,(,C?) : onw=wondQ},

B . (0 D
Q =TH,T _(D 0)

and D(Q) = D(D) @ D(D*) = TD(H,). The following result implies Proposition
1.5.

Proposition 2.11. The operator (Hy, D(Hy)) is self-adjoint and there exists a non
decreasing sequence of eigenvalues (Ap)n>1 C (M, +00) which tends to infinity such
that:

O'(HQ) = { ..,—)\2,—)\1} U {)\1,)\2,.. .},
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D* is the adjoint of D and vice versa. We have for each n:

AR Q) =\, = inf D .
air () VCIYI)l(D), 5‘61‘13 I WHL2(Q)

)

dim V=k lw] L2=1
Sketch of proof. The proof uses the spectral theory of self-adjoint compact oper-
ators and the ideas of the proof of Theorem 2.7. O

3. AUXILIARY RESULTS

We study in this section, the dependance of the non-negative eigenvalue of Hy
on the field ¢. This is an important point in this paper that will allow us to prove
lower semi-continuity properties for the functionals involved in problems (1.5) and
(1.6). To prove Proposition 3.3 below, we will need the two following lemmas.

Lemma 3.1. Assume that (¢,) converges to ¢oo strongly in L3(R3,R). Then, we
have:

| Dy, w22 converges to | Dy wl||%s
locally uniformly in w € H*(R3,C?) i.e., for every R > 0:

sup{[[1 Do, 1% — [ Dowllfal : w € H'(B,C), |l < R} — 0.
Proof. We have

3.1 IDgwle = IVelfs + [ (mo+ g0 lulde —29Re [ (o (@.Vu)olde.

R3
By Holder’s inequality, we get:
/ (W (o.Vw)p,] — [w* (0. Vw)deo|dx
R3

<Nlw* oVl pazllgn = doolles < llwllLel|Vwllz2lén = dool L3,

< |lwllZallén — doollzs,

‘/ W26 — Goo)da
RB

and
/RS lw?(¢7 — doo”)da| < |lwF6lldn — boollLs ([ dnllLs + doollLe)-
The result follows. O

Lemma 3.2. Let € > 0. The functional w — ||Dgw||3. is coercive on
{we H'(R®,C?) : ||w| 2 = 1}
locally uniformly in ¢ € L3 N L3T€ i.e., for every R > 0, there is a C > 0 such that
IDgw|72 > |VwlZs — C
for w e {we HY(R3,C?) : ||w|/p2 = 1} and ¢ such that ||| s + ||¢] ps+e < R.

Proof. By equality (3.1) and Hélder’s inequality, we have for w € {w € H'(R3,C?) :
lwl|zz = 1} that
[Dgw||72 >
IVwllZ: +m?  —2g[lw|| Lol Vwll 2|l s+ — 2gm|lw] r2l|w| roll @ s,

where p = 61+—+2: € (2,6). The Sobolev embedding H! < L® and the interpolation
inequalities give us the result. (]
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Proposition 3.3. Let e > 0. Assume that a sequence (¢r,) converges to ¢oo strongly
in L3 N L3%e. If for k > 1,
(3.2) supA\*(Dy, *Dy,) < m?,
neN
then, up to a subsequence, there exist orthonormal families :

Lo wh) and for allm €N, (wl, ... W) in L*(R3,C?)

(Woos - -

such that:
(1) wi,,wi, € HY(R®,C?) for all n,
(2) ||Dg,wh |32 = A(Dy,*Dg, ) for all n,
(3) Dot 2 = XDy D),
(4) lim N (Dy,"D,) = N (Do, Do)
)

(5 n—oo

forall1 <i<k.

; i i sl
lim w} =wl, in H,

This proposition is true in the symmetric case too.
Proof. We will prove this by induction on k. Let £ > 1. Assume that inequality
(3.2) is true for k. Then, if £ > 1, we have that
supA\ "1 (Dy, * Dy, ) < sup\¥(Dg, *Dy, ) < m?.
neN neN
Assume that the proposition is true for k — 1. We get by induction hypothesis, that
there exist orthonormal families :

! F=1) and for all n € N, (w?,...,w"" 1) in L?(R3, C?)

ot v ey Weg -
such that the properties 1,...,5 are true for all 1 < ¢ < k—1. If £k = 1, these
families are chosen empty. By theorem 2.7 and inequality (3.2), there exist for all
n, wk € H' such that (w),...,wk) is orthonormal in L? and point (2) is satisfied

for all 1 < i < k. It turns out that (w¥) is a bounded sequence of H! by Lemma
3.2 and

(w

Tim || Dy, k|32 — |1 Dg w32 =0,

by Lemma 3.1 because (¢,,) converges to ¢, in L3N L3T¢.
Let us denote by P*~! and P! the orthogonal projector on

span(w), ... Wi 1)+
and
E) :=span(wl,,... w1+

Then, we have by point (5) of the induction hypothesis:

nlLrI;OP,]f_lwﬁ — PGk =0 in HY,

k—1

k=1 wk) is free for n large enough. We also get

hence, the family (wl,,...,w
1 [| Dy b2 — [ Do PE k32 = 0.
Thus, we obtain that :
MN(Dy. *Dy.) < lim infA*(Dy, *Dg,) < m?.
Therefore, there exists @% € span(wl,,...,wk 1)L such that |0k ||z: = 1 and

o0 o0
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so, by the same arguments, we get:

Dy @5 172 = Dy PE 1@k |13 + (1)
= ||D¢nPk 1 k ||L2 +0( ),

and
N(Dg_ *Dy..) > lim sup\*(Dy, *Dy..).

k-1, k
This gives us point (4) for all 1 < i < k. Moreover, (W) is a minimizing
oo w2

sequence of :
inf{|| Dy w32 : w € span(wl, ..., w7t lw]z: = 1} = MN(Dy_*Dy..).
By theorem 2.7, we get that
N(Dy.."Dy..,) = inf 0(Dy.."Dy... ) < m* = inf 0s5(Dy.." Do s, )
where Dy, "Dy, |, is the operator Dy, "Dy, restricted to the domain
D(Dy_*Dy_) N Ey.

k—1 k

Thus, up to a subsequence, (”PI,}‘Jli‘:”) and (wk) converge in H! and we get points

(3) and (5) forall 1 <i < k. O

4. THE SYMMETRIC CASE

4.1. Pre-compactness results.

4.1.1. The soliton bag. We show now the existence of a minimizer of problem (1.5).

Lemma 4.1. Let 1 <k <---<ky < K. Assume that:

0<lsK:inf{N)\ff(H¢,)+/ [|V¢|2 +U(p)dx : ¢ € md} < Nm.
R3

of problem (1.5).

Then, there exists a minimizer ¢ € H},,

The pre-compactness of a minimizing sequence is obtained thanks to the com-
pactness of the embeddings of H} ,(R?®) into LP(R?) for all p € (2,6) proven by
Strauss [37] and generalized by Lions [24]. Proof. There exists a minimizing se-
quence (¢,) C H!, ,(R? R) of problem (1.5) such that:
K [Vén[*
sup NAY (Hg,) + + U(¢y)| dz < Nm,
neN R3 2

so, by the non-negativeness of U and Theorem 2.7, for alli € {1,...,N}:

sup ¥ (Dg, " Dy,) < m2.
neN

Because of (H2), (¢,,) is a bounded sequence of H} ,(R?* R). By the compactness
properties of the radial Sobolev spaces due to Strauss [37] and Lions [24], there
exists ¢oo € H!, ,(R3,R) such that, up to a subsequence, we have:

¢n — oo weakly in H', a.a, strongly in L for 2 < p < 6.
Thus, by Proposition 3.3, up to another subsequence, we have:

Jim M (Dg,, “Dg,, ) = N'(Dg.." Dy..),
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for all i € {1,..., N} so,
hkniiorgf AP (Hd)nk n fRs [—‘“‘— +U (%)} dx
Vén

>ZN A’“( Hy.) + [y [%+U(¢m)] dz.

This ensures that ¢ is a minimum of problem (1.5) and that (¢, ) tends to ¢
strongly in H'. (I

4.1.2. The bag approxrimation. As in the previous part, we prove the existence of a
minimizer of problem (1.6).

Lemma 4.2. Let 1 <k <---<ky < K. Assume that:
0 <legx =inf {NNS(H_\,) +aP(Q) +b|Q| : xo € BV;aa} < Nm.
Then, there exists a minimizer xq € BV,qq of problem (1.6).

The arguments are very similar to the ones of Lemma 4.1 and we give here only
a sketch of proof to stress the differences.
Sketch of proof.

N
Xa € BV = > Ni(H_y,) +aP(Q) + Q)
i=1
is lower semi-continuous for the topology of L! thanks to the lower semicontinuity
of

$ € BV — |Vo|(R?)

in the topology of L' and Proposition 3.3. For the reader’s convenience, we give
in the appendix the proof of the compactness of some embeddings in the BV set-
ting similar to the ones of Strauss [37] and Lions [24]. The pre-compactness of a
minimizing sequence follows then from Proposition A.2. (I

4.2. Euler-Lagrange equations. We get in the last section the existence of a ¢
which minimizes (1.5) or (1.6) for given 1 < k; < --- < ky < K. Thus, H, has at
least ky eigenvalues in (0, m) associated with normalized eigenvectors (11, ..., ¥N).
It remains to shows that (¢1, ..., ¥y, ¢) satisfies the Euler-Lagrange equations (1.1)
or (1.3).

Lemma 4.3. Let 1 < ki <--- < ky < K. The functions ¥n,...,YnN,¢ obtained by
minsmization of (1.5) satisfy the Euler-Lagrange equations (1.1) of the soliton bag
model. The same is true for the bag approximation.

Proof. We give the proof only in the soliton case. For the bag approximation, the
proof follows with the same argument in the setting of set derivation (see [1, 14, 16]
for more details). By Lemma 2.5, we get that 0 ¢ o(Hyg) and every eigenvalue is
simple. Let A(H,) € (0,m) be an eigenvalue of Hy and ¢' € H!, ., by Kato-Rellich
theorem for the perturbation of the point spectra [31, Theorem 12.8], we have two
analytic functions in a neighborhood U of 0:

t— )\(H¢+t¢/) and t — Ygiig/,
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where for each t € U, A(Hp414) is a simple eigenvalue of Hyiip and pyee is an
associated normalized eigenvector. Thus, we have, for each t € U:

MNHpytgr) = (Vgtters Hprtpr Vpyigr ),
S0,

d d
E)‘(H¢+t¢’) = 2R€(E"/}¢+t¢’aH¢+t¢’w¢+t¢’) + 9(Vgttpr s BO Vpttgr)
d
= )\(H¢+t¢')2736(5%+t¢u Vorter) + 9 Worte, BO Vprte)
= 9(¢¢+t¢'a 5¢I¢¢+t¢'),

because ||tg+te ]|z = 1 for all ¢ € U. This ensures that:

N
—AG+U'(¢) + > gt b = 0,
i=1
and we get Lemma 4.3. O
This ends the proofs of Theorems 1.7 and 1.12

5. THE NON-SYMMETRIC CASE
5.1. Pre-compactness results.

5.1.1. The soliton case. We will now focus on the existence of a ground state so-
lution of equations (1.1) in the non-symmetric case. The concentration compact-
ness method allows us to deal with the lack of compactness of H*(R?) thanks to
the so-called concentration-compactness inequality. Nevertheless, the classical one
[25] is not valid yet. In the following, we will introduce a different concentration-
compactness inequality to overcome this problem. We denote:

E(¢1,62.t) = N (AL (Hy,)> + (1 — )AL (Hy,)?) ?
|V |2 |V |?
+/Rz (T +U(¢1)) d.%'-i—/RS (T + U(¢2)) dx,

for ¢1,¢2 € HY(R3,R) and t € [0, 1];
I(t) = inf{&E(p1, Pa,t) : 1,2 € H'(R® R)}.

The following lemma is related to the concentration compactness inequality.
Lemma 5.1. I is concave, I(0) = I(1),

I(t) < Nm, for allt € ]0,1]
and the concentration-compactness inequality

I(t) > I(1), for allt € ]0,1]
is satisfied.

Proof. I is concave as an infimum of concave functions. The remaining follows
noticing that:
£(0,0,t) = Nm.
O We can now prove the existence of a minimizer of (1.5) thanks to the
concentration compactness method and Lemma 5.1.
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Lemma 5.2. Let us assume that I(1) < Nm, then every minimizing sequence (¢y,)

of

I(1) = inf{NAL (Hy) + /RB (@ + U(qb)) de: ¢ € H' (R R)}

converges in H' to a minimum of problem (1.5), up to translation and extraction.

Proof. Let (¢,,) be a minimizing sequence such that:

(IV%I2

5+ U(¢n)) d:z:) < Nm.

sup (N)\}F(H%) + /

neN R3

(¢) is a bounded sequence in H! because of (H2) and

sup A (Dy, *Dy,,) < m?.

neN

We will now apply the concentration compactness method to get the result. We
follow the presentation of Lewin [21] based on [22] (see also [25, 38]). Let us assume
first that the sequence vanishes, then:

¢n — 0 strongly in L for p € (2,6),

and Proposition 3.3 leads us to a contradiction. So, there exists a subsequence (ny),
a sequence (x,,) C R3 and ¢g € H'\{0} such that:

bn,. (. — xp,) — b weakly in H.
We define (w,,, ) a sequence of H' such that |jwy,||z2 = 1 and
IDg,, wnillLe = Ny (Hg,,)-
Up to extraction, there is wy € H' such that:
Wiy (- = Ty, ) = wo weakly in H'.

Let (Rg) be an increasing sequence of RT such that lim,_, ., Ry = oo, then, up to
a subsequence, there exists

(61.), (P2,8), (W1,k), (wa,x) C H,

such that:
(1) llwn, — w1,k —wokllmr =0,
pny — P16 — P2kl — O,
@) w1 k(- — Tn,) = wo
¢1,k( - xnk) — ¢0
3) supp(¢1,x) U supp(wi k) C B(xn,, Ri),
supp(da k) U supp(wa k) C R3\B(zy, , 2Rk).

weakly in H!, strongly in L? for p € [2,6),
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We get:

1) = timint Mg, n,lu2+ [ (

[V, [*
RS 2

+ U(gbnk)) dz

. 1/2
> lim inf N {|IDg, ,wikll72 + | Doy w2 kll72}

2 2
ot /]RS (7|v¢21k| + U(¢1,k)> dx + /}R3 (7|v¢22’k| + U(¢2,k)) dx

. 1/2
> liminf N {wol 32 A4 (Hiso)? + (1= lwnl[E2)X (Ho )}

Vo2 Voo il?
+/R (—' “;’0' +U(¢>0)) d:c+/Rs <7| ¢2“| +U(¢2,k>> dz

> I([lwollZ2)-
Since ¢g # 0, wp has to be non zero. Assume now that |lwpl|zz € (0,1). Lemma
5.1 ensures that :
I(t) =1I(1), for all ¢ € ]0,1].
We must have:
i AL (Ho, ) = AL (H, ).
If not, assume for instance that there exists a another subsequence such that:

lim )\}i_(H¢2,k> > /\-11-(H¢0)7

k— o0

then,
I(1) = liminf £(go, P2k, lwol|Z2)
k——+oo
> lim inf g((bo, Qﬁg,k, 1)
k—+oo
>1I(1).
This is impossible. The same argument leads to a contradiction with:
. 1 1
kgl}rloo >\+(H¢2,k> < /\+(H¢0)'
Thus, we get:
I(1) = liminf NAL (.
(1) = lim inf NAZ (Hy, )

Vo2 Voo il?
+/R <—| ?‘)' +U(¢>0)) d:c+/RS <7| ¢2“| +U(¢2,k)> dz

2
lim inf / <M + U(d)gk)) dx = 0.
R3

k— o0 2
By Proposition 3.3, we get the contradiction:

m= lim A, (Hg,,)= A (Hg,)

k—+oo

and

Thus, we have ||wo||rz =1 and
.. |V a1 |?
| f —_— =0.
imint [ (32 +06m ) =0
The result follows. 0
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5.1.2. The bag approzimation. We follow exactly the same ideas. Let us introduce
some notations:

1/2
Fxen, xaut) = N (AL (Hoyg,)* + (1= )AL (H-yq,)?)

for xq,, Xa, € BV(R3,R) and ¢ € [0, 1];
J(t) = inf{F(xa,, xat) : X1, X2, € BV(R* R)}.
Lemma 5.3. J is concave, J(0) = J(1),
J(t) < Nm, for allt € ]0,1]
and the concentration-compactness inequality
J(t) > J(1), forallt €]0,1]
is satisfied.
Sketch of proof. The proof is similar to the one of Lemma 5.1. O

Lemma 5.4. Let us assume that J(1) < Nm, then for every minimizing sequence
(xa,) of
J(1) = inf{NXL(H_,) + aP(Q) +b|Q| : xa € BV},

converges strongly in BV to a minimum of (1.6) up to translation and extraction.

Sketch of proof. The proof is similar to the one of the soliton case. For the
reader’s convenience, we give in the appendix the straightforward adaptation of
the presentation of the concentration compactness method of Lewin [21] to the BV
setting. (|

5.2. Euler-Lagrange equations. As in the symmetric case, it remains to show
that the minimizer satisfies the Euler-Lagrange equations.

Lemma 5.5. Let ¢ € HY(R3,R) and w € H*(R3?,C?) be such that ||w| 2 =1,

2
1) = NDgle + [ (Fh+0(6)) do

and |Dgw| 2 > 0 then,
—A¢ +U'(¢) + Ngyp* By = 0,
where
¢Y=UrwT)" { CS }

1s an normalized eigenvector of Hy associated with the smallest positive eigenvalue
A= ||D¢WHL2-

Remark 5.6. If | Dywl| 2 = 0 then ¢ satisfies an Euler-Lagrange inequation.
Proof. We have:
—A¢+U'(¢) + 5IRe [wr(=iDgw)] = 0,
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(v §]) 2 (v [ 5])
S[a] )]s

= %Re [w* (—iDyw)] .

and

(v, BY)

(I
The next lemma shows that the minimizers of (1.6) also satisfy Euler-Lagrange
equations.

Lemma 5.7. Assume that g € (0,m). Let xo € BV(R3 R) and w € H(R3,C?)
be such that ||w| L2 =1 and

J(1) = N||D_yqwlL2 + aP(2) + 5|02},
then,
aHag+b— Ngyp*Byp =0, on 02

where
= UrwT)" { LS }

is an normalized eigenvector of H_,., associated with the smallest positive eigen-
value X\ = || D_yow|| 2.

Sketch of proof. We have:
N
aH +b— TgRe [w*(=iDgw)] =0, on 9*Q.

The arguments of the proof of the previous lemma give the result. O
This ends the proofs of theorems 1.10 and 1.13.

6. GAMMA CONVERGENCE RESULTS

We give here the proof of Proposition 1.15 based on [28, 3, 4, 36]: Proof. Let
(en) be a decreasing sequence converging to 0 and (¢,) be such that:

lim ¢, =¢ in LP for all p € [2, 2@

n—-+o0o

lim E., (¢n) exists and is finite.
n—-+o0o

Up to extraction, we can assume that (¢,,) tends to ¢ almost everywhere. (¢,,) C H*

is a bounded sequence in L? and

liminf | W(¢y)dz = W(¢p)dx = 0.

n—+0oo [p3 R3

So, there exists a subset Q of R® such that ¢ = —xq and |Q] = [|¢[|2, < +o0.
Moreover, we have for all n by Cauchy-Schwarz inequality:

[ (Vo 4 W) en) da = [ 296, W@ads = VOV 6,)| (),
R3 R3
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where W(t) = 2f0t VW (s)ds and |[Vw|(A) denotes the variation of w € L! on the
Borel set A. Since, there is C' > 0 such that:

W(t) < C(t + 1)) e,
(W o ¢,) is bounded in BV, converges to Wo ¢ in LP for all p € [1,3/2]. Thus, we
get:

Wo¢=axa € BV, ¢ = —xq € BV,
ggﬁgﬂv(w 0 ¢n)|(R?) > [V(W 0 ¢)|(R?) = aP(Q),

S0,

liminf E. (¢n) > Eo(o)

n—-+oo

and
(0~ timinf E.) (6) > Eo(6).

It remains to construct recovering sequences. For R > 0 and every QccB (0, R)
such that x5 € BV, Sternberg [36] constructs a sequence (¢.) C H} (B(0, R)) such
that:

(¢p¢) converges to — xg in L*(B(0, R)),

el < 1 for all € > 0,

i sup [ ) (eVc[? + W (6)/€) do = aP(S).

thus,
<F — lim sup E6> (—xg) < Eo(—xg)-

e—0
For every xq € BV, we have

(XxanB(o,r))R>0 C BV tends to xq in L? for all p € [1, +00),
(IVxanBo»)|(R?)) tends to [Vxea|(R?),
SO
li Eo(— = Eo(—xq)-
pim o(=XanBO,R)) o(—xa)
Since the I'—limit-sup is lower semi-continuous, we obtain:

(I‘ — lim sup EG) (—xa) < liminf (F — lim sup Ee(_XQmB(OyR)))

-0 R—+o0 e—0
< liminf Ey(—
< Blzglféo 0( X(sz(o,R))
< Eo(—xa)-

O The following lemmas are part of the proof of Theorem 1.16. We introduce
for € > 0:
W(9)

(R3,R) : ——= < Nm},
R3 €

3(qt2)
1

Z.={¢pc L* R ,R)NL

Guioy — [ ITWodI®) 48]0l ifo e 2,
€ +00 otherwise,

and for t € [0,1],¢1 € {—xq € BV}, ¢3 € Z,

Fe(d1,02,t) = N {tAL(Hg,)* + (1 — )AL (Hg,)? } '™ + Eo(1) + Ge(¢2)
Jﬁ(t) = inf{fﬁ(d)lad)%t) : ¢1 S {*XQ S BV}, ¢2 S Ze}

1/2
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Lemma 6.1. We have for all € > 0, that J. is concave, continuous and
(6.1) 0<J(t) < Nm

for all t € [0,1]. There exists a concave function Jy such that (J¢) tends to Joy
pointwise in [0,1] as € tends to 0 and

0 < Jo(0) < Jo(t),
for all t € ]0,1].

Proof. The same argument as in Lemma 5.1 gives us inequality (6.1). J¢ is
concave and continuous as an infimum of concave and continuous functions. (Je)
is a non-increasing sequence since (Z.) is non-decreasing sequence of sets. Hence,
(Je) converges point-wise to a concave function Jy in [0,1] as € tends to 0. The
remaining follows immediately. (]

The core of the proof of Theorem 1.16 is given by the following lemma. We use
here the concentration compactness method and the I'-convergence theory.

Lemma 6.2. We have:
Jo(0) = Jo(1).
If Jo(0) < Nm and for all n, there is ¢, € Z., such that:

} ET(}()N&(@J + G, (¢n) = Jo(0),

where (e,) is a sequence which tends to 0, then, up to a subsequence, up to trans-
lation,
Wo ¢, = Wo (—xq) strictly in BV
dn — —xa strongly in LP for p € [2, M]
where xq € BV.

Proof. If Jo(0) = Nm, then, Jy(0) = Jo(1) by Lemma 6.1. Thus, we can assume
that Jo(0) < Nm. Let ¢,, € Z., be such that:

lim  NXL (Hy,) + G, (6n) = Jo(0).

n—-+o0o

We can assume that:

sup N\ (Hy,) + Ge, (¢n) < Nm.

As in the proof of 1.15, (¢,,) is uniformly bounded in L? and
sup [VW o ¢, |(R?) < Nm.

By Sobolev embedding, (W o ¢,,) is a bounded sequence of L?/2. Since there is a
positive constant ¢ > 0 such that:

W(t) > clt] =,

for all ¢, (¢,,) is bounded in L% and by the interpolation inequalities in L? for

all p € 2, W]. We get that (W o ¢,,) is uniformly bounded in BV.

Let us assume now that this sequence vanishes. Then, (W o ¢,,) tends to 0 in LP
for all p € (1,3/2), s0 (¢,) tends to 0 in LP for all p € (2, 242y, Proposition 3.3
contradicts

Jo(O) < Nm.



28 LOIC LE TREUST

Thus, up to a subsequence, there exist (z,) C R® and W € BV\{0} such that
Wo¢dn(. —xp)) tends to W in Lj,,. Since for all n, ¢, belongs to 2., , there
exists xq such that (¢,( . — z,)) tends to —xqo almost everywhere, up to another
subsequence and W = Wo (—xq) = —axq € BV.

For all n, there exists moreover w,, € H* such that ||w,||z2 = 1 and
1D, . —snywnllL: = A (Hs,).

By Lemma 3.2, (wy,) is uniformly bounded in H'. Up to a subsequence, (w,,) tends
tow € H' in H! weakly.

Let 0 < Ry be a sequence such that (Ry) tends to +00. Then, by concentration
compactness, there exist:

(wl,n)a (WQ,n) c Hlv
such that, up to a subsequence,
lwn — win —wanllmr — 0,
w1 — w weakly in H', strongly in L? for p € [2,6),

Supp(“l,n) C B(Oa Rn)v
S’U,pp(wzn) - RS\B(Ov 2Rn)

and

6.9 XB(O,Rn,)(WOan(- —zp)) tends to Wo (—xq) in LP if 1 <p < 3/2,
(6.2) Jro <tot<an, (W o dn( . —@0)| + VW o u( . —zp)|)dz tends to 0.

We localize now the ¢ field. Let us define for all n
G1n = (anB(zn,“%)’ G2, = (b”XB(zn,“%)c € Z,-

Then, following the same notation of theorem 3.84 of [1], we have that ¢, belongs
to BV (R3,R) for i € {1,2} and

3R,
W0 61, (B) = [TWo onl (Ban 222 ) + [ (W0 9u)* ds,
B (zn,2En)

2

VW o 2l (8) = VW 0 0] ( Blan, 5527) + | (Wo6u)"ds.
0

B(Invﬂ%)

Theorem 3.86 of [1] ensures moreover that there exists a constant ¢ > 0 such that
for all w € BV (A) :

/ w|ds < ¢ (el 2 + [Vwl(A)
8B(0,3)

3

3
where A = B(0,2)\B(0, 1). By a rescaling argument, we get that for all R > 1, for
all w € BV(AR) :

[ s < el /R + Vul(Ar)
9B(0,25)

< c(lwlleran + [Vwl(Ar))
where Ar = B(0,2R)\B(0, R).
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We obtain thanks to equations (6.2):
JO(O) = ngr_{_loo NHqun( . fmn)wnHLQ + Gen (¢n)

. . /2
2 Iim inf N {HDm,n( e WnllZ2@s) + 1 Dgan( . —mn?wi”%%“@)}
+Gen (¢1,n> + Gen ((b?,n)

> liminf N {[|w][7:A}L (Hoyo)? + (1= [lw][72)M (Hy, )%}
JFEO(*XQ) + Gen (¢2,n)

> Jo(l|wll72)-

This imposes ||w||z2z > 0, otherwise, Jo(0) > ¢ + Jo(0) with ¢ > 0. If ||w]|z2 €
(0,1), then we have by Lemma 6.1:

Jo(t) = Jo(0),
for all ¢ € [0,1]. As in the proof of Lemma 5.2, we have:
lim AL (Hy,,) = NL(H )

n—-+o0o

1/2

and we must have:

liminf G, (¢2,n) =0,

n—-+o0o

so, we get the contradiction:

lim )\}‘_(H@Yn) =m= )‘}i-(H—XQ) <m.

n—-+oo

Thus, we obtain that ||w||zz =1 and

liminf G, (¢2,n) =0,

n—-+o0o
so that,
Wo[pn( . —x,)] = Wo (—xq) strictly in BV
bl . —n) = —xa strongly in LP for p € 2, 2¢2)]
and

Jo(0) = Jo(1) = NNy (H-xo) + Eo(—xa)-
O
Let us write the proof of Theorem 1.16 which follows from Proposition 1.15 and
the previous lemmas. Proof. The first part of the theorem follows from Proposition
3.3 and the fact that the I'-convergence remains true if we add continuous functions.
We assume next that:
Jo(l) < Nm.

Lemma 5.4 ensures that there exists —yq € BV such that:
NAL(H o) + Eo(—xa) = Jo(1).
By Proposition 1.15, there is a sequence (¢.) C H' such that:
{ limsup Fc(¢c) < Eo(—xa),
e—0

3(q+2)

Ve = —xq, in L2NL-1 .
Thus, we get:
limsup [$ < limsup NAL (Hg,) + Ee(¢e) < Jo(1) < Nm.

e—0 e—0
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There exists €g > 0 such that for all 0 < € < €g,
IS < Nm,
and by Lemma 5.2, there is ¢ € H' such that:
&e (¢e) = l§-
We have:
Jo(1) > limsup I¢,

e—0

> lim sup N)\}F(H@) +Ge(9e),

e—0

> Tim sup J.(0) = Jo(1),

e—0

and Lemma 6.2 concludes the proof. (I

The proof of Corollary 1.20 follows immediately from Theorem 1.16 and Propo-
sition 3.3. We write now the proof of Theorem 1.22. Proof. Just as in the proof of
Theorem 1.16, the I'— convergence follows from Proposition 3.3 and

limsup I$(k1, ..., ky) <limsup I$(K,...,K) <[.(K,...,K) < Nm.
e—0

e—0

Lemma 5.2 ensures that there exists ¢p > 0 such that for all 0 < € < ¢y, problem
(1.9) has a minimum ¢, € BV,4q. We get that WV o ¢¢) is bounded in BV and (o)
in L2. So by Proposition A.2, there exists a subsequence (¢,,) and ¢ = —xq € BV
such that:

{ Wo ¢, — W o ¢ strongly in LP for all p € (1,3/2) and a.a,

¢n — ¢ strongly in LP for all p € (2, —B(q:m ).

By Proposition 3.3, we have
liminf  Ee, ky,.. kn (n)
e eN Ny lmind B, (6,)
> Eoky,kn (0)-

Thus, we get the conclusion of the theorem.

7. THE M.I.T. BAG LIMIT
We give here the proofs of Theorem 1.24 and Proposition 1.23.
Lemma 7.1. Let xq € BV(R3,R) and 0 < m < M. We have for w € H'(R3,C?):
| = o.Vw+ (mxa + MXQC)WH%Q(]R,?,) =

lo- Vel Fege) +m?wl ey + M w72 (qe) + (M —m) /6Q w*(o.n)wdz

There is C' > 0 such that:
Cll = 0.Vw + (mxa + Mxoe )w|72(rs) >

1
MHVWH%Z(RL") + ”"UH%Z(Q) + MHWH%%Qc) + ||0-Vw||%2(sz)a

C depends neither on Q nor on w.
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Proof. Let ¢1,c2 > 0, we have:
| =c10.Vw +cow|Fzge) = C%IIO' VWH%Z(QC) + Wiz e
— 169 fBQ (o.n)wdz.
So, we get:
2| —o.Vw + (mxa + ngc)wHQLQ(Rs
2Mm m?

2 2 HV‘UHLZ(RB) +m ||WHL2(Q) +2Mme||L2(QC) + o vW||L2(Q)

O

Lemma 7.2. For any C > 0, there exists a constant cg > 0 such that if w belongs
to H.,,,(R* C?) and satisfies:
C > gVl L2ms) T MHWH%?(B(O,R)c) + HU-VWH%Z(B(O,R)) + ||WH%2(B(0,R))’
for M >m and R > 0, then,
llwll L3 sy < co.
co does not depend on M, R or w.

Proof. Let w € HL . (R3,C?),

sym

w(z) = v(r) ( ; ) +u(r) ( S@fﬁse()ee)v >

where (1,0, ) are the spherical coordinates of . We have:

R 2lu(r)]?
VW22 (50,R)) = 47T/O [|U'(T)|2 + % + |v’(r)|2] ridr

and
R 2
2u(r)
lo-Vwlli250,r) = 47T/0 lul(r) + T( + |U’(7°)|2] ridr
Since,
R
2
/ [u/(s) + 2uls) |*s%ds
s
/ (s)]2s% + 4lu(s)|* + 4u(s)u'(s)s] ds
= / |2s2 + 4|u(s )| — 2|u(s)|2] ds + 2R|u(R)|2
R
/ (s)]%s + 2Ju(s)|?] ds
0
we get:

lo.Vwl2p0,ry) = V@l E250,r))-
Let us remark that this inequality is wrong when the domain is an annulus and

u(r) =1/r%

Hence, we obtain:

fB(o,R) |V|w|2|dz < ||0'-VWH%2(B(0,R)) =+ ||WH%2(B(0,R)) <C
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and
fB((),R)c [VIw[?|da < ﬁHVC"H%?(B(O,R)c) + MHWH%Z(B(O,R)c) <C
By Sobolev injection, we get the result. (I
We are now able to give the proof of Theorem 1.24. Proof. Lemma 2.10 and the
arguments of the proof of Theorem 1.12 ensure that there exist Cy, ng > 0, for
n > ng, a radius R,, > 0 minimizing

inf {NA;( Bor) + aP(B(O,R)) + b|B(0,R)| : R > 0} ,

a function
1
vn(r) ( 0 ) 1 3 4
1/)n(:c) = . COS@ € I_Is:lﬂnOR 7C )
zun(r)< sin fet® )
satisfying:

{ HE(O,Rn,)w" = )‘}k(Hg(O,R))w"
[¢nllz> =1
where HY} = —ia.V + g(mxaq + M, xq-) and
NAL(HE o r.y) + aP(B(0, Ry)) + b| B(0, R)| < Co.
(Ry) is bounded, so there exists a subsequence (nj) and R > 0 such that
R, — R.

We claim that R > 0. Indeed, there is for all n, a function w, € Hj,,,(R* C*) such
that:

{ | = 0. Vwn + (mXB(0,R.) T MXBO,R.)WnllT2msy = AL (Hpg g,))?
lwnllzz = 1.

Lemmas 7.1 and 7.2 ensure that (wp, ) is a bounded sequence in L3(R?), such that:
lwnll22(B(0,Ray )e) = 0,
so, R has to be positif.
We denote A, := )\}r(Hg(O,R))' (M) is a bounded sequence of (m, 400) so, up to
a subsequence, we can assume that it converges to A € [m, +00). (un, v,) satisfies
(1) + 2451 = —(m = A Jon (1)
U (r) = —(m + A )un(r)
for r € (0, R) and
Co
2 oy < —.
onllzaso.m) < 37
We get:

r20! (1) + 2rvl, (1) — 72(m? — X2, (r) = 0.
So, u, and v, are spherical Bessel functions on (0, R,), they have to be of the first
kind to belong to L2. Thus, (un,v,) is proportional to

sin(y/A2 —m?2r) cos(y/AZ —m?2r)

SN (\//\flfmzr)2 \/)\iyfm?r
A2 +m?2 sin(\/)\%——nﬂr)
A2 —m? \/)\2 —m2r

{ r2ul’ (r) + 2rul,(r) — (r2(m? — A2) + 2)u,(r) =0
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on (0, R,). We also get that (uy,,v,) is proportional to

I+4/M2-X27r 5 5
—X_n_noepp(—y/ M2 — N2r)
M2—X27)2 n n
N (VMZ=Xr)
M2+22 exp(—y/M2-X2r)

ME=MN /M2-x2r

on [R,,+00), so,
Unp (Rn)
Un (Rn)
We finally get that (un,v,) converges uniformly to a function (u,v) on

[0, +00)\(R — €, R+ €)

— 1.

for any € > 0 where

{ u/(r) + 245 = —(m = \o(r)

on (0, R], u(r) =v(r) =0 on (R, +00) and
u(R) = TEI}I%*U(T) = lim v(r) = v(R).

r—R~

It remains to prove that A = A}, ;(B(0, R)). Let R > 0 be the radius of the ball
B(0, R) that minimizes

inf { N}y (B(0,7)) + aP(B(0,7)) + b|B(0,7)[ : 7> 0},
and w € H!,,.(B(0, R),C?) be an normalized function satisfying
Murr(B(0,R)) = || Dwl| 2

ooy =e( )

where (1,6, ) are the spherical coordinates of |x| = R. We set

and

(D )ern-a R for s € B0 R

w(z) for x € B(0, R)

where w,, is normalized by ¢,,. We get:

wn(z) =cp

| - o.Vw, + ann||%2(B(O,R)C) =0

and the result follows. O
Let us now prove Proposition 1.23. Proof. Let R be a fixed positive constant.
We recall that

M (B(0, R)) = inf{|| Dwl|12(B(o,r)) : @ € Hiym(B(0,R),C?), [lwllr2(5(0,r)) = 1}-
Let w € H],,,,(B(0,R),C?). We get that:

1DwI72(500, 7)) = 10-V&llZ2(50,r)) + ™ + mlwl2@80,7)

A scaling argument shows that R — A}, ;7(B(0, R)) is a convex decreasing func-

tion such that )
li B =
{ R_lffo(f)‘MlT( (0, R)) = m,
}21510/\M1T(B(0a R)) = +oc.
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We get that R — NAY,,(B(0,R)) + aP(B(0,R)) + b|B(0, R)| is a strictly convex
and coercive function. Hence, the minimum exists and is unique. (]

APPENDIX A. A COMPACTNESS RESULT FOR BOUNDED VARIATION FUNCTIONS
WITH SYMMETRY

Whereas the embedding of H'(RY) in LP(RV) for N > 2 and p € [2, 2%5] is not
compact, Strauss [37] showed that the restrictions of these embeddings to radial
functions are compact for p € (2, ]\2[—%) This result has been generalized by Lions
[24] to other Sobolev spaces.

The adaptation of the proofs of Lions to the BV setting is straightforward and
is given here for the reader’s convenience. We denote by Bde(]RN ) the subset of
BV (RY) of radial functions where N € N\{0}. The following lemma gives a control
of the decay at infinity of the radial BV functions.

Lemma A.1. Let N > 1, u € BV,qq(RY), then we have:
lu(z)| < {|Vu|(RN)|x|_(N_1)} a.a. v € RV,

Proof. For all u € BV,..q(RY), there exists a sequence (u,) C BV,qa(RY) N
D(RY) such that u,, converges strictly in BV and almost everywhere to u (see for
instance [3, 1]). So, we just have to show the lemma for u € BV,..q(RY) N D(RY).
We denote u(z) = u(r), and we have:

d -
SN ) =

u du
m%TN_l + [u(N = 1)rV 2,

and

to g
== [ 26 < [ Valde.

O

Sickel, Skrzypczak and Vybiral [34] studied the properties of radial functions

of Besov, Lizorkin-Triebel and BV spaces, generalizing the estimates of this type

given by Lions and Strauss. The proof of these inequalities is the first step to get
the compactness of the embedding of the following proposition.

Proposition A.2. Let N > 1 and denote 1* = N/(N — 1), then the restriction to
BV,wa(RY) of the embedding BV (RY) — LP(RY) is compact if p € (1,1%).

Proof. Let (u,) be a bounded sequence in BV,.q(RY). Up to extraction, there
exists a function u belonging to BV,.q(RY) such that (u,) tends to u in Ly . for
p € (1,1*). Moreover, for R > 0, we have:

p—1 _(N— _
lun — ullLo(fj2)> R} < (|Vu|(RN) + |Vun|(RN)) lu—wn| 1wy R (N=1)(p-1)
by Lemma A.1. The result follows immediately. O
APPENDIX B. THE LOCALLY COMPACT CASE OF THE CONCENTRATION
COMPACTNESS METHOD IN THE BV SETTING

A general version of the concentration compactness method can be found in the
papers of Lions (see for instance [25]) or the book of Struwe [38]. Nevertheless, in
this paper, we just need the concentration compactness in a simpler setting: we
study bounded sequences of functions in BV, so that, the loss of compactness can
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just come from the action of the group of translations. Thus, for the reader’s conve-
nience, we give in this part, a straightforward adaptation to BV of the presentation
of Lewin [21] based on the papers of Lions [25] and Lieb [22].

The concentraction compactness method has already been used in the BV set-
ting, for instance, by Fusco [13] for Sobolev inequalities in BV and by Bucur and
Giacomini [6] for the isoperimetric inequality for the Robin eigenvalue problem.
But, they both used the arguments of Lions and Struwe.

Let N > 2. We begin by defining the highest mass that the limit of translated
subsequence can have.

Definition B.1. Let (u,) be a bounded sequence in BV (R"), we denote:
m(up) = sup {/ luldz : Hzp,) CRY up, (. —2n,) = uc BV(RY)in L}, } .
RN

The following lemma is related to the vanishing of a sequence.

Lemma B.2. Let (u,) be a bounded sequence in BV (RY), we have equivalence
between the following points:

(1) m(un) =0,

(2) for all R >0, ngl}rloof:ﬂ% fB(m,R) lun| = 0,

(3) un — 0 strongly in LP for p € (1,1%),
where 1* = N/(N —

Proof. Let us assume that (1) is true. Let R > 0 and (z,,) C RY be such that:

/ |tn|dz > sup / |tun|de —1/n.
B(zn,R) zeRY JB(z,R)

(un( . — xy,)) is still a bounded sequence in BV(RN). Since m(un( . —xy)) =0,
we get that (u,(. — x,)) converges to 0 in L, and (2) follows.
Let us assume (3). Let (z,,) C RY be such that

Up, (. —xp,) = u€ BV(RY) in L}, and a.a.
We have:
[tn, (- = @) Lo@yy = [[tn, [l Lo@yy = 0,
for all p € (1,1*). We immediately get that u = 0.

Let (2) be true. We denote RN = U__,~C, with C, = IIY [z, z; + 1). For
1 < p < 1%, we have:

(1—0
[ e =32 [ e < 3 e, Il 02

zezN zezN
with 1/p = 0 + (1 — 0)/p*. We choose p such that (1 — 6)p = 1, that is p =
(N +1)/N € (1,1%), and we get:

[t <€ sup o lunllpve.

RN zezZN

So (uy) tends to 0 in LP and by interpolation inequality in L? for all 1 < ¢ < 1*. O
When vanishing does not occur, the sequence can converge up to translation and

extraction or split into two parts. Lions used the word dichotomy to describe this

[25]. This situation is described in the following proposition.
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Proposition B.3. Let (u,) be a bounded sequence in BV (RY), (Ry) and (R},) be
two sequences such that for all k, 0 < Ry < R} and

up, > u € BV(RYN) in L],
R — +o0.

Then, there exists a subsequence (uy,) such that the following properties are true:

Un, XB(0.R.)) tends to u in if 1 <p<17,
1 WXB(0,Ry)) tends t n LP if 1 < 1

(2) ka<|Z|<R;€ [tn, |dz + [Vu,, |(B(0, R;)\B(0, Ry)) tends to 0,
where X p(o,r,) 18 the characteristic function of the ball B(0, Ry).

Proof. Let us introduce two Levy’s concentration functions:
Qn(R) ::/ |un|dz and K, (R) := |Vu,|(B(0, Ry)).
B(0,Rx)

These are non-decreasing positive functions such that for all R > 0 and n:
Qn(R) + Kn(R) < HunHBV(RN) <C.
We get for all R:

Qn(R) = luldz =: Q(R),
B(0,R)

and up to extraction, there exists K € BV (0, +00) such that:
K,(R) - K(R).
We denote ! := limg_, 1 o, K(R). There exists a subsequence (ny) such that:

|Qn, (Bi) — Q(Ri)|  +|@ny (R},) — QR+ ...
K (Ri) = K(Bi)| + [Kn, (Ry) — K(Ry)| < 1/

We get:

/ |unk|dac—/ |u|dx
B(0,Ry,) RN

and the theorem of the missing term in the Fatou lemma (see [23]) ensures that
(Un, X B(0,Ry)) tends to w in L*. This remains true in L? for 1 < p < 1* by interpo-
lation. Moreover, we have:

Jri<tol<ry [tnelde = Qn, (Ry) — Qny (Ri) < 1/k + |Q(Rx) — Q(Ry)I;
[V, |({ By, < [z] < Ry}) = Kn, (By) — Ky (B) < 1/k + [K(Ry) — K(Ry)|,

— [ Que(Ri) — Q(o0)| < 17k + / julde,

[z|> Rk

so that the second point is also true. O
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