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ON THE SPANNING TREES OF THE HYPERCUBE AND OTHER

PRODUCTS OF GRAPHS

OLIVIER BERNARDI

Abstract. We give two combinatorial proofs of an elegant product formula for the
number of spanning trees of the n-dimensional hypercube. The first proof is based
on the assertion that if one chooses a uniformly random rooted spanning tree of the
hypercube and orient each edge from parent to child, then the parallel edges of the
hypercube get orientations which are independent of one another. This independence
property actually holds in a more general context and has intriguing consequences.
The second proof uses some “killing involutions” in order to identify the factors in
the product formula. It leads to an enumerative formula for the spanning trees of the
n-dimensional hypercube augmented with diagonals edges, counted according to the
number of edges of each type. We also discuss more general formulas, obtained using
a matrix-tree approach, for the number of spanning trees of the Cartesian product
of complete graphs.

1. Introduction

Let Cn be the hypercube in dimension n. The vertex set of Cn is {0, 1}n, and two
vertices are adjacent if they differ on one coordinate. It is known that the number of
spanning trees of Cn is

(1) T (Cn) =
1

2n

n∏

i=1

(2i)(
n
i).

This formula can be obtained by using the matrix-tree theorem and then determining
the eigenvalues of the Laplacian of the hypercube. This, in turns, can be done either
using the representation theory of Abelian groups (applied to the group (Z/2Z)n) [5,
chapter 5], or by guessing and checking a set of eigenvectors [4]. We will give two
combinatorial proofs of this result, thereby answering an open problem mentioned for
instance in [5, pp. 62] and [3] (the case n = 3 was actually solved in [6] by a method
different from ours).

We shall discuss refinements and generalizations of (1) which are best stated in terms
of rooted (spanning) forests. A rooted forest of a graph G is a subgraph containing
every vertex such that each connected component is a tree with a vertex marked as
the root vertex of that tree. Given a rooted forest, we consider its edges as oriented in
such a way that every tree is directed toward its root vertex (equivalently, every non-
root vertex has one outgoing edge in F ); see Figure 1. We say that an oriented edge
e = (u, v) of the hypercube Cn has direction i ∈ [n] and spin ǫ ∈ {0, 1} if the vertex v
is obtained from u by changing the ith coordinate from 1 − ǫ to ǫ. We denote dir(e)
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2 OLIVIER BERNARDI

and spin(e) the direction and spin of the oriented edge e. We then define a generating
function in the variables t and x = (x1,0, x1,1, . . . , xn,0, xn,1) for the rooted forests of
the hypercube Cn as follows:

(2) FCn(t;x) :=
∑

F rooted forest of Cn

t#trees in F
∏

e∈F

xdir(e),spin(e).

We shall give two combinatorial proofs of the following result:

(3) FCn(t;x) =
∏

S⊆[n]

(
t+

∑

i∈S

xi,0 + xi,1

)
.

Note that the generating function of rooted spanning trees of Cn is simply obtained by
extracting the terms which are linear in t in FCn(t;x), so that (3) gives a refinement
of (1). This refinement was first proved by Martin and Reiner in [4] (in a slightly
different form; see Section 5) using a matrix-tree method. Using a similar method
we shall give a generalization of (3) valid for Cartesian products of complete graphs.
However, the main goal of the present article is rather to investigate the combinatorial
properties of the rooted forests of the hypercube suggested by (3).

v = (0, 0, 0)

Figure 1. A rooted forest of the cube C3 (left) and of the cube aug-
mented with its main diagonals D3 (right). The root vertices are indi-
cated by large dots.

In Section 2, we prove a surprising independence property for the spins of the parallel
edges of a random rooted forest of Cn. More precisely, we show that for a uniformly
random rooted forest conditioned to have exactly k trees and to contain a given set
of edges in direction n, the spins of these edges are independent and uniform. This
property is illustrated in Figure 2. The independence of the spins remains true when
conditioning the forest to have a given number ni,ǫ of edges with direction i and spin
ǫ for all i ∈ [n − 1] and ǫ ∈ {0, 1}, and holds in the more general context of so-called
bunkbed graphs. Using the independence property, it is not hard to prove (3).

Figure 2. The rooted spanning trees of the square containing both
vertical edges. The spins of the vertical edges are seen to be indepen-
dent.
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In Section 3, we consider the graph Dn obtained by adding the main diagonals to
the hypercube Cn, that is, the edges joining each vertex to the antipodal vertex; see
Figure 1. We prove a generalization of (3) for the generating function FDn(t;x, y)
of rooted forests of Dn, where the variable y counts the number of diagonal edges
contained in the forests (so that FCn(t;x) = FDn(t;x, 0)). Our strategy there is to
determine combinatorially the roots of FDn(t;x) considered as a polynomial in t by
exhibiting some “killing involutions” for the rooted forests of Dn.

In Section 4, we establish a generalization of (3) valid for Cartesian products of
complete graphs using the matrix-tree theorem. Finally, we gather some additional
remarks and open questions in Section 5.

We end this introduction with a few definitions. We call digraph a finite directed
graph. We denote a digraph G = (V,A) to indicate that V is the set of vertices and A
is the set of arcs, and for an arc a ∈ A we denote a = (u, v) to indicate that the arc
a goes from the vertex u to the vertex v. We shall identify undirected simple graphs
with the digraphs obtained by replacing each edge by two arcs in opposite directions.

A rooted forest of a digraph G is a subgraph without cycle, containing every vertex
and such that each vertex is incident to at most one outgoing arc. We call root vertices
the vertices not incident to any outgoing arc. Hence, each connected component of a
rooted forest is a tree directed toward its unique root vertex. Two rooted forests are
represented in Figure 1. We denote by k(F ) the number of connected components of
the forest F . A digraph is weighted if every arc a has a weight w(a) (which can be an
arbitrary variable). The weight of a forest F is w(F ) =

∏
a∈F w(a) where the product

is over the arcs contained in F . The forest enumerator of a weighted digraph G is

(4) FG(t) =
∑

F rooted forest of G

tk(F )w(F ).

Observe that upon defining the weight of the arcs of Cn with direction i and spin ǫ
to be xi,ǫ, the generating function FCn(t;x) defined by (2) coincides with the forest
enumerator FCn(t) defined by (4).

Let G = (U,A) and G′ = (U ′, A′) be digraphs. The Cartesian product G × G′ is
the digraph H with vertex set U × U ′ and arc set obtained as follows: for every arc
a = (u, v) ∈ A and every vertex w′ ∈ U ′ there is an arc of H from (u,w′) to (v,w′), and
for every arc a′ = (u′, v′) ∈ A′ and every vertex w ∈ U there is an arc of H from (w, u′)
to (w, v′). An example of Cartesian product is given in Figure 3 (top line). Observe
that the hypercube Cn is equal to the Cartesian product Cn = K2 × · · · ×K2︸ ︷︷ ︸

n times

, where

K2 is the complete graph on two vertices considered as a digraph, that is, K2 is the
digraph with two vertices and two arcs in opposite directions joining these vertices.

2. Spin independence approach for the hypercube

In this section we study the rooted forests of graphs of the form of the Cartesian
productG×K2 (and more generally of certain subgraphs of the strong product G⊠K2).
We prove an independence property for the spins of the edges of a random rooted forest
of such graph: the spin of the edges in the different copies of K2 are independent. The
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independence property remains true if one conditions the forest to contain a given
number of edges of each type, and readily gives (2).

× =

⊠ =
u va

vertical arc
of spin 0 at v

(u, 1)

(u, 0)
straight a-arcs

(v, 1)

(v, 0)

diagonal a-arcs

G
K2

Figure 3. The Cartesian product G × K2 (top line) and the strong
product G⊠K2 (bottom line).

We start with a few definitions. Let G = (U,A) be a loopless digraph, let K2 be the
complete graph with vertex set {0, 1} (considered as a digraph). Recall that G ×K2

denotes the Cartesian product of G by K2. We denote by G ⊠K2 the strong product
of G by K2 which is the graph obtained from G ×K2 by adding an arc from (u, 0) to
(v, 1) and an arc from (u, 1) to (v, 0) for each arc a = (u, v) in A. The graphs G×K2

and G ⊠ K2 are represented in Figure 3. For a = (u, v) ∈ A and ǫ ∈ {0, 1}, we call
straight a-arcs the arcs of H = G⊠K2 joining (u, ǫ) to (v, ǫ), and call diagonal a-arcs
the arcs of H joining (u, ǫ) to (v, 1 − ǫ). For u ∈ U and ǫ ∈ {0, 1}, we call vertical arc
of spin ǫ at u the arc of H from (u, 1− ǫ) to (u, ǫ). Note that if G has some loops then
there will be both “vertical arcs” and “diagonal arcs” with the same endpoints. We
say that two rooted forests of H have the same G-projection if they contain the same
number of straight a-arcs and the same number of diagonal a-arcs for all a ∈ A, and
moreover contain vertical arcs at the same vertices of G. Two rooted forests having
the same projection are shown in Figure 4. We now state the key result of this section.

Theorem 1. Let G = (U,A) be a digraph. Let F0 be a rooted forest of H = G ⊠K2,
and let S ⊆ U be the set of vertices u of G such that F0 contains a vertical arc at u. Let
F be a uniformly random rooted forest of H conditioned to have the same G-projection
as F0. For all u in S, let σu ∈ {0, 1} be the spin of the vertical arc at u of the forest F .
Then the random variables σu, u ∈ S are independent and uniformly random in {0, 1}.

Before proving Theorem 1, let us derive a few corollaries. Roughly speaking The-
orem 1 implies that in order to enumerate the rooted forests of H = G ⊠ K2 it is
sufficient to enumerate the rooted forests without vertical arc of spin 1. The following
corollary makes this statement precise.

Corollary 2. Let G = (U,A) be a digraph. Let H be the digraph G ⊠ K2, with arcs
weighted as follows: for ǫ ∈ {0, 1} the vertical arcs of H of spin ǫ have weight xǫ, and
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Figure 4. Two rooted forests of the graphH = G⊠K2 having the same
G-projection. In this picture, for the sake of readability, the diagonal
arcs of H not contained in the forests are not drawn. The forests are
drawn in thick lines and the root vertices are represented by large dots.

for a ∈ A the straight and diagonal a-arcs have weight wa and w′
a respectively. Then

the forest enumerator FH(t) ≡ FH(t;x0, x1) satisfies FH(t;x0, x1) = FH(t;x0 + x1, 0).

Proof. For a integer v and tuples of integers m = (ma)a∈A and n = (na)a∈A, we let
F(v,m,n) be the set of rooted forests of H having v vertical arcs, and ma straight
a-arcs and na diagonal a-arcs for all a ∈ A. By Theorem 1, the number of vertical arcs
of spin 0 in a uniformly random forest F in F(v,m,n) has a binomial distribution with
parameter (v, 1/2). Hence,

∑

F∈F(v,m,n)

x#vertical arcs of spin 0
0 x#vertical arcs of spin 1

1 = |Fv,m,n|
(x0
2

+
x1
2

)v
.

Thus,

FH(t;x0, x1) ≡
∑

m,n,v

∏

a∈A

wma
a w′

a
na

∑

F∈F(v,m,n)

x#vertical arcs of spin 0
0 x#vertical arcs of spin 1

1

is unchanged when replacing (x0, x1) by (x0 + x1, 0). �

In the next two corollaries, we focus on the forests of the Cartesian products G×K2,
which are simply the forests of G⊠K2 without diagonal arcs.

Corollary 3. Let G = (U,A) be a weighted digraph with the weight of an arc a ∈ A
denoted by wa. Let H be the digraph G×K2 with arcs weighted as follows: for ǫ ∈ {0, 1}
the vertical arcs of spin ǫ of H have weight xǫ, and for a ∈ A the (straight) a-arcs of
H have weight wa. Then the forest enumerators of G and H are related by

FH(t) = FG(t)FG(t+ x0 + x1).

Proof. Let us denote FH(t) = FH(t;x0, x1) in order to make explicit the dependence
in the variables x0, x1. By applying Corollary 2 (in the special case where the weights
of diagonal arcs are 0), we get FH(t;x0, x1) = FH(t;x0 + x1, 0), so it only remains to
prove that

FH(t;x0, 0) = FG(t)FG(t+ x0).

Now, by definition FH(t;x0, 0) =
∑

F∈F ′ w(F ), where F ′ is the set of rooted forests
without vertical arc of spin 1. For ǫ ∈ {0, 1}, let Gǫ be the subgraph of H isomorphic
to G induced by the vertices of the form (u, ǫ), u ∈ U . Clearly, any rooted forest in F ′

is obtained by
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(i) choosing a rooted forest F0 of G0,
(ii) choosing a rooted forest F1 of G1, and then choosing for each root vertex of F1

whether to add a vertical arc (of spin 0) out of this vertex,
and any choice (i), (ii) gives a rooted forest in F ′ (since it is impossible to create
cycles by adding the vertical arcs). Moreover FG(t) is the generating function of all the
possible choices for (i), while FG(t + x0) is the generating function of all the possible
choices for (ii). This completes the proof. �

As mentioned earlier the hypercube Cn is equal to K2 × · · · ×K2 and we now use
Theorem 1 to prove (3).

Corollary 4. The n-dimensional hypercube Cn with weight xi,ǫ for the arcs having
direction i and spin ǫ has forest enumerator

FCn(t;x) =
∏

S⊆[n]

(
t+

∑

i∈S

xi,0 + xi,1

)
.

Proof. Corollary 4 follows from Corollary 3 by induction on n. Below we give a slightly
more direct proof. First observe that by Corollary 2, the forest enumerator FCn(t;x)
is unchanged by replacing for all i ∈ [n] the variables xi,0 and xi,1 respectively by
xi,0 + xi,1 and 0. Hence it only remains to prove

(5) FCn(t;x1,0, 0, . . . , xn,0, 0) =
∏

S⊆[n]

(
t+

∑

i∈S

xi,0

)
.

By definition, FCn(t;x1,0, 0, . . . , xn,0, 0) =
∑

F∈F ′

w(F ), where F ′ is the set of rooted

forests of Cn without arc of spin 1. A forest in F ′ represented in Figure 1. Such a
forest is obtained by choosing for each vertex v = (v1, . . . , vn) ∈ {0, 1}n either to make
this vertex a root vertex (this contributes weight t) or to make it a vertex with outgoing
arc (of spin 0) in direction i for i in the subset Sv = {i ∈ [n], vi = 1} (this contributes
weight

∑
i∈Sv

xi,0). Since any such choice leads to a distinct rooted forest in F ′, we
get (5). �

The rest of this section is devoted to the proof of Theorem 1.

Proof of Theorem 1. Let F0 be the set of rooted forests of H = G ⊠ K2 having the
same G-projection as F0. The rooted forest F is chosen uniformly in F0 and we want
to prove that the spins of its vertical arcs are uniformly random and independent. We
will prove this property by induction on the number n of vertices of G. The property
is obvious for n = 1. We now suppose that it holds for any graph G′ with less than n
vertices, and we want to prove the property for G.

Let α be the number of non-vertical arcs of F0. Let β = |S| be the number of vertices
u of G such that F0 contains a vertical arc at u, and let γ = |U \ S| = n − β be the
number of other vertices of G. Since the forest F0 has α+ β arcs and 2n vertices, one
gets α+ β < 2n, hence α < β + 2γ. Thus there exists either

(a) a vertex u ∈ S such that F0 contains no a-arc with a ∈ A directed toward u,
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(b) or a vertex u ∈ U \ S such that F0 contains at most one a-arc with a ∈ A
directed toward u.

Cases (a) and (b) are illustrated in Figure 5. In both cases we will apply the induction
hypothesis on graphs obtained from G by deleting the vertex u.

φ φ φ1

(u, 1)

(u, 0)

(u, 1)

(u, 0)(u, 0)

(u, 1)

a0

(a) (b)

H ′ H ′

1

a1
a2

Figure 5. Cases (a) and (b) of the inductive proof of Theorem 1. In
this picture, for the sake of readability, the diagonal arcs of H = G⊠K2

not contained in the forests are not drawn.

We first consider the case (a). Let G′ be the digraph obtained from G by deleting
the vertex u and the incident arcs, and let H ′ = G′

⊠K2. For a rooted forest T ∈ F0 we
denote by φ(T ) the rooted forest of H ′ obtained from T by deleting the vertices (u, 0)
and (u, 1) and the incident arcs; see Figure 5(a). Let F ′

0 = φ(F0) and let F ′
0 be the set

of rooted forests of H ′ having the same G′-projection as F ′
0. It is easy to see that any

rooted forest T ′ ∈ F ′
0 has exactly two preimages in F0 by the mapping φ: one preimage

having a vertical arc of spin 0 at u and the other having a vertical arc of spin 1 at
u. Hence, if F is uniformly random in F0 then F ′ = φ(F ) is uniformly random in F ′

0.
Thus, by the induction hypothesis, the vertical arcs of F ′ are uniformly random and
independent. Moreover the spin σu of the vertical arc of F at u is uniformly random
and independent of the forest F ′ = φ(F ). Thus, the spins of all the vertical arcs of F
are uniformly random and independent, as wanted.

We now consider the case (b). There is at most one arc a ∈ A directed toward u
such that F0 contains a a-arc, and at most two arcs a′ ∈ A directed away from u such
that F0 contains an a′-arc. Considering all the possibilities is a bit tedious (but not
hard), so we shall only treat the most interesting case in detail: we suppose that there
is an arc a0 ∈ A directed toward u and two distinct arcs a1, a2 ∈ A directed away from
u such that F0 contains an ai-arc for all i ∈ {0, 1, 2}. This situation is represented in
Figure 5(b); in that figure the a1-arc of F is a diagonal arc and the a0-arc and a2-arc
of F are straight arcs. We partition F0 into two subsets F0 = F1 ⊎ F2, where for
i ∈ {1, 2}, Fi is the set of rooted forests T ∈ F0 such that the a0-arc and ai-arc of
T are incident to the same vertex of H. It is sufficient to prove that for i ∈ {1, 2}, if
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Fi 6= ∅ and Fi is a uniformly random rooted forest in Fi then the spins of the vertical
arcs of Fi are uniformly random and independent.

Let i ∈ {1, 2} be such that Fi is not empty. Let G′
i be the digraph obtained from G

by merging the arcs a0 and ai into a single arc b (going from the origin of a0 to the end
of a1) and then deleting the vertex u and all the incident arcs, and let H ′

i = G′
i ⊠K2.

For T ∈ Fi we denote by φi(T ) the forest of H
′
i obtained from T by merging the a0-arc

and the ai-arc into a single arc (the arc created will be a straight b-arc if a0 and ai
are both straight or both diagonal, and a diagonal b-arc otherwise) and then deleting
the vertices (u, 0) and (u, 1) and the incident arcs . Let Fi,0 be a rooted forest in
Fi, let F ′

i,0 = φi(Fi,0), and let F ′
i be the set of rooted forest of H ′

i having the same

G′
i-projection as F ′

i,0. It is easy to see that φi is a bijection between Fi and F ′
i . Thus,

if Fi is uniformly random in Fi then F ′
i = φi(F

′
i ) is uniformly random in F ′

i . Hence,
by the induction hypothesis, the spins of the vertical arcs of Fi (which are the same
as the spins of the vertical arcs of F ′

i ) are uniformly random and independent. This
completes the proof. �

3. Root identification approach for the hypercube with diagonals

In this section we consider the graph Dn obtained from the hypercube Cn by adding
a diagonal arc from each vertex v = (v1, . . . , vn) ∈ {0, 1} to its antipodal vertex v′ =
(1 − v1, . . . , 1 − vn). The graph D3 is represented in Figure 1. Let FDn(t;x, y) be the
forest enumerator of Dn defined by

(6) FDn(t;x, y) =
∑

F rooted forest of Dn

∏

a∈F

w(a),

where the weight w(a) of a diagonal arc is y and the weight of a non-diagonal arc of
direction i and spin ǫ is xi,ǫ. The main result of this section is the following product
formula for FDn(t;x, y).

Theorem 5. The forest enumerator of the hypercube with diagonals defined by (6)
equals

(7) FDn(t;x, y) =
∏

S⊆[n]

(
t+ 2y · 1|S| odd +

∑

i∈S

xi,0 + xi,1

)
.

Observe that the forest enumerator of the hypercube is FCn(t;x) = FDn(t;x, 0),
hence Theorem 5 gives a generalization of (3). The rest of this section is devoted to
the proof of Theorem 5. The proof below uses Theorem 1 as one of its ingredients1.
However the case y = 0 corresponding to (3) does not require Theorem 1 hence we
obtain an independent combinatorial proof of this formula.

It is clear from the definitions that FDn(t;x, y) is a monic polynomial in t of degree 2n.
Thus, in order to prove Theorem 5 it suffices to show that for all S ⊆ [n],

(8) FDn(−2y · 1|S| odd −
∑

i∈S

xi,0 + xi,1;x, y) = 0.

1Using Corollary 2 it is actually sufficient to prove (7) in the special case where x1,1 = x2,1 = . . . =
xn,1 = 0, but we have not found a more direct proof of this special case.
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We now fix a subset S ⊆ [n] and establish (8) by exhibiting some “killing involutions”.
We denote S′ = S if S is even and S′ = S ∪ {0} if S is odd. We also say that the
diagonal arcs of Dn have direction 0. A rooted forest of Dn is S-labeled if every root
vertex has a label in S′. For a S-labeled forest F , we denote

w(F ) =
∏

a arc of F

w(a)×
∏

r root vertex of F

w(r),

where w(r) = −2y if the root vertex r is labeled 0, and w(r) = −xi,0 − xi,1 if r is
labeled i > 0. With this notation we immediately get

FDn(−2y · 1|S| odd −
∑

i∈S

xi,0 + xi,1;x, y) =
∑

F∈FS

w(F ),

and it remains to prove that

(9)
∑

F∈FS

w(F ) = 0.

Let C be the set of subgraphs ofDn such that every vertex of Dn is incident to exactly
one outgoing arc. Any element C ∈ C is made of a some disjoint directed cycles together
with directed trees rooted on the vertices of the cycles. For a labeled rooted forest F ∈
FS , we denote by F the subgraph in C obtained from F by adding the arc of direction
i going out of each root vertex labeled i for all i ∈ {0, . . . , n} (with the convention that

diagonal arcs have direction 0). We get
∑

F∈FS

w(F ) =
∑

C∈C

∑

F∈FS , F=C

w(F ), and now

proceed to compute
∑

F,F=C

w(F ) for a given subgraph C ∈ C.

Let C ∈ C and let C(1), . . . , C(k) be the directed cycles of C, and let C(0) be the set

arcs of C which are not in cycles. For all j ∈ [k], we denote by C
(j)
S the set of arcs

in C(j) having their direction in S′, and we denote C
(j)
S = C(j) \ C

(j)
S . The forests F

such that F = C are obtained from C by removing an arbitrary subset of arcs in C
(0)
S ,

and by removing a non-empty subset of arcs in C
(j)
S for all j = 1, . . . , k. Moreover, if

an arc a ∈ C is not removed then its contribution to the weight w(F ) is w(a), while if
a is removed then its contribution to w(F ) is w(a) = −2y if a is a diagonal edge and
w(a) = −xi,0 − xi,1 if it is a non-diagonal edge of direction i and spin ǫ. Thus

∑

F∈FS , F=C

w(F ) =
∏

a∈C
(0)
S

w(a)
∏

a∈C
(0)
S

w̃(a)×
k∏

j=1

∏

a∈C
(j)
S

w(a)



∏

a∈C
(j)
S

w̃(a)−
∏

a∈C
(j)
S

w(a)


 ,

where w̃(a) = w(a) + w(a). Now we claim that for all j ∈ [k] the number of arcs

in C
(j)
S is even. For this purpose, consider for each vertex v ∈ {0, 1}n the quantity

vS =
∑

i∈S vi. The parity of vs is changing along arcs having direction in S′ and not
changing along the other arcs. Hence for all j ∈ [k] the number of arcs with direction
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in S′ in the cycle C(j) is even. Therefore,

(10)
∑

F∈FS , F=C

w(F ) =
∏

a∈C
(0)
S

w(a)
∏

a∈C
(0)
S

w̃(a)×
k∏

j=1

∏

a∈C
(j)
S

w(a)



∏

a∈C
(j)
S

ŵ(a)−
∏

a∈C
(j)
S

w(a)


 ,

where ŵ(a) = −w̃(a), that is, ŵ(a) = y if a is a diagonal edge, and ŵ(a) = xi,1−ǫ if a
is a non-diagonal edge of direction i ∈ S and spin ǫ.

Let us now briefly consider the case y = 0, which leads to an independent proof
of (3). In the case y = 0 the right-hand side of (10) is clearly 0 unless C has no
diagonal arc. Moreover, if C has no diagonal arc then for all j ∈ [k], i ∈ [n] the cycle

C(j) contains as many arcs with direction i and spin 0 as arcs with direction i and

spin 1. Hence in this case,
∏

a∈C
(j)
S

ŵ(a) =
∏

a∈C
(j)
S

w(a), so that
∑

F∈FS , F=C

w(F ) is always 0.

Thus, we have proved (9) and therefore (7) in the case y = 0, which is precisely (3).
We now resume our analysis in the case y 6= 0. It is not true that the right-hand

side of (10) is 0 in general. However in the case where xi,0 = xi,1 for all i ∈ S one has
ŵ(a) = w(a) for all arc a having direction in S′, hence

∑
F∈FS , F=C w(F ) = 0. This

gives (9) and therefore (7) in the case where xi,0 = xi,1 for all i ∈ [n]. Equivalently,

FDn(t;x
′, y) =

∏

S⊆[n]

(
t+ 2y · 1|S| odd +

∑

i∈S

xi,0 + xi,1

)
,

for x′ =

(
x1,0 + x1,1

2
,
x1,0 + x1,1

2
, . . . ,

xn,0 + xn,1
2

,
xn,0 + xn,1

2

)
. We now combine this

result with Corollary 2.
First observe thatDn is obtained from the digraphDn−1⊠K2 by removing its straight

a-arcs for every diagonal arc a of Dn−1 and removing its diagonal a′-arcs for every non-
diagonal arc a′ ofDn−1. Therefore, Corollary 2 implies that FDn(t;x, y) is unchanged by

replacing (xn,0, xn,1) by (xn,0 + xn,1, 0) or by (
xn,0 + xn,1

2
,
xn,0 + xn,1

2
). By symmetry,

a similar result is true for every direction i ∈ [n]. Therefore FDn(t;x, y) = FDn(t;x
′, y).

This completes the proof of Theorem 5. �

4. Matrix-tree approach for products of complete graphs

In the previous sections we gave combinatorial proofs of formula (3) for the forest
enumerator of the hypercube. In this section we instead use the good old matrix-tree
approach to establish some generalizations for Cartesian products of complete graphs.

Let G = (U,A) and G′ = (U ′, A′) be weighted digraphs and let wa be the weight
of any arc a in A ∪ A′. The weighted Cartesian product of G and G′, is the digraph
H = G×G′ where for any arc a = (u, v) ∈ A∪A′, the arcs of H corresponding to a (if
a ∈ A, these are arcs going from (u,w) to (v,w) for w ∈ U ′, while if a ∈ A′ these are
arcs going from (w, u) to (w, v) for w ∈ U) have weight wa. Observe that the weighted
Cartesian product K2×· · ·×K2 of n copies of K2 with the ith copy having arc weights
xi,0 and xi,1 is equal to the hypercube with weight xi,ǫ for arcs having direction i and
spin ǫ. The following proposition will be proved by combining the matrix-tree theorem
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with a classical result about the eigenvalues of the Laplacian of a Cartesian product of
graphs (see e.g. [2]).

Proposition 6. Let G, G′ be weighted digraph with respectively p and q vertices. Let
FG(t), FG′(t) be the forest enumerators of G and G′ as defined by (4). Let λ1, . . . , λp

and λ′
1, . . . , λ

′
q be the roots (appearing with multiplicity) of FG(t) and FG′(t) considered

as polynomials in t (the roots are taken in the splitting field of these polynomials). Then
the forest enumerator of the weighted Cartesian product H = G×G′ is

FH(t) =
∏

i∈[p],j∈[q]

(t+ λi + λ′
j) =

∏

j∈[q]

FG(t+ λ′
j) =

∏

i∈[p]

FG′(t+ λi).

Observe that Corollary 3 is a special case of Proposition 6 corresponding to G′ = K2

(with weight x0 and x1 on the edges of K2). Before proving Proposition 6, we explore
its consequences for products of complete graphs. We first recall a classical result about
the forest enumerator of complete graphs. Let Kp be the complete graph with vertex
set [p] (considered as a digraph with p(p − 1) arcs). If for all j ∈ [p] the arcs of Kp

directed toward the vertex j are weighted by xj, then the forest enumerator of Kp is

FKp(t) = t (t+ x1 + · · ·+ xp)
p−1.

This classical result, often attributed to Cayley, has many beautiful proofs [1, Chapter
26]. Since the roots of FKp(t) are known explicitly for all p, Proposition 6 immediately
gives the following result (by induction on n).

Corollary 7. Let p1, . . . , pn be positive integers and Kp1 , . . . ,Kpn be complete graphs
with p1, . . . , pn vertices respectively. For all i ∈ [n], let the ith complete graph Kpi

be weighted by assigning a weight xi,ǫ to every arc going toward the vertex ǫ for all
ǫ ∈ [pi]. Then the weighted Cartesian product Kp1 × · · · ×Kpn has the following forest
enumerator

(11) FKp1×···×Kpn
(t) =

∏

(v1,...,vn)∈[p1]×···×[pn]

(t+
∑

i, vi 6=1

xi,1 + . . .+ xi,pi).

Corollary 7 is closely related to a formula established by Martin and Reiner in [4]
using a method similar to ours. Indeed [4, Theorem 1] is equivalent (up to easy algebraic
manipulations) to the special case xi,1 = xi,2 = . . . = xi,pi of (11). Observe also that
formula (3) for the hypercube corresponds to the case p1 = . . . = pn = 2 of Corollary 7
(upon identifying the subsets of [n] with the elements of [2]n).

The rest of this section is devoted to the proof of Proposition 6. We first recall the
matrix-tree theorem. Let G be a simple weighted digraph with vertex set [n]. For two
vertices i, j ∈ [n] we define wi,j to be the weight of the arc from vertex i to vertex j
if there is such an arc, and to be 0 otherwise. The Laplacian of G, denoted L(G), is
the n × n matrix whose entry at position (i, j) ∈ [n]2 is equal to −wi,j if i 6= j and
to
∑n

k=1wi,k otherwise. We now recall the (directed, weighted, forest version of) the

matrix-tree theorem2 which gives the forest-enumerator of G as a determinant:

(12) FG(t) ≡
∑

F rooted forest of G

tk(F )w(F ) = det (L(G) + t · Idn) ,

2Our weights wi,j are arbitrary indeterminates as authorized by the combinatorial proofs of the
matrix-tree theorem (see e.g. [7]).
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where Idn denotes the identity matrix of dimension n × n. In other words, for any
weighted digraph G the roots of the forest enumerator FG(t) are the opposite of the
eigenvalues of the Laplacian L(G). In order to complete the proof Proposition 6, it now
suffices to combine this fact with the following result of Fiedler [2] (Fiedler actually only
considered undirected unweighted graph, but the proof allows for arbitrary weights).

Lemma 8 ([2]). If G, G′ and H are as in Proposition 6 and the eigenvalues (taken with
multiplicities) of the Laplacians L(G) and L(G′) are λ1, . . . , λp and λ′

1, . . . , λ
′
q respec-

tively, then the eigenvalues of L(H) (taken with multiplicities) are (λi + λ′
j)i∈[p],j∈[q].

Sketch of proof of Lemma 8. The Laplacians of G, G′ and H are related by

L(H) = L(G)⊗ Idq + Idp ⊗ L(G′),

where “⊗” represents the Kronecker product of matrices. Moreover, if M,N are any
matrices of dimension p × p and q × q respectively, with eigenvalues λ1, . . . , λp and
λ′
1, . . . , λ

′
q, then the eigenvalues of the matrix L = M⊗Idq+Idp⊗N are (λi+λ′

j)i∈[p],j∈[q].

Indeed, there exists invertible matrices P,Q (with entries in the splitting field of the
polynomial det(M + t · Idp) det(N + t · Idq)) such that the matrices M ′ := P−1MP
and N ′ := Q−1NQ are both upper triangular with diagonal elements λ1, . . . , λp and
λ′
1, . . . , λ

′
q respectively. And it is easily seen that

(P ⊗Q)−1 · (M ⊗ Idq + Idp ⊗N) · (P ⊗Q) = M ′ ⊗ Idp + Idq ⊗N ′

is a upper triangular matrix with diagonal elements (λi + λ′
j)i∈[p],j∈[q]. This completes

the proof of Lemma 8 and Proposition 6. �

5. Additional remarks and conjectures

In this section we first give a formula for the enumerator of the spanning trees of
the hypercube rooted at a given vertex, and explain its relation with a formula by
Martin and Reiner [4]. Then we mention a consequence of Theorem 1 and conjecture
a generalization of this theorem.

Unrooted spanning trees of the hypercube and relation with [4, Theorem 3].
For a vertex v = (v1, v2, . . . , vn) ∈ {0, 1}n of the hypercube we denote by Tv the set of
spanning trees of Cn rooted at the vertex v, and we denote

TCn,v(x) =
∑

T∈Tv

∏

a∈T

xdir(a),spin(a).

Observe that if u = (u1, . . . , un) ∈ {0, 1}n is another vertex of Cn, then

TCn,u(x) =

(
n∏

i=1

xi,ui

xi,vi

)
TCn,v(x),

since changing the root of a spanning tree from v to u changes the number of arcs of
direction i and spin 1 (resp. 0) by ui − vi (resp. vi − ui). Combining this relation with

∑

v∈cn

TCn,v(x) = [t]FCn(t;x) =
∏

S⊆[n],S 6=∅

∑

i∈S

(xi,0 + xi,1),
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gives

(13) TCn,v(x) =

(
n∏

i=1

xi,vi

)
×


 ∏

S⊆[n],|S|≥2

∑

i∈S

(xi,0 + xi,1)


 .

We now establish the equivalence of (13) with [4, Theorem 3]. For i ∈ [n], ǫ ∈ {0, 1}
and T an unrooted spanning tree of Cn, we denote by degi,ǫ(T ) the sum of the degrees
in T of all the vertices of Cn having their ith coordinate equal to ǫ. We then consider

SCn(q,y) =
∑

T

(
∏

e∈T

qdir(e)

)
×

(
n∏

i=1

y
degi,0(T )

i,0 y
degi,1(T )

i,1

)
,

where the sum is over the unrooted spanning trees of Cn. Let T be an unrooted
spanning tree of Cn and let T ′ be the rooted tree obtained by choosing ρ = (0, 0, . . . , 0)
as the root vertex. It is easy to see that for all i ∈ [n], ǫ ∈ {0, 1}

degi,ǫ(T ) = 2n − 2 · 1ǫ=0 + ni,ǫ(T
′)− ni,1−ǫ(T

′),

where ni,ǫ(T
′) is the number of arcs of T ′ with direction i and spin ǫ. Therefore

SCn(q,y) =

(
n∏

i=1

y2
n

i,0 y
2n
i,1

)
×

TCn,ρ(x)∏n
i=1 y

2
i,0

,

with xi,ǫ = qi yi,ǫ/yi,1−ǫ. Using (13) then gives the following result obtained by Martin
and Reiner in [4, Theorem 3] using a matrix-tree approach:

SCn(q,y) =

(
n∏

i=1

qi y
2n−1
i,0 y2

n−1
i,1

)
×


 ∏

S⊆[n],|S|≥2

∑

i∈S

qi

(
yi,0
yi,1

+
yi,1
yi,0

)
 .

A consequence of Theorem 1 about bicolored Cayley trees.

The consequences of Theorem 1 explored in this paper are mainly about Cartesian
products of graphs. Let us mention, for fun, a consequence with a different flavor. Let
Kp,p be the complete bipartite graph with black vertices labeled 1, . . . , p and white
vertices labeled 1′, . . . , p′. Let m < p and let Rm be the set of rooted spanning trees
of Kp,p containing the edge {i, i′} for all i ∈ [m]. Observe that the complete bipartite
graph Kp,p is obtained from the strong product Kp ⊠ K2 by erasing all the straight
arcs. Accordingly, we say that the spin of the edge {i, i′} is 0 if it is oriented to-
ward the black endpoint i, and is 1 otherwise. Then, a consequence of Theorem 1 is
that for a uniformly random rooted tree in Rm the spins of the edges {i, i′} are inde-
pendent and uniformly distributed. We do not know of an elementary proof of this fact.

Conjecture for the spins of forests for Cartesian products of complete graphs.

Just as formula (3) was suggestive of the independence property for the spins of a ran-
dom forest of the hypercube, formula (11) and Proposition 6 suggest an independence
property that we make explicit now. Let G = (U,A) be a weighted digraph, let Kp be
the complete graph with vertex set [p], and let H = G×Kp be their Cartesian product.
For u ∈ U and (i, j) ∈ [p] we call the arc of H going from (u, i) to (u, j) a vertical arc
of spin j at vertex u. We say that two rooted forests of H have the same G-projection
if they have the same number of a-arcs for all a ∈ A and they have the same number
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of vertical arcs at u for all u ∈ U . The multispin of a rooted forest F of H at a vertex
u ∈ U is the multiset of the spins of the vertical arcs of F at U . We now conjecture an
analogue of Theorem 1:

Conjecture 9. Let F0 be a rooted forest of H = G × Kp, and let F be a uniformly
random rooted forest of H conditioned to have the same G-projection as F0. Then the
multispins (σu)u∈U of the random forest F at the different vertices of G are independent.

Observe that Conjecture 9 would readily implies Corollary 7 (in the same way as
Theorem 1 implied (3)). It should also be mentioned that a stronger conjecture is false:
it is not true that the subforests (Fu)u∈U made of the vertical arcs of the random forest
F at the different vertices of G are independent (indeed, one can find a counterexample
for H = K3 ×K3).
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