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ABSTRACT

Quantization, defined as the act of attributing a finite number

of grey-levels to an image, is an essential task in image acqui-

sition and coding. It is also intricately linked to various image

analysis tasks, such as denoising and segmentation. In this

paper, we investigate quantization combined with regularity

constraints, a little-studied area which is of interest, in partic-

ular, when quantizing in the presence of noise or other acqui-

sition artifacts. We present an optimization approach to the

problem involving a novel two-step, iterative, flexible, joint

quantizing-regularization method featuring both convex and

combinatorial optimization techniques. We show that when

using a small number of grey-levels, our approach can yield

better quality images in terms of SNR, with lower entropy,

than conventional optimal quantization methods.

Index Terms— Convex optimization, combinatorial op-

timization, proximal methods, graph cuts, image coding, seg-

mentation, denoising, entropy.

1. INTRODUCTION

Quantization is a fundamental task in digital image process-

ing. It plays a prominent role in early processing stages such

as image digitization, and it is essential in lossy coding. It

bears close resemblance to high level tasks such as denoising,

segmentation, and data classification. In particular, quantiz-

ing a grey scale image in Q levels can be viewed as a clas-

sification or segmentation of the image in Q areas following

an intensity homogeneity criterion. Each segmented area then

corresponds to a decision class of the quantizer.

A classical solution for designing an optimal quantizer of

an image is provided by the celebrated Lloyd-Max (LM) al-

gorithm [1, 2]. An extension to the general vector case is the

LBG algorithm [3]. The LM algorithm proceeds iteratively

by alternatively optimizing quantization levels and decision

levels so as to minimize a flexible quantization error measure.

It is known to present good convergence properties in prac-

tice. However, one drawback is the lack of spatial regular-

ity of the quantized image. Spatially smooth properties may
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be useful in low-rate compression when using advanced cod-

ing algorithms (e.g based on run length, differential or multi-

resolution techniques). It may also be of interest for quan-

tizing images featuring noise. In the latter case, quantization

can be viewed as a means for denoising discrete-valued im-

ages that are piecewise constant.

Since the LM algorithm is closely related to K-means,

which are widely used in data classification, enforcing spa-

tial smoothness of the quantized image could be achieved by

resorting to fuzzy C-means clustering techniques and their ex-

tensions [4]. These algorithms are however based on local

measures of smoothness.

In this paper, we propose a quantization method that en-

forces some global spatial smoothness. This is achieved by

introducing an adjustable regularization term in the mini-

mization criterion, in addition to a quantization error mea-

sure. Similarly to the LM algorithm, the optimal design of

the quantizer is performed iteratively by alternating the mini-

mization of a label field iD and of a quantization level vector

r. The latter minimization reduces to a convex optimiza-

tion problem whereas the former is carried out by efficient

combinatorial optimization techniques.

The problem is formulated in Section 2 and the notation

used throughout the paper is introduced. Section 3 describes

the proposed quantizer design algorithm. Section 4 provides

more details on the combinatorial optimization step. Finally,

some simulation results are provided in Section 5 to show the

effectiveness of the proposed quantization method before a

conclusion is drawn in Section 6.

2. PROBLEM

In order to define a quantizer, we introduce the following vari-

ables: Q is a positive integer, D = (Dk)1≤k≤Q is a partition

of {1, . . . , N} × {1, . . . ,M} and r = (r1, . . . , rQ) is vector

in CQ, where CQ is the closed convex cone:

CQ =
{

(s1, . . . , sQ) ∈ R
Q
∣

∣ s1 ≤ · · · ≤ sQ
}

. (2.1)

The partition D can be characterized by the label image
(

iD(n,m)
)

1≤n≤N,1≤m≤M
, defined as: for every (n,m) ∈

{1, . . . , N} × {1, . . . ,M} and k ∈ {1, . . . , Q},

iD(n,m) = k ⇔ (n,m) ∈ Dk. (2.2)



A scalar quantized image overQ quantization levels r1, . . . , rQ
associated with the partition D is then given by

qiD,r = (riD(n,m))1≤n≤N,1≤m≤M ∈ {r1, . . . , rQ}
N×M

Let f =
(

f(n,m)
)

1≤n≤N,1≤m≤M
∈ R

N×M denote

the original image. An “optimally” Q-level quantized im-

age qi
D
,r of f is usually obtained by looking for (iD, r) ∈

{1, . . . , Q}N×M × CQ solution to the following problem:

minimize
iD,r

ϕ(qiD,r, f) (2.3)

where ϕ is some measure of the quantization error. Standard

choices for ϕ are:

• the weighted ℓp norm measure (p ∈ [1,+∞[)
(

∀g =
(

g(n,m))1≤n≤N,1≤m≤M ∈ R
N×M

)

ϕ(g, f) =

N
∑

n=1

M
∑

m=1

ωn,m|g(n,m)− f(n,m)|p

where (ωn,m)1≤n≤N,1≤m≤M ∈ [0,+∞[N×M . As

special cases, the mean square error criterion is found

when p = 2, and the mean absolute error criterion

when p = 1.

• the sup norm measure
(

∀g =
(

g(n,m))1≤n≤N,1≤m≤M ∈ R
N×M

)

ϕ(g, f) = max
(n,m)∈{1,...,N}×{1,...,M}

|g(n,m)− f(n,m)|.

One of the drawbacks of this approach is that it does not guar-

antee any spatial homogeneity of the resulting quantized im-

age. To alleviate this shortcoming, we propose to solve the

following problem:

minimize
iD,r

ϕ(qiD,r, f) + ρ(iD) (2.4)

where ρ is some regularization function which is used to pro-

mote the spatial regularity of the label image. Typical choices

for ρ that can be made are the following

• isotropic variation functions

ρ(iD) = µ

N−1
∑

n=1

M−1
∑

m=1

ψ(‖∇iD(n,m)‖), µ ≥ 0

(2.5)

where ∇iD(n,m) =
(

iD(n + 1,m) − iD(n,m),

iD(n,m + 1) − iD(n,m)
)

is the discrete gradient of

iD at location (n,m).

• anisotropic variation functions

ρ(iD) = µ
(

N−1
∑

n=1

M
∑

m=1

ψ(|iD(n+1,m)− iD(n,m)|)

+

N
∑

n=1

M−1
∑

m=1

ψ(|iD(n,m+1)−iD(n,m)|)
)

, µ ≥ 0.

(2.6)

In the above two examples, ψ is a function from [0,+∞[
onto [0,+∞[. When ψ is the identity function, the classi-

cal isotropic or anistropic total variations are obtained. If

ψ = (·)2, then a Tikhonov-like regularization is performed.

Another interesting choice of ψ is the binary cost function

(∀x ∈ [0,+∞[) ψ(x) =

{

0 if x = 0

1 otherwise.
(2.7)

3. PROPOSED OPTIMIZATION METHOD

Even if ϕ(·, f) and ρ are convex functions, Problem (2.4) is

a nonconvex optimization problem due to the fact that iD be-

longs to a nonconvex set of discrete values. In order to solve

numerically this problem, we propose to use the following

alternating optimization algorithm:

Fix Q ∈ N
∗ and r

(0) ∈ CQ.

For ℓ = 0, 1, . . .
⌊

i
(ℓ)
D ∈ ArgminiD∈{1,...,Q}N×Mϕ(qiD,r(ℓ) , f) + ρ(iD)

r
(ℓ+1) ∈ Argmin

r∈CQ
ϕ(q

i
(ℓ)
D

,r
, f)

It is worth noticing that this algorithm constitutes an ex-

tension of the LM algorithm which would correspond to the

case when ρ is the null function. At each iteration ℓ, the

determination of i
(ℓ)
D given r

(ℓ) is a combinatorial optimiza-

tion problem for which there exist efficient solutions for some

choices of ϕ and ρ, as shown in the next section.

In turn, if ϕ(·, f) is a convex function, the determination

of r(ℓ+1) given i
(ℓ)
D is a conic constrained convex optimization

problem the solution of which can be determined numerically.

For example, in the case of the weighted ℓp-norm criterion,

this problem is equivalent to find

r
(ℓ+1) ∈ Argmin

r∈CQ

Q
∑

k=1

∑

(n,m)∈D
(ℓ)
k

ωn,m|rk − f(n,m)|p (3.1)

It is thus possible to solve (3.1) through existing convex

optimization approaches [5, 6].

Note that, in the proposed iterative algorithm, it may hap-

pen that a decision class D
(ℓ)
k0

, for some k0 ∈ {1, . . . , Q} be-

comes empty at iteration ℓ. In this case, a random value of

r
(ℓ+1)
k0

is drawn, so that r(ℓ+1) remains in CQ. It can then be

shown that the resulting algorithm has convergence properties

similar to the LM algorithm.

4. OPTIMAL COMBINATORIAL PARTITIONING

We now consider combinatorial optimization methods for

finding

iD̂ ∈ Argmin
iD∈{1,...,Q}N×M

ϕ(qiD,r, f) + ρ(iD) (4.1)



for a given value of r ∈ CQ. Here we seek to use standard

methods in combinatorial optimization which have proved

useful in applications to denoising. In this context, a common

form for regularization problems is the following:

minimize
iD∈{1,...,Q}N×M

φ(iD, f) + ρ(iD), (4.2)

where φ is a data fidelity function, ρ a regularization function,

f the initial image and iD the resulting discrete one. To for-

mulate our problem in this framework, we need to introduce

the auxiliary function

χr : {1, . . . , Q}N×M 7→ {r1, . . . , rQ}
N×M

iD 7→ qiD,r.

Then, our problem becomes

minimize
iD∈{1,...,Q}N×M

ϕ(χr(iD), f) + ρ(iD). (4.3)

Note that χr is monotonic but nonlinear. Note further that

the set {r1, . . . , rQ} changes at each iteration of the complete

algorithm. However, during the regularization step this set is

fixed, so we are free to choose any optimization method that

can be framed as in (4.2).

In this article we use graph cut-based algorithms, which

have been shown to be effective in the context of smoothing,

denoising and segmentation [7]. More specifically, a solu-

tion can be found at each regularization step using the graph

proposed by Ishikawa [8], with some small modifications.

Namely, i) labels ι take values from 1 to Q, ii) data edges

for each vertex uι,j have capacity ϕ(rι, f(nj ,mj)), and iii)

penalty edges have capacity µ. In case of few quantized lev-

els Q, the Ishikawa framework is very efficient. This graph

method is known to yield globally optimal solutions for con-

vex functions ϕ and ρ as in (2.6) with ψ the identity func-

tion. Alternatively, the convenient though suboptimal alpha-

expansion algorithm [7] can be used for all combinations of

ϕ and ψ, where ρ is the anisotropic TV of (2.6), as described

in Section 2. In order to solve Problem (4.3) with the α-

expansion algorithm, we propose to define the capacities of

edges as described in Table 1. Note that α takes values from

1 to Q.

Other optimization methods can also be used. When min-

imizing isotropic TV as in (2.5), one might want to use for in-

stance Chambolle’s algorithm [9]. Similarly to the Ishikawa

framework, we can obtain the global optimum in this case. In

the following, due to lack of space, we illustrate our proposed

method only using graph-cut based regularization methods.

5. SIMULATION EXAMPLES

In this section, we present two experiments in order to demon-

strate the practical performance of our method in case of: i)

low resolution quantization, and ii) quantization in the pres-

ence of noise.

Table 1: Capacity for the α-expansion graph ([x1, x2] denotes an

edge between nodes x1 and x2, iD(nu,mu) is denoted by iu,

f(nu,mu) is denoted by fu, {u, v} denotes a pair of neighbouring

nodes u and v).

edge capacity condition

[α, u] +∞ ∀u, iu = α

[α, u] ϕ(riu , fu) ∀u, iu 6= α

[α, u] ϕ(rα, fu) ∀u

[u, t{u,v}] ψ(|iu − α|)

[t{u,v}, v] ψ(|α− iu|) ∀{u, v}, iu 6= iv

[α, t{u,v}] ψ(|iu − iv|)

[u, v] ψ(|iu − α|) ∀{u, v}, iu = iv

We compare our approach with the LM method [2]. The

algorithm performance is measured by the SNR between the

original and quantized images and also by the the Shannon

entropy of order (2, 2) (that is the entropy over image blocks

of size 3 × 3). In the following experiments, we used 8 bit

microscopy images of size 512 × 512 from public domain

(source: http://remf.dartmouth.edu).

First, we consider grey-scale image quantization over 8

levels. The original image is shown in Fig.1(a). Here we

minimize the energy function defined by (2.4), with function

ϕ defined as the ℓ2 norm and ρ defined by (2.6) where ψ is the

identity. The regularization parameter µ was hand-optimized

to 400. The global optimum solution to the problem can be

found with the modified Ishikawa graph shown in Section 4.

Both methods, LM and ours, were initialized with uniform de-

cision levels. In order to solve (3.1), the FISTA algorithm [10]

was used. As expected, Fig.1 shows that the images have

a better spatial smoothness with our method than with LM.

This is also verified by inspecting the entropy value, which in

our case is equal to 0.56 bpp and in case of LM to 0.84 bpp.

In this example, we have shown that, in case of quantization

with high reduction of levels, our method provides smaller

entropy rate while maintaining the desired fidelity.

Next, we consider the problem of grey-scale image quan-

tization over 32 levels in the presence of noise. To generate a

noisy image (Fig. 2(b)) from the original one (Fig. 2(a)), we

added a zero-mean Laplacian noise with variance 202 (this

corresponds to an initial SNR between original and noisy im-

age equal to 18 dB). We applied our algorithm minimizing

energy (2.4), where ϕ is the ℓ1 norm, and ρ is defined by (2.6)

where ψ is the binary cost-function (2.7). The associated

regularization parameter µ was experimentally chosen to 15.

Both methods, LM and ours, were initialized with decision

levels computed on a cumulative histogram. To minimize

the energy, we used a modified alpha-expansion graph as de-

scribed in Section 4. One can observe that there is almost no

noise in our result (Fig. 2(d)), while the LM (Fig. 2(c)) pre-



(a)

(b)

(c)

Fig. 1: Figures (a,b,c) illustrate fragment of original image, LM and

our result, respectively.

serves noise in the image. This is also verified by inspecting

SNR values, which are equal to 27.6 dB for our method and

18.3 dB for LM. The difference is even greater in terms of

entropy: we obtained 0.49 bpp for our method and 1.64 bpp

for LM. In this example, we have shown, that in case of quan-

tization in the presence of noise, our method reconstructs the

original image, while quantization is being performed.

6. CONCLUSION

In this paper, we have proposed a new quantization approach

while enforcing spatial smoothness in the resulting image.

We have shown that this approach is robust to the presence

of noise. These features may be interesting in the context of

image compression, in particular to avoid sparing bitrate in

coding noise corrupting the image in some applications. We

have shown that our method may outperform standard quan-

tization design methods, both in terms of entropy and visual

quality.

In future work, we will extend our work to multichannel

images and vector quantization.

(a) (b)

(c) (d)

Fig. 2: Figures (a,b) illustrate original and noisy images, respec-

tively. Images after quantization are presented in Figure (c) for LM

algorithm and (d) for our method.
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