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Abstract

This paper is concerned with the computation of the skeleton of
a shape € included in R?2. We show some connections between the
Euclidean distance function d to 9€) and the solution u of the Poisson
problem Au(z) = —1if z is in @ and u(z) = 0 if = is on 9. This
enables us to propose a new and fast algorithm to compute an approx-
imation of the skeleton of 9€). We illustrate the approach with some
numerical experiments.

Key-words: Skeleton, Poisson equation, distance function, PDEs,
ODEs.

1 Introduction

One of the goal of shape analysis is to describe objects with a minimal
amount of information. Skeletonization answers this question. The skeleton
or medial axis of a shape gives a thin topologically equivalent representation
of the original shape. The importance of skeleton was discussed by Blum
[3, 4] with motivation from visual perception. Nowadays skeletonization is
frequently used in computer vision and pattern recognition. There exist
several ways (more or less equivalent) to define the skeleton of a shape in
the real plane (see for example [6] for a quick survey and references on the
subject). The first one goes back to [3, 4] whose author has intoduced the
concept of prairie fire in which the shape is imagined to be filled with dry
grass and the fire is started at the shape boundary. The boundary propagates
with constant normal velocity and the skeleton is traced out by the singular
points where the front intersects itself. Another approach is to consider



the skeleton as the geometric location of centers of maximal discs contained
in the shape [3, 5]. This definition is interesting since, in principle, if the
radii of these discs are recorded at the corresponding points on the skeleton,
the shape can be recovered as the envelope of all the discs centered on the
skeleton with radii recorded. However, in practice, this approach is difficult
to implement numerically. A third approach is to consider the skeleton as the
set where the gradient of the distance function to the shape is discontinuous.
If 2 denotes the shape, the signed distance to €2 is defined, for € R?, by
d(z) = d(x,09) = infyepallx — y|| where ||z|| is the Euclidean norm of z. It
is well known that the gradient of the distance function satisfies the eikonal
equation ||Vd(z)|| = 1 except at points x where there exist at least two
distinct points y and z € 99 such that d(z) = ||z — y|| = ||z — z||. The set
of such points x form the skeleton and at that points Vd is discontinuous.
We choose this last definition of the skeleton in the rest of the paper and we
refer to it as the real skeleton.

The challenge is how to compute the skeleton or an approximation of
it. There exist in the literature many different approaches on this issue.
Let us only quote some of them: the morphological approach [17, 22, 18,
20], the wavelet approach [27] and those which are embedded in a partial
differential equation (PDE) or variational framework [24, 7, 26, 14]. In these
four last papers the authors highlight the connection between monotonically
evolving fronts and the eikonal equation and they propose various algorithms
for tracking shocks. It is well-known that hyperbolic PDEs (as the eikonal
equation) are not easy to solve numerically and very fine algorithms must be
used. A different but related point of view is given in [25] where the authors
construct a function v whose level curves mimic the curve evolution with a
speed consisting of a constant component and a component proportional to
curvature. The function v is defined as the minimizer of a Modica-Mortola
type functional [19] which approximates the perimeter of the boundary of
the shape. The smoothed skeleton is then defined as the locus of points
where the gradient of v is minimum along the level curves. Our contribution
is in the same spirit as the works mentioned above but we think that our
model is significantly simpler since it is based on the resolution of the well-
known second order PDE: the Poisson equation Au(x) = —1 with Dirichlet
boundary conditions. More precisely if 2 denotes the shape we want to
analyze, our algorithm is as follows:

1. We solve the Poisson equation Au(z) = —1 in Q, u =0 on 0f.

2. We determine the set

A={z €0, the curvature of 9 in z has local maximum} (1)



3. For each x € A, we solve the dynamical system

¢§'(s) = Vu(&(s))
{ £0) =z @)

We denote by &7 the set of trajectories of these flows.

4. Let us define the sets W, E, and F:

W={xeQ, Vu()=0}=E( JF (3)
E={zxe€Q, Vu(zr) =01 <\ <0} (4)
F={zeQ, Vu(z) =0, <0< A} (5)

where A\; and Ao are the eigenvalues of V3u (\; is real since V2u is
symmetric real). W is the set of critical points of v in Q. E is the set
of extremal points of u in Q (which in fact are maximal points since
Au = —1) and F is the set of saddle points of u in 2. We set Sy the
trajectories from F' to E (see Section 5 for more details).

5. The skeleton of € is defined by
s=sJs:Jw (6)

Let us explain briefly why this algorithm furnishes an approximation of the
real skeleton. The justification comes from four facts which will be proved
in the next sections.

1. Actually the solution of the Poisson equation Au(z) = —1in Q, u =0
on 0f2, can be viewed as a regularization of the distance function d.

2. As shown in [15, 14] the real skeleton tends to terminate at the bound-
ary at points of maximal curvature.

3. If d is the distance function and if locally we parameterize the real
skeleton by a curve £(s) then necessarily £(s) satisfies the dynamical
system

§'(s) = Vd(£(s)) (7)

where here the gradient Vd of d has to be understood in a generalized
sense. Actually d is a function of bounded variations and a meaning
can be given to system (7) (see [2]).

4. The trajectories defined in (2) converge asymptotically as s — +00 to
points in the critical set W which is finite.



Let us point out that Poisson equation has already been used in shape
representation. In [10] the authors utilize the gradient and the curvature of
the level sets of the solution of Poisson equation for segmenting silhouette,
identifying corners and deriving some structures of the skeleton of a shape.
In that paper no real mathematical justification is given. Let us also note
that Poisson equation is related to the Brownian motion of a set of particles
placed inside the shape. Indeed the solution u of Poisson equation measures
the mean time required for a particle to hit the boundary [12].

The paper is organized as follows. In Section 2 we first recall classical
properties of Poisson equation. Then in Section 3 we give some reasons why
u the solution of Poisson equation can be viewed as a regularization of the
distance function. In Section 4 we study the dynamical system (2) and in
particular its asymptotic behaviour as s — +00. Then in Section 5 we write
the detailed algorithm. Finally we illustrate the capability of our algorithm
in Section 6 by showing several computational examples.

2 Some results about Poisson equation

2.1 Classical results

In this section we recall some well-known properties of the solution u of
Poisson equation:

Au(z) = —1if z is in Q, u=0 on 99. (8)

Proposition 1 e Existence and uniqueness: If OS2 is Lipschitz then (8)
admits a unique solution u in the Sobolev space Wol’p(Q),Vp € [2,00].

e Regularity: If 0 is of class C2, then u is in C(2).

e Maximum principle: There exists C > 0 such that 0 < u < C on Q.
Moreover, we have 0 < u on ).

Proof: See [8, 9].
|

As a consequence of Proposition 1, we can then extend u as a C? function
on R2. This is what we do until the end of the paper (so we suppose that
0€ is of class C?).

2.2 More refined properties

We set A1 < A9 the eigenvalues of V2u (\; is real since V2u is symmetric
real). In ©, we have Au = —1 = A\ + \y. Hence A\; < 0.



Let us consider the set W, E, and F defined by (3), (4) and (5). W is
the set of critical points of v in . F is the set of extremal points of u in €
(which in fact are maximal points since Au = —1) and F is the set of saddle
points of u in 2. We give below a nontrivial result due to Alessandrini et al
[1] concerning the number of critical points of u. This result is fundamental
for our algorithm.

Theorem 1 Let us assume that Q) is a simply connected open set in RZ. W
is a non empty set, and W contains at most a finite number of points (which
are isolated). Moreover, we have #E — #F = 1.

Remarks:

1. If Q is convex, then W is reduced to a single point which is the maxi-
mizer of u on € [16].

For example [13], if © is symmetric and convex in two orthognal di-
rections, then all the level sets of u are symmetric and convex in those
directions, and they are star-shaped. Under those assumptions, the
gradient of u vanishes only in a single point, the center of symmetry.

2. If € is not simply connected then W can be a curve. For example if
Q is the annulus Q = {(x,%); 1 < 22 + y? < 4}. It is easy to see that
u(z,y) = 81§g2 log(z% +y?) — 2(2? + y* + 1) is the solution of (8) and

3 x 1

:410g2x2+y2_§x (9)

Uy

3 Y 1

- v __- 10
Yy 4log 2 12 + 32 27 (10)

Moreover, we have: Vu(z,y) = (0,0) if and only if 22 + y? = 21§’g2 ~
2.16 (notice that (0,0) does not belong to €2). Hence the set of critical
points is a circle of radius /2.16 =~ 1.47. It is close to 1.5, but not

equal to it.

Corollary 1 If z is in W and Q simply connected, then x is a non degen-
erated points, i.e. A\ # 0 and Ao # 0.

Proof: If one of the eigenvalue is zero, then there exist non isolated critical
points (see [11| page 326), which contradicts Theorem 1.



Remark: As a consequence, F' (defined by (5) is in fact :
F={zeQ, Vu(z) =0, \ <0< A} (11)

Proposition 2 There exists a > 0 such that Vu.N > a on 02, with N the
inner normal to OS).

Proof: This is a consequence of the Hopf lemma [8], and of the fact that
00 is C? and Q bounded.

|
Corollary 2 Let 5 in (0,«) (with « given by Proposition 2). Then there
exists r > 0 such that Vu.N, > 3 on 082, with N, the inner normal to 0f),,

and

Q={xeQ, dz,Q) >r} (12)
Proof: This is a consequence of the fact that u is in C2(R?) and of Propo-
sition 2.

3 Relating the Poisson equation with the distance
function

In this section we give some heuristic reason showing the connection between

the solution of the Poisson equation and the distance function. Further

connection will be explained in Section 5. In all this section we denote by
u(z) the unique solution of Poisson equation:

Au(z) = —1if z is in Q, u(z)=0 on Q. (13)

Now for € > 0, let us consider the following PDE:

e%(x,t) = Az(z,t) +1in Q x (0,00)
z(z,t) =0 on 99 x (0,00) (14)
z(x,0) = d(z)

From [8], equation (14) admits a unique regular solution z(z,t).
Thanks to (13), equation (14) can be written into

e%(w,t) = Az(z,t) — Au(x) in Q x (0, 00)
z(z,t) =0 on 02 x (0,00) (15)
z(z,0) = d(z)

Setting we(x,t) = z¢(x,t)—u(z) then w(x,t) is a solution of the following
heat equation:



6881126 (z,t) = Awe(z,t) in Q x (0,00)
we(z,t) =0 on 9N x (0,00) (16)
we(z,0) = d(z) — u(x)

From classical estimations [8] for the heat equation we get the following
estimate:

lwe(- )| 2 (@) < lld = ull L2 (@ye~*1%9 (17)

where 1 is the first eigenvalue of the Laplacian. From (17) we deduce
when € — 07 that for all ¢ > 0 then 2(.,#) — u(.). Therefore this conver-
gence shows that z.(z,t) is close to u(x) for € small and for all ¢ > 0. But
for small t > 0, z¢(x,t) can be viewed as a smoothed version of the distance
function d(z). Thus these heuristic arguments show some connection be-
tween the solution of the Poisson equation and the distance function. More
arguments will given later in section 5.

4 Study of the dynamical system

In this section we first study the gradient flow (2) associated to u and then we
justify why its trajectories can be used as an approximation of the skeleton.
From now on, we assume that the shape €2 is a simply connected open set
(thus the points in W are isolated thanks to Theorem 1).
4.1 Definitions and basic results
We consider the following problem. Let zq in Q, and:
() —
£(0) = o

where w is the unique solution of (8).

Remark: Notice that if zg € W, then {(s) = x( for all s in R.

Proposition 3 There exists a unique C' function & solution of (18). This
solution is defined on R.

Proof: The uniqueness of £ is given by Cauchy-Lipschitz theorem for ODE.
The existence on R is standard, since Vu remains bounded on R2.



From Theorem 1, we know that the set of critical points of Vu are isolated
points. Moreover, we saw that W = {x € Q , Vu(z) =0} = E(JF, with E
the set of maximal points of u in €2, and F' the set of of saddle points of u
in Q.

Let us now state some basic results about the qualitative property of (18)
in a neighbourhood of a point in F.

Proposition 4 Ifx isin E, then x is an attractive point. There exists r > 0
such that if xo belongs to B(x,r) (the ball of radius r centered in x), then
&(s) = x as s — +00.

Proof: See Theorem 8.4 page 366 of [11].

Proposition 5 If x is in F, then = s a saddle point, and we have the
following properties :

1. There exists exactly two trajectories &;, i = 1,2, such that &;(s) — x as
s — +00.

2. There exists exactly two trajectories &;, i = 1,2, such that &;(s) — x as
s — —00.

Proof: See Theorem 8.5 page 371 of [11].

Corollary 3 Let us consider £ the unique solution of (18).

1. Let us assume that there exists an increasing sequence s, such that
Sp, — +00, and &(sy,) converges to some element w of W. Then &(s) —
w as s — +0oo.

2. Let us assume that there exists an decreasing sequence s, such that
Sp — —00, and &(sy,) converges to some element w of W. Then £(s) —
w as § — —0Q.

Proof: We first remark that the points of W are isolated thanks to The-
orem 1. The rest of the proof is a straightforward consequence of Proposi-
tions 4 and 5.



4.2 Qualitative results

The next theorem states the following fact: given a point g in n Q\W, there
exists a trajectory of the flow (18) such that when s — 400, £(s) = Yo
with Yo in W. Moreover, there exits so in R* such that {(sg) € 9Q or
£(s) = 200 € F as s & —o0.

Theorem 2 Let zg in Q\W. The unique solution & of (18) satisfies the two
following properties.

1. &(s) belongs to Q for all s > 0. Moreover, there exists Yoo in W (given
by (3)) such that: £(S) — Yoo as § — +00.

2. One of the two following properties hold:
(a) There exists so in R* such that &(sg) belongs to 02, and &(s) €
RQ\Q if s < s¢.
(b) &£(s) remains in Q for all s in R, and there exists z_o in F such
that: £(s) = z—oo as s — —o0. Moreover, the set of elements x,

which satisfies this last property, is embedded into a finite number
of curves.

Proof:

1. We begin by showing the first point of the proposition. The fact that
&(s) belongs to € for all s > 0 is a straightforward consequence of
Proposition 2.

Let us consider o in € such that u(yp) = max,cqu(x) and let F' be
the function:

F(z) = |lu(z) — u(yo)||* (19)

F is a Liapounov function for problem (18). Indeed, F' has a minimum
in yo, and if x is in Q, x € Q\W, then:

(VE(x), Vu(z)) = 2||Vu(@)|*(u(z) — ulyo)) < 0 (20)

(using the fact that yg is a maximum of u). Assertion 1. is then a
standard result on ODE (see [11]| page 363 Theorem 8.2 and Remark
page 364). For the convenience of the reader we detail the proof below.

We have:

ds

Hence:



for all s > 0 since £(0) = ¢ is not in W, so s — F(&(s)) is a strictly
decreasing non negative function.

£(s) belongs to Q for all s > 0, and Q is bounded. Let us consider an
increasing sequence s, which goes to +00 as n — 400. Let us denote
£(sn) by &u. (£,) is a bounded sequence in Q. Up to a subsequence, it
is thus a convergent sequence.

F(&,) is a strictly decreasing non negative sequence. It is therefore a
convergent sequence. In particular, we have F(&,) — F({n41) — 0.

But we know that there exists t,, in (s, sp+1) such that:

LRE(t) = Flnnr) ~ Fln) (23)

&(tn) is a bounded sequence. Hence, up to a subsequence, it is a con-
verging sequence. Let us denote by gy its limit. We have

L () = 0 (24)

ds
This implies with (22) that Vu(ys) = 0 and so yo belongs to W. We
therefore have shown that any cluster point of &, belongs to W. We
conclude thanks to Corollary 3 that £(s) converges to Yoo.

Remark: If W is a singleton then y,, = yo (this is in particular the
case when (Q is convex).

2. To show the second point, we first see that if there exists sy in R*
such that £(sg) belongs to 9Q, then &(s) € RA\Q if s < s (as a
straightforward consequence of Proposition 2).

Let 8 in (0, ) as in Corollary 2. Then if there exists s; in R such that
£(s1) belongs to R2\Q,., there exits so in R* such that &(sg) belongs
to 092 (as a consequence of Corollary 2).

Now let us assume that £(s) remains in €, for all s in R, and let us
consider the function:

G(z) = [lu(@)]* (25)

G is a Liapounov function for problem (18) with reversed time. The
rest of the proof is the same as before.

We have thus completely determined the behaviour of the trajectories of
the flow (18). This is the basis of the algorithm we introduce in the next
section.
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5 Detailed algorithm

5.1 Our approach

In this section we describe our algorithm for constructing the Poisson skele-
ton of a shape 2 and we show more connection between that skeleton and
the real skeleton constructed from the distance function.

We first define the set:

A={x €0, the curvature of 9 in x has local maximum.} (26)

Then let u be the solution of Poisson equation (8) and the sets W, F
and F' defined respectively in (3), (4) and (5). For constructing the Poisson
skeleton of 2 we consider the following flow starting from z in A:

!
{ 3 (S) = Vu(g(s)) (27)
§0) ==

We denote by S; the set of trajectories of these flows. Thanks to Theorem
2, we know that these trajectories converge to points in W. Of course,
since the flow starts from x on 02, we need to remove the beginning of
these trajectories. Since x is in A, it is easy to see that the lenght of the
trajectory to be removed is equal to 1/p, where p is the curvature of 9Q in
x [14]. To compute flow (27), we use a dynamical programming approach.
Given a point x on the flow, we compute the next point y on the flow, in
the neighbourhood of x (8-neighbourhood of x in practice), as the point y
for which u(y) is minimum.

We set Ss the trajectories from F' to E. If x isin F, then it is an unstable
fixed point of the flow considered here. Thus, from a numerical point of view,
one just need to select points in the neighbourhood of z (in 4 or 8 connexity),
and to compute the trajectories from theses points with the flow (27).

So the question remains on how to compute the location of the points in
F. This could be done by computing the zeros of the function z + || Vu(x)||?
in 2. But we have found it to be more accurate to see the points in F' as the
points where the sign of the curvature changes as explained later.

Definition: The Poisson skeleton is defined as

S=SJs(Jw (28)

Let us explain why the Poisson skeleton can be regarded as an approx-
imation of the real skeleton. The fact that the skeleton tends to terminate
at points on the boundary of maximal curvature is well established in the
computer vision community (see [15, 14]).
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Figure 1: Local parameterization of the skeleton of an arbitray shape. X
is on the skeleton, and points A and B realize the distance of X to the
boundary of the shape. The tangent vector X’ is the bissector of the angle
(XA, XB), and the segment AB is orthogonal to X'.

But why using equation (27) 7 Let us suppose that the real skeleton
is given by a parameterized curve X (¢) and let be Xy = X(¢p) a point on
the skeleton. By definition there exist two points A and B on the boundary
08 such that d(zg,0Q) = || XoA| = || XoB||. It can also be shown that the
tangent X' (to) is the bissector of the angle (XA, XoB) and that the segment
AB is orthogonal to X{, = X'(to) (see Figure 1).

Let us now define V1d(Xy) (respectively V~d(Xy)) as the gradient of
the distance function in the direction AXy ((respectively BXjy)). It is easily
seen that these vectors do exist and that the vector (Vd(Xp)+V~d(Xy)) is
parallel to X’(t). Let us denote V*d(X(t)) = 3(VTd(X(t)) + V- d(X(t))).
From the above considerations the vector V*d(X (¢)) is parallel to X'(¢) and
this can be formally expressed as

V(X (1) = X'(t) (29)

So we have just shown that if the skeleton is represented by a curve X (t)
then necessarily X (¢) satisfies (29) which is the flow (27) where u is replaced
by d. We think that this observation fully justifies the construction of the
Poisson skeleton.

Remarks:

1. From a mathematical point of view the writing of (29) can be justi-
fied. Actually the distance function belongs to the space BV?()) =
{f e Wb (Q); 2L € BV(Q) fori=1,...n} and V*d is called the
precise representation of Vd. In this setting it can be shown that
(29) admits a solution in a generalized meaning (see [21, 2]).
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2. Our construction of the Poisson skeleton shares some similarities with
the one of Shah et al [23]. In that paper the authors define an ap-
proximation of the skeleton as the locus of points where the norm of
the gradient of a smoothed distance function v(z) is minimum along
the level curves i.e. they solve % = 0 where s is the arc-length

along the level curves of v. The smoothed distance v is constructed as

the minimum of a Modica-Mortola functional. A direct computation

shows that the equation % = 0 is equivalent to

U:vy(vg% - U;) — Uz Uy (Vg — Vyy)

[Vol?

=0 (30)

But this expression is exactly the curvature of the trajectories de-
fined in (27). Indeed, we have: & (s) = Vu(£(s)), and thus & (s) =
Vu(£(s))€ (s). Weremind the reader that the curvature of a parametrized

s = &(s) is:
&8 — &8
K(s) = 7 7 (31)
((61)% + (&)%)3/2
So here 5,1 = Uy, 5,2 = Uy, §l1, = UpgplUy + Uygly, 5; = Ugy Uy + UyylUy.
Hence:
(s) = Uz (Uy Uy + uxuxy’)v;gy(umu$x + Uylyy) (32)

ie. ) )

uf’?y(ux - uy) - uruy(um - uyy) (33)

(s) = |Vul?
which is precisely the expression (30) where v is replaced by w.

As will be seen in the next section on Figures 2 to 5, the sign of the
curvature gives some indication on where the skeleton is (see [23] for further
details). However, as pointed in [23], such an approach gives an approxi-
mation of both the skeleton and the anti skeleton: a pruning step is needed
afterwards. Morevoer, as can be seen Figures 2 to 5, our approach seems to
lead to a better approximation of the skeleton in practice.

5.2 Basic examples for ()

Here we detail basic examples of ) where we can actually show that the
skeleton computed with our algorithm is the true skeleton.

Circle In such a simple case, it is easy to see that our algorithm give the
center of the circle as the unique element of the inner skeleton of the circle.

13



Ellipse Again it is easy to show that the center of the ellipse is the unique
critical point of u and that g—Z(x, 0) = 0. Moreover,  has only two points
with maximal curvature: the summits corresponding to the largest radius of
the ellipse.

Without any restriction, let us assume that the horizontal axis is the
largest radius of the ellipse. Then, since g—;(x,O) = 0, it implies that the
trajectories starting from these two summits go straight to the center of the
ellipse.

We conclude that in this particular case, our algorithm give the exact

solution.

Square Since the diagonal are symmetry axis for €2, and since the two
diagonals are non parallel (in fact they are even orthogonal), we conclude
with the same arguments as above that our algorithm provide the user with
the exact solution.

Rectangle Unfortunately, even in such a simple example, it remains an
open question to prove that the skeleton given by our algorithm is indeed
an approximatin of the genuine skeleton. Nevertheless, as will be shown on
Figure 4, our algorithm provide numerically a perfect result.

6 Numerical examples

In this section, we show some numerical examples to illustrate that indeed
our algorithm gives a good approximation of the skeleton. As a comparison,
we also give the sign of the curvature given by equation (33), which is the
first step of the approach of [23].

Figures 2 to 5 present results on different simply connected shapes. Our
algorithm gives a very good approximation in all cases. The reader should
notice the difference between the skeleton provided by our method, and the
information given by the sign of the curvature. One should also notice that
the intersection of the boundary with the change of sign of the curvature gives
a robust and accurate approximation of the location of the local maximum
of the curvature along the boundary.

In Figure 2, we show the obtained result on a moon-like shape. In Fig-
ure 3, we show the obtained result on a star-like shape. These two examples
are perfect matches for our algorithm.

In Figure 4, we show the obtained result on a rectangle. Notice that the
method works although the rectangle boundary is not C2. In Figure 5, we
show the obtained result on a complicated shape. One should notice that
the approximate location of the stationary points of the flow are given by
the location of the change of signs of the curvature.

14



Moon-like shape Sign of the curvature Skeleton
of the flow

Figure 2: Skeleton computation of a moon-like shape. The change of sign
of the curvature gives the location of the maximum of the curvature on the
boundary of the shape.

We can notice that in all these examples the only one for which E' is non
void is the one given in Figure 5.

7 Conclusion

In this paper, we have proposed a novel algorithm to compute an approx-
imation of the skeleton. Based on a mathematical analysis, we gave some
insight on why such an approach is efficient. The Poisson equation has al-
ready been used to compute approximation of the skeleton in the computer
vision community [23, 10]. We gave here new mathematical arguments to
justify such an approach, and we have proposed a completely new algorithm
that seems to perfom well, as demonstrated in our numerical examples.
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Star-like shape Sign of the curvature Skeleton
of the flow

Figure 3: Skeleton computation of a star-like shape. This kind of shape is
perfect for the framework developped in this paper.

Rectangle shape Sign of the curvature Skeleton
of the flow

Figure 4: Skeleton computation of a rectangle shape. Although the boundary
is not C?, our algorithm performs well.
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Complicated shape Sign of the curvature Skeleton
of the flow

Figure 5: Skeleton computation of a complicated shape. Our algorithm
works even in the case when the set of saddle points F' (5) is non empty.
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