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A VARIATIONAL STUDY OF SOME HADRON BAG MODELS

LOÏC LE TREUST

Abstract. We study, in this paper, some relativistic hadron bag models. We

prove the existence of excited state solutions in the symmetric case and of a
ground state solution in the non-symmetric case for the soliton bag and the
bag approximation models by concentration compactness. We show that the
energy functionals of the bag approximation model are Γ-limits of sequences
of soliton bag energy functionals for the ground and excited state problems.
The pre-compactness, up to translation, of the sequence of ground state solu-
tions associated with the soliton bag energy functionals in the non-symmetric
case is obtained combining the Γ-convergence theory and the concentration-
compactness principle. Finally, we give a rigorous proof of the original deriva-
tion of the M.I.T. bag equations via a limit of bag approximation ground state
solutions in the spherical case. The supersymmetry property of the Dirac
operator is a key point in many of our arguments.

1. Introduction and main results

Quantum chromodynamics (QCD) is the theory of strong interaction and ac-
counts for the internal structure of hadrons. At low-energy, the quarks are bound
together to form baryons (protons, neutrons) and mesons. Nevertheless, the con-
finement mechanism has not yet been derived from the QCD equations. In order
to study the hadronic properties, physicists introduced phenomenological models
approximating the QCD equations in which the quarks are confined. Among them,
the M.I.T. bag [9, 8, 7, 18] and the bag approximation models [9, 7] have been set
in 1974 and the soliton bag model [11, 12, 20] in 1977.

The solutions of the equations of the soliton bag and the bag approximation
models are critical points of non-linear functionals involving the Dirac operator.
The mathematical techniques used to solved most equations of this type are dif-
ferent from the ones used in a non-relativistic framework (see the review paper
of Esteban, Lewin and Séré [10]). Nevertheless, in our case, the supersymmetric
properties of the Dirac operator with scalar potential [39] allow us to transform a
strongly indefinite variational problem into a minimization one and then to use the
direct method in the calculus of variation [38]. Since the functionals associated with
the ground state problems of the soliton bag and the bag approximation models
without symmetries are invariant under translations, we show the existence of solu-
tions thanks to the concentration compactness method under some restrictions on
the parameters of the models. The originality of the proofs relies on the fact that
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the usual concentration compactness inequalities are not satisfied anymore and we
have to introduce different inequalities to overcome it. We also show the existence
of ground and excited state solutions under some conditions on the parameters,
when the wave functions are supposed to have some symmetries. These are the
first rigorous proofs of existence for these two models. Actually, solving the bag
approximation model is a shape optimization problem on finite perimeter sets of
R3 which is related to the soliton bag model thanks to the gradient theory of phase
transitions [29, 30, 28, 36, 3, 4]. Indeed, we show that the energy functionals of the
bag approximation model are Γ-limits of sequences of soliton bag model energy func-
tionals for the ground and excited state problems. We combine the Γ−convergence
theory and the concentration compactness method to get the pre-compactness, up
to translation, of the sequence of ground state solutions associated with the soliton
bag energy functionals in the non-symmetric case. As in the existence results, we
have to introduce concentration compactness inequalities different from the classical
ones. Bucur [5], Bucur and Giacomini [6] have already studied shape optimization
problems thanks to the concentration compactness method. But, to our knowledge,
this is the first result using both the gradient theory of phase transition and the
concentration compactness method. We also prove the pre-compactness of the se-
quences of excited state solutions associated with the soliton bag energy functionals
in the symmetric case. Finally, we give a rigorous proof of the original derivation
of the M.I.T. bag equations done by Chodos, Jaffe, Johnson, Thorn and Weisskopf
[9] via a limit of bag approximation ground state solutions in the spherical case.
These are the first proofs which rigorously establish the link between the soliton
bag, the bag approximation and the M.I.T. bag models.

Let us now introduce the different models we study.

1.1. Some bag models.

1.1.1. The soliton bag model. This model has been introduced by Friedberg and
Lee [11, 12] and is sometimes called the Friedberg-Lee model.

Here, we look for a solution (ψ1, . . . , ψN , φ) of the following system of equations:

(1.1)







H0ψi + gβφψi = λiψi ∀i = 1, . . . , N,
‖ψi‖L2 = 1 ∀i = 1, . . . , N,

−∆φ+ U ′(φ) +
∑N
i=1

gψ∗
i βψi = 0,

where N ∈ N\{0}, g > 0, φ : R3 → R and for all i ∈ {1, . . . , N}, ψi : R3 →
C4. H0 = −iα.∇ + βm = −iαk∂k + βm is the Dirac operator in the Pauli-Dirac
representation (see [39]) : α = (α1, α2, α3),

β =

(

I2 0
0 −I2

)

, αk =

(

0 σk

σk 0

)

, for k = 1, 2, 3,

with

σ1 =

(

0 1
1 0

)

,σ2 =

(

0 −i
i 0

)

,σ3 =

(

1 0
0 −1

)

,

and m > 0; X∗ denotes the complex conjugate of X ∈ C4. We have used here
Einstein’s convention for the summation.

Solutions of equations (1.1) are called quasi-classical [11, 12].
The potentials of the Dirac operator H0 of the form βφ are called scalar poten-

tials. The fact that in our problems the potential of the Dirac operator is scalar
is a key point in our study. Indeed, we will see below that the scalar potentials
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preserve the symmetry of the spectrum with respect to 0 that the Dirac operator
has. Let us remark moreover that gβφ acts like a mass term [20] since

H0 + gβφ = −iα.∇+ β(m+ gφ).

This kind of potential is often considered in QCD [11, 12, 15, 9] to model the strong
interactions between quarks. From the physical point of view, φ is a phenomenolog-
ical scalar field that models the QCD vacuum and can be viewed as a representation
of the quantum excitations of the self-interacting gluon field [15].
ψ1, . . . , ψN are the wave functions of the N valence quarks. N is fixed at 2 for

mesons and 3 for baryons. g is the positive coupling constant between the quark
and the scalar fields. λi is an eigenvalue of the Dirac operator with scalar potential
H0 + gβφ and represents the energy of the ith-relativistic particle in the scalar
field φ, so it has to be non negative for ψi to be a physically admissible state (see
chapter 1 of [39] for a physical interpretation of the negative part of the spectrum
of a Dirac operator). Some of the N particles can have the same wave function
and this does not necessarily contradict Pauli’s exclusion principle because quarks
possess others quantum numbers such as color. Let us denote by N0 the maximal
number of particles possible with the same wave function ψ. We will always assume
that the number of these particles is less than N0.

Physicists [32, 17] have already studied numerically this problem for scalar po-
tential with radial symmetry i.e. when φ is radial. In that case, the spin-orbit
operator, the z-component of the angular momentum operator and the Dirac op-
erator commute altogether. Hence, we will look for eigenfunctions of the Dirac
operator with spherically symmetric potential that are also eigenfunctions of the
spin-orbit operator and the z-component of the angular momentum operator. A
particular ansatz is often chosen for the four-vector wave function [32, 17, 27, 9]

(1.2) ψ(x) =









v(r)

(

1
0

)

iu(r)

(

cos θ
sin θeiϕ

)









that is separable in the spherical coordinates (r, θ, ϕ) of x. This corresponds to an
eigenfunction of the spin-orbit operator of eigenvalue −1 and of the z-component of
the angular momentum operator of eigenvalue 1/2 (see [39, Section 4.6] for complete
study of the Dirac operator with spherically symmetric potential). Actually, it is
commonly admitted by physicists that the ground state of many problem involving
the Dirac operator has to be searched among those functions, but to our knowledge,
no rigorous proof ensures it. Once this choice is made,

ψ∗βψ = v2 − u2

becomes a radial function which in turn generates a radial potential φ in equations
(1.1). The ansatz (1.2) is well-known in physics and has been used in particular by
Soler [35] to describe elementary fermions.

We denote by H
1/2
sym(R3,C4) the set of the functions ψ of this type which belong

to H1/2(R3,C4) and H1
rad(R

3,R) the radial functions of H1(R3,R). The problem of
finding a solution of (1.1) when we sought the scalar potentials among spherically
symmetric functions and the quarks wave functions among functions of the form
(1.2) will be called the symmetric problem. Whereas, when no assumption is done
on the form of the solution, we will say that this is the non-symmetric problem.
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Saly, Horn, Goldflam and Wilets have already found numerical ground [32, 17]
and excited state [33] solutions for the symmetric problem.

Throughout this paper, we will assume that U : R → R is a non-negative C1

function such that U and its derivative U ′ vanish at zero and

(H1) |U ′(x)| ≤ C(|x|+ |x|p) for x ∈ R with 1 < p < 5,

(H2) U(x) ≥ cx2 for all x ∈ R,

for some positive constants c and C.

Remark 1.1. Physically, the presence of the constant c in hypothesis (H2) means
that the scalar field φ has a mass whose value is at least 2c.

Our problem has indeed a variational structure: we look for a critical point of
the C1 energy functional:

E(ψ1, . . . , ψN , φ)

=

∫

R3

[(

N
∑

i=1

(ψi, H0ψi) + gφ(ψi, βψi)

)

+
|∇φ|2
2

+ U(φ)

]

dx

on the set {(ψ1, . . . , ψN , φ) ∈ H1/2(R3,C4)N × H1(R3,R) : ‖ψi‖L2 = 1}. λi are
the Lagrange multipliers associated with the ‖.‖L2-constraints and ( . , . ) is the
complex scalar product.

Remark 1.2. Condition (H1) is just a mathematical constraint for E to be well-
defined and differentiable. This does not restrict the set of admissible potentials U
considered by the physicists [11].

1.1.2. The bag approximation. This model has been introduced by Chodos, Jaffe,
Johnson, Thorn and Weisskopf [9, 8] to derive the M.I.T. bag model as a limit case.

Here, the scalar field φ of the previous model is replaced by a characteristic
function χΩ but it still models the cavity where the quarks are encouraged to live.

The Lagrangian of the bag approximation is:

F(ψ1, . . . , ψN , χΩ) =

∫

R3

[

N
∑

i=1

(ψi, H0ψi)− gχΩ(ψi, βψi)

]

dx + aP (Ω) + b|Ω|,

for ψ1, . . . , ψN in H1/2(R3,C4). ψ1, . . . , ψN still represent the quark wave functions.
The characteristic function χΩ of Ω belongs to {χω ∈ BV (R3,R)}. |Ω| denotes the
area of Ω and P (Ω) its perimeter. We will write, in this paper, the variation of a
function φ ∈ BV (R3,R) on a Borel set A by |∇φ|(A), so that:

|∇χΩ|(R3) = P (Ω).

The constants a, b,m, g are positive.
We look for critical points of F on the set

{(ψ1, . . . , ψN , χΩ) ∈ H1/2(R3,C4)N ×BV (R3,R) : ‖ψi‖L2 = 1}
that is to say, points that satisfy (see [14, 16]):

(1.3)







(H0 − gχΩ)ψi = λiψi, ∀i = 1, . . . , N on R3

‖ψi‖L2 = 1, ∀i = 1, . . . , N

aHΩ + b−∑N
i=1 gψ

∗
i βψi = 0 H2-a.e. in ∂∗Ω
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where HΩ is the mean curvature of ∂∗Ω, and H2 is the two-dimensional Hausdorff
measure.

1.1.3. The M.I.T. bag model. The M.I.T. bag model is another model where the
quark wave functions are perfectly confined in a bag [9, 8, 7, 18]. It has been widely
studied and has lead to results fitting the experiments [7].

Let us, for the moment, introduce the equations in a fixed non-empty bounded
regular open set Ω of R3. In this paper, we will just consider the ground state
problem, so that, we look for a single function ψ, solution of the following problem:

(1.4)







H0ψ = λψ on Ω
−iβ(α.n)ψ = ψ on ∂Ω
‖ψ‖L2(Ω) = 1,

where ψ ∈ H1(Ω,C4), λ > m and n is the exterior normal to ∂Ω.
When Ω = B(0, R), we look for an eigenfunction ψ in H1

sym(Ω,C4) i.e. of the
form (1.2). In that case, the boundary condition becomes:

u = v on ∂Ω.

The problem of finding a good Lagrangian formulation for these equations has
been widely studied [18, 19]. This has been a motivation for the physicists to in-
troduce other phenomenological models like the soliton bag model of Friedberg and
Lee [11, 12] and the fractional bag model of Mathieu and Saly [27, 26]. Balabane,
Cazenave and Vazquez [2] already proved the existence of compactly supported
ground state solutions for this latter model thanks to a shooting method.

1.2. Variational formulations. The main difficulty we have to face in the soliton
bag and bag approximation models, is that the functionals considered are strongly
indefinite: they are neither bounded from below nor from above and their critical
points have an infinite Morse index. So, for now, we do not have any satisfactory
formulations of the ground and excited state problems.

The key point to overcome this in all the models, relies on a fine study of the
Dirac operator with scalar potential.

1.2.1. The soliton bag and bag approximation case.

Lemma 1.3. Let φ be in Lp(R3,R), then Hφ = H0+gβφ is a self-adjoint operator

on L2(R3,C4), with domain H1(R3,C4) and form-domain H1/2(R3,C4) whenever

3 ≤ p < +∞. It satisfies:

σess(Hφ) = σess(H0) = (−∞,−m] ∪ [m,+∞).

The proof of this lemma is based on Kato-Rellich theorem and Weyl’s criteria
for essential spectrum and can be found in [39, Chapter 4].

We denote by E the Hilbert space where we search for the quark functions and
F the associated space for φ or χΩ when no confusion is possible. E × F can be:

H1/2(R3,C4)×H1(R3,R),

H
1/2
sym(R3,C4)×H1

rad(R
3,R),

H1/2(R3,C4)× {χω ∈ BV (R3,R)},
H

1/2
sym(R3,C4)× {χω ∈ BVrad(R

3,R)}.
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We define E+
φ = χ(0,+∞)(Hφ)E where χ(0,+∞) is the characteristic function of

(0,+∞), d := dim(ker(Hφ)) and for k ∈ N\{0} :

λk+(Hφ) :=



















0 if k ≤ d
2

inf
V⊂E+

φ

dimV=k− d
2

sup
‖ψ‖L2=1
ψ∈V

(ψ,Hφψ) if k > d
2 .

Remark 1.4. The symmetry of the spectrum with respect to 0 is actually true
not only for the essential spectrum of Dirac operators with scalar potentials as in
Lemma 1.3 but also for the whole spectrum. Moreover, we will see in Section 2
that d is pair so that the definition of λk+(Hφ) make sense for all k. Then, we will
get that

{±λk+(Hφ)} ∩ (−m,m)

are the eigenvalues of Hφ in (−m,m) counted with multiplicity.
In this paper, the fact that the potentials are scalar is important. Indeed, the

symmetry of the spectrum is not true anymore for the Dirac operator with an
electric potential such as the Coulomb one [39, Section 7.4]. This property is
related to the supersymmetric operator theory which will be an essential tool in
our study, for instance, to give a simpler expression for λk+(Hφ).

The well-defined minimization problems are then, for 1 ≤ k1 ≤ · · · ≤ kN in the
soliton bag model:

(1.5) inf

{

N
∑

i=1

λki+ (Hφ) +

∫

R3

[ |∇φ|2
2

+ U(φ)

]

dx : φ ∈ F

}

and in the bag approximation:

(1.6) inf

{

N
∑

i=1

λki+ (H−χΩ) + aP (Ω) + b|Ω| : χΩ ∈ F

}

.

We get here a good formulation for the ground state problems when k1 = · · · =
kN = 1. The other cases are related to the exited states.

1.2.2. The M.I.T. bag case. Let Ω be the euclidean ball B(0, R) of R3 with R > 0.
Define

D(H0) = {ψ ∈ H1
sym(Ω,C4) : −iβ(α.n)ψ = ψ on ∂Ω}.

We call (H0,D(H0)) the M.I.T. bag Dirac operator.

Proposition 1.5. The operator (H0,D(H0)) is self-adjoint and there is a nonde-

creasing sequence of eigenvalues (λn)n≥1 ⊂ (m,+∞) which tends to infinity such

that:

σ(H0) = {. . . ,−λ2,−λ1} ∪ {λ1, λ2, . . . }.
We denote for each n, λnMIT (Ω) := λn.

Remark 1.6. The main ideas of the proof of Proposition 1.5 will be given in the
second section.

The variational formulation for the ground state is:

inf
{

Nλ1MIT (B(0, R)) + aP (B(0, R)) + b|B(0, R)| : R > 0
}

,

where a, b > 0 and N ≤ N0.
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1.3. Existence results.

1.3.1. The soliton case. We get the following results:

Theorem 1.7. Let K ∈ N\{0} and m > 0 be fixed. Assume that U satisfies

hypothesis (H1) and (H2). There is g0 > 0 such that if the coupling constant g
satisfies g > g0 then, for any 1 ≤ k1 ≤ · · · ≤ kN ≤ K, there exists a solution

(ψ1, . . . , ψN , φ) ∈ H1/2
sym(R3,C4)N ×H1

rad(R
3,R)

of equations (1.1) with λi = λki+ (Hφ) ∈ (0,m) where φ is a minimum of problem

(1.5). g0 depends on N,m,K and U .

Let us make some comments:

Remark 1.8. Friedberg and Lee [11] derived some conditions on m, g and U com-
parable to ours for the model to have soliton solutions.

Remark 1.9. They also assumed U to be a non-negative polynomial of degree 4
with two minima at 0 and −φ0 < 0 such that 0 = U(0) ≤ U(−φ0). In many
of their proofs, they considered condition (H2) true. Nevertheless, most of the
numerical works were performed by Saly, Horn, Goldflam and Wilets [32, 33, 17]
with U(−φ0) = 0. Actually, the symmetry U(0) = U(−φ0) seems not to prevent
the scalar field to tend to −φ0 at infinity and this leads to some mathematical
complications in the minimization. However, c can be chosen as small as we want.

This is the first rigorous proof of the existence of ground and excited states
for wave functions of form (1.2). The symmetry of the functions leads to the
compactness properties established by Strauss [37] and Lions [24]. As we remark
before, no result ensures that the ground state has to possess such a symmetry.
So, in Theorem 1.10, we prove the existence of a ground state with no assumption
made on the form of the quark wave function with the help of the concentration
compactness method.

Theorem 1.10. Let m > 0 be fixed. Assume that U satisfies hypothesis (H1) and
(H2). There is g0 > 0 such that if the coupling constant g satisfies g > g0 then,

there exist

(ψ, φ) ∈ H1/2(R3,C4)×H1(R3,R)

such that φ is a minimum of problem (1.5) for k1 = · · · = kN = 1 and
{

H0ψ + gβφψ = λψ
‖ψ‖L2 = 1

where λ = λ1+(Hφ) ∈ [0,m). g0 depends on N,m and U .

If 0 /∈ σ(Hφ), then φ satisfies

−∆φ+ U ′(φ) +Ngψ∗βψ = 0.

Remark 1.11. The main problem that occurs when 0 ∈ σ(Hφ) is that φ 7→ λ1+(Hφ) is
not necessarily Gâteaux differentiable. We will get in Corollary 1.20 that 0 /∈ σ(Hφ)
under some restrictions on the parameters of the model. From the physical point
of view, the most relevant parameters satisfy the requirements of this corollary
[11, 15].
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1.3.2. The bag approximation. The same method adapted to the BV setting gives
us similar results for the bag approximation model.

Theorem 1.12. Let K ∈ N\{0}. Assume g ∈ (0,m). There is a constant δ > 0
such that if:

(H3) a, b < δ,

then, for any 1 ≤ k1 ≤ · · · ≤ kN ≤ K, there exists a solution

(ψ1, . . . , ψN , χΩ) ∈ H1/2
sym(R3,C4)N ×BVrad(R

3,R)

of equations (1.3) with

λi = λki+ (H−χΩ) ∈ (0,m)

where χΩ is a minimum of problem (1.6).

Theorem 1.13. Assume g ∈ (0,m). There is a constant δ > 0 such that if:

(H3) a, b < δ,

then, there exists a solution (ψ, . . . , ψ, χΩ) ∈ H1/2(R3,C4)N ×BV (R3,R) of equa-

tions (1.3) with λ = λi = λ1+(H−χΩ) ∈ (0,m) where χΩ is a minimum of problem

(1.6) for k1 = · · · = kN = 1.

Remark 1.14. In this case, the assumption g ∈ (0,m) ensures that 0 /∈ σ(H−χΩ).

1.4. The bag approximation model as a Γ-limit of soliton bag models. The
following results show the link between the soliton bag and the bag approximation
models and are based on the Γ-convergence theory.

Let us consider first for ǫ > 0 and b > 0 the following functionals:

Eǫ(φ) =

{ ∫

R3

(

ǫ|∇φ|2 +W (φ)/ǫ + b|φ|2
)

dx if φ ∈ H1(R3,R)
+∞ otherwise

and

E0(φ) =

{

aP (Ω) + b|Ω| if φ = −χΩ ∈ BV (R3,R)
+∞ otherwise,

where W : R → R+ is a C1 function which satisfies W−1({0}) = {−1, 0}, (H1) and
a = 2

∫ 0

−1

√

W (s)ds.

Proposition 1.15. Assume that there are positive constants c and 2 < q such that:

W (t) ≤ c(|t|2 + |t|q) ∀t.

Then, Eǫ Γ-converges to E0 in L2 ∩ L 3(q+2)
4 .

This proposition is an adaptation of the result of Modica and Mortola [29, 30]
generalized by Modica [28] (see also Sternberg [36] or Braides [3]) for the gradient
theory of phase transitions in an unbounded setting. Its proof strongly uses the
one of [36].

Let us introduce for ǫ > 0:

Eǫ(φ) =
{

Nλ1+(Hφ) + Eǫ(φ) if φ ∈ H1(R3,R)
+∞ otherwise

and

E0(φ) =
{

Nλ1+(H−χΩ) + E0(−χΩ) if φ = −χΩ ∈ BV (R3,R)
+∞ otherwise.
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Theorem 1.16. Assume that the condition of Proposition 1.15 is true and that

g ∈ (0,m). Then, Eǫ Γ− converges to E0 in L2 ∩ L 3(q+2)
4 .

Let us assume besides that there are c > 0, t1 < −1 < t2 < 0 such that W
satisfies:

W (t) ≥ c|t|q
for all t /∈ (t1, t2) and

(1.7) lc = inf{E0(φ) : φ = −χΩ ∈ BV } < Nm.

Then, there is ǫ0 > 0 such that for all 0 < ǫ < ǫ0, the problem

(1.8) lǫs = inf{Eǫ(φ) : φ ∈ H1} < Nm

has a minimum φǫ. There is a subsequence such that, up to translation, we have:






W ◦ φǫn → W ◦ (−χΩ) strictly in BV

φǫn → (−χΩ) strongly in Lp for p ∈ [2, 3(q+2)
4 ]

lǫns → lc

where −χΩ is a minimum of the problem (1.7) and W : t 7→ 2
∫ t

0

√

W (s)ds.

The constant ǫ in the functionals can be obtained by scale change in some soliton
bag functional.

Remark 1.17. The physicists [11] actually considered potentials U in the soliton
bag model of the form

U : φ 7→W (φ) + b|φ|2
satisfying the conditions of Theorem 1.16.

Remark 1.18. Goldflam and Wilets [15] studying the dependence of the numerical
solutions on the parameters exhibit behaviors of the φ field similar to the ones of
the Modica-Mortolla problem [29, 30, 28, 36, 3]. Nevertheless, this is the first result
which shows clearly the link between the two models we studied.

Remark 1.19. The main difficulty here is that the problems are set in an unbounded
domain. We overcome this combining the Γ-convergence theory and the concentra-
tion compactness method.

In the next corollary, we give conditions on the parameters of the soliton bag
model that ensure that 0 does not belong to σ(Hφ) where φ is a minimum of the
ground state problem. Hence, φ satisfies the last equation of system (1.1).

Corollary 1.20. Assume the hypothesis of Theorem 1.16 true. Then, there are

ǫ0 > 0 and for all ǫ ∈ (0, ǫ0) a minimizer φ of problem (1.8), a function ψ ∈
H1(R3,C4) which satisfy







H0ψ + gβφψ = λψ a.e. in R3

‖ψ‖L2 = 1

−ǫ∆φ+ W ′(φ)
ǫ + 2bφ+Ngψ∗βψ = 0, a.e. in R3

where λ = λ1+(Hφ) > 0.

Remark 1.21. From the physical point of view, the most relevant parameters for
the soliton bag model satisfy these requirements [11]. Indeed, Friedberg and Lee
considered a potential U composed of a two well potential W and a mass term.
The two well potential and the restriction ǫ ∈ (0, ǫ0) are introduced so as to force
the scalar field φ to be almost a characteristic function[11, 15].
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We get a result to the one of Theorem 1.16 in the symmetric case. Let 1 ≤ k1 ≤
· · · ≤ kN ≤ K be integers. We define for ǫ > 0:

Eǫ,k1,...,kN (φ) =

{
∑N

i=1 λ
ki
+ (Hφ) + Eǫ(φ) if φ ∈ H1

rad(R
3,R)

+∞ otherwise

and

E0,k1,...,kN (φ) =
{
∑N
i=1 λ

ki
+ (H−χΩ) + E0(−χΩ) if φ = −χΩ ∈ BVrad(R

3,R)
+∞ otherwise.

Theorem 1.22. Assume the condition of Proposition 1.15 true and that g ∈ (0,m).

Then, Eǫ,k1,...,kN Γ− converges to E0,k1,...,kN in L2 ∩ L 3(q+2)
4 .

Let us assume besides that there are c > 0, t1 < −1 < t2 < 0 such that W
satisfies:

W (t) ≥ c|t|q

for all t /∈ (t1, t2) and

inf{E0,K,...,K(φ) : φ = −χΩ ∈ BVrad} < Nm.

Then, there is ǫ0 > 0 such that for all 0 < ǫ < ǫ0, the problem

(1.9) lǫs(k1, . . . , kN ) = inf{Eǫ,k1,...,kN (φ) : φ ∈ H1
rad} < Nm

has a minimum φǫ. There is a subsequence such that:






W ◦ φǫn → W ◦ (−χΩ) strictly in BV

φǫn → (−χΩ) strongly in Lp for p ∈ [2, 3(q+2)
4 ]

lǫns (k1, . . . , kN ) → lc(k1, . . . , kN )

where −χΩ is a minimum of problem:

(1.10) lc(k1, . . . , kN ) = inf{E0,k1,...,kN (φ) : φ = −χΩ ∈ BVrad}.
1.5. The M.I.T. bag limit. We study in this paper the M.I.T. bag ground state
problem in the spherical case, i.e. when the open set Ω is a ball and the wave
function belongs to H1

sym(Ω,C4). Indeed, our main goal in this section is to give
a rigorous proof of the original derivation of the M.I.T. bag equations done by
Chodos, Jaffe, Johnson, Thorn and Weisskopf [9] via a limit of bag approximation
ground state solutions in the spherical case.

We assume in this section that a, b ∈ R+ and max{a, b} > 0.

Proposition 1.23. There is a minimizer R > 0 of

inf
{

Nλ1MIT (B(0, R)) + aP (B(0, R)) + b|B(0, R)| : R > 0
}

.

Theorem 1.24. Let (Mn)n ⊂ (0,+∞) be an increasing sequence such that:

lim
n→+∞

Mn = +∞.

There are C0, n0 > 0, and for n ≥ n0, a minimizer Rn > 0 of

ln := inf
{

Nλ1+(H
n
B(0,R)) + aP (B(0, R)) + b|B(0, R)| : R > 0

}

≤ C0,

a function ψn ∈ H1
sym(R3,C4) satisfying:

{

Hn
B(0,Rn)

ψn = λ1+(H
n
B(0,Rn)

)ψn
‖ψn‖L2 = 1,
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where Hn
Ω = −iα.∇+ β(mχΩ +MnχΩc), such that, up to a subsequence:







Rn → R > 0,
ln → inf

{

Nλ1MIT (B(0, r)) + aP (B(0, r)) + b|B(0, r)| : r > 0
}

,
ψn → ψχB(0,R) in L2(R3) and in L∞(B(0, R+ ǫ)c ∪B(0, R− ǫ))

for all 0 < ǫ < R/2. R comes from Proposition 1.23, the function ψ ∈ H1
sym(B(0, R),C4)

satisfies:






H0ψ = λ1MIT (B(0, R))ψ on B(0, R)
−iβ(α.n)ψ = ψ on ∂B(0, R)
‖ψ‖L2(B(0,R)) = 1.

Remark 1.25. Chodos, Jaffe, Johnson, Thorn and Weisskopf impose to the ground
state cavity to be a ball, just as in Theorem 1.24. Nevertheless, if we want to remove
this restriction, some difficulties occur. We will point out in our proof where the
problems arise.

The key point of all this paper is the use of supersymmetry properties of the
Dirac operator studied in the second section. We give in the third section, some
auxiliary results related to the continuity of the eigenvalues of Hφ in φ. We prove
the existence theorems for the soliton bag and the bag approximation models in
the symmetric case in the fourth section. In the fifth section, the pre-compactness,
up to translation, of minimizing sequences for the existence Theorems 1.10 and
1.13 follows from the concentration-compactness method. Supersymmetry allows
us to get rid of the problems occurring with the constraints on the sign of the
eigenvalues λ of the operators Hφ and gives the binding inequalities necessary in
the concentration-compactness argument. The sixth section is related to the proofs
of Proposition 1.15, Theorems 1.16 and 1.22, which are based on Γ-convergence and
concentration compactness method. Finally, we give the first rigorous proof of the
derivation of the M.I.T. bag equations in the last section.

2. Supersymmetry of the Dirac operator and spectral properties

The variational formulations (1.5) and (1.6) are not satisfactory because the
definitions of the eigenvalues λk+(Hφ) and λ

k
MIT (Ω) are not easy to handle for k > 0,

Ω an open set of R3 and φ ∈ Lp for some p ≥ 3. Nevertheless, the supersymmetry
theory for Dirac operators with scalar potentials will allow us to overcome these
problems. We strongly use in this part the introduction to the theory of Thaller
[39, Chapter 5].

Definition 2.1. Let τ be a non-trivial unitary involution on a Hilbert space H. A
self-adjoint operator Q on H with domain D(Q) is a supercharge with respect to τ
if τD(Q) ⊂ D(Q) and τQ = −Qτ on D(Q).

2.1. The Dirac operator with scalar potential on R3. We begin by a study
of Dirac operators on L2(R3,C4) with a special type of potentials, the scalar ones.
Let φ be in Lp(R3,R) for some 3 ≤ p < +∞. We define:

T :=
1√
2

(

I2 iI2
iI2 I2

)

, Dφ := −iσ.∇+ i(m+ gφ), D∗
φ := −iσ.∇− i(m+ gφ)

and

Qφ := THφT
−1 =

(

0 D∗
φ

Dφ 0

)
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where we recall that Hφ = H0 + gβφ. Then, by Lemma 1.3, Qφ is a supercharge
with respect to the involution β whose domain is D(Qφ) = TD(Hφ). It can be
either H1(R3,C4) in the non-symmetric case or H1

sym(R3,C2)2 in the symmetric

case where we denote by H1
sym(R3,C2) the subset of H1(R3,C2) whose functions

are of the form:

x 7→
(

−v(r) + u(r)cosθ
u(r)sinθeiϕ

)

,

in the spherical coordinates (r, θ, ϕ) of x.

Remark 2.2. The fact that the potential gβφ of Hφ is scalar is a key point for Qφ
to be a supercharge with respect to β.

Dφ is a closed operator on L2(R3,C2) with domainH1 such that D∗
φ is its adjoint

and vice versa. Let us remark moreover that:

Q2
φ =

(

Dφ
∗Dφ 0
0 DφDφ

∗

)

,

is a self-adjoint operator on L2 with domain

D(Q2
φ) = {ψ ∈ H1 : Qφψ ∈ H1},

which can be different from H2 if φ is not regular enough.
In the following lemma, we show that under some conditions on φ, 0 is not in

the spectrum of Hφ.

Lemma 2.3. Assume that φ ∈ Lp(R3,R) with 3 ≤ p < +∞ satisfies m + gφ ≥ 0,
then

ker(Qφ) = ker(Qφ
2) = ker(Dφ

∗Dφ)⊕ ker(DφDφ
∗) = {0}.

Proof. Let us assume that there exists ω ∈ H1(R3,C2) such that

−iσ.∇ω ± i(m+ gφ)ω.

We get that
∫

R3

(m+ gφ)|ω|2dx = ±
∫

R3

(ω∗σ.∇ω)dx = ±
∫

R3

div(ω∗σω)dx = 0,

hence, we have (m+ gφ)|ω|2 = 0 almost everywhere. Moreover, we have

0 =

∫

R3

(m+ gφ)2|ω|2dx =

∫

R3

|σ.∇ω|2dx =

∫

R3

|∇ω|2dx.

Thus, we have the result. �

Remark 2.4. Let us remark that in the bag approximation case, if we assume that
g ∈ (0,m) we get for any χΩ ∈ BV (R3,R) that m+ g(−χΩ) ≥ 0. So, we have that
ker(Hφ) = {0}.

The same result is true for the soliton bag model in the symmetric case.

Lemma 2.5. Assume that φ ∈ L3+ǫ
rad for ǫ > 0. Then, every eigenvalue of Hφ is

simple and 0 /∈ σ(Hφ).
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Proof. Let λ ∈ σp(Hφ), by a standard bootstrap argument, every associated
eigenvector belongs toW 1,q for any q ≥ 2 and so to L∞. As we work with functions
of the form:

ψ(x) =









v(r)

(

1
0

)

iu(r)

(

cos θ
sin θeiϕ

)









,

(u, v) is a solution of the following system of equation:
{

v′(r) = −(λ+m+ gφ(r))u(r),

u′(r) + 2u(r)
r = (λ−m− gφ(r))v(r)

and satisfies:
{

u(r) = 1
r2 (
∫ r

0
s2v(s)(λ −m− gφ(s))ds),

v(r) = v(0)−
∫ r

0 u(s)(λ +m+ gφ(s))ds.

By a contraction mapping argument [2], the solution is uniquely determined by
v(0). So the set of the eigenvectors of Hφ of eigenvalue λ is of dimension 1.

It remains to prove that 0 does not belong to σ(Hφ). Let us assume by contra-
diction that there is ψ ∈ H1

sym(R3,C4)\{0} such that Hφψ = 0. Then, we get that
QφTψ = 0 and

Tψ =

(

ω1

ω2

)

where ω1, ω2 ∈ H1
sym(R3,C2)\{0}. Thus, we have

(

ω1

0

)

,

(

0
ω2

)

∈ kerQφ

and 0 is not simple. This is impossible so 0 /∈ σ(Hφ). �

Let us give another lemma in the non-symmetric case which study the case where
0 ∈ σ(Hφ) and ensures that λk+(Hφ) is well-defined for all k.

Lemma 2.6. Assume that φ ∈ Lp(R3,R) for 3 ≤ p < +∞. Then, we have

dim(ker(Dφ
∗Dφ)) = dim(ker(DφDφ

∗)) = dim(ker(Hφ))/2 =: d/2.

Proof. We have

ker(Qφ) = ker(Dφ
∗Dφ)⊕ ker(DφDφ

∗).

We suppose that 0 ∈ σ(Dφ
∗Dφ) then, there is

ω =

(

u
v

)

∈ H1(R3,C2)\{0}

such that

−σ.∇ω + (m+ gφ)ω = 0.

We get

−∂1v + i∂2v − ∂3u+ (m+ gφ)u = 0

−∂1u− i∂2u+ ∂3v + (m+ gφ)v = 0

and

−∂1ṽ + i∂2ṽ − ∂3ũ− (m+ gφ)ũ = 0

−∂1ũ− i∂2ũ+ ∂3ṽ − (m+ gφ)ṽ = 0
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where

ω̃ =

(

ũ
ṽ

)

:=

(

v
−u

)

.

Hence, we get

−σ.∇ω̃ − (m+ gφ)ω̃ = 0

so 0 ∈ σ(DφDφ
∗). This ensures that

dim(ker(Dφ
∗Dφ)) ≤ dim(ker(DφDφ

∗))

A similar argument gives us the inverse inequation and the result follows. �

We are now able to write down the Foldy-Wouthuysen representation of our
supercharge operator. This allows us to give simpler expressions for the eigenvalues.

Theorem 2.7. Define the unitary transformations :

S = (
√

DφDφ
∗)−1Dφ = Dφ

√

Dφ
∗Dφ

−1

of ker(Dφ)
⊥ onto ker(Dφ

∗)⊥

and

sgn Qφ =

(

0 S∗

S 0

)

of ker(Qφ)
⊥.

We denote the Foldy-Wouthuysen transformation

UFW :=

{ 1√
2
(1 + β(sgn Qφ)) on ker(Qφ)

⊥

1 on ker(Qφ).

Then, we have:

UFWQφU
∗
FW = β|Qφ| =

( √

Dφ
∗Dφ 0

0 −
√

DφDφ
∗

)

,

and Dφ
∗Dφ = SDφDφ

∗S∗ on ker(Dφ)
⊥. Moreover, we have:

m2 = inf σess(Dφ
∗Dφ)

and

σ(Hφ) =



(−∞,−m] ∪
⋃

k≥1

{

±
√

λk(Dφ
∗Dφ)

}

∪ [m+∞)





where

λk+(Hφ) =
√

λk(Dφ
∗Dφ) := inf

V⊂H1,
dimV=k

sup
ω∈V,

‖ω‖L2=1

‖Dφω‖L2 .

The proof can be found in Thaller [39, Theorem 5.5, Corollary 5.6] and we give
here a sketch of proof for the reader’s convenience.

Sketch of proof. On ker(Qφ)
⊥, we easily get that U−1

FW = U∗
FW = 1√

2
(1 −

β(sgn Qφ)) and

UFWQφU
∗
FW = β(sgn Qφ)Qφ = β|Qφ|,

since Qφ and sgn Qφ commute. sgn Qφ commutes with Q2
φ too so, we get that

Dφ
∗Dφ = SDφ

∗DφS. �
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Remark 2.8. All the results of Theorem 2.7 are also true in the symmetric case if
we replace the spaces

L2(R3,C2), H1(R3,C2), . . .

involved with those denoted by

L2
sym(R3,C2), H1

sym(R3,C2), . . .

composed of the functions of the form:

x 7→
(

v(r) + u(r)cosθ
u(r)sinθeiφ

)

,

where (r, θ, φ) are the spherical coordinates of x.

We give now conditions on the parameters of the soliton bag and the bag approx-
imation models that ensures that the operator Hφ associated with any minimizer
φ of (1.5) or (1.6) has enough eigenvalues in [0,m) counted with multiplicity. The
following lemmas are true both in the symmetric and in the general case.

Lemma 2.9. Let k ∈ N\{0} and m > 0 be fixed. There exists g0 > 0 such that for

g > g0 we have

0 < lsk := inf

{

Nλk+(Hφ) +

∫

R3

[
|∇φ|2
2

+ U(φ)]dx : φ ∈ F

}

< Nm.

g0 depends on N, k,m and U .

Proof.

For 0 < R < R′, 0 < ǫ, let φR,R′ ∈ C∞
0 (R3, [−m/g, 0]) be a radial function such

that

‖∇φR,R′‖L∞ ≤ m+ ǫ

g(R′ − R)

and

φR,R′ (x) =

{

−m/g for x ∈ B(0, R)
0 for x ∈ R3\B(0, R′).

Let ωR ∈ H1
sym(R3,C2) be such that supp(ωR) ⊂ B(0, R) and ‖ωR‖L2 = 1, where

B(0, R) is the ball centered at 0 in R3 of radius R. Then, we have:

‖DφR,R′
ωR‖2L2 = ‖∇ωR‖2L2 .

Now, choosing for ωR, a normalized eigenfunction for the kth-eigenvalue CkR > 0 of
the Dirichlet laplacian on B(0, R), we get:

‖DφR,R′
ωR‖2L2 = CkR =

Ck1
R2

.

Thus, the energy satisfies:

lsk ≤ N
√

λk(DφR,R′

∗DφR,R′
) +

∫

R3

[
|∇φR,R′ |2

2
+ U(φR,R′ )]dx

≤ N
√

Ck1
R

+
4π(m+ ǫ)2

6g2
R′2 +RR′ +R2

R′ −R
+

4π

3

(

sup
r∈[−m/g,0]

U(r)

)

R′3.
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For now, we fix R′ = (1 +
√
3)R, the point which minimizes R′ 7→ R′2+RR′+R2

R′−R .
If there exists R > 0 such that :

f(R) =
N
√

Ck1
R

+
4m2(3 + 2

√
3)π

6g2
R+

4(1 +
√
3)3π

3

(

sup
r∈[−m/g,0]

U(r)

)

R3

< Nm,

we immediately get the result. Let us fix R0 > 0 such that

N
√

Ck1
R0

< Nm.

By hypothesis (H1), U is continuous, U(0) = 0 and we have

lim
g→+∞

sup
r∈[−m/g,0]

U(r) = 0.

so that

lim
g→+∞

4m2(3 + 2
√
3)π

6g2
R0 +

4(1 +
√
3)3π

3

(

sup
r∈[−m/g,0]

U(r)

)

R3
0 = 0.

Thus, there is g0 > 0 such that if g > g0 then

inf
R>0

f(R) < Nm.

�

A similar result holds for the bag approximation case.

Lemma 2.10. Let k ∈ N\{0}. Assume that g ∈ (0,m). There is a constant δ > 0
such that if a, b < δ then,

0 < lck = inf{Nλk+(H−χΩ) + aP (Ω) + b|Ω| : χΩ ∈ F} < Nm.

Proof. For 0 < R, we choose χΩ = χB(0,R) and ωk a normalized eigenfunction

for the kth-eigenvalue CkR > 0 of the Dirichlet laplacian on B(0, R). We get:

0 < lck ≤ N

√

Ck1
R2

+ (m− g)2 + a4πR2 + b4/3πR3,

and the result follows. �

2.2. The M.I.T. bag Dirac operator. Just as in the previous case, the super-
symmetry gives us a good frame to study the problem of the eigenvalues of the
M.I.T. bag Dirac operator. We set Ω = B(0, R) with R > 0,

D = −iσ.∇+ im, D(D) = {ω ∈ H1
sym(Ω,C2) : −σ.nω = ω on ∂Ω},

D∗ = −iσ.∇− im, D(D∗) = {ω ∈ H1
sym(Ω,C2) : σ.nω = ω on ∂Ω},

Q = TH0T
−1 =

(

0 D∗

D 0

)

and D(Q) = D(D) ⊕ D(D∗) = TD(H0). The following result implies Proposition
1.5.

Proposition 2.11. The operator (H0,D(H0)) is self-adjoint and there exists a non

decreasing sequence of eigenvalues (λn)n≥1 ⊂ (m,+∞) which tends to infinity such

that:

σ(H0) = {. . . ,−λ2,−λ1} ∪ {λ1, λ2, . . . },
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D∗ is the adjoint of D and vice versa. We have for each n:

λnMIT (Ω) = λn = inf
V⊂D(D),
dimV=k

sup
ω∈V,

‖ω‖L2=1

‖Dω‖L2(Ω).

Sketch of proof. The proof uses the spectral theory of self-adjoint compact oper-
ators and the ideas of the proof of Theorem 2.7. �

3. Auxiliary results

We study in this section, the dependance of the non-negative eigenvalue of Hφ

on the field φ. This is an important point in this paper that will allow us to prove
lower semi-continuity properties for the functionals involved in problems (1.5) and
(1.6). To prove Proposition 3.3 below, we will need the two following lemmas.

Lemma 3.1. Assume that (φn) converges to φ∞ strongly in L3(R3,R). Then, we

have:

‖Dφnω‖2L2 converges to ‖Dφ∞
ω‖2L2

locally uniformly in ω ∈ H1(R3,C2) i.e., for every R > 0:

sup{|‖Dφnω‖2L2 − ‖Dφ∞
ω‖2L2| : ω ∈ H1(R3,C2), ‖ω‖H1 ≤ R} →

n→∞
0.

Proof. We have

(3.1) ‖Dφω‖2L2 = ‖∇ω‖2L2 +

∫

R3

(m+ gφ)2|ω|2dx− 2gRe
∫

R3

[ω∗(σ.∇ω)φ]dx.

By Hölder’s inequality, we get:
∣

∣

∣

∣

∫

R3

[ω∗(σ.∇ω)φn]− [ω∗(σ.∇ω)φ∞]dx

∣

∣

∣

∣

≤ ‖ω∗
σ.∇ω‖L3/2‖φn − φ∞‖L3 ≤ ‖ω‖L6‖∇ω‖L2‖φn − φ∞‖L3,

∣

∣

∣

∣

∫

R3

|ω|2(φn − φ∞)dx

∣

∣

∣

∣

≤ ‖ω‖2L3‖φn − φ∞‖L3 ,

and
∣

∣

∣

∣

∫

R3

|ω|2(φ2n − φ∞
2)dx

∣

∣

∣

∣

≤ ‖ω‖2L6‖φn − φ∞‖L3(‖φn‖L3 + ‖φ∞‖L3).

The result follows. �

Lemma 3.2. Let ǫ > 0. The functional ω 7→ ‖Dφω‖2L2 is coercive on

{ω ∈ H1(R3,C2) : ‖ω‖L2 = 1}
locally uniformly in φ ∈ L3 ∩L3+ǫ i.e., for every R > 0, there is a C > 0 such that

‖Dφω‖2L2 ≥ ‖∇ω‖2L2 − C

for ω ∈ {ω ∈ H1(R3,C2) : ‖ω‖L2 = 1} and φ such that ‖φ‖L3 + ‖φ‖L3+ǫ ≤ R.

Proof. By equality (3.1) and Hölder’s inequality, we have for ω ∈ {ω ∈ H1(R3,C2) :
‖ω‖L2 = 1} that

‖Dφω‖2L2 ≥
‖∇ω‖2L2 +m2 −2g‖ω‖Lp‖∇ω‖L2‖φ‖L3+ǫ − 2gm‖ω‖L2‖ω‖L6‖φ‖L3,

where p = 6+2ǫ
1+ǫ ∈ (2, 6). The Sobolev embedding H1 →֒ L6 and the interpolation

inequalities give us the result. �
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Proposition 3.3. Let ǫ > 0. Assume that a sequence (φn) converges to φ∞ strongly

in L3 ∩ L3+ǫ. If for k ≥ 1,

(3.2) sup
n∈N

λk(Dφn

∗Dφn) < m2,

then, up to a subsequence, there exist orthonormal families :

(ω1
∞, . . . , ω

k
∞) and for all n ∈ N, (ω1

n, . . . , ω
k
n) in L

2(R3,C2)

such that:

(1) ωi∞, ω
i
n ∈ H1(R3,C2) for all n,

(2) ‖Dφnω
i
n‖2L2 = λi(Dφn

∗Dφn) for all n,
(3) ‖Dφ∞

ωi∞‖2L2 = λi(Dφ∞

∗Dφ∞
),

(4) lim
n→∞

λi(Dφn

∗Dφn) = λi(Dφ∞

∗Dφ∞
),

(5) lim
n→∞

ωin = ωi∞ in H1,

for all 1 ≤ i ≤ k.

This proposition is true in the symmetric case too.
Proof. We will prove this by induction on k. Let k ≥ 1. Assume that inequality

(3.2) is true for k. Then, if k > 1, we have that

sup
n∈N

λk−1(Dφn

∗Dφn) ≤ sup
n∈N

λk(Dφn

∗Dφn) < m2.

Assume that the proposition is true for k− 1. We get by induction hypothesis, that
there exist orthonormal families :

(ω1
∞, . . . , ω

k−1
∞ ) and for all n ∈ N, (ω1

n, . . . , ω
k−1
n ) in L2(R3,C2)

such that the properties 1,. . . ,5 are true for all 1 ≤ i ≤ k − 1. If k = 1, these
families are chosen empty. By theorem 2.7 and inequality (3.2), there exist for all
n, ωkn ∈ H1 such that (ω1

n, . . . , ω
k
n) is orthonormal in L2 and point (2) is satisfied

for all 1 ≤ i ≤ k. It turns out that (ωkn) is a bounded sequence of H1 by Lemma
3.2 and

lim
n→∞

‖Dφnω
k
n‖2L2 − ‖Dφ∞

ωkn‖2L2 = 0,

by Lemma 3.1 because (φn) converges to φ∞ in L3 ∩ L3+ǫ.
Let us denote by P k−1

n and P k−1
∞ the orthogonal projector on

span(ω1
n, . . . , ω

k−1
n )⊥

and
Ek := span(ω1

∞, . . . , ω
k−1
∞ )⊥.

Then, we have by point (5) of the induction hypothesis:

lim
n→∞

P k−1
n ωkn − P k−1

∞ ωkn = 0 in H1,

hence, the family (ω1
∞, . . . , ω

k−1
∞ , ωkn) is free for n large enough. We also get

lim
n→∞

‖Dφ∞
ωkn‖2L2 − ‖Dφ∞

P k−1
∞ ωkn‖2L2 = 0.

Thus, we obtain that :

λk(Dφ∞

∗Dφ∞
) ≤ lim

n→∞
infλk(Dφn

∗Dφn) < m2.

Therefore, there exists ω̃k∞ ∈ span(ω1
∞, . . . , ω

k−1
∞ )⊥ such that ‖ω̃k∞‖L2 = 1 and

‖Dφ∞
ω̃k∞‖2L2 = λk(Dφ∞

∗Dφ∞
),
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so, by the same arguments, we get:

‖Dφ∞
ω̃k∞‖2L2 = ‖Dφ∞

P k−1
n ω̃k∞‖2L2 + o(1)

= ‖DφnP
k−1
n ω̃k∞‖2L2 + o(1),

and

λk(Dφ∞

∗Dφ∞
) ≥ lim

n→∞
supλk(Dφn

∗Dφn).

This gives us point (4) for all 1 ≤ i ≤ k. Moreover, (
Pk−1

∞
ωk

n

‖Pk−1
∞ ωk

n‖L2
) is a minimizing

sequence of :

inf{‖Dφ∞
ω‖2L2 : ω ∈ span(ω1

∞, . . . , ω
k−1
∞ )⊥ : ‖ω‖L2 = 1} = λk(Dφ∞

∗Dφ∞
).

By theorem 2.7, we get that

λk(Dφ∞

∗Dφ∞
) = inf σ(Dφ∞

∗Dφ∞ |Ek
) < m2 = inf σess(Dφ∞

∗Dφ∞ |Ek
)

where Dφ∞

∗Dφ∞ |Ek
is the operator Dφ∞

∗Dφ∞
restricted to the domain

D(Dφ∞

∗Dφ∞
) ∩ Ek.

Thus, up to a subsequence, (
Pk−1

∞
ωk

n

‖Pk−1
∞ ωk

n‖L2
) and (ωkn) converge in H

1 and we get points

(3) and (5) for all 1 ≤ i ≤ k. �

4. The symmetric case

4.1. Pre-compactness results.

4.1.1. The soliton bag. We show now the existence of a minimizer of problem (1.5).

Lemma 4.1. Let 1 ≤ k1 ≤ · · · ≤ kN ≤ K. Assume that:

0 < lsK = inf

{

NλK+ (Hφ) +

∫

R3

[
|∇φ|2
2

+ U(φ)]dx : φ ∈ H1
rad

}

< Nm.

Then, there exists a minimizer φ ∈ H1
rad of problem (1.5).

The pre-compactness of a minimizing sequence is obtained thanks to the com-
pactness of the embeddings of H1

rad(R
3) into Lp(R3) for all p ∈ (2, 6) proven by

Strauss [37] and generalized by Lions [24]. Proof. There exists a minimizing se-
quence (φn) ⊂ H1

rad(R
3,R) of problem (1.5) such that:

sup
n∈N

NλK+ (Hφn) +

∫

R3

[ |∇φn|2
2

+ U(φn)

]

dx < Nm,

so, by the non-negativeness of U and Theorem 2.7, for all i ∈ {1, . . . , N} :

sup
n∈N

λki (Dφn

∗Dφn) < m2.

Because of (H2), (φn) is a bounded sequence of H1
rad(R

3,R). By the compactness
properties of the radial Sobolev spaces due to Strauss [37] and Lions [24], there
exists φ∞ ∈ H1

rad(R
3,R) such that, up to a subsequence, we have:

φn → φ∞ weakly in H1, a.a, strongly in Lp for 2 < p < 6.

Thus, by Proposition 3.3, up to another subsequence, we have:

lim
k→∞

λi(Dφnk

∗Dφnk
) = λi(Dφ∞

∗Dφ∞
),
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for all i ∈ {1, . . . , N} so,

lim inf
k→∞

∑N
i=1

λki+ (Hφnk
) +

∫

R3

[

|∇φnk
|2

2 + U(φnk
)
]

dx

=
∑N

i=1
λki+ (Hφ∞

) +lim inf
k→∞

∫

R3

[ |∇φnk
|2

2 + U(φnk
)
]

dx

≥∑N
i=1

λki+ (Hφ∞
) +

∫

R3

[

|∇φ∞|2
2 + U(φ∞)

]

dx.

This ensures that φ∞ is a minimum of problem (1.5) and that (φnk
) tends to φ∞

strongly in H1. �

4.1.2. The bag approximation. As in the previous part, we prove the existence of a
minimizer of problem (1.6).

Lemma 4.2. Let 1 ≤ k1 ≤ · · · ≤ kN ≤ K. Assume that:

0 < lcK = inf
{

NλK+ (H−χΩ) + aP (Ω) + b|Ω| : χΩ ∈ BVrad
}

< Nm.

Then, there exists a minimizer χΩ ∈ BVrad of problem (1.6).

The arguments are very similar to the ones of Lemma 4.1 and we give here only
a sketch of proof to stress the differences.

Sketch of proof.

χΩ ∈ BV 7→
N
∑

i=1

λki+ (H−χΩ) + aP (Ω) + b|Ω|

is lower semi-continuous for the topology of L1 thanks to the lower semicontinuity
of

φ ∈ BV 7→ |∇φ|(R3)

in the topology of L1 and Proposition 3.3. For the reader’s convenience, we give
in the appendix the proof of the compactness of some embeddings in the BV set-
ting similar to the ones of Strauss [37] and Lions [24]. The pre-compactness of a
minimizing sequence follows then from Proposition A.2. �

4.2. Euler-Lagrange equations. We get in the last section the existence of a φ
which minimizes (1.5) or (1.6) for given 1 ≤ k1 ≤ · · · ≤ kN ≤ K. Thus, Hφ has at
least kN eigenvalues in (0,m) associated with normalized eigenvectors (ψ1, . . . , ψN ).
It remains to shows that (ψ1, . . . , ψN , φ) satisfies the Euler-Lagrange equations (1.1)
or (1.3).

Lemma 4.3. Let 1 ≤ k1 ≤ · · · ≤ kN ≤ K. The functions ψ1, . . . , ψN , φ obtained by

minimization of (1.5) satisfy the Euler-Lagrange equations (1.1) of the soliton bag

model. The same is true for the bag approximation.

Proof. We give the proof only in the soliton case. For the bag approximation, the
proof follows with the same argument in the setting of set derivation (see [1, 14, 16]
for more details). By Lemma 2.5, we get that 0 /∈ σ(Hφ) and every eigenvalue is
simple. Let λ(Hφ) ∈ (0,m) be an eigenvalue of Hφ and φ′ ∈ H1

rad, by Kato-Rellich
theorem for the perturbation of the point spectra [31, Theorem 12.8], we have two
analytic functions in a neighborhood U of 0:

t 7→ λ(Hφ+tφ′ ) and t 7→ ψφ+tφ′ ,
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where for each t ∈ U , λ(Hφ+tφ′) is a simple eigenvalue of Hφ+tφ′ and ψφ+tφ′ is an
associated normalized eigenvector. Thus, we have, for each t ∈ U :

λ(Hφ+tφ′) = (ψφ+tφ′ , Hφ+tφ′ψφ+tφ′),

so,

d

dt
λ(Hφ+tφ′) = 2Re( d

dt
ψφ+tφ′ , Hφ+tφ′ψφ+tφ′) + g(ψφ+tφ′ , βφ′ψφ+tφ′)

= λ(Hφ+tφ′ )2Re( d
dt
ψφ+tφ′ , ψφ+tφ′) + g(ψφ+tφ′ , βφ′ψφ+tφ′)

= g(ψφ+tφ′ , βφ′ψφ+tφ′),

because ‖ψφ+tφ′‖L2 = 1 for all t ∈ U . This ensures that:

−∆φ+ U ′(φ) +
N
∑

i=1

gψ∗
i βψi = 0,

and we get Lemma 4.3. �

This ends the proofs of Theorems 1.7 and 1.12

5. The non-symmetric case

5.1. Pre-compactness results.

5.1.1. The soliton case. We will now focus on the existence of a ground state so-
lution of equations (1.1) in the non-symmetric case. The concentration compact-
ness method allows us to deal with the lack of compactness of H1(R3) thanks to
the so-called concentration-compactness inequality. Nevertheless, the classical one
[25] is not valid yet. In the following, we will introduce a different concentration-
compactness inequality to overcome this problem. We denote:

E(φ1, φ2, t) = N
(

tλ1+(Hφ1)
2 + (1 − t)λ1+(Hφ2)

2
)1/2

+

∫

R3

( |∇φ1|2
2

+ U(φ1)

)

dx+

∫

R3

( |∇φ2|2
2

+ U(φ2)

)

dx,

for φ1, φ2 ∈ H1(R3,R) and t ∈ [0, 1];

I(t) = inf{E(φ1, φ2, t) : φ1, φ2 ∈ H1(R3,R)}.
The following lemma is related to the concentration compactness inequality.

Lemma 5.1. I is concave, I(0) = I(1),

I(t) ≤ Nm, for all t ∈ [0, 1]

and the concentration-compactness inequality

I(t) ≥ I(1), for all t ∈ [0, 1]

is satisfied.

Proof. I is concave as an infimum of concave functions. The remaining follows
noticing that:

E(0, 0, t) = Nm.

� We can now prove the existence of a minimizer of (1.5) thanks to the
concentration compactness method and Lemma 5.1.
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Lemma 5.2. Let us assume that I(1) < Nm, then every minimizing sequence (φn)
of

I(1) = inf{Nλ1+(Hφ) +

∫

R3

( |∇φ|2
2

+ U(φ)

)

dx : φ ∈ H1(R3,R)}

converges in H1 to a minimum of problem (1.5), up to translation and extraction.

Proof. Let (φn) be a minimizing sequence such that:

sup
n∈N

(

Nλ1+(Hφn) +

∫

R3

( |∇φn|2
2

+ U(φn)

)

dx

)

< Nm.

(φn) is a bounded sequence in H1 because of (H2) and

sup
n∈N

λ1(Dφn

∗Dφn) < m2.

We will now apply the concentration compactness method to get the result. We
follow the presentation of Lewin [21] based on [22] (see also [25, 38]). Let us assume
first that the sequence vanishes, then:

φn → 0 strongly in Lp for p ∈ (2, 6),

and Proposition 3.3 leads us to a contradiction. So, there exists a subsequence (nk),
a sequence (xnk

) ⊂ R3 and φ0 ∈ H1\{0} such that:

φnk
( .− xnk

)⇀ φ0 weakly in H1.

We define (ωnk
) a sequence of H1 such that ‖ωnk

‖L2 = 1 and

‖Dφnk
ωnk

‖L2 = λ1+(Hφnk
).

Up to extraction, there is ω0 ∈ H1 such that:

ωnk
( .− xnk

)⇀ ω0 weakly in H1.

Let (Rk) be an increasing sequence of R+ such that limk→∞Rk = ∞, then, up to
a subsequence, there exists

(φ1,k), (φ2,k), (ω1,k), (ω2,k) ⊂ H1,

such that:

(1)
‖ωnk

− ω1,k − ω2,k‖H1 → 0,
‖φnk

− φ1,k − φ2,k‖H1 → 0,

(2)
ω1,k( .− xnk

) → ω0

φ1,k( .− xnk
) → φ0

weakly in H1, strongly in Lp for p ∈ [2, 6),

(3)
supp(φ1,k) ∪ supp(ω1,k) ⊂ B(xnk

, Rk),
supp(φ2,k) ∪ supp(ω2,k) ⊂ R3\B(xnk

, 2Rk).
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We get:

I(1) = lim inf
k→+∞

N‖Dφnk
ωnk

‖L2 +

∫

R3

( |∇φnk
|2

2
+ U(φnk

)

)

dx

≥ lim inf
k→+∞

N
{

‖Dφ1,k
ω1,k‖2L2 + ‖Dφ2,k

ω2,k‖2L2

}1/2

· · ·+
∫

R3

( |∇φ1,k|2
2

+ U(φ1,k)

)

dx+

∫

R3

( |∇φ2,k|2
2

+ U(φ2,k)

)

dx

≥ lim inf
k→+∞

N
{

‖ω0‖2L2λ1+(Hφ0)
2 + (1− ‖ω0‖2L2)λ1+(Hφ2,k

)2
}1/2

· · ·+
∫

R3

( |∇φ0|2
2

+ U(φ0)

)

dx+

∫

R3

( |∇φ2,k|2
2

+ U(φ2,k)

)

dx

≥ I(‖ω0‖2L2).

Since φ0 6= 0, ω0 has to be non zero. Assume now that ‖ω0‖L2 ∈ (0, 1). Lemma
5.1 ensures that :

I(t) = I(1), for all t ∈ [0, 1].

We must have:

lim
k→+∞

λ1+(Hφ2,k
) = λ1+(Hφ0).

If not, assume for instance that there exists a another subsequence such that:

lim
k→+∞

λ1+(Hφ2,k
) > λ1+(Hφ0),

then,

I(1) = lim inf
k→+∞

E(φ0, φ2,k, ‖ω0‖2L2)

> lim inf
k→+∞

E(φ0, φ2,k, 1)

≥ I(1).

This is impossible. The same argument leads to a contradiction with:

lim
k→+∞

λ1+(Hφ2,k
) < λ1+(Hφ0).

Thus, we get:

I(1) = lim inf
k→+∞

Nλ1+(Hφ0)

· · ·+
∫

R3

( |∇φ0|2
2

+ U(φ0)

)

dx+

∫

R3

( |∇φ2,k|2
2

+ U(φ2,k)

)

dx

and

lim inf
k→+∞

∫

R3

( |∇φ2,k|2
2

+ U(φ2,k)

)

dx = 0.

By Proposition 3.3, we get the contradiction:

m = lim
k→+∞

λ1+(Hφ2,k
) = λ1+(Hφ0).

Thus, we have ‖ω0‖L2 = 1 and

lim inf
k→+∞

∫

R3

( |∇φ2,k|2
2

+ U(φ2,k)

)

dx = 0.

The result follows. �
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5.1.2. The bag approximation. We follow exactly the same ideas. Let us introduce
some notations:

F(χΩ1 , χΩ2t) = N
(

tλ1+(H−χΩ1
)2 + (1− t)λ1+(H−χΩ2

)2
)1/2

· · ·+ aP (Ω1) + b|Ω1|+ aP (Ω2) + b|Ω2|,

for χΩ1 , χΩ2 ∈ BV (R3,R) and t ∈ [0, 1];

J(t) = inf{F(χΩ1 , χΩ2t) : χΩ1 , χΩ2 ∈ BV (R3,R)}.

Lemma 5.3. J is concave, J(0) = J(1),

J(t) ≤ Nm, for all t ∈ [0, 1]

and the concentration-compactness inequality

J(t) ≥ J(1), for all t ∈ [0, 1]

is satisfied.

Sketch of proof. The proof is similar to the one of Lemma 5.1. �

Lemma 5.4. Let us assume that J(1) < Nm, then for every minimizing sequence

(χΩn) of

J(1) = inf{Nλ1+(H−χΩ) + aP (Ω) + b|Ω| : χΩ ∈ BV },
converges strongly in BV to a minimum of (1.6) up to translation and extraction.

Sketch of proof. The proof is similar to the one of the soliton case. For the
reader’s convenience, we give in the appendix the straightforward adaptation of
the presentation of the concentration compactness method of Lewin [21] to the BV
setting. �

5.2. Euler-Lagrange equations. As in the symmetric case, it remains to show
that the minimizer satisfies the Euler-Lagrange equations.

Lemma 5.5. Let φ ∈ H1(R3,R) and ω ∈ H1(R3,C2) be such that ‖ω‖L2 = 1,

I(1) = N‖Dφω‖L2 +

∫

R3

( |∇φ|2
2

+ U(φ)

)

dx,

and ‖Dφω‖L2 > 0 then,

−∆φ+ U ′(φ) +Ngψ∗βψ = 0,

where

ψ = (UFWT )
∗
[

ω
0

]

is an normalized eigenvector of Hφ associated with the smallest positive eigenvalue

λ = ‖Dφω‖L2.

Remark 5.6. If ‖Dφω‖L2 = 0 then φ satisfies an Euler-Lagrange inequation.

Proof. We have:

−∆φ+ U ′(φ) + Ng
λ Re [ω∗(−iDφω)] = 0,
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and

(ψ, βψ) =

(

U∗
FW

[

ω
0

])∗
TβT ∗

(

U∗
FW

[

ω
0

])

=
1

2

[

ω
Sω

]∗(
0 −i
i 0

)[

ω
Sω

]

=
1

λ
Re [ω∗(−iDφω)] .

�

The next lemma shows that the minimizers of (1.6) also satisfy Euler-Lagrange
equations.

Lemma 5.7. Assume that g ∈ (0,m). Let χΩ ∈ BV (R3,R) and ω ∈ H1(R3,C2)
be such that ‖ω‖L2 = 1 and

J(1) = N‖D−χΩω‖L2 + aP (Ω) + b|Ω|,
then,

aHΩ + b−Ngψ∗βψ = 0, on ∂Ω

where

ψ = (UFWT )
∗
[

ω
0

]

is an normalized eigenvector of H−χΩ associated with the smallest positive eigen-

value λ = ‖D−χΩω‖L2.

Sketch of proof. We have:

aH+ b− Ng

λ
Re [ω∗(−iDφω)] = 0, on ∂∗Ω.

The arguments of the proof of the previous lemma give the result. �

This ends the proofs of theorems 1.10 and 1.13.

6. Gamma convergence results

We give here the proof of Proposition 1.15 based on [28, 3, 4, 36]: Proof. Let
(ǫn) be a decreasing sequence converging to 0 and (φn) be such that:







lim
n→+∞

φn = φ in Lp for all p ∈ [2, 3(q+2)
4 ],

lim
n→+∞

Eǫn(φn) exists and is finite.

Up to extraction, we can assume that (φn) tends to φ almost everywhere. (φn) ⊂ H1

is a bounded sequence in L2 and

lim inf
n→+∞

∫

R3

W (φn)dx =

∫

R3

W (φ)dx = 0.

So, there exists a subset Ω of R3 such that φ = −χΩ and |Ω| = ‖φ‖2L2 < +∞.
Moreover, we have for all n by Cauchy-Schwarz inequality:
∫

R3

(

ǫn|∇φn|2 +W (φn)/ǫn
)

dx ≥
∫

R3

2|∇φn|
√

W (φn)dx = |∇(W ◦ φn)|(R3),
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where W(t) = 2
∫ t

0

√

W (s)ds and |∇w|(A) denotes the variation of w ∈ L1 on the
Borel set A. Since, there is C > 0 such that:

W(t) ≤ C(|t|2 + |t| q+2
2 ) ∀t,

(W ◦ φn) is bounded in BV, converges to W ◦ φ in Lp for all p ∈ [1, 3/2]. Thus, we
get:

{

W ◦ φ = aχΩ ∈ BV, φ = −χΩ ∈ BV,
lim inf
n→+∞

|∇(W ◦ φn)|(R3) ≥ |∇(W ◦ φ)|(R3) = aP (Ω),

so,

lim inf
n→+∞

Eǫn(φn) ≥ E0(φ)

and
(

Γ− lim inf
ǫ→0

Eǫ

)

(φ) ≥ E0(φ).

It remains to construct recovering sequences. For R > 0 and every Ω̃ ⊂⊂ B(0, R)
such that χΩ̃ ∈ BV, Sternberg [36] constructs a sequence (φǫ) ⊂ H1

0 (B(0, R)) such
that:











(φǫ) converges to − χΩ̃ in L1(B(0, R)),
‖φǫ‖L∞ ≤ 1 for all ǫ > 0,

lim sup
ǫ→0

∫

B(0,R)

(

ǫ|∇φǫ|2 +W (φǫ)/ǫ
)

dx = aP (Ω̃).

thus,
(

Γ− lim sup
ǫ→0

Eǫ

)

(−χΩ̃) ≤ E0(−χΩ̃).

For every χΩ ∈ BV, we have

(χΩ∩B(0,R))R>0 ⊂ BV tends to χΩ in Lp for all p ∈ [1,+∞),

(|∇χΩ∩B(0,R)|(R3)) tends to |∇χΩ|(R3),

so,

lim
R→+∞

E0(−χΩ∩B(0,R)) = E0(−χΩ).

Since the Γ−limit-sup is lower semi-continuous, we obtain:
(

Γ− lim sup
ǫ→0

Eǫ

)

(−χΩ) ≤ lim inf
R→+∞

(

Γ− lim sup
ǫ→0

Eǫ(−χΩ∩B(0,R))

)

≤ lim inf
R→+∞

E0(−χΩ∩B(0,R))

≤ E0(−χΩ).

� The following lemmas are part of the proof of Theorem 1.16. We introduce
for ǫ > 0:

Zǫ = {φ ∈ L2(R3,R) ∩ L
3(q+2)

4 (R3,R) :

∫

R3

W (φ)

ǫ
≤ Nm},

Gǫ(φ) =

{

|∇W ◦ φ|(R3) + b‖φ‖2L2 if φ ∈ Zǫ,
+∞ otherwise,

and for t ∈ [0, 1], φ1 ∈ {−χΩ ∈ BV }, φ2 ∈ Zǫ,

Fǫ(φ1, φ2, t) = N
{

tλ1+(Hφ1)
2 + (1− t)λ1+(Hφ2)

2
}1/2

+ E0(φ1) +Gǫ(φ2)

Jǫ(t) = inf{Fǫ(φ1, φ2, t) : φ1 ∈ {−χΩ ∈ BV }, φ2 ∈ Zǫ}
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Lemma 6.1. We have for all ǫ > 0, that Jǫ is concave, continuous and

0 ≤ Jǫ(t) ≤ Nm(6.1)

for all t ∈ [0, 1]. There exists a concave function J0 such that (Jǫ) tends to J0
pointwise in [0, 1] as ǫ tends to 0 and

0 ≤ J0(0) ≤ J0(t),

for all t ∈ [0, 1].

Proof. The same argument as in Lemma 5.1 gives us inequality (6.1). Jǫ is
concave and continuous as an infimum of concave and continuous functions. (Jǫ)
is a non-increasing sequence since (Zǫ) is non-decreasing sequence of sets. Hence,
(Jǫ) converges point-wise to a concave function J0 in [0, 1] as ǫ tends to 0. The
remaining follows immediately. �

The core of the proof of Theorem 1.16 is given by the following lemma. We use
here the concentration compactness method and the Γ-convergence theory.

Lemma 6.2. We have:

J0(0) = J0(1).

If J0(0) < Nm and for all n, there is φn ∈ Zǫn such that:

lim
n→+∞

Nλ1+(Hφn) +Gǫn(φn) = J0(0),

where (ǫn) is a sequence which tends to 0, then, up to a subsequence, up to trans-

lation,
{ W ◦ φn → W ◦ (−χΩ) strictly in BV

φn → −χΩ strongly in Lp for p ∈ [2, 3(q+2)
4 ]

where χΩ ∈ BV.

Proof. If J0(0) = Nm, then, J0(0) = J0(1) by Lemma 6.1. Thus, we can assume
that J0(0) < Nm. Let φn ∈ Zǫn be such that:

lim
n→+∞

Nλ1+(Hφn) +Gǫn(φn) = J0(0).

We can assume that:

sup
n

Nλ1+(Hφn) +Gǫn(φn) < Nm.

As in the proof of 1.15, (φn) is uniformly bounded in L2 and

sup
n

|∇W ◦ φn|(R3) < Nm.

By Sobolev embedding, (W ◦ φn) is a bounded sequence of L3/2. Since there is a
positive constant c > 0 such that:

W(t) ≥ c|t| q+2
2 ,

for all t, (φn) is bounded in L
3(q+2)

4 and by the interpolation inequalities in Lp for

all p ∈ [2, 3(q+2)
4 ]. We get that (W ◦ φn) is uniformly bounded in BV.

Let us assume now that this sequence vanishes. Then, (W ◦φn) tends to 0 in Lp

for all p ∈ (1, 3/2), so (φn) tends to 0 in Lp for all p ∈ (2, 3(q+2)
4 ). Proposition 3.3

contradicts

J0(0) < Nm.
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Thus, up to a subsequence, there exist (xn) ⊂ R3 and W̃ ∈ BV \{0} such that

(W ◦ φn( . − xn)) tends to W̃ in L1
loc. Since for all n, φn belongs to Zǫn , there

exists χΩ such that (φn( . − xn)) tends to −χΩ almost everywhere, up to another

subsequence and W̃ = W ◦ (−χΩ) = −aχΩ ∈ BV .
For all n, there exists moreover ωn ∈ H1 such that ‖ωn‖L2 = 1 and

‖Dφn( . −xn)ωn‖L2 = λ1+(Hφn).

By Lemma 3.2, (ωn) is uniformly bounded in H1. Up to a subsequence, (ωn) tends
to ω ∈ H1 in H1 weakly.

Let 0 < Rk be a sequence such that (Rk) tends to +∞. Then, by concentration
compactness, there exist:

(ω1,n), (ω2,n) ⊂ H1,

such that, up to a subsequence,














‖ωn − ω1,n − ω2,n‖H1 → 0,
ω1,n → ω weakly in H1, strongly in Lp for p ∈ [2, 6),
supp(ω1,n) ⊂ B(0, Rn),
supp(ω2,n) ⊂ R3\B(0, 2Rn)

and

(6.2)

{

χB(0,Rn)(W ◦ φn( . − xn)) tends to W ◦ (−χΩ) in L
p if 1 ≤ p < 3/2,

∫

Rn<|x|<2Rn
(|W ◦ φn( . − xn)|+ |∇W ◦ φn( . − xn)|)dx tends to 0.

We localize now the φ field. Let us define for all n

φ1,n = φnχB(xn,
3Rn
2 ), φ2,n = φnχB(xn,

3Rn
2 )c ∈ Zǫn .

Then, following the same notation of theorem 3.84 of [1], we have that φi,n belongs
to BV (R3,R) for i ∈ {1, 2} and

|∇W ◦ φ1,n|(R3) = |∇W ◦ φn|
(

B(xn,
3Rn
2

)

)

+

∫

∂B(xn,
3Rn

2 )

|(W ◦ φn)+|ds,

|∇W ◦ φ2,n|(R3) = |∇W ◦ φn|
(

B(xn,
3Rn
2

)c
)

+

∫

∂B(xn,
3Rn

2 )

|(W ◦ φn)−|ds.

Theorem 3.86 of [1] ensures moreover that there exists a constant c > 0 such that
for all w ∈ BV (A) :

∫

∂B(0, 32 )

|w±|ds ≤ c
(

‖w‖L1(A) + |∇w|(A)
)

,

where A = B(0, 2)\B(0, 1). By a rescaling argument, we get that for all R > 1, for
all w ∈ BV (AR) :

∫

∂B(0, 3R2 )

|w±|ds ≤ c
(

‖w‖L1(AR)/R+ |∇w|(AR)
)

≤ c
(

‖w‖L1(AR) + |∇w|(AR)
)

,

where AR = B(0, 2R)\B(0, R).
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We obtain thanks to equations (6.2):

J0(0) = lim
n→+∞

N‖Dφn( . −xn)ωn‖L2 +Gǫn(φn)

≥ lim inf
n→+∞

N
{

‖Dφ1,n( . −xn)ω
1
n‖2L2(R3) + ‖Dφ2,n( . −xn)ω

2
n‖2L2(R3)

}1/2

+Gǫn(φ1,n) +Gǫn(φ2,n)

≥ lim inf
n→+∞

N
{

‖ω‖2L2λ1+(H−χΩ)
2 + (1− ‖ω‖2L2)λ1+(Hφ2,n)

2
}1/2

+E0(−χΩ) +Gǫn(φ2,n)

≥ J0(‖ω‖2L2).

This imposes ‖ω‖L2 > 0, otherwise, J0(0) ≥ c + J0(0) with c > 0. If ‖ω‖L2 ∈
(0, 1), then we have by Lemma 6.1:

J0(t) = J0(0),

for all t ∈ [0, 1]. As in the proof of Lemma 5.2, we have:

lim
n→+∞

λ1+(Hφ2,n) = λ1+(H−χΩ)

and we must have:

lim inf
n→+∞

Gǫn(φ2,n) = 0,

so, we get the contradiction:

lim
n→+∞

λ1+(Hφ2,n) = m = λ1+(H−χΩ) < m.

Thus, we obtain that ‖ω‖L2 = 1 and

lim inf
n→+∞

Gǫn(φ2,n) = 0,

so that,
{ W ◦ [φn( . − xn)] → W ◦ (−χΩ) strictly in BV

φn( . − xn) → −χΩ strongly in Lp for p ∈ [2, 3(q+2)
4 ]

and

J0(0) = J0(1) = Nλ1+(H−χΩ) + E0(−χΩ).

�

Let us write the proof of Theorem 1.16 which follows from Proposition 1.15 and
the previous lemmas. Proof. The first part of the theorem follows from Proposition
3.3 and the fact that the Γ-convergence remains true if we add continuous functions.

We assume next that:

J0(1) < Nm.

Lemma 5.4 ensures that there exists −χΩ ∈ BV such that:

Nλ1+(H−χΩ) + E0(−χΩ) = J0(1).

By Proposition 1.15, there is a sequence (φǫ) ⊂ H1 such that:
{

lim sup
ǫ→0

Eǫ(φǫ) ≤ E0(−χΩ),

φǫ → −χΩ, in L
2 ∩ L 3(q+2)

4 .

Thus, we get:

lim sup
ǫ→0

lǫs ≤ lim sup
ǫ→0

Nλ1+(Hφǫ) + Eǫ(φǫ) ≤ J0(1) < Nm.
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There exists ǫ0 > 0 such that for all 0 < ǫ < ǫ0,

lǫs < Nm,

and by Lemma 5.2, there is φǫ ∈ H1 such that:

Eǫ(φǫ) = lǫs.

We have:

J0(1) ≥ lim sup
ǫ→0

lǫs,

≥ lim sup
ǫ→0

Nλ1+(Hφǫ) +Gǫ(φǫ),

≥ lim sup
ǫ→0

Jǫ(0) = J0(1),

and Lemma 6.2 concludes the proof. �

The proof of Corollary 1.20 follows immediately from Theorem 1.16 and Propo-
sition 3.3. We write now the proof of Theorem 1.22. Proof. Just as in the proof of
Theorem 1.16, the Γ− convergence follows from Proposition 3.3 and

lim sup
ǫ→0

lǫs(k1, . . . , kN ) ≤ lim sup
ǫ→0

lǫs(K, . . . ,K) ≤ lc(K, . . . ,K) < Nm.

Lemma 5.2 ensures that there exists ǫ0 > 0 such that for all 0 < ǫ < ǫ0, problem
(1.9) has a minimum φǫ ∈ BVrad. We get that (W ◦φǫ) is bounded in BV and (φǫ)
in L2. So by Proposition A.2, there exists a subsequence (ǫn) and φ = −χΩ ∈ BV
such that:

{ W ◦ φn → W ◦ φ strongly in Lp for all p ∈ (1, 3/2) and a.a,

φn → φ strongly in Lp for all p ∈ (2, 3(q+2)
4 ).

By Proposition 3.3, we have

lim inf
n→

Eǫn,k1,...,kN (φn)
≥∑N

i=1 λ
ki
+ (Hφ) +lim inf

n→+∞
Eǫn(φn)

≥ E0,k1,...,kN (φ).
Thus, we get the conclusion of the theorem.

�

7. The M.I.T. bag limit

We give here the proofs of Theorem 1.24 and Proposition 1.23.

Lemma 7.1. Let χΩ ∈ BV (R3,R) and 0 < m < M. We have for ω ∈ H1(R3,C2):

‖ − σ.∇ω + (mχΩ +MχΩc)ω‖2L2(R3) =

‖σ.∇ω‖2L2(R3) +m2‖ω‖2L2(Ω) +M2‖ω‖2L2(Ωc) + (M −m)

∫

∂Ω

ω∗(σ.n)ωdz

There is C > 0 such that:

C‖ − σ.∇ω + (mχΩ +MχΩc)ω‖2L2(R3) ≥
1

M
‖∇ω‖2L2(R3) + ‖ω‖2L2(Ω) +M‖ω‖2L2(Ωc) + ‖σ.∇ω‖2L2(Ω),

C depends neither on Ω nor on ω.
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Proof. Let c1, c2 > 0, we have:

‖ − c1σ.∇ω + c2ω‖2L2(Ωc) = c21‖σ.∇ω‖2L2(Ωc) + c22‖ω‖2L2(Ωc)

· · · − c1c2
∫

∂Ω
ω∗(σ.n)ωdz.

So, we get:

2‖ − σ.∇ω + (mχΩ +MχΩc)ω‖2L2(R3)

≥ 2Mm−m2

M2
‖∇ω‖2L2(R3) +m2‖ω‖2L2(Ω) + 2Mm‖ω‖2L2(Ωc) + ‖σ.∇ω‖2L2(Ω).

�

Lemma 7.2. For any C > 0, there exists a constant c0 > 0 such that if ω belongs

to H1
sym(R3,C2) and satisfies:

C ≥ 1
M ‖∇ω‖2L2(R3) +M‖ω‖2L2(B(0,R)c) + ‖σ.∇ω‖2L2(B(0,R)) + ‖ω‖2L2(B(0,R)),

for M > m and R > 0, then,

‖ω‖L3(R3) ≤ c0.

c0 does not depend on M, R or ω.

Proof. Let ω ∈ H1
sym(R3,C2),

ω(x) = v(r)

(

1
0

)

+ u(r)

(

cos(θ)
sin(θ)eiϕ

)

where (r, θ, ϕ) are the spherical coordinates of x. We have:

‖∇ω‖2L2(B(0,R)) = 4π

∫ R

0

[

|u′(r)|2 + 2|u(r)|2
r2

+ |v′(r)|2
]

r2dr

and

‖σ.∇ω‖2L2(B(0,R)) = 4π

∫ R

0

[

∣

∣

∣

∣

u′(r) +
2u(r)

r

∣

∣

∣

∣

2

+ |v′(r)|2
]

r2dr.

Since,
∫ R

0

|u′(s) + 2u(s)

s
|2s2ds

=

∫ R

0

[

|u′(s)|2s2 + 4|u(s)|2 + 4u(s)u′(s)s
]

ds

=

∫ R

0

[

|u′(s)|2s2 + 4|u(s)|2 − 2|u(s)|2
]

ds+ 2R|u(R)|2

≥
∫ R

0

[

|u′(s)|2s2 + 2|u(s)|2
]

ds

we get:

‖σ.∇ω‖2L2(B(0,R)) ≥ ‖∇ω‖2L2(B(0,R)).

Let us remark that this inequality is wrong when the domain is an annulus and
u(r) = 1/r2.

Hence, we obtain:
∫

B(0,R) |∇|ω|2|dx ≤ ‖σ.∇ω‖2L2(B(0,R)) + ‖ω‖2L2(B(0,R)) ≤ C
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and
∫

B(0,R)c
|∇|ω|2|dx ≤ 1

M ‖∇ω‖2L2(B(0,R)c) +M‖ω‖2L2(B(0,R)c) ≤ C

By Sobolev injection, we get the result. �

We are now able to give the proof of Theorem 1.24. Proof. Lemma 2.10 and the
arguments of the proof of Theorem 1.12 ensure that there exist C0, n0 > 0, for
n ≥ n0, a radius Rn > 0 minimizing

inf
{

Nλ1+(H
n
B(0,R)) + aP (B(0, R)) + b|B(0, R)| : R > 0

}

,

a function

ψn(x) =









vn(r)

(

1
0

)

iun(r)

(

cos θ
sin θeiϕ

)









∈ H1
sym(R3,C4)

satisfying:
{

Hn
B(0,Rn)

ψn = λ1+(H
n
B(0,R))ψn

‖ψn‖L2 = 1

where Hn
Ω = −iα.∇+ β(mχΩ +MnχΩc) and

Nλ1+(H
n
B(0,Rn)

) + aP (B(0, Rn)) + b|B(0, R)| ≤ C0.

(Rn) is bounded, so there exists a subsequence (nk) and R ≥ 0 such that

Rnk
→ R.

We claim that R > 0. Indeed, there is for all n, a function ωn ∈ H1
sym(R3,C4) such

that:
{ ‖ − σ.∇ωn + (mχB(0,Rn) +MχB(0,Rn)c)ωn‖2L2(R3) = λ1+(H

n
B(0,Rn)

)2

‖ωn‖L2 = 1.

Lemmas 7.1 and 7.2 ensure that (ωnk
) is a bounded sequence in L3(R3), such that:

‖ωnk
‖L2(B(0,Rnk

)c) → 0,

so, R has to be positif.
We denote λn := λ1+(H

n
B(0,R)). (λn) is a bounded sequence of (m,+∞) so, up to

a subsequence, we can assume that it converges to λ ∈ [m,+∞). (un, vn) satisfies
{

u′n(r) +
2un(r)
r = −(m− λn)vn(r)

v′n(r) = −(m+ λn)un(r)

for r ∈ (0, R) and

‖ψn‖L2(B(0,Rn)c) ≤
C0

Mn
.

We get:
{

r2u′′n(r) + 2ru′n(r)− (r2(m2 − λ2n) + 2)un(r) = 0
r2v′′n(r) + 2rv′n(r) − r2(m2 − λ2n)vn(r) = 0.

So, un and vn are spherical Bessel functions on (0, Rn), they have to be of the first
kind to belong to L2. Thus, (un, vn) is proportional to

r 7→







sin(
√
λ2
n−m2r)

(
√
λ2
n−m2r)2

− cos(
√
λ2
n−m2r)√

λ2
n−m2r

√

λ2
n+m

2

λ2
n−m2

sin(
√
λ2
n−m2r)√

λ2
n−m2r






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on (0, Rn). We also get that (un, vn) is proportional to

r 7→







1+
√
M2

n−λ2
nr

(
√
M2

n−λ2
nr)

2
exp(−

√

M2
n − λ2nr)

√

M2
n+λ

2
n

M2
n−λ2

n

exp(−
√
M2

n−λ2
nr)√

M2
n−λ2

nr







on [Rn,+∞), so,
un(Rn)

vn(Rn)
→ 1.

We finally get that (un, vn) converges uniformly to a function (u, v) on

[0,+∞)\(R− ǫ, R+ ǫ)

for any ǫ > 0 where
{

u′(r) + 2u(r)
r = −(m− λ)v(r)

v′(r) = −(m+ λ)u(r)

on (0, R], u(r) = v(r) = 0 on (R,+∞) and

u(R) = lim
r→R−

u(r) = lim
r→R−

v(r) = v(R).

It remains to prove that λ = λ1MIT (B(0, R)). Let R > 0 be the radius of the ball
B(0, R) that minimizes

inf
{

Nλ1MIT (B(0, r)) + aP (B(0, r)) + b|B(0, r)| : r > 0
}

,

and ω ∈ H1
sym(B(0, R),C2) be an normalized function satisfying

λ1MIT (B(0, R)) = ‖Dω‖L2

and

ω(x) = c

(

cos(θ)− 1
sin(θ)eiϕ

)

where (r, θ, ϕ) are the spherical coordinates of |x| = R. We set

ωn(x) = cn







c

(

cos(θ)− 1
sin(θ)eiϕ

)

exp(−Mn(r −R)) for x ∈ B(0, R)c

w(x) for x ∈ B(0, R)

where ωn is normalized by cn. We get:

‖ − σ.∇ωn +Mnωn‖2L2(B(0,R)c) → 0

and the result follows. �

Let us now prove Proposition 1.23. Proof. Let R be a fixed positive constant.
We recall that

λ1MIT (B(0, R)) = inf{‖Dω‖L2(B(0,R)) : ω ∈ H1
sym(B(0, R),C2), ‖ω‖L2(B(0,R)) = 1}.

Let ω ∈ H1
sym(B(0, R),C2). We get that:

‖Dω‖2L2(B(0,R)) = ‖σ.∇ω‖2L2(B(0,R)) +m2 +m‖ω‖2L2(∂B(0,R))

A scaling argument shows that R 7→ λ1MIT (B(0, R)) is a convex decreasing func-
tion such that

{

lim
R→+∞

λ1MIT (B(0, R)) = m,

lim
R→0

λ1MIT (B(0, R)) = +∞.
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We get that R 7→ Nλ1MIT (B(0, R)) + aP (B(0, R)) + b|B(0, R)| is a strictly convex
and coercive function. Hence, the minimum exists and is unique. �

Appendix A. A compactness result for bounded variation functions

with symmetry

Whereas the embedding of H1(RN ) in Lp(RN ) for N > 2 and p ∈ [2, 2N
N−2 ] is not

compact, Strauss [37] showed that the restrictions of these embeddings to radial
functions are compact for p ∈ (2, 2N

N−2 ). This result has been generalized by Lions

[24] to other Sobolev spaces.
The adaptation of the proofs of Lions to the BV setting is straightforward and

is given here for the reader’s convenience. We denote by BVrad(R
N ) the subset of

BV (RN ) of radial functions where N ∈ N\{0}. The following lemma gives a control
of the decay at infinity of the radial BV functions.

Lemma A.1. Let N > 1, u ∈ BVrad(R
N ), then we have:

|u(x)| ≤
{

|∇u|(RN )|x|−(N−1)
}

a.a. x ∈ R
N .

Proof. For all u ∈ BVrad(R
N ), there exists a sequence (un) ⊂ BVrad(R

N ) ∩
D(RN ) such that un converges strictly in BV and almost everywhere to u (see for
instance [3, 1]). So, we just have to show the lemma for u ∈ BVrad(R

N ) ∩D(RN ).
We denote u(x) = u(r), and we have:

d

dr
(rN−1|u|) = u

|u|
du

dr
rN−1 + |u|(N − 1)rN−2,

and

rN−1|u| = −
∫ +∞

r

d

dr
(sN−1|u|) ≤

∫

RN

|∇u|dx.

�

Sickel, Skrzypczak and Vybiral [34] studied the properties of radial functions
of Besov, Lizorkin-Triebel and BV spaces, generalizing the estimates of this type
given by Lions and Strauss. The proof of these inequalities is the first step to get
the compactness of the embedding of the following proposition.

Proposition A.2. Let N > 1 and denote 1∗ = N/(N − 1), then the restriction to

BVrad(R
N ) of the embedding BV (RN ) →֒ Lp(RN ) is compact if p ∈ (1, 1∗).

Proof. Let (un) be a bounded sequence in BVrad(R
N ). Up to extraction, there

exists a function u belonging to BVrad(R
N ) such that (un) tends to u in Lploc for

p ∈ (1, 1∗). Moreover, for R > 0, we have:

‖un − u‖Lp({|x|>R}) ≤
(

|∇u|(RN ) + |∇un|(RN )
)p−1 ‖u− un‖L1(RN )R

−(N−1)(p−1),

by Lemma A.1. The result follows immediately. �

Appendix B. The locally compact case of the concentration

compactness method in the BV setting

A general version of the concentration compactness method can be found in the
papers of Lions (see for instance [25]) or the book of Struwe [38]. Nevertheless, in
this paper, we just need the concentration compactness in a simpler setting: we
study bounded sequences of functions in BV, so that, the loss of compactness can
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just come from the action of the group of translations. Thus, for the reader’s conve-
nience, we give in this part, a straightforward adaptation to BV of the presentation
of Lewin [21] based on the papers of Lions [25] and Lieb [22].

The concentraction compactness method has already been used in the BV set-
ting, for instance, by Fusco [13] for Sobolev inequalities in BV and by Bucur and
Giacomini [6] for the isoperimetric inequality for the Robin eigenvalue problem.
But, they both used the arguments of Lions and Struwe.

Let N > 2. We begin by defining the highest mass that the limit of translated
subsequence can have.

Definition B.1. Let (un) be a bounded sequence in BV (RN ), we denote:

m(un) = sup

{∫

RN

|u|dx : ∃(xnk
) ⊂ R

N, unk
( . − xnk

) → u ∈ BV (RN ) in L1
loc

}

.

The following lemma is related to the vanishing of a sequence.

Lemma B.2. Let (un) be a bounded sequence in BV (RN ), we have equivalence

between the following points:

(1) m(un) = 0,
(2) for all R > 0, lim

n→+∞
sup
x∈RN

∫

B(x,R) |un| = 0,

(3) un → 0 strongly in Lp for p ∈ (1, 1∗),

where 1∗ = N/(N − 1).

Proof. Let us assume that (1) is true. Let R > 0 and (xn) ⊂ R
N be such that:

∫

B(xn,R)

|un|dx ≥ sup
x∈R

N

∫

B(x,R)

|un|dx− 1/n.

(un( . − xn)) is still a bounded sequence in BV (RN ). Since m(un( . − xn)) = 0,
we get that (un( . − xn)) converges to 0 in L1

loc and (2) follows.
Let us assume (3). Let (xnk

) ⊂ R
N be such that

unk
( . − xnk

) → u ∈ BV (RN ) in L1
loc and a.a.

We have:

‖unk
( . − xnk

)‖Lp(RN ) = ‖unk
‖Lp(RN ) → 0,

for all p ∈ (1, 1∗). We immediately get that u = 0.
Let (2) be true. We denote RN = ∪z∈Z

NCz with Cz = ΠNi=1[zi, zi + 1). For
1 < p < 1∗, we have:

∫

RN

|un|pdx =
∑

z∈Z
N

∫

Cz

|un|pdx ≤
∑

z∈Z
N

‖un‖θpL1(Cz)
‖un‖(1−θ)pL1∗ (Cz)

,

with 1/p = θ + (1 − θ)/p∗. We choose p such that (1 − θ)p = 1, that is p =
(N + 1)/N ∈ (1, 1∗), and we get:

∫

RN

|un|p ≤ C sup
z∈Z

N

‖un‖θpL1(Cz)
‖un‖BV (RN ).

So (un) tends to 0 in Lp and by interpolation inequality in Lq for all 1 < q < 1∗. �

When vanishing does not occur, the sequence can converge up to translation and
extraction or split into two parts. Lions used the word dichotomy to describe this
[25]. This situation is described in the following proposition.



36 LOÏC LE TREUST

Proposition B.3. Let (un) be a bounded sequence in BV (RN ), (Rk) and (R′
k) be

two sequences such that for all k, 0 < Rk < R′
k and

{

un → u ∈ BV (RN ) in L1
loc

Rk → +∞.

Then, there exists a subsequence (unk
) such that the following properties are true:

(1) (unk
χB(0,Rk)) tends to u in Lp if 1 ≤ p < 1∗,

(2)
∫

Rk<|x|<R′

k
|unk

|dx+ |∇unk
|(B(0, R′

k)\B(0, Rk)) tends to 0,

where χB(0,Rk) is the characteristic function of the ball B(0, Rk).

Proof. Let us introduce two Levy’s concentration functions:

Qn(R) :=

∫

B(0,Rk)

|un|dx and Kn(R) := |∇un|(B(0, Rk)).

These are non-decreasing positive functions such that for all R > 0 and n:

Qn(R) +Kn(R) ≤ ‖un‖BV (RN ) ≤ C.

We get for all R:

Qn(R) →
∫

B(0,R)

|u|dx =: Q(R),

and up to extraction, there exists K ∈ BV (0,+∞) such that:

Kn(R) → K(R).

We denote l := limR→+∞K(R). There exists a subsequence (nk) such that:

|Qnk
(Rk)−Q(Rk)| +|Qnk

(R′
k)−Q(R′

k)|+ . . .
+|Knk

(Rk)−K(Rk)|+ |Knk
(R′

k)−K(R′
k)| ≤ 1/k.

We get:
∣

∣

∣

∣

∣

∫

B(0,Rk)

|unk
|dx−

∫

RN

|u|dx
∣

∣

∣

∣

∣

= |Qnk
(Rk)−Q(∞)| ≤ 1/k +

∫

|x|>Rk

|u|dx,

and the theorem of the missing term in the Fatou lemma (see [23]) ensures that
(unk

χB(0,Rk)) tends to u in L1. This remains true in Lp for 1 ≤ p < 1∗ by interpo-
lation. Moreover, we have:
∫

Rk<|x|<R′

k
|unk

|dx = Qnk
(R′

k)−Qnk
(Rk) ≤ 1/k + |Q(Rk)−Q(R′

k)|,
|∇unk

|({Rk < |x| < R′
k}) = Knk

(R′
k)−Knk

(Rk) ≤ 1/k + |K(Rk)−K(R′
k)|,

so that the second point is also true. �
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Jimmy Lamboley and the anonymous referee for useful discussions and helpful
comments. This work was partially supported by the Grant ANR-10-BLAN 0101
of the French Ministry of research.



A VARIATIONAL STUDY OF SOME HADRON BAG MODELS 37

References

[1] L. Ambrosio, N. Fusco, and D. Pallara. Functions of bounded variation and free discontinuity
problems. Oxford Mathematical Monographs. Oxford: Clarendon Press., 2000.

[2] M. Balabane, T. Cazenave, and L. Vázquez. Existence of standing waves for Dirac fields with
singular nonlinearities. Commun. Math. Phys., 133(1):53–74, 1990.

[3] A. Braides. Approximation of free-discontinuity problems. Lecture Notes in Mathematics.
1694. Berlin: Springer., 1998.

[4] A. Braides. A handbook of Γ-convergence. Chipot, Michel (ed.) et al., Handbook of dif-
ferential equations: Stationary partial differential equations,101-213, Vol. III. Amsterdam:
Elsevier/North Holland., 2006.

[5] D. Bucur. Uniform concentration-compactness for sobolev spaces on variable domains. J.
Differ. Equations, 162(2):427 – 450, 2000.

[6] D. Bucur and A. Giacomini. A variational approach to the isoperimetric inequality for the
Robin eigenvalue problem. Arch. Ration. Mech. Anal., 198(3):927–961, 2010.

[7] A. Chodos. Field-theoretic lagrangian with baglike solutions. Phys. Rev. D, 12:2397–2406,
Oct 1975.

[8] A. Chodos, R. L. Jaffe, K. Johnson, and C. B. Thorn. Baryon structure in the bag theory.
Phys. Rev. D, 10:2599–2604, Oct 1974.

[9] A. Chodos, R. L. Jaffe, K. Johnson, C. B. Thorn, and V. F. Weisskopf. New extended model
of hadrons. Phys. Rev. D, 9:3471–3495, Jun 1974.
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