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Populational adaptive evolution, chemotherapeutic resistance and
multiple anti-cancer therapies

Alexander Lorz∗§ Tommaso Lorenzi† Michael E. Hochberg‡ Jean Clairambault§∗

Benôıt Perthame∗§¶

July 4, 2012

Abstract

Resistance to chemotherapies, particularly to anticancer treatments, is an increasing medical
concern. Among the many mechanisms at work in cancers, one of the most important is the
selection of tumor cells expressing resistance genes or phenotypes. Motivated by the theory of
mutation-selection in adaptive evolution, we propose a model based on a continuous variable that
represents the expression level of a resistance gene (or genes, yielding a phenotype) influencing in
healthy and tumor cells birth/death rates, effects of chemotherapies (both cytotoxic and cytostatic)
and mutations. We extend previous work by demonstrating how qualitatively different actions of
chemotherapeutic and cytostatic treatments may induce different levels of resistance.

The mathematical interest of our study is in the formalism of constrained Hamilton-Jacobi
equations in the framework of viscosity solutions. We derive the long-term temporal dynamics of
the fittest traits in the regime of small mutations. In the context of adaptive cancer management,
we also analyse whether an optimal drug level is better than the maximal tolerated dose.

Key words: Mathematical oncology; Adaptive evolution; Hamilton-Jacobi equations; Integro-differential
equations; Cancer; Drug resistance

Mathematics Subject Classification: 35B25, 45M05, 49L25, 92C50, 92D15

1 Introduction

Many pharmacotherapeutic processes, in anticancer, antiviral, antimalarial, or antibiotic therapies
may fail to control proliferation, because the target (virus, cell, parasite) population becomes resistant
to the drug(s). This may occur either because of evolution independent of drug(s), or because the
drug(s) select for resistance. The occurrence of drug resistance is thus a major obstacle to therapy
success.
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Resistance is commonly seen in a diverse range of systems including agriculture pest resistance to
toxic crops [31, 45], bacterial resistance to antibiotics [1], mosquito resistance to antimalarial treat-
ments [2] and references therein) and bacterial resistance to high copper concentrations [27].

There is overwhelming evidence that populations of cancer cells may harbour a diverse array of
chemo-resistant subpopulations.

Resistance mechanisms in cancer may be classified according to at least two major effects:
• Cell adaptation. Cells may adapt metabolically in response to drugs. A typical example is the release
of resistance proteins such as P-gp and other ABC transporters (ATP Binding Cassette), and studies
on large human cohorts have shown their correlation with resistance in Acute Myeloid Leukemia [35]),
since they promote the efflux of toxic molecules from leukaemic cells [10, 24]. Induction of ABC trans-
porter gene transcription by stressful conditions (including exposure to anticancer drugs) is a likely
contributing mechanism, as reviewed in [41]. This resistance mechanism can further be enhanced
by protein exchange between cells [40], and its properties have been analysed using a mathematical
model [36]. In as much as these mechanisms occur in individual cells and do not involve differential
selection on variants resulting from mutations, we distinguish such cell adaptation mechanisms from
other mechanisms stemming from mutations.
•Mutations. It is generally accepted that tumor cells usually have higher division and higher mutation
rates than normal cells; possible mechanisms for this have been investigated in bacterial populations
in stressful conditions, inducing the formation of error-prone polymerase [30], from which one may
infer similar explanations for cancer cells. Moreover, when a drug targets a specific DNA site or a
specific protein, a mutation that deletes this site or induces a change in protein conformation may
confer resistance to mutant cells [42].

To elicit the relative contributions of these two mechanisms presents a considerable challenge. The
answer may depend on many parameters such as the type of tumor and therapy. In the latter case,
such mutations (possibly by a single amino acid of the target protein) may induce resistance to the
drug at stake, whereas in the former case of multiply targeted drugs (or drugs with unidentied specic
targets) a re-wiring of intracellular signaling networks is a plausible mechanism, as discussed in [33].
As a first approach to this complex question, we focus in this paper on continuous mechanisms that
involve resistance induced by the drug environment on cell populations, and not on mechanisms that
can be represented by a constant probability of mutation resulting in drug resistance, as in classical
studies such as [22] or more recent work based on evolutionary models in a stochastic setting [29].

In this paper we are particularly interested in the latter mechanism, which is closely related to the
process of Darwinian evolution, according to which certain rare mutants may have positive growth
rates and be selected in environments that would otherwise result in ecological extinction. The term
of ‘evolutionary rescue’ has been coined for situations where a population is saved from extinction
by natural selection of genetic variants either existing in a population when environmental condi-
tions deteriorate, or emerging during the otherwise inexorable decline to extinction. In this view,
because some mutant cells have a fitness advantage, they will come to dominate dynamics and the
population as a whole. We propose a mathematical model that takes into account birth, death and
mutation rates of healthy and cancer cells depending on the level of resistant phenotype expression.
Different expression levels would be reflected by the cell content of proteins (e.g., ABC transporters)
responsible for expelling toxic molecules. We assume this expression level to be a continuous vari-
able, and as such amenable to provide a basis for structured population models designed according
to a selection/mutation type of formalism previously developed using Partial Differential Equations
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[7, 8, 9, 14, 32, 34, 38].

The phenomenon of drug resistance is usually described mathematically by considering two distinct
types of cells, sensitive and resistant. A recent probabilistic approach [18] incorporated dose modula-
tion to study the evolution of resistance under various dosing strategies. Unlike probabilistic models,
we do not consider that a cell or a cell population is necessarily either totally sensitive or totally
resistant to a given drug; rather we introduce a continuous physiological variable describing resistance
between 0 (completely sensitive population) and +∞ (completely resistant population). Such a vari-
able, which may be genetic or epigenetic [12], indeed provides the basis for a physiologically structured
model of resistance.

Mathematical models [21] incorporating phenotypic and microenvironmental factors suggest that
adaptive treatment strategies can improve long-term survival compared to a maximum dose strategy.
This may be achieved at the cost of maintaining the persistence of sensitive tumor cells, which are
fitter than the resistant cells in low drug pressure conditions (i.e., not trying to eradicate them, an
apparently paradoxical view (‘adaptive therapy’) [20, 21], most likely applicable to slowly developing
tumors only). Conversely, in cases of sudden rapid proliferation (e.g., acute leukaemias), only the
employment of maximum tolerable doses is thought to have chances of controlling or eradicating the
cancer cell population.

Furthermore, depending on the nature of the tumor, different sorts of drugs can be used either
separately or in combinations, in order to reduce the probability of resistance emergence and reduce
side-effects on healthy cells [43]. This aspect is studied in [46, 47] using ordinary differential systems
which give a macroscopic understanding on the use of multitherapies. In particular, besides cytotoxic
drugs, here we focus on an additional class of therapeutic agents, so-called cytostatic drugs, which
act by slowing down cancer cell proliferation and tumor growth. Cytostatic drugs have lower toxicity
for healthy cells and reduce the emergence of resistance, which usually follows from treatments with
cytotoxic drugs. In fact, they allow the survival of a small number of chemosensitive cells, which can
reduce the growth of resistant clones through competition for space and resources. Moreover, whereas
cytotoxic drugs remove sensitive cells from the population, they do not prevent the proliferation of
chemo-resistant cells. There are two important effects of such therapies on cancer resurgence and
its aggressiveness. Firstly, proliferating resistant cells may produce a series of increasingly aggressive
subpopulations through natural selection [6]. Secondly, toxic effects of the drug on chemoresistant
cells, although not lethal, may induce genetic instabilities resulting in the generation of more aggres-
sive mutant cancer cell lines [19]. These concerns within an expanding chemoresistant population
are reduced under combined chemostatic and chemotoxic therapies, since toxicity of the latter is re-
duced, and the chemostatic drug holds in check the multiplication of the chemoresistant subpopulation.

The paper is organized as follows. We first present a model for healthy and tumor cells, structured
by a variable representing the expression level of the resistance gene. We consider cases with and
without chemotherapy. We also analyze the global behavior of solutions without mutations. Then, in
Section 3, we turn to the analysis of situations with small mutations and employ the methodology of
populational adaptive evolution to describe the dynamics of the fittest cells. Section 4 is devoted to
the question of analyzing, for this simple model, whether the maximal tolerated dose is the optimal
choice to impede the evolution of resistance. Section 5 presents several numerical simulations that
illustrate our theory. Finally, we propose in Section 6 a model for the dynamics of healthy and cancer
cells exposed to cytotoxic and cytostatic drugs. The model relies on the same structured population
formalism presented at the beginning of the paper and it is analyzed by means of numerical simulations
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looking for combined doses resulting in treatment optimization.

2 A structured population model for healthy and tumor cells under
the effects of cytotoxic drugs

A major constraint in chemotherapy is to keep the toxic effect on healthy cells below a critical thresh-
old. For that reason, it is preferable for a model to be able to represent both healthy and tumor
cells. This is what we propose here in a simple equation that can take into account both types of
cells, thus tackling the two major issues of medical treatments in general: adverse toxic effects in
healthy cells and occurrence of drug resistance in diseased cells. At this stage we do not represent the
spatial extension of tissues; this is an ingredient that can be included in a second stage. It is indeed
more important from a therapeutic point of view to structure the two populations according to a
physiological variable, e.g., a continuously evolving genetic trait or a cell content in specific proteins,
that physiologically describes the evolution of the population as influenced by the treatment, than to
include a space variable in the model.

2.1 Selection/mutation model

Let nH(x, t) / nC(x, t) denote the population density of healthy / cancer cells with gene resistance
expression level x at time t. In the sequel we will use the term ‘gene expression’ meaning not only
expression of one supposed resistance gene, but more generally of several genes yielding together a
continuous drug resistance phenotype, more or less in the same way as others represent evolution to-
wards malignancy in colorectal cancer [15], revisited by [44]. Note that in the model we develop below,
we do not represent evolution towards malignancy, assuming the existence of an already constituted
cancer cell population (with subscript C), opposed to a healthy cell population (with subscript H).
The resistance level x to the drug can be measured either by the average molecular cell concentration
or activity of ABC transporters that are known to be associated with resistance to the drug, or by
the minimal drug concentration to kill the population (more precisely the LD50, LD90... of pharma-
cologists, i.e., the minimal dose to kill a given percentage of the cell population). Different strains of
the same initial cell lineage, selected by exposure to progressively increasing doses of the same drug,
are indeed available in tumor banks, such as acute myeloblastic leukemia (AML) cells at the Tumor
Bank of St. Antoine Hospital in Paris [48]. We a priori take 0 ≤ x < ∞, even though the design of
the model should lead to limitations on the possible values of x.

The growth dynamics of healthy and tumor cells with a chemotherapy is given by the system

∂

∂t
nH(x, t) =

[ growth with homeostasis︷ ︸︸ ︷
1− θH(

1 + ρ(t)
)β r(x) −

natural apoptosis︷︸︸︷
d(x) −

effect of drug︷ ︸︸ ︷
c(t)µH(x)

]
nH(x, t)

+
θH(

1 + ρ(t)
)β ∫ r(y)MσH (y, x)nH(y, t)dy︸ ︷︷ ︸

birth with mutation

,

(1)
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∂

∂t
nC(x, t) =

[
(1− θC) r(x)− d(x)− c(t)µC(x)

]
nC(x, t)

+θC

∫
r(y)MσC (y, x)nC(y, t)dy,

(2)

and the total population is defined as

ρ(t) = ρH(t) + ρC(t), ρH(t) =

∫ ∞
x=0

nH(x, t)dx, ρC(t) =

∫ ∞
x=0

nC(x, t)dx. (3)

The following notations, interpretations and assumptions are used:

• r(x) denotes the basic reproduction rate and d(x) > 0 denotes the basic death rate, which depend
on the gene expression level x. In order to incorporate a cost to produce the resistance gene, we
assume r is decreasing, d is increasing

r(0) > d(0) > 0, r′(·) < 0, r(+∞) = 0, d′(·) > 0. (4)

• 0 ≤ θH,C < 1 denotes the proportion of divisions with mutations and we can assume it to be higher
for cancer cells.
• β > 0 is introduced, with the simplest possible form, to impose healthy tissue homeostasis (see
below). For tumor cells, uncontrolled proliferation is obtained by birth terms that do not depend on
the total population (i.e., we do not consider density-dependent inhibition in cancer cells).
• c(t) denotes the dose of chemotherapy. Here we assume it has only an effect on increasing apoptosis.
• µH,C(x) represents the phenotypically dependent response to the drug; drugs are designed to target
cancer cells more than healthy cells. The effect of drugs is here assumed to be summed up directly
on mortality (i.e., in this simple setting, not involving the cell division cycle, we do not consider drug
effects at cell cycle phase transitions in proliferating cell populations, see e.g., [28] for a discussion
on this point) with a rate µ that depends on the gene expression x (sensitivity to the drug) and we
assume the properties

µH,C(·) > 0,
dµH,C
dx

< 0, µH,C(∞) = 0, µH < µC . (5)

This means that the drug always decreases the growth rate but its efficiency is lower on cells expressing
a higher resistance gene expression. Also because the drug is efficient against cancer cells we assume
that c is such that

r(0)− d(0)− cµC(0) < 0. (6)

• MσH,C (y, x) ≥ 0 denotes the probability that a mutation of a cell with gene expression y leads to
a daughter cell with level x and σH,C > 0 measures the average size of these mutations. This means
that ∫ ∞

x=0
xMσ(y, x)dx = σ.

We can assume that this size is larger in tumor than in healthy cells, in which control of the genome
is more strictly ensured and mutations, if they occur, are of little consequence; hence σC > σH . To
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be consistent with this interpretation, we impose (further conditions are imposed later on)∫ ∞
x=0

Mσ(y, x)dx = 1. (7)

It is useful to write the equations on nC and nH as

∂

∂t
n(x, t) = n(x, t)R(x, t) + θ

∫
r(y)Mσ(y, x)[n(y, t)− n(x, t)]dy,

so as to better see that the net growth rate (fitness) of the cells is given by
RH(x, t) =

1(
1 + ρ(t)

)β r(x)− d(x)− cµH(x),

RC(x, t) = r(x)− d(x)− cµC(x).

(8)

2.2 Healthy or tumor cells without mutations

In order to motivate the introduction of these different terms, we will prove in the next sections that
the model solutions exhibit behaviors that are in accordance with the biomedical interpretation. It
is simpler to state results when there are no mutations, which we do now and postpone to the next
sections the case with mutations.

We introduce our assumptions and notations in each one of these three cases of interest indepen-
dently: healthy cells only, cancer cells without therapy, resistance in cancer cells generated by therapy.

Healthy tissue, no therapy, no tumor cells. In a healthy tissue we take nC ≡ 0. Then,
in the absence of therapy (i.e., c(t) = 0), the classical theory, that we recall below, shows that as σ
vanishes, the population model always selects the gene expression x = 0. In other words, x = 0 is a
globally attracting Evolutionary Stable Distribution:

Lemma 2.1 (Healthy cells only, no mutations) We assume (4) and that all data are Lipschitz
continuous; we also assume

θH = 0, n0
H > 0, n0

H ∈ L1, nC ≡ 0.

Then, we have
nH(x, t) −→

t→∞
ρ̄H,∞δ(x),

weakly in the sense of measures where the number density of cells ρ̄H,∞ defined by zero growth rate
(homeostasis) is computed as

1(
1 + ρ̄H,∞

)β r(0) = d(0). (9)

In words, with no mutations to create variability, the monoclonal population is globally attractive
with the fittest trait x = 0.

The proof of this result follows from a general analysis that can be found in [32, 37, 38]. It uses an
estimate on the total variation of ρH(t) that holds in a very general framework that includes the case
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at hand.

Keeping mutations, a similar conclusion can be reached but in the framework of asymptotic analysis;
to show this is a job that uses more elaborate ingredients and that is explained in Section 3.1.

Cancer cells, no therapy. For healthy cells, the total cell number ρ(t) induces a limitation
on the multiplication of cells that represents homeostasis (i.e., the capacity of a tissue to stop growing,
then differentiate and commit itself to fulfill a given physiological task). For cancer cells, we observe
an uncontrolled growth in the absence of therapy whatever the gene expression level (at least close
enough to x ≈ 0, otherwise the cost to produce it can compensate the birth/death ratio). However,
they remain with the lowest resistance gene because of the reproduction advantage when x = 0. This
can be derived from the model since we have the

Lemma 2.2 (Cancer cells only, no mutations) When c(t) ≡ 0 and θC vanishes, solutions to (2)
with an initial data n0

C(x) > 0 near x ≈ 0 satisfy, with an exponential rate

ρC(t) −→
t→∞

∞, and weakly in the sense of measures
nC(x, t)

ρC(t)
−→
t→∞

δ(x).

Proof. From assumption (4), there is a value xc > 0 for which

r(x)− d(x) ≥ gm :=
1

2
[r(0)− d(0)] > 0, ∀x ∈ [0, xc].

We write after integration in x

d

dt

∫ xc

0
nC(x, t)dx =

∫ xc

0
[r(x)− d(x)]nC(x, t)dx ≥ gm

∫ xc

0
nC(x, t)dx.

Therefore the first statement is proved since∫ xc

0
nC(x, t)dx ≥ eλmt

∫ xc

0
n0
C(x)dx, λm = gm.

We also notice that the same argument, using a small interval closer to x ≈ 0 tells us that for all
λ < r(0)− d(0), there is a xλ such that∫ xλ

0
nC(x, t)dx ≥ eλt

∫ xλ

0
n0
C(x)dx,

and thus, for all λ < r(0)− d(0), there is a value ρ(λ) such that

ρC(t) ≥ ρ(λ)eλt.

From this, we easily conclude the second statement which is a consequence of Laplace formula. Indeed,
for a given y, we can choose from assumption (4), λ > r(y)− d(y) and thus for x ≥ y

nC(x, t)

ρC(t)
≤ n0

C(x)
e[r(x)−d(x)]t

ρ(λ)eλt
−→
t→∞

0.
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In other words, the cell density is asymptotically small for all x > 0, and thus the solution concentrates
at x = 0.

The case with mutations is treated in Section 3.2.

Cancer cells with therapy This is the most interesting situation where resistance may follow from
selection of cells with a high level of gene expression. This can arise because the drug concentration c
is limited in order to keep healthy cells below a given toxicity threshold. This situation occurs if the
maximum net growth rate of tumor cells, as defined through (8), is positive for some x > 0. Here we
concentrate on the simplest case of a constant therapy and we make the additional assumption that,
for all level of c, there is a maximal resistance gene expression xc > 0 which maximizes the fitness

for x 6= xc, r(x)− d(x)− cµC(x) < Rc := r(xc)− d(xc)− cµC(xc) > 0. (10)

Notice however that
Rc ≤ r(xc)− d(xc) ≤ r(0)− d(0) = R0.

With this assumption, we can establish the

Lemma 2.3 (Cancer cells with therapy, no mutations) Assume c ≡ 1, θC = 0 and (10). Then,
the solutions to (2) with an initial data n0

C(x) > 0 satisfy, with an exponential rate

ρC(t) −→
t→∞

∞, nC(x, t)

ρC(t)
−→
t→∞

δ(x− xc).

We do not repeat the proof of this result which is the same as for Lemma 2.2 and gives that
ρC(t)eλt −→

t→∞
∞ for all λ < Rc.

3 Asymptotic analysis with small mutations

A clear mathematical way to precisely express the results mentioned above, i.e., that a specific level
of gene expression is selected, is through asymptotic analysis for small mutations and observing the
dynamics in the long run. In ecology, these models generate populations that are highly concentrated
on some well separated traits with possible branching and polymorphism. For the case at hand, the
mutation rates might be too high to reduce the analysis to this limit, but it is still a way to express
mathematically what happens for small, but non zero, frequencies of mutation.

In this section we state the behaviors that can be derived from analysis in the different cases already
mentioned without mutations in Section 2.2. They give details on the evolution of the population
towards the ESD (Evolutionary Stable Distribution, see [26]), which is that at each time a distribution
close to a Dirac mass is obtained.

Even though these are not the most interesting cases, the results listed below are also valid when
there are no mutations (θH = 0 or θC = 0) and this is the case used later in the numerical simulations
of the solutions.

3.1 Asymptotic analysis: case of healthy cells

With the aim of studying the dynamics of the model in the aforementioned limit of small mutations
and many generations, we introduce a small parameter ε, which is used to rescale time and define a
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more specific choice of the mutation kernel, so that the population dynamics (1) for healthy cells only
and without treatment can be rewritten in the form

ε
∂

∂t
nH(x, t) =

[ 1− θH(
1 + ρH(t)

)β r(x)− d(x)
]
nH(x, t)

+
θH(

1 + ρH(t)
)β ∫ r(y)

1

ε
M̃(y,

y − x
ε

)nH(y, t)dy,

ρH(t) =

∫ ∞
x=0

nH(x, t)dx.

(11)

We have written the mutation kernel in such a way that
MσH (y, x) = 1

εM̃(y, y−xε ) with sup
x≥0

∫
e|z|

2
M̃(x, z)dz <∞,∫ x/ε

−∞ M̃(x, z)dz = 1,
∫ x/ε
−∞ zM̃(x, z)dz = 0,

(12)

so that it appears directly that x−y = O(ε), in other words, mutations have a small effect in terms of
the change in the x, y variables. Notice that, in these expressions, we always have εz ≤ x. Therefore,
the last assumption implies that cells in the state y = 0 do not undergo mutations (they could only
be to z < 0 thus contradicting the zero integral condition). This is useful to state clear and simple
results, otherwise the evolutionary drift creates an ESS (Evolutionary Stable Strategy) (see [13] for
an introduction to the dynamical system theory of adaptive dynamics) for a slightly positive x and
this can be analyzed mathematically with our method but we will not do it here for simplicity of the
presentation.

The analysis in [4, 5, 38] can be used and proves that, thanks to the assumptions (4), the fittest pop-
ulation is obtained when the gene is not expressed at all, in mathematical words, nH(x, t) = ρ̄H,∞δ(x)
is attractive for this system.

Before stating a precise result, we give assumptions. Firstly, we assume that the initial population is
concentrated as a ‘sharp Gaussian’ around a state corresponding to a non-vanishing gene expression x̄0nH,ε(x, 0) = eu

0
H,ε(x)/ε, u0

H,ε(x) −→
ε→0

u0
H(x) locally uniformly,

maxu0
H(x) = 0 = u0

H(x̄0), nH,ε(x, 0) −→
ε→0

ρ̄0
Hδ(x− x̄0).

(13)

Notice that, as ε vanishes, only mutations can deviate such a population determined by ρ̄0
Hδ(x− x̄0)

from this initial state which is asymptotically a steady state for θH = 0 as soon as the total population
satisfies

1(
1 + ρ̄0

H

)β r(x̄0) = d(x̄0). (14)

More precisely, with these new notations we may write

Theorem 3.1 (Healthy cells only) We assume (4), (12)–(14) and that all data are Lipschitz con-
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tinuous. Then, the population is monoclonal in the limit of small mutations:

nH,ε(x, t) −→
ε→0

ρ̄H(t)δ(x− x̄(t)),

and it returns to the fittest trait x = 0: using the notation (9), we have

x̄(t) −→
t→∞

0, ρ̄H(t) −→
t→∞

ρ̄H,∞.

Proof. The limit ε→ 0. The proof is based on the use of the Hopf-Cole transform

uε(x, t) = ε ln(nH(x, t)),
∂uε
∂t

=
ε

nH

∂nH
∂t

.

Inserting it in (11), we find the equation

∂

∂t
uε =

1− θH(
1 + ρH(t)

)β r(x)− d(x) +
θH(

1 + ρH(t)
)β ∫ r(y)M̃(y,

y − x
ε

)e(u(y,t)−u(x,t))/εdy

and changing the variable y 7→ z with y = x+ εz, we find

∂

∂t
uε =

1− θH(
1 + ρH,ε(t)

)β r(x)− d(x) +
θH(

1 + ρH,ε(t)
)β ∫ r(x+ εz)M̃(x+ εz, z)e(uε(x+εz,t)−uε(x,t))/εdz.

At this stage, it is useful to introduce the limit in the integral term which is given by the Hamiltonian

H(x, p) = r(x)

∫
M̃(x, z)ep·zdz. (15)

Notice that from (12), we derive the properties

H(x, 0) = r(x), Hp(x, 0) = 0, Hpp(x, p) ≥ 0.

By convexity, these imply in particular

H(x, p) ≥ r(x). (16)

One can establish two types of uniform estimates: (i) the total number of cells ρH,ε(t) is uniformly
bounded in BV (0, T ) for all T > 0 and

(
d
dtρH,ε(t)

)
− is bounded, therefore

ρH,ε(t) −→
ε→0

ρ̄H(t),
d

dt
ρH(t) ≥ −C. (17)

(ii) Uniform Lipschitz estimates can be established for this kind of models (see [4] for the specific case
of integral mutations).

Therefore, we may now pass to the limit ε → 0 in the equation on uε in the viscosity sense (see
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references below), and we find
∂

∂t
u =

1− θH(
1 + ρH(t)

)β r(x)− d(x) +
θH(

1 + ρH(t)
)β H(x,∇u(x, t)),

max
0≤x<∞

u(x, t) = 0 ∀t > 0.

(18)

This equation is the fundamental new object that describes the dynamics for ε→ 0. It is a constrained
Hamilton-Jacobi equation, which is rather different from the usual Hamilton-Jacobi equation because
the L∞ contraction property is lost for instance. Nevertheless, the correct notion of solutions are still
the viscosity solutions of Crandall-Lions (see [3, 11, 16]).

The solution to equation (18) is a pair (u, ρ) where ρ(t) is the Lagrange multiplier associated with
the constraints maxx u(x, t) = 0. There are two possible approaches to rigorously prove this limit. In
the approach developed in [32], we consider strong assumptions which allow for uniform smoothness
of uε, and then the theory can be carried much further including the long time dynamics of x̄(t). In
this approach concavity assumptions are needed which are difficult to meet in the case at hand (it is
an interesting problem to develop the theory).

The other approach, that we follow here, has been developed in [4, 5, 14, 38]. We consider a weak
theory with our general assumptions and viscosity solutions to (18). The function u is merely Lipschitz
continuous and semi-concave [38], the best possible regularity is ρ(t) ∈ BV (R+) because jumps on
ρ(t) and x̄(t) are possible. This analysis for weak solutions (only possible in one dimension) gives also
that, along with the dynamics, the fittest trait is characterized by

0 = u(x̄(t), t), 0 =
1(

1 + ρH(t)
)β r(x̄(t))− d(x̄(t)). (19)

This second equality is just a consequence of ∂u
∂t = ∇u = 0 at a maximum point (viscosity solutions

are not enough and semi-concavity is necessary here).

The limit t→∞. Additionally, we also know from (17) that ρH(t) is non-decreasing, therefore taking
into account (19) and the definition (9), we find

ρH(t) ↗
t→∞

ρ̄H ≤ ρ̄H,∞, x̄(t) ↘
t→∞

x̄∞.

It remains to identify these limits.

By contradiction, assume that ρ̄H < ρ̄H,∞, then we use that

∂

∂t
u(x, t) =

1− θH(
1 + ρH(t)

)β r(x)− d(x) +
θH(

1 + ρH(t)
)β H(x,∇u(x, t))

≥ 1(
1 + ρH(t)

)β r(x)− d(x)

using (16) for the inequality. With our assumption and the definition of ρ̄H,∞, there are intervals
[x1, x2] where the right hand side is positive for all t and thus ∂

∂tu(x, t) > 0 (uniformly) on this
interval which contradicts the condition maxx u(x, t) = 0. This proves that ρ̄H = ρ̄H,∞ and concludes
the proof of the theorem.
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3.2 Asymptotic analysis: cancer cells, no therapy

Following the lines drawn in Section 3.1, we can arrive at the same conclusion that, considering cancer
cells only, the gene expression x = 0 is selected even when mutations are present but small. Again a
clean mathematical path towards this direction is to rescale the model for cancer cells and, following
the lines of Section 3.1, to rewrite it as

ε
∂

∂t
nC(x, t) =

[
(1− θC) r(x)− d(x)

]
nC(x, t) + θC

∫
r(y)

1

ε
M̃(y,

y − x
ε

)nC(y, t)dy. (20)

Because it is linear and expresses unlimited growth, this model is very different from those in Section
3.1 for healthy cells (or in ecology). In these cases there is a limitation by nutrients or space which
controls nonlinearly the growth and the dynamics through an integral variable ρ(t). Nevertheless
we can use the same method to analyze again the main effect, which is that x = 0 is a globally
attractive ESD; the proof highlights how a new control unknown shows up naturally and gives the
same constraint and Lagrange multiplier in the limit as in (18). To state the result we need again to
make more precise that the initial data is supposed monoclonal at a value x̄0 > 0nC,ε(x, 0) = eu

0
C,ε(x)/ε, u0

C,ε(x) −→
ε→0

u0
C(x) locally uniformly,

maxu0
C(x) = 0 = u0

C(x̄0), nC,ε(x, 0) −→
ε→0

ρ̄0δ(x− x̄0).
(21)

Theorem 3.2 (Cancer cells, no therapy) We assume (4), (12), (21) and that all data are Lips-
chitz continuous. Then, the population is monoclonal in the limit of small mutations:

nC(x, t)∫∞
0 nC(x, t)dx

−→
ε→0

δ(x− x̄(t)),

and it returns to the fittest trait x = 0
x̄(t) −→

t→∞
0.

The model again is not very relevant for direct interpretation because, as we see it below, the cell
number density can decrease exponentially and then it explodes exponentially. A behavior reflecting
only the fact that cells cannot be naturally endowed with a gene expression x 6= 0; this may occur if
a treatment is stopped after resistance has been triggered (see next section).

Proof. We define the probability density

pε(x, t) :=
nC(x, t)

ρC(t)
, ρC(t) =

∫ ∞
0

nC(x, t)dx.

Because ρC(t) satisfies the equation

ε
dρC(t)

dt
=

∫ ∞
0

[r(x)− d(x)]nC(x, t)dx

12



we also find a closed equation for pε, namely

ε
∂

∂t
pε(x, t) = pε(x, t)[(1− θC)r(x)− d(x)]− pε(x, t)Iε(t) + θC

∫ ∞
0

r(y)pε(y)
1

ε
M̃(y,

y − x
ε

)dy

with

Iε(t) :=

∫ ∞
0

pε(y, t)(r(y)− d(y))dy. (22)

As mentioned earlier, this integral comes naturally to play the role of the population density ρ(t) in
the case of healthy cells as a Lagrange multiplier and we are back to the general setting in [4, 5, 32, 38].

We can perform the Hopf-Cole transform again uε = ε ln pε and write

∂

∂t
uε = (1− θH)r(x)− d(x)− Iε(t) + θH

∫
r(x+ εz)M̃(x+ εz, z)e(uε(x+εz,t)−uε(x,t))/εdz.

We can finally pass to the limit and find, still with the Hamiltonian defined in (15), the constrained
Hamilton-Jacobi equation

∂

∂t
u = (1− θH)r(x)− d(x)− I(t) + θH H(x,∇u(x, t)),

max
0≤x<∞

u(x, t) = 0 ∀t > 0.

(23)

As mentioned in Section 3.1, we find again that the fittest trait x̄(t) is characterized by

0 = u(x̄(t), t), 0 = r(x̄(t))− d(x̄(t))− I(t).

From the definition of Iε(t), this last equality is of course equivalent to the limit pε → δ(x− x̄(t)).

Again, the general theory applies here and we may conclude the proof as in Section 3.1: I(t) is
non-decreasing and thus x̄(t) is non-increasing; this proves that these two quantities have limits for
t→∞, which we easily identify from the Hamilton-Jacobi equation.

With this information, notice that the dynamics of ρC(t) can be approximated by

ε
dρC(t)

dt
= ρC(t)[r(x̄(t))− d(x̄(t))],

and it may decrease exponentially if r(x̄0)−d(x̄0) > 0, but eventually it will increase because we know
that r(0)− d(0) < 0.

3.3 Asymptotic analysis: cancer cells with therapy

In the case when treatment is included, the dynamics of cancer cells given by equation (2)–(3) is
independent from healthy cells and we concentrate on them. We use the same notations as before
to express the small mutations regime where we can state a clear mathematical result and write the
dynamics as

ε
∂

∂t
nC(x, t) =

[
(1− θC) r(x)− d(x)− µc(x)

]
nC(x, t) + θC

∫
r(y)

1

ε
M̃(y,

y − x
ε

)nC(y, t)dy. (24)

13



Theorem 3.3 (Cancer cells with therapy) We assume (4), (10), (12), (21) for some 0 < x0 < xc
and that all data are Lipschitz continuous. Then, the population is monoclonal in the limit of small
mutations:

nC(x, t)∫∞
0 nC(x, t)dx

−→
ε→0

δ(x− x̄(t)),

and it selects asymptotically the fittest trait x = xc

x̄(t) −→
t→∞

xc.

The structure of this problem is linear as in Section 3.2. Therefore we have to adapt the general
theory of concentration as we did it for cancer cells only. There is no special difficulty compared to
the proof of Theorem 3.2 and we skip it. We just mention that, again, we cannot analyze directly the
cell population density nc, because it blows-up exponentially, and the natural quantity on which we
can develop our method is the probability density

pε(x, t) :=
nC(x, t)

ρC(t)
, ρC(t) =

∫ ∞
0

nC(x, t)dx.

4 A consequence for optimal therapy

As we have seen in Theorem 3.3, the model predicts selection of a resistance gene whose level of
expression xc depends on the drug dose. This leads to the question to know if cancer growth can be
minimized by using an optimal dose c. At this stage we only consider the case of a constant dose c.
We analyze the particular case of coefficients used for our numerical studies in Section 5.

To state the problem, we recall that the resistant population will result in net growth (fitness) Rc
given by formula (10) that is

Rc := r(xc)− d(xc)− cµc(xc) = max
x≥0

[r(x)− d(x)− cµC(x)] . (25)

Therapy optimization means finding c∗ that minimizes Rc over c > 0. The most usual protocol is to
maximize the dose c with the only limitation of toxicity on healthy cells; does this minimize Rc?

We analyze this question for the choice

Rc(x) :=
r2

0

1 + x2
− d− α2

a2 + x2
; (26)

here we have set α2 := c to simplify the following calculations. Natural assumptions are

0 < a2(r2
0 − d) < α2, (27)

a < 1. (28)

The first one is equivalent to Rc(x = 0) < 0, i.e., the therapy is high enough to kill the cancer cells
in their normal state x = 0 while cancer cells by themselves have a positive growth. The second one
says that the therapy acts faster on the gene expression than the natural birth process.

14



In order to find the maximum of Rc(x), we use the variable y = x2, take the derivative and set it
equal to zero

R′c(y) = − r2
0

(1 + y)2
+

α2

(a2 + y)2
= 0⇐⇒ r0

1 + y
=

α

a2 + y
.

From this we obtain the condition for existence of a maximum of Rc(y)

a2r0 < α⇐⇒ R′c(0) > 0, (29)

and the following expression for the maximum point

yc =
α− a2r0

r0 − α
=

> 0 for a2r0 < α < r0,

< 0 otherwise.
(30)

When yc > 0, we compute the maximum value of Rc

Rc =
(α− r0)2

1− a2
− d. (31)

We can now conclude that:

• when α ≥ r0, then Rc(y) increases from Rc(0) < −d to Rc = −d; this level of therapy is strong
enough and resistance cannot occur.
•When 0 < a2(r2

0− d) ≤ α ≤ a2r0 (this interval of α is not empty for r0 ≤ 1 for instance), then Rc(y)
decreases from Rc = Rc(0) > −d to −d. Although weaker, this level of therapy avoids resistance to
occur.
• When a2r0 < α < r0, then Rc(y) increases from Rc(0) < 0 to Rc and then decreasing; Rc can be
positive iff (1−a2)r2

0 > d and this can happen with Rc(0) < 0 only when a2r0 < a
√
r2

0 − d. Resistance
occurs therefore if for α = a

√
r2

0 − d, then Rc > 0. An example is explicitly computed in Section 5.
However, since Rc in (31) is decreasing in α in the range under consideration here, the only way to
avoid resistance is to increase the dose.

5 Numerics

In this section we illustrate the analytic results obtained before by numerical simulations performed
in Matlab. For all these computations we use 4000 points on the interval [0, 1]. Moreover, we treat
the case without mutations, i.e., θH = θC = 0. The parameter ε = 10−2 is used for the initial data
which we take under the ‘highly concentrated form’ (13), (21) so as to obtain very localized solutions
nC,H according to the theory in [32].

We first illustrate the case of healthy cells. Figure 5.1 shows the time dynamics of the concentration
point in (11) with

r(x) :=
2

1 + 5x2
, d := 0.4

and the initial data
n0(x) := C0 exp(−(x− 0.7)2/ε),
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where the constant C0 is adjusted to enforce ‖n0‖L1([0,1]) = 1. The computations were done using
a implicit-explicit finite difference scheme. It can be seen that it takes very short time to adapt to
R(x̄(t), ρ̄(t)) = 0, that n(t, x) concentrates and its maximum moves towards 0.
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Figure 5.1: (Healthy cells) The plot to the left shows the level-sets of n(t, x). The dotted line shows
the unique solution x to R(x, ρ̄(t)) = 0 as a function of t. On the right, we display the values of
nH(t, x) at the end of the computation. Notice that nH(t, x) concentrates and its maximum moves
closer towards 0 for larger time.

Next we illustrate the case when the therapy induces resistance. Figure 5.2 shows the time dynamics
of the concentration point in (24) with

r(x) :=
1

1 + x2
, d := 0.245, µ(x) :=

0.552

0.52 + x2

and initial data as before but centered at x0 = 0.5

n0(x) := C0 exp(−(x− 0.5)2/ε).

As shown in Section 4, the concentration point for large time can be computed explicitly:

xC =

√
α− a2

1− α
=

√
2

3
≈ 0.8165.

Since we have exponential growth of the maximum of nc, after a certain time the computations are
breaking down. In order to further follow the dynamics of the maximum point x̄(t), we use the

equation on pε =
nc∫∞

0 nc dx
. Results for the calculations on pε are shown in Figure 5.3. Figure 5.2

and Figure 5.3 both confirm the results from theory, i.e., r(x) − d(x) − cµC(t) − I(t) = 0 (with I(t)
defined by (22)).
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Figure 5.2: (Resistance) The plot to the left shows the level-sets of nC(t, x)/

∫
nC(t, x) dx. The smaller

of the two positive solutions of r(x)− d(x)− cµC(t)− I(t) = 0 is shown as dotted line. On the right,
we plot the values of nC(t, x) at the end of the computation. Calculations are done for the equation
(24) on nC .
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Figure 5.3: (Resistance ct’d) The plot to the left shows the level-sets of p. The smaller of the two
positive solutions of r(x)− d(x)− cµC(t)− I(t) = 0 is shown as dotted line. On the right, we plot the
values of p(t, x) at the end of the computation. Calculations are done for the equation on pε.

6 A structured population model for healthy and tumor cells under
the effects of cytotoxic and cytostatic drugs

We turn to the study of the coupled dynamics of healthy and tumor cells exposed to both cytotoxic and
cytostatic drugs. Our model relies on the same structured population formalism presented in Section
2.1. However, to allow a better qualitative agreement with biological reality, some modifications are
introduced, which make the model more difficult to handle analytically. Therefore, the behavior of its
solutions is studied only through numerical simulations, whose results are discussed at the end of this
section.

As in Section 2.1, the number densities of healthy and cancer cells with resistant gene expression

17



level 0 ≤ x < ∞ at time t ≥ 0 are described by functions nH(t, x) ≥ 0 and nC(t, x) ≥ 0. The
selection/mutation dynamics of cells under the effects of cytotoxic and cytostatic drugs are given by
the system below:

∂

∂t
nH(x, t) =

mutations and renewal︷ ︸︸ ︷
θH

1 + αHc2(t)

(∫
rH(y)M(y, x)nH(t, y)dy − rH(x)nH(x, t)

)
+

(
rH(x)

1 + αHc2(t)
− dH(x)IH(t)

)
nH(x, t)︸ ︷︷ ︸

growth with cytostatic therapies and death

− c1(t)µH(x)nH(x, t)︸ ︷︷ ︸
effect of cytotoxic therapies

, (32)

∂

∂t
nC(x, t) =

θC
1 + αCc2(t)

(∫
rC(y)M(y, x)nC(t, y)dy − rC(x)nC(x, t)

)
+

(
rC(x)

1 + αCc2(t)
− dC(x)IC(t)

)
nC(x, t)− c1(t)µC(x)nC(x, t), (33)

where
IH(t) := aHHρH(t) + aHCρC(t), IC(t) := aCHρH(t) + aCCρC(t). (34)

Apart from integrals IH and IC , which have a different meaning with respect to the integral I consid-
ered within the previous sections, the same notations of Section 2.1 are used in the above equations.
In addition:
• Kernel M(y, x) denotes the probability that a mutation of a healthy/cancer cell with gene expression
y leads to a daughter cell with level x.
• Functions rH(x) and rC(x) stand, respectively, for the proliferation rate of healthy and cancer cells
with gene expression x. Factors

1

1 + αHc2(t)
and

1

1 + αCc2(t)

mimic the effects of cytostatic drugs, whose concentration at time t is described by function c2(t). In
fact, as previously noted, such therapies act by slowing down cell proliferation, rather than by killing
cells. The average sensitivities of healthy and cancer cells to these drugs are modeled by parameters
αH , αC ∈ R+.
• Function dH(x) represents the death rate of healthy cells due both to apoptosis and deprivation of
resources (e.g., oxygen and glucose) by cancer cells. Analogously, function dC(x) models the death
rate of cancer cells because of the competition for space and resources with the other cells. Two main
differences are here introduced with respect to the model presented in Section 2.1. On the one side, we
assume the growth of cancer cells to be hampered by the competition for space and resources among
themselves and healthy cells as well. As a result, we multiply dC(x) by IC(t). On the other side,
we consider apoptosis and competition phenomena involving normal cells as mediated by interactions
with the surrounding cells. Therefore, instead of multiplying function rH(x) by 1

(1+%(t))β
as in (1), we

multiply dH(x) by IH(t). It is worth noticing that both modeling strategies mimic the same effects of
net proliferation and death.
• Function c1(t) denotes the concentration, at time t, of cytotoxic agents, which are assumed to kill
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both healthy and cancer cells with gene expression x at rates µH(x) and µC(x), respectively.
• Coefficients aHC and aHH stand, respectively, for the average interaction rates between healthy and
cancer cells or among healthy cells themselves. Analogous considerations hold for aCH and aCC .

As in Section 2.1, model (32), (33) can be recast in the equivalent form given hereafter, in order to
highlight the role played by the net growth rates of healthy and cancer cells, which are described by
functionals RH(IH , c1, c2, x) and RC(IC , c1, c2, x):

∂

∂t
nH(x, t) = RH(IH(t), c1(t), c2(t), x)nH(x, t) +

θH
1 + αHc2(t)

∫
rH(y)M(y, x)nH(t, y)dy

∂

∂t
nC(x, t) = RC(IC(t), c1(t), c2(t), x)nC(x, t) +

θC
1 + αCc2(t)

∫
rC(y)M(y, x)nC(t, y)dy,

with

RH(IH(t), c1(t), c2(t), x) :=
rH(x)(1− θM )

1 + αHc2(t)
− dH(x)IH(t)− µH(x)c1(t),

RC(IC(t), c1(t), c2(t), x) :=
rC(x)(1− θM )

1 + αCc2(t)
− dC(x)IC(t)− µC(x)c1(t).

The following considerations and hypothesis are assumed to hold:
• Parameters θH,C and functions µH,C satisfy the assumptions of Section 2.1.
• We consider intra-population interactions as occurring at a higher rate than inter-population ones.
As a consequence, the interaction rates are assumed to be real numbers such that

aHH , aCC > 0, aHC , aCH ≥ 0, aHH > aHC , aCC > aCH . (35)

• In analogy with Section 2.1, with the aim of translating in mathematical terms the idea that
producing resistance genes implies resource allocation both for healthy and cancer cells (eventhough
this is debated), we assume functions rH and rC to be decreasing

rH,C(·) > 0, r′(·)H,C < 0. (36)

In order to mimic the fact that mutations conferring resistance to therapies may also provide cells
with stronger competitive abilities, functions dH and dC are assumed to be decreasing

dH,C(·) > 0, d′(·)H,C < 0. (37)

• Since we assume that cytostatic agents are designed to be more effective against cancer cells rather
against healthy cells, we make the additional assumption

αH < αC . (38)

We analyse the model with these new ingredients through numerical simulations illustrating how the
outputs can be influenced by different concentrations of cytotoxic and cytostatic agents. From a
biological perspective, this means to use the present model as an in silico laboratory to highlight some
mechanisms that may play a key role in the development of cancer resistance to therapies, with the
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aim of providing support to the design of optimal therapeutic strategies. The following contents are
organized into four subsections. Subsection 6.1 presents those assumptions that define the general
setup for numerical simulations. Subsection 6.2 and subsection 6.3 are devoted to study the separate
effects of cytotoxic and cytostatic drugs on the dynamics of healthy and cancer cells. Finally, subsection
6.4 focuses on the combined action of these two classes of anti-cancer agents, looking for the existence
of suitable doses allowing the design of optimal therapeutic strategies.

6.1 Setup for numerical simulations

Numerical simulations are performed as in Section 5 with 2000 points on the interval [0, 1]. Interval
[0, T ] with T = 2000dt is selected as time domain, where the unit time dt is chosen equal to 0.1.

We choose the initial conditions

nH(t = 0, x) = nC(t = 0, x) = n0(x) := C0 exp(−(x− 0.5)2/ε), (39)

where C0 is a positive real constant such that

%H(t = 0) + %C(t = 0) ≈ 1.

Parameter ε is set equal to 0.01 to mimic a biological scenario where most of the cells are characterized
by the resistant gene expression level corresponding to x = 0.5 at the beginning of observations.

Assumptions and definitions given hereafter are used along all simulations:

M(y, x) := CM exp(−(y − x)2/(0.01)2), CM

∫ 1

0
exp(−(y − x)2/(0.01)2)dx = 1, ∀y ∈ [0, 1],

θH = θC = θ := 0.1, rH(x) :=
1.5

1 + x2
, rC(x) :=

3

1 + x2
, αH := 0.01, αC := 1,

aHH = aCC = a := 1, aHC := 0.07 aCH := 0.01,

dH(x) := 0.5(1− 0.1x), dC(x) := 0.5(1− 0.3x),

µH(x) :=
0.2

(0.7)2 + x2
, µC(x) :=

0.4

(0.7)2 + x2
.

Functions c1(t) and c2(t) are assumed to be constant, i.e.

c1(t) := c1 ∈ R+, c2(t) := c2 ∈ R+.

The values of parameters c1 and c2 are chosen case by case according to our aim in each subsection.

6.2 Effects of cytotoxic drugs

At first, we study the effects of cytotoxic agents only on the dynamics of healthy and cancer cells.
With this aim, we run simulations for different values of parameter c1 with c2 = 0. The obtained
results are summarized by Figure 6.4, which depicts a scenario that is in good agreement with clinical
observations.

In absence of therapeutic agents (i.e., when c1 = c2 = 0), we observe, at the end of the simulations,
the selection for those cells that are characterized by a low expression level of the resistant genes
and thus, due to assumption (36), by a strong proliferative potential. On the other hand, as long
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as c1 increases, the number of cancer cells inside the sample at the end of the observation window
becomes smaller but, due to the typical side-effects of cytotoxic agents, even the number of healthy
cells decreases. Furthermore, Figure 6.4 highlights how cytotoxic agents alone favor the selection of
resistant clones. In fact, the average resistant gene expression level of cells tends to increase with the
concentrations of therapeutic agents.
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Figure 6.4: (Cytotoxic drugs only) Trends of nC(x, t) (left) and nH(x, t) (right) at t = 2000 for c1 = 0
(dashed-dotted lines), c1 = 1.75 (dashed lines) and c1 = 3.5 (solid lines). In all cases, parameter c2 is
set equal to zero. As parameter c1 increases, functions nC(t = 2000, x) and nH(t = 2000, x) tend to
be highly concentrated around some increasing values of x and their maximum values become smaller;
this indicates higher resistance with higher doses of drug.

6.3 Effects of cytostatic drugs

Focusing on the action of cytostatic agents alone, we run simulations increasing parameter c2 and
keeping c1 = 0. The results presented in Figure 6.5 highlight the capability of the present model
to mimic the effects typically induced by cytostatic agents on cells dynamics. In fact, under the
considered values of c2, the dynamics of healthy cells is kept unaltered while the proliferation of
cancer cells is reduced as long as the drug concentration increases. Furthermore, it should be noted
that increasing values of c2 tend to slow down the dynamics of cancer cells, i.e., for larger values of
c2, function nC(x, t) at the end of simulations stays closer to the initial data nC(t = 0, x).

6.4 Combined effects of cytotoxic and cytostatic drugs

Finally, we are interested in analyzing the effects on cell dynamics caused by the simultaneous action
of cytotoxic and cytostatic drugs. As a result, we perform simulations with various values of both c1
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Figure 6.5: (Cytostatic drugs only) Trends of nC(x, t) (left) and nH(x, t) (right) at t = 2000 for
c2 = 1 (dashed-dotted lines), c2 = 3 (dashed lines) and c2 = 7 (solid lines). In all cases, parameter
c1 is set equal to zero. Increasing values of parameter c2 lead the qualitative behavior of function
nC(t = 2000, x) to become closer to the one of nC(t = 0, x). On the other hand, the trend of function
nH(t = 2000, x) remains basically unaltered.

and c2. The obtained results are summarized by Figure 6.6 and Figure 6.7. They show that there are
values of c1 and c2 leading to extinction of the cancer cells while keeping alive about one half of the
healthy cells at the end of computations. This is consistent with experimental observations suggesting
that different therapies in combination can avoid the emergence of resistance and minimize side-effects
on healthy cells. Furthermore, it should be noted that such values of c1 and c2 are smaller than the
highest ones considered in previous simulations, which do not even allow a complete eradication of
cancer cells (see Figure 6.4 and Figure 6.5). Therefore, these results also suggest that optimized
anti-cancer treatments can be designed making use of proper combinations between cytotoxic and
cytostatic agents, thus supporting the idea that looking for protocols based on treatment optimization
can be a more effective strategy for fighting cancer rather than only using high drug doses.

7 Conclusion and perspectives

Based on a model adapted from ecology, we have presented a mathematical analysis of resistance
mechanisms to drugs under the assumption that resistance is induced by adaptation to drug environ-
mental pressures. We have used physiologically structured equations where the variable represents
the gene expression levels. Theories developed in other contexts of population biology and Darwinian
evolution underlay our analysis and finding that therapy can trigger emergence of a resistance gene
and result in disease relapse.
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Figure 6.6: (Cytotoxic and cytostatic drugs) Dynamics of nC(x, t) for c1 = c2 = 0 (top-left), c1 =
c2 = 1 (top-right), c1 = c2 = 1.5 (bottom-left) and c1 = c2 = 2 (bottom-right). As long as parameters
c1 and c2 increase, the maximum value of nC(t = 2000, x) becomes smaller so that, under the choice
c1 = c2 = 2, function nC(x, t) tends to zero across time.

Importantly, results suggest the feasibility of optimized anti-cancer treatments, based on specific
combinations of cytotoxic and cytostatic drugs (see Section 6). On the other hand, if only cytotoxic
drugs are available, then (not surprisingly) the optimal therapy is always to administer the maximal
tolerated dose (see Section 4). This scenario is somewhat different from that studied in [21], where
the resistant and susceptible populations are in competition, a polymorphism that cannot occur in
our model because it contains a single environmental variable (Gause competitive exclusion principle).
It is worth noting that we have analyzed the possibility for optimization only in the restrictive case
of a constant level of therapy and a possible future extension would be to modulate dose with time [17].

The model is very simple at this stage and several directions for improvements are possible. As
mentioned above, because there is only a single environmental unknown (the drug pressure and only
one trait depending on it), polymorphism is not possible and thus a more realistic description of the
micro-environment of the cell populations is needed (see [10] and the references therein). Another
research direction would be to include several qualitatively different drug resistance mechanisms, to-
gether with realistic, targeted, and clinically acceptable multi-drug therapies.

Acknowledgments. The authors wish to thank J.-P. Marie (Hôpital Saint-Antoine, Paris) for many
helpful discussions and insights on the modeling issues. JC, MEH and BP are supported by a PEPii
grant from the Centre National de la Recherche Scientifique.
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Figure 6.7: (Cytotoxic and cytostatic drugs) Dynamics of nH(x, t) for c1 = c2 = 0 (top-left), c1 =
c2 = 1 (top-right), c1 = c2 = 1.5 (bottom-left) and c1 = c2 = 2 (bottom-right). As long as parameters
c1 and c2 increase, the maximum value of nH(t = 2000, x) becomes smaller but about one half of the
healthy cells is still alive at the end of computations.
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A Matlab code for Figure 5.1

% solves equation

% \partial_t n = [2./((1.+5.*x.^2).*(1 + rho))-0.4]n

%------------------------------------------------------------

%------------------------------------------------------------

clear all;

close all;

m=4000; %number of points for space grid

eps=.01; %epsilon

rhoin=1.; %initial rho

dx=1/m; x = (0:m)*dx; %space grid (0,1/m,2/m,...,1)

dt=25.*dx^2/eps; %time step

dtsave = dt; %initialize array to save time steps

tfinal = 15000 * dt; %final time

weights = ones(numel(x)); %weights for trapez rule integration

weights(1) = 0.5;

weights(end) = 0.5;
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nd=exp(-(x-.7).^2/eps); %initial data

nd=rhoin*nd/(dx*sum(nd)); %initial data normalized to have mass rhoin

ndd=nd;R=x; %initialize ndd and R

count = 0;

temps=0;

savend(1,:)=x(1:10:m); %initialize arrary for saving nd at every 10th point in space

while temps < tfinal

count = count +1

dt = min(dt, tfinal -temps);

rho = dx * trapz(nd)

savend(count,:)=nd(1:10:m);

arrayt(count) = temps;

arrayR(count) = ((4-rho)/(5+5*rho))^(1/2);

R=2./((1.+5.*x.^2).*(1 + rho))-0.4;

Rp=max(0,R)/eps; Rm=min(0,R)/eps; %positive and negative part of R

ndd = ((1+dt*Rp).*nd )./(1-dt*Rm); %calculate n(t+dt) from n(t)

nd=ndd;

temps = temps + dt;

end

figure

[X,Y] = meshgrid(arrayt,x(1:10:m));

[C,h]=contour(X,Y,savend’,[4 10 30],’LineColor’,’black’);

text_handle = clabel(C,h);

hold on;

plot(arrayt,arrayR,’:k’);

xlabel(’t’)

ylabel(’x’)

figure;

plot(x,nd,’k’);

xlabel(’x’)

ylabel(’n’)
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B Matlab code for Figure 5.2

% solves equation

% \partial_t n = [1./(1.+x.^2)-dea-(al^2)./(aa^2+x.^2)]n

%-------------------------------------------------------------

% ------------------------------------------------------------

clear all;

close all;

m=4000; %number of points for space grid

eps=.01; %epsilon

rhoin=1.; %initial rho

dx=1/m; x = (0:m)*dx; %space grid (0,1/m,2/m,...,1)

dt=4500*dx^2/eps; %time step

dtsave = dt; %initialize array to save time steps

tfinal = 1000 * dt; %final time

weights = ones(numel(x)); %weights for trapez rule integration

weights(1) = 0.5;

weights(end) = 0.5;

nd=exp(-(x-.5).^2/eps); %initial data

nd=rhoin*nd/(dx*sum(nd)); %initial data normalized to have mass rhoin

ndd=nd;R=x; %initialize ndd and R

nd0=nd;

count = 0;

temps=0;

savendrenorm(1,:)=x(1:10:m); %initialize arrary for saving nd at every 10th point in space

% saveR(1,:)=x(1:10:m); %initialize arrary for saving R at every 10th point in space

al=.55

aa=.5

dea=.245

R=1./(1.+x.^2)-dea-(al^2)./(aa^2+x.^2);

while temps < tfinal

count = count +1

nd = exp(R*temps/eps).*nd0; %exponential formula to solve the ODE

pp = nd/(dx * trapz(nd));
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Ik= dx * trapz(pp.*R);

dt = min(dt, tfinal -temps);

rho = dx * trapz(nd)

savendrenorm(count,:)=nd(1:10:m)/(dx * trapz(nd));

arrayt(count) = temps;

%calculating explicitly the position of the concentration point

aq=(Ik+dea)

bq=-1+al^2+(Ik+dea)*(1+aa^2)

cq=-aa^2+al^2+(Ik+dea)*aa^2

xq2=(-bq-(bq^2-4*aq*cq)^(1/2))/(2*aq)

xq = (xq2)^(1/2)

arrayR(count) = xq;

temps = temps + dt;

end

figure

[X,Y] = meshgrid(arrayt,x(1:10:m));

[C,h]=contour(X,Y,savendrenorm’,[2 8 16],’LineColor’,’black’);

text_handle = clabel(C,h);

hold on;

plot(arrayt,arrayR,’:k’);

xlabel(’t’)

ylabel(’x’)

figure;

plot(x,nd,’k’);

xlabel(’x’)

ylabel(’n’)
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