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Poisson skeletonGilles Aubert 1 & Jean-François Aujol 2

1 Laboratoire J.A.Dieudonné, UMR CNRS 6621Université de Nie Sophia-Antipolisemail: gaubert�math.unie.fr
2 IMB, UMR CNRS 5251, Université Bordeaux 1,email: Jean-Franois.Aujol�math.u-bordeaux1.frJuly 3, 2012AbstratThis paper is onerned with the omputation of the skeleton ofa shape Ω inluded in R

2. We show some onnetions between theEulidean distane funtion d to ∂Ω and the solution u of the Poissonproblem ∆u(x) = −1 if x is in Ω and u(x) = 0 if x is on ∂Ω. Thisenables us to propose a new and fast algorithm to ompute an approx-imation of the skeleton of ∂Ω. We illustrate the approah with somenumerial experiments.Key-words: Skeleton, Poisson equation, distane funtion, PDEs,ODEs.1 IntrodutionOne of the goal of shape analysis is to desribe objets with a minimalamount of information. Skeletonization answers this question. The skeletonor medial axis of a shape gives a thin topologially equivalent representationof the original shape. The importane of skeleton was disussed by Blum[3, 4℄ with motivation from visual pereption. Nowadays skeletonization isfrequently used in omputer vision and pattern reognition. There existseveral ways (more or less equivalent) to de�ne the skeleton of a shape inthe real plane (see for example [6℄ for a quik survey and referenes on thesubjet). The �rst one goes bak to [3, 4℄ whose author has intodued theonept of prairie �re in whih the shape is imagined to be �lled with drygrass and the �re is started at the shape boundary. The boundary propagateswith onstant normal veloity and the skeleton is traed out by the singularpoints where the front intersets itself. Another approah is to onsider1



the skeleton as the geometri loation of enters of maximal diss ontainedin the shape [3, 5℄. This de�nition is interesting sine, in priniple, if theradii of these diss are reorded at the orresponding points on the skeleton,the shape an be reovered as the envelope of all the diss entered on theskeleton with radii reorded. However, in pratie, this approah is di�ultto implement numerially. A third approah is to onsider the skeleton as theset where the gradient of the distane funtion to the shape is disontinuous.If Ω denotes the shape, the signed distane to Ω is de�ned, for x ∈ R
2, by

d(x) = d(x, ∂Ω) = infy∈∂Ω‖x− y‖ where ‖x‖ is the Eulidean norm of x. Itis well known that the gradient of the distane funtion satis�es the eikonalequation ‖∇d(x)‖ = 1 exept at points x where there exist at least twodistint points y and z ∈ ∂Ω suh that d(x) = ‖x − y‖ = ‖x − z‖. The setof suh points x form the skeleton and at that points ∇d is disontinuous.We hoose this last de�nition of the skeleton in the rest of the paper and werefer to it as the real skeleton.The hallenge is how to ompute the skeleton or an approximation ofit. There exist in the literature many di�erent approahes on this issue.Let us only quote some of them: the morphologial approah [17, 22, 18,20℄, the wavelet approah [27℄ and those whih are embedded in a partialdi�erential equation (PDE) or variational framework [24, 7, 26, 14℄. In thesefour last papers the authors highlight the onnetion between monotoniallyevolving fronts and the eikonal equation and they propose various algorithmsfor traking shoks. It is well-known that hyperboli PDEs (as the eikonalequation) are not easy to solve numerially and very �ne algorithms must beused. A di�erent but related point of view is given in [25℄ where the authorsonstrut a funtion v whose level urves mimi the urve evolution with aspeed onsisting of a onstant omponent and a omponent proportional tourvature. The funtion v is de�ned as the minimizer of a Modia-Mortolatype funtional [19℄ whih approximates the perimeter of the boundary ofthe shape. The smoothed skeleton is then de�ned as the lous of pointswhere the gradient of v is minimum along the level urves. Our ontributionis in the same spirit as the works mentioned above but we think that ourmodel is signi�antly simpler sine it is based on the resolution of the well-known seond order PDE: the Poisson equation ∆u(x) = −1 with Dirihletboundary onditions. More preisely if Ω denotes the shape we want toanalyze, our algorithm is as follows:1. We solve the Poisson equation ∆u(x) = −1 in Ω, u = 0 on ∂Ω.2. We determine the set
A = {x ∈ ∂Ω , the urvature of ∂Ω in x has loal maximum} (1)
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3. For eah x ∈ A, we solve the dynamial system
{

ξ′(s) = ∇u(ξ(s))
ξ(0) = x

(2)We denote by S1 the set of trajetories of these �ows.4. Let us de�ne the sets W , E, and F :
W = {x ∈ Ω , ∇u(x) = 0} = E

⋃

F (3)
E = {x ∈ Ω , ∇u(x) = 0, λ1 ≤ λ2 < 0} (4)
F = {x ∈ Ω , ∇u(x) = 0, λ1 < 0 ≤ λ2} (5)where λ1 and λ2 are the eigenvalues of ∇2u (λi is real sine ∇2u issymmetri real). W is the set of ritial points of u in Ω. E is the setof extremal points of u in Ω (whih in fat are maximal points sine

∆u = −1) and F is the set of saddle points of u in Ω. We set S2 thetrajetories from F to E (see Setion 5 for more details).5. The skeleton of Ω is de�ned by
S = S1

⋃

S2

⋃

W (6)Let us explain brie�y why this algorithm furnishes an approximation of thereal skeleton. The justi�ation omes from four fats whih will be provedin the next setions.1. Atually the solution of the Poisson equation ∆u(x) = −1 in Ω, u = 0on ∂Ω, an be viewed as a regularization of the distane funtion d.2. As shown in [15, 14℄ the real skeleton tends to terminate at the bound-ary at points of maximal urvature.3. If d is the distane funtion and if loally we parameterize the realskeleton by a urve ξ(s) then neessarily ξ(s) satis�es the dynamialsystem
ξ′(s) = ∇d(ξ(s)) (7)where here the gradient ∇d of d has to be understood in a generalizedsense. Atually d is a funtion of bounded variations and a meaningan be given to system (7) (see [2℄).4. The trajetories de�ned in (2) onverge asymptotially as s → ±∞ topoints in the ritial set W whih is �nite.
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Let us point out that Poisson equation has already been used in shaperepresentation. In [10℄ the authors utilize the gradient and the urvature ofthe level sets of the solution of Poisson equation for segmenting silhouette,identifying orners and deriving some strutures of the skeleton of a shape.In that paper no real mathematial justi�ation is given. Let us also notethat Poisson equation is related to the Brownian motion of a set of partilesplaed inside the shape. Indeed the solution u of Poisson equation measuresthe mean time required for a partile to hit the boundary [12℄.The paper is organized as follows. In Setion 2 we �rst reall lassialproperties of Poisson equation. Then in Setion 3 we give some reasons why
u the solution of Poisson equation an be viewed as a regularization of thedistane funtion. In Setion 4 we study the dynamial system (2) and inpartiular its asymptoti behaviour as s → ±∞. Then in Setion 5 we writethe detailed algorithm. Finally we illustrate the apability of our algorithmin Setion 6 by showing several omputational examples.2 Some results about Poisson equation2.1 Classial resultsIn this setion we reall some well-known properties of the solution u ofPoisson equation:

∆u(x) = −1 if x is in Ω, u=0 on ∂Ω. (8)Proposition 1 • Existene and uniqueness: If ∂Ω is Lipshitz then (8)admits a unique solution u in the Sobolev spae W 1,p
0 (Ω),∀p ∈ [2,∞[.

• Regularity: If ∂Ω is of lass C2, then u is in C2(Ω̄).
• Maximum priniple: There exists C > 0 suh that 0 ≤ u ≤ C on Ω̄.Moreover, we have 0 < u on Ω.Proof: See [8, 9℄.

�As a onsequene of Proposition 1, we an then extend u as a C2 funtionon R
2. This is what we do until the end of the paper (so we suppose that

∂Ω is of lass C2).2.2 More re�ned propertiesWe set λ1 ≤ λ2 the eigenvalues of ∇2u (λi is real sine ∇2u is symmetrireal). In Ω, we have ∆u = −1 = λ1 + λ2. Hene λ1 < 0.4



Let us onsider the set W , E, and F de�ned by (3), (4) and (5). W isthe set of ritial points of u in Ω. E is the set of extremal points of u in Ω(whih in fat are maximal points sine ∆u = −1) and F is the set of saddlepoints of u in Ω. We give below a nontrivial result due to Alessandrini et al[1℄ onerning the number of ritial points of u. This result is fundamentalfor our algorithm.Theorem 1 Let us assume that Ω is a simply onneted open set in R
2. Wis a non empty set, and W ontains at most a �nite number of points (whihare isolated). Moreover, we have #E −#F = 1.Remarks:1. If Ω is onvex, then W is redued to a single point whih is the maxi-mizer of u on Ω [16℄.For example [13℄, if Ω is symmetri and onvex in two orthognal di-retions, then all the level sets of u are symmetri and onvex in thosediretions, and they are star-shaped. Under those assumptions, thegradient of u vanishes only in a single point, the enter of symmetry.2. If Ω is not simply onneted then W an be a urve. For example if

Ω is the annulus Ω = {(x, y) ; 1 ≤ x2 + y2 ≤ 4}. It is easy to see that
u(x, y) = 3

8 log 2 log(x
2 + y2)− 1

4(x
2 + y2 + 1

4 ) is the solution of (8) and
ux =

3

4 log 2

x

x2 + y2
− 1

2
x (9)

uy =
3

4 log 2

y

x2 + y2
− 1

2
y (10)Moreover, we have: ∇u(x, y) = (0, 0) if and only if x2 + y2 = 3

2 log 2 ≈
2.16 (notie that (0, 0) does not belong to Ω). Hene the set of ritialpoints is a irle of radius √

2.16 ≈ 1.47. It is lose to 1.5, but notequal to it.Corollary 1 If x is in W and Ω simply onneted, then x is a non degen-erated points, i.e. λ1 6= 0 and λ2 6= 0.Proof: If one of the eigenvalue is zero, then there exist non isolated ritialpoints (see [11℄ page 326), whih ontradits Theorem 1.
�
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Remark: As a onsequene, F (de�ned by (5) is in fat :
F = {x ∈ Ω , ∇u(x) = 0, λ1 < 0 < λ2} (11)Proposition 2 There exists α > 0 suh that ∇u.N ≥ α on ∂Ω, with N theinner normal to ∂Ω.Proof: This is a onsequene of the Hopf lemma [8℄, and of the fat that

∂Ω is C2 and Ω bounded.
�Corollary 2 Let β in (0, α) (with α given by Proposition 2). Then thereexists r > 0 suh that ∇u.Nr ≥ β on ∂Ωr, with Nr the inner normal to ∂Ωr,and

Ωr = {x ∈ Ω , d(x,Ω) ≥ r} (12)Proof: This is a onsequene of the fat that u is in C2(R2) and of Propo-sition 2.
�3 Relating the Poisson equation with the distanefuntionIn this setion we give some heuristi reason showing the onnetion betweenthe solution of the Poisson equation and the distane funtion. Furtheronnetion will be explained in Setion 5. In all this setion we denote by

u(x) the unique solution of Poisson equation:
∆u(x) = −1 if x is in Ω, u(x)=0 on ∂Ω. (13)Now for ǫ > 0, let us onsider the following PDE:






ǫ∂z∂t (x, t) = ∆z(x, t) + 1 in Ω× (0,∞)
z(x, t) = 0 on ∂Ω× (0,∞)
z(x, 0) = d(x)

(14)From [8℄, equation (14) admits a unique regular solution zǫ(x, t).Thanks to (13), equation (14) an be written into






ǫ∂z∂t (x, t) = ∆z(x, t)−∆u(x) in Ω× (0,∞)
z(x, t) = 0 on ∂Ω× (0,∞)
z(x, 0) = d(x)

(15)Setting wǫ(x, t) = zǫ(x, t)−u(x) then wǫ(x, t) is a solution of the followingheat equation: 6









ǫ∂wǫ

∂t (x, t) = ∆wǫ(x, t) in Ω× (0,∞)
wǫ(x, t) = 0 on ∂Ω× (0,∞)
wǫ(x, 0) = d(x) − u(x)

(16)From lassial estimations [8℄ for the heat equation we get the followingestimate:
‖wǫ(., t)‖L2(Ω) ≤ ‖d− u‖L2(Ω)e

−(µ1t/ǫ) (17)where µ1 is the �rst eigenvalue of the Laplaian. From (17) we deduewhen ǫ → 0+ that for all t > 0 then zǫ(., t) → u(.). Therefore this onver-gene shows that zǫ(x, t) is lose to u(x) for ǫ small and for all t > 0. Butfor small t > 0, zǫ(x, t) an be viewed as a smoothed version of the distanefuntion d(x). Thus these heuristi arguments show some onnetion be-tween the solution of the Poisson equation and the distane funtion. Morearguments will given later in setion 5.4 Study of the dynamial systemIn this setion we �rst study the gradient �ow (2) assoiated to u and then wejustify why its trajetories an be used as an approximation of the skeleton.From now on, we assume that the shape Ω is a simply onneted open set(thus the points in W are isolated thanks to Theorem 1).4.1 De�nitions and basi resultsWe onsider the following problem. Let x0 in Ω̄, and:
{

ξ′(s) = ∇u(ξ(s))
ξ(0) = x0

(18)where u is the unique solution of (8).Remark: Notie that if x0 ∈ W , then ξ(s) = x0 for all s in R.Proposition 3 There exists a unique C1 funtion ξ solution of (18). Thissolution is de�ned on R.Proof: The uniqueness of ξ is given by Cauhy-Lipshitz theorem for ODE.The existene on R is standard, sine ∇u remains bounded on R
2.

�
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From Theorem 1, we know that the set of ritial points of∇u are isolatedpoints. Moreover, we saw that W = {x ∈ Ω , ∇u(x) = 0} = E
⋃

F , with Ethe set of maximal points of u in Ω, and F the set of of saddle points of uin Ω.Let us now state some basi results about the qualitative property of (18)in a neighbourhood of a point in E.Proposition 4 If x is in E, then x is an attrative point. There exists r > 0suh that if x0 belongs to B(x, r) (the ball of radius r entered in x), then
ξ(s) → x as s → +∞.Proof: See Theorem 8.4 page 366 of [11℄.

�Proposition 5 If x is in F , then x is a saddle point, and we have thefollowing properties :1. There exists exatly two trajetories ξi, i = 1, 2, suh that ξi(s) → x as
s → +∞.2. There exists exatly two trajetories ξi, i = 1, 2, suh that ξi(s) → x as
s → −∞.Proof: See Theorem 8.5 page 371 of [11℄.

�Corollary 3 Let us onsider ξ the unique solution of (18).1. Let us assume that there exists an inreasing sequene sn suh that
sn → +∞, and ξ(sn) onverges to some element w of W . Then ξ(s) →
w as s → +∞.2. Let us assume that there exists an dereasing sequene sn suh that
sn → −∞, and ξ(sn) onverges to some element w of W . Then ξ(s) →
w as s → −∞.Proof: We �rst remark that the points of W are isolated thanks to The-orem 1. The rest of the proof is a straightforward onsequene of Proposi-tions 4 and 5.

�
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4.2 Qualitative resultsThe next theorem states the following fat: given a point x0 in n Ω̄\W , thereexists a trajetory of the �ow (18) suh that when s → +∞, ξ(s) → y∞with y∞ in W . Moreover, there exits s0 in R
∗
− suh that ξ(s0) ∈ ∂Ω or

ξ(s) → z−∞ ∈ F as s → −∞.Theorem 2 Let x0 in Ω̄\W . The unique solution ξ of (18) satis�es the twofollowing properties.1. ξ(s) belongs to Ω for all s > 0. Moreover, there exists y∞ in W (givenby (3)) suh that: ξ(s) → y∞ as s → +∞.2. One of the two following properties hold:(a) There exists s0 in R
∗
− suh that ξ(s0) belongs to ∂Ω, and ξ(s) ∈

R
2\Ω̄ if s < s0.(b) ξ(s) remains in Ω for all s in R, and there exists z−∞ in F suhthat: ξ(s) → z−∞ as s → −∞. Moreover, the set of elements x0,whih satis�es this last property, is embedded into a �nite numberof urves.Proof:1. We begin by showing the �rst point of the proposition. The fat that

ξ(s) belongs to Ω for all s > 0 is a straightforward onsequene ofProposition 2.Let us onsider y0 in Ω suh that u(y0) = maxx∈Ω̄ u(x) and let F bethe funtion:
F (x) = ‖u(x)− u(y0)‖2 (19)

F is a Liapounov funtion for problem (18). Indeed, F has a minimumin y0, and if x is in Ω, x ∈ Ω̄\W , then:
〈∇F (x),∇u(x)〉 = 2‖∇u(x)‖2(u(x) − u(y0)) < 0 (20)(using the fat that y0 is a maximum of u). Assertion 1. is then astandard result on ODE (see [11℄ page 363 Theorem 8.2 and Remarkpage 364). For the onveniene of the reader we detail the proof below.We have:

d

ds
(F (ξ(s))) = 〈ξ′(s),∇F (ξ(s))〉 = 〈∇u(ξ(s)),∇F (ξ(s))〉 (21)Hene:

d

ds
(F (ξ(s))) = 2(u(ξ(s)) − u(y0))‖∇u(ξ(s))‖2 < 0 (22)9



for all s ≥ 0 sine ξ(0) = x0 is not in W , so s 7→ F (ξ(s)) is a stritlydereasing non negative funtion.
ξ(s) belongs to Ω̄ for all s ≥ 0, and Ω is bounded. Let us onsider aninreasing sequene sn whih goes to +∞ as n → +∞. Let us denote
ξ(sn) by ξn. (ξn) is a bounded sequene in Ω̄. Up to a subsequene, itis thus a onvergent sequene.
F (ξn) is a stritly dereasing non negative sequene. It is therefore aonvergent sequene. In partiular, we have F (ξn)− F (ξn+1) → 0.But we know that there exists tn in (sn, sn+1) suh that:

d

ds
F (ξ(tn)) = F (ξn+1)− F (ξn) (23)

ξ(tn) is a bounded sequene. Hene, up to a subsequene, it is a on-verging sequene. Let us denote by y∞ its limit. We have
d

ds
F (y∞) = 0 (24)This implies with (22) that ∇u(y∞) = 0 and so y∞ belongs to W . Wetherefore have shown that any luster point of ξn belongs to W . Weonlude thanks to Corollary 3 that ξ(s) onverges to y∞.Remark: If W is a singleton then y∞ = y0 (this is in partiular thease when Ω is onvex).2. To show the seond point, we �rst see that if there exists s0 in R

∗
−suh that ξ(s0) belongs to ∂Ω, then ξ(s) ∈ R

2\Ω̄ if s < s0 (as astraightforward onsequene of Proposition 2).Let β in (0, α) as in Corollary 2. Then if there exists s1 in R suh that
ξ(s1) belongs to R

2\Ωr, there exits s0 in R
∗
− suh that ξ(s0) belongsto ∂Ω (as a onsequene of Corollary 2).Now let us assume that ξ(s) remains in Ωr for all s in R, and let usonsider the funtion:

G(x) = ‖u(x)‖2 (25)
G is a Liapounov funtion for problem (18) with reversed time. Therest of the proof is the same as before.

�We have thus ompletely determined the behaviour of the trajetories ofthe �ow (18). This is the basis of the algorithm we introdue in the nextsetion. 10



5 Detailed algorithm5.1 Our approahIn this setion we desribe our algorithm for onstruting the Poisson skele-ton of a shape Ω and we show more onnetion between that skeleton andthe real skeleton onstruted from the distane funtion.We �rst de�ne the set:
A = {x ∈ ∂Ω , the urvature of ∂Ω in x has loal maximum.} (26)Then let u be the solution of Poisson equation (8) and the sets W , Eand F de�ned respetively in (3), (4) and (5). For onstruting the Poissonskeleton of Ω we onsider the following �ow starting from x in A:

{

ξ′(s) = ∇u(ξ(s))
ξ(0) = x

(27)We denote by S1 the set of trajetories of these �ows. Thanks to Theorem2, we know that these trajetories onverge to points in W . Of ourse,sine the �ow starts from x on ∂Ω, we need to remove the beginning ofthese trajetories. Sine x is in A, it is easy to see that the lenght of thetrajetory to be removed is equal to 1/ρ, where ρ is the urvature of ∂Ω in
x [14℄. To ompute �ow (27), we use a dynamial programming approah.Given a point x on the �ow, we ompute the next point y on the �ow, inthe neighbourhood of x (8-neighbourhood of x in pratie), as the point yfor whih u(y) is minimum.We set S2 the trajetories from F to E. If x is in F , then it is an unstable�xed point of the �ow onsidered here. Thus, from a numerial point of view,one just need to selet points in the neighbourhood of x (in 4 or 8 onnexity),and to ompute the trajetories from theses points with the �ow (27).So the question remains on how to ompute the loation of the points in
F . This ould be done by omputing the zeros of the funtion x 7→ ‖∇u(x)‖2in Ω. But we have found it to be more aurate to see the points in F as thepoints where the sign of the urvature hanges as explained later.De�nition: The Poisson skeleton is de�ned as

S = S1

⋃

S2

⋃

W (28)Let us explain why the Poisson skeleton an be regarded as an approx-imation of the real skeleton. The fat that the skeleton tends to terminateat points on the boundary of maximal urvature is well established in theomputer vision ommunity (see [15, 14℄).11



A

B

skeleton

X X’

Figure 1: Loal parameterization of the skeleton of an arbitray shape. Xis on the skeleton, and points A and B realize the distane of X to theboundary of the shape. The tangent vetor X ′ is the bissetor of the angle
(XA,XB), and the segment AB is orthogonal to X ′.But why using equation (27) ? Let us suppose that the real skeletonis given by a parameterized urve X(t) and let be X0 = X(t0) a point onthe skeleton. By de�nition there exist two points A and B on the boundary
∂Ω suh that d(x0, ∂Ω) = ‖X0A‖ = ‖X0B‖. It an also be shown that thetangent X ′(t0) is the bissetor of the angle (X0A,X0B) and that the segment
AB is orthogonal to X ′

0 = X ′(t0) (see Figure 1).Let us now de�ne ∇+d(X0) (respetively ∇−d(X0)) as the gradient ofthe distane funtion in the diretion AX0 ((respetively BX0)). It is easilyseen that these vetors do exist and that the vetor (∇+d(X0)+∇−d(X0)) isparallel to X ′(t0). Let us denote ∇•d(X(t)) = 1
2(∇+d(X(t)) +∇−d(X(t))).From the above onsiderations the vetor ∇•d(X(t)) is parallel to X ′(t) andthis an be formally expressed as

∇•d(X(t)) = X ′(t) (29)So we have just shown that if the skeleton is represented by a urve X(t)then neessarily X(t) satis�es (29) whih is the �ow (27) where u is replaedby d. We think that this observation fully justi�es the onstrution of thePoisson skeleton.Remarks:1. From a mathematial point of view the writing of (29) an be justi-�ed. Atually the distane funtion belongs to the spae BV 2(Ω) =
{f ∈ W 1,1(Ω) ; ∂f

∂xi
∈ BV (Ω) for i = 1, ..., n} and ∇•d is alled the

precise representation of ∇d. In this setting it an be shown that(29) admits a solution in a generalized meaning (see [21, 2℄).12



2. Our onstrution of the Poisson skeleton shares some similarities withthe one of Shah et al [23℄. In that paper the authors de�ne an ap-proximation of the skeleton as the lous of points where the norm ofthe gradient of a smoothed distane funtion v(x) is minimum alongthe level urves i.e. they solve d‖∇v‖
ds = 0 where s is the ar-lengthalong the level urves of v. The smoothed distane v is onstruted asthe minimum of a Modia-Mortola funtional. A diret omputationshows that the equation d‖∇v‖

ds = 0 is equivalent to
vxy(v

2
x − v2y)− vxvy(vxx − vyy)

|∇v|3 = 0 (30)But this expression is exatly the urvature of the trajetories de-�ned in (27). Indeed, we have: ξ
′

(s) = ∇u(ξ(s)), and thus ξ
′′

(s) =
∇u(ξ(s))ξ

′

(s). We remind the reader that the urvature of a parametrized
s 7→ ξ(s) is:

κ(s) =
ξ
′

1ξ
′′

2 − ξ
′

2ξ
′′

1

((ξ
′

1)
2 + (ξ

′

1)
2)3/2

(31)So here ξ
′

1 = ux, ξ′

2 = uy, ξ′′

1 = uxxux + uyxuy, ξ′′

2 = uxyux + uyyuy.Hene:
κ(s) =

ux(uyuyy + uxuxy)− uy(uxuxx + uyuyx)

|∇u|3 (32)i.e.:
κ(s) =

uxy(u
2
x − u2y)− uxuy(uxx − uyy)

|∇u|3 (33)whih is preisely the expression (30) where v is replaed by u.As will be seen in the next setion on Figures 2 to 5, the sign of theurvature gives some indiation on where the skeleton is (see [23℄ for furtherdetails). However, as pointed in [23℄, suh an approah gives an approxi-mation of both the skeleton and the anti skeleton: a pruning step is neededafterwards. Morevoer, as an be seen Figures 2 to 5, our approah seems tolead to a better approximation of the skeleton in pratie.5.2 Basi examples for ΩHere we detail basi examples of Ω where we an atually show that theskeleton omputed with our algorithm is the true skeleton.Cirle In suh a simple ase, it is easy to see that our algorithm give theenter of the irle as the unique element of the inner skeleton of the irle.13



Ellipse Again it is easy to show that the enter of the ellipse is the uniqueritial point of u and that ∂u
∂y (x, 0) = 0. Moreover, Ω has only two pointswith maximal urvature: the summits orresponding to the largest radius ofthe ellipse.Without any restrition, let us assume that the horizontal axis is thelargest radius of the ellipse. Then, sine ∂u

∂y (x, 0) = 0, it implies that thetrajetories starting from these two summits go straight to the enter of theellipse.We onlude that in this partiular ase, our algorithm give the exatsolution.Square Sine the diagonal are symmetry axis for Ω, and sine the twodiagonals are non parallel (in fat they are even orthogonal), we onludewith the same arguments as above that our algorithm provide the user withthe exat solution.Retangle Unfortunately, even in suh a simple example, it remains anopen question to prove that the skeleton given by our algorithm is indeedan approximatin of the genuine skeleton. Nevertheless, as will be shown onFigure 4, our algorithm provide numerially a perfet result.6 Numerial examplesIn this setion, we show some numerial examples to illustrate that indeedour algorithm gives a good approximation of the skeleton. As a omparison,we also give the sign of the urvature given by equation (33), whih is the�rst step of the approah of [23℄.Figures 2 to 5 present results on di�erent simply onneted shapes. Ouralgorithm gives a very good approximation in all ases. The reader shouldnotie the di�erene between the skeleton provided by our method, and theinformation given by the sign of the urvature. One should also notie thatthe intersetion of the boundary with the hange of sign of the urvature givesa robust and aurate approximation of the loation of the loal maximumof the urvature along the boundary.In Figure 2, we show the obtained result on a moon-like shape. In Fig-ure 3, we show the obtained result on a star-like shape. These two examplesare perfet mathes for our algorithm.In Figure 4, we show the obtained result on a retangle. Notie that themethod works although the retangle boundary is not C2. In Figure 5, weshow the obtained result on a ompliated shape. One should notie thatthe approximate loation of the stationary points of the �ow are given bythe loation of the hange of signs of the urvature.14



Moon-like shape Sign of the urvature Skeletonof the �ow
Figure 2: Skeleton omputation of a moon-like shape. The hange of signof the urvature gives the loation of the maximum of the urvature on theboundary of the shape.We an notie that in all these examples the only one for whih E is nonvoid is the one given in Figure 5.7 ConlusionIn this paper, we have proposed a novel algorithm to ompute an approx-imation of the skeleton. Based on a mathematial analysis, we gave someinsight on why suh an approah is e�ient. The Poisson equation has al-ready been used to ompute approximation of the skeleton in the omputervision ommunity [23, 10℄. We gave here new mathematial arguments tojustify suh an approah, and we have proposed a ompletely new algorithmthat seems to perfom well, as demonstrated in our numerial examples.Referenes[1℄ G. Alessandrini and R. Magnanini. The index of isolated ritial pointsand solutions of ellipti equations in the plane. Annali della SuolaNormale Superiore di Pisa, 19(4):567�589, 1992.[2℄ L. Ambrosio. Transport equation and auhy problem for non-smoothvetor �elds. In B. Daorogna and P. Marellini, editors, Leture Notein Mathematis, volume 1927, pages 2�41, 2008.[3℄ H. Blum. A transformation for extrating new desriptors of shape. InWalthen Dunn, editor, Models for the Pereption of Speeh and VisualForm, volume 80, pages 362�380, 1967. MIT Press.15



Star-like shape Sign of the urvature Skeletonof the �ow
Figure 3: Skeleton omputation of a star-like shape. This kind of shape isperfet for the framework developped in this paper.

Retangle shape Sign of the urvature Skeletonof the �ow
Figure 4: Skeleton omputation of a retangle shape. Although the boundaryis not C2, our algorithm performs well.
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Compliated shape Sign of the urvature Skeletonof the �ow
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