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1 Laboratoire J.A.Dieudonné, UMR CNRS 6621Université de Ni
e Sophia-Antipolisemail: gaubert�math.uni
e.fr
2 IMB, UMR CNRS 5251, Université Bordeaux 1,email: Jean-Fran
ois.Aujol�math.u-bordeaux1.frJuly 3, 2012Abstra
tThis paper is 
on
erned with the 
omputation of the skeleton ofa shape Ω in
luded in R

2. We show some 
onne
tions between theEu
lidean distan
e fun
tion d to ∂Ω and the solution u of the Poissonproblem ∆u(x) = −1 if x is in Ω and u(x) = 0 if x is on ∂Ω. Thisenables us to propose a new and fast algorithm to 
ompute an approx-imation of the skeleton of ∂Ω. We illustrate the approa
h with somenumeri
al experiments.Key-words: Skeleton, Poisson equation, distan
e fun
tion, PDEs,ODEs.1 Introdu
tionOne of the goal of shape analysis is to des
ribe obje
ts with a minimalamount of information. Skeletonization answers this question. The skeletonor medial axis of a shape gives a thin topologi
ally equivalent representationof the original shape. The importan
e of skeleton was dis
ussed by Blum[3, 4℄ with motivation from visual per
eption. Nowadays skeletonization isfrequently used in 
omputer vision and pattern re
ognition. There existseveral ways (more or less equivalent) to de�ne the skeleton of a shape inthe real plane (see for example [6℄ for a qui
k survey and referen
es on thesubje
t). The �rst one goes ba
k to [3, 4℄ whose author has intodu
ed the
on
ept of prairie �re in whi
h the shape is imagined to be �lled with drygrass and the �re is started at the shape boundary. The boundary propagateswith 
onstant normal velo
ity and the skeleton is tra
ed out by the singularpoints where the front interse
ts itself. Another approa
h is to 
onsider1



the skeleton as the geometri
 lo
ation of 
enters of maximal dis
s 
ontainedin the shape [3, 5℄. This de�nition is interesting sin
e, in prin
iple, if theradii of these dis
s are re
orded at the 
orresponding points on the skeleton,the shape 
an be re
overed as the envelope of all the dis
s 
entered on theskeleton with radii re
orded. However, in pra
ti
e, this approa
h is di�
ultto implement numeri
ally. A third approa
h is to 
onsider the skeleton as theset where the gradient of the distan
e fun
tion to the shape is dis
ontinuous.If Ω denotes the shape, the signed distan
e to Ω is de�ned, for x ∈ R
2, by

d(x) = d(x, ∂Ω) = infy∈∂Ω‖x− y‖ where ‖x‖ is the Eu
lidean norm of x. Itis well known that the gradient of the distan
e fun
tion satis�es the eikonalequation ‖∇d(x)‖ = 1 ex
ept at points x where there exist at least twodistin
t points y and z ∈ ∂Ω su
h that d(x) = ‖x − y‖ = ‖x − z‖. The setof su
h points x form the skeleton and at that points ∇d is dis
ontinuous.We 
hoose this last de�nition of the skeleton in the rest of the paper and werefer to it as the real skeleton.The 
hallenge is how to 
ompute the skeleton or an approximation ofit. There exist in the literature many di�erent approa
hes on this issue.Let us only quote some of them: the morphologi
al approa
h [17, 22, 18,20℄, the wavelet approa
h [27℄ and those whi
h are embedded in a partialdi�erential equation (PDE) or variational framework [24, 7, 26, 14℄. In thesefour last papers the authors highlight the 
onne
tion between monotoni
allyevolving fronts and the eikonal equation and they propose various algorithmsfor tra
king sho
ks. It is well-known that hyperboli
 PDEs (as the eikonalequation) are not easy to solve numeri
ally and very �ne algorithms must beused. A di�erent but related point of view is given in [25℄ where the authors
onstru
t a fun
tion v whose level 
urves mimi
 the 
urve evolution with aspeed 
onsisting of a 
onstant 
omponent and a 
omponent proportional to
urvature. The fun
tion v is de�ned as the minimizer of a Modi
a-Mortolatype fun
tional [19℄ whi
h approximates the perimeter of the boundary ofthe shape. The smoothed skeleton is then de�ned as the lo
us of pointswhere the gradient of v is minimum along the level 
urves. Our 
ontributionis in the same spirit as the works mentioned above but we think that ourmodel is signi�
antly simpler sin
e it is based on the resolution of the well-known se
ond order PDE: the Poisson equation ∆u(x) = −1 with Diri
hletboundary 
onditions. More pre
isely if Ω denotes the shape we want toanalyze, our algorithm is as follows:1. We solve the Poisson equation ∆u(x) = −1 in Ω, u = 0 on ∂Ω.2. We determine the set
A = {x ∈ ∂Ω , the 
urvature of ∂Ω in x has lo
al maximum} (1)
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3. For ea
h x ∈ A, we solve the dynami
al system
{

ξ′(s) = ∇u(ξ(s))
ξ(0) = x

(2)We denote by S1 the set of traje
tories of these �ows.4. Let us de�ne the sets W , E, and F :
W = {x ∈ Ω , ∇u(x) = 0} = E

⋃

F (3)
E = {x ∈ Ω , ∇u(x) = 0, λ1 ≤ λ2 < 0} (4)
F = {x ∈ Ω , ∇u(x) = 0, λ1 < 0 ≤ λ2} (5)where λ1 and λ2 are the eigenvalues of ∇2u (λi is real sin
e ∇2u issymmetri
 real). W is the set of 
riti
al points of u in Ω. E is the setof extremal points of u in Ω (whi
h in fa
t are maximal points sin
e

∆u = −1) and F is the set of saddle points of u in Ω. We set S2 thetraje
tories from F to E (see Se
tion 5 for more details).5. The skeleton of Ω is de�ned by
S = S1

⋃

S2

⋃

W (6)Let us explain brie�y why this algorithm furnishes an approximation of thereal skeleton. The justi�
ation 
omes from four fa
ts whi
h will be provedin the next se
tions.1. A
tually the solution of the Poisson equation ∆u(x) = −1 in Ω, u = 0on ∂Ω, 
an be viewed as a regularization of the distan
e fun
tion d.2. As shown in [15, 14℄ the real skeleton tends to terminate at the bound-ary at points of maximal 
urvature.3. If d is the distan
e fun
tion and if lo
ally we parameterize the realskeleton by a 
urve ξ(s) then ne
essarily ξ(s) satis�es the dynami
alsystem
ξ′(s) = ∇d(ξ(s)) (7)where here the gradient ∇d of d has to be understood in a generalizedsense. A
tually d is a fun
tion of bounded variations and a meaning
an be given to system (7) (see [2℄).4. The traje
tories de�ned in (2) 
onverge asymptoti
ally as s → ±∞ topoints in the 
riti
al set W whi
h is �nite.
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Let us point out that Poisson equation has already been used in shaperepresentation. In [10℄ the authors utilize the gradient and the 
urvature ofthe level sets of the solution of Poisson equation for segmenting silhouette,identifying 
orners and deriving some stru
tures of the skeleton of a shape.In that paper no real mathemati
al justi�
ation is given. Let us also notethat Poisson equation is related to the Brownian motion of a set of parti
lespla
ed inside the shape. Indeed the solution u of Poisson equation measuresthe mean time required for a parti
le to hit the boundary [12℄.The paper is organized as follows. In Se
tion 2 we �rst re
all 
lassi
alproperties of Poisson equation. Then in Se
tion 3 we give some reasons why
u the solution of Poisson equation 
an be viewed as a regularization of thedistan
e fun
tion. In Se
tion 4 we study the dynami
al system (2) and inparti
ular its asymptoti
 behaviour as s → ±∞. Then in Se
tion 5 we writethe detailed algorithm. Finally we illustrate the 
apability of our algorithmin Se
tion 6 by showing several 
omputational examples.2 Some results about Poisson equation2.1 Classi
al resultsIn this se
tion we re
all some well-known properties of the solution u ofPoisson equation:

∆u(x) = −1 if x is in Ω, u=0 on ∂Ω. (8)Proposition 1 • Existen
e and uniqueness: If ∂Ω is Lips
hitz then (8)admits a unique solution u in the Sobolev spa
e W 1,p
0 (Ω),∀p ∈ [2,∞[.

• Regularity: If ∂Ω is of 
lass C2, then u is in C2(Ω̄).
• Maximum prin
iple: There exists C > 0 su
h that 0 ≤ u ≤ C on Ω̄.Moreover, we have 0 < u on Ω.Proof: See [8, 9℄.

�As a 
onsequen
e of Proposition 1, we 
an then extend u as a C2 fun
tionon R
2. This is what we do until the end of the paper (so we suppose that

∂Ω is of 
lass C2).2.2 More re�ned propertiesWe set λ1 ≤ λ2 the eigenvalues of ∇2u (λi is real sin
e ∇2u is symmetri
real). In Ω, we have ∆u = −1 = λ1 + λ2. Hen
e λ1 < 0.4



Let us 
onsider the set W , E, and F de�ned by (3), (4) and (5). W isthe set of 
riti
al points of u in Ω. E is the set of extremal points of u in Ω(whi
h in fa
t are maximal points sin
e ∆u = −1) and F is the set of saddlepoints of u in Ω. We give below a nontrivial result due to Alessandrini et al[1℄ 
on
erning the number of 
riti
al points of u. This result is fundamentalfor our algorithm.Theorem 1 Let us assume that Ω is a simply 
onne
ted open set in R
2. Wis a non empty set, and W 
ontains at most a �nite number of points (whi
hare isolated). Moreover, we have #E −#F = 1.Remarks:1. If Ω is 
onvex, then W is redu
ed to a single point whi
h is the maxi-mizer of u on Ω [16℄.For example [13℄, if Ω is symmetri
 and 
onvex in two orthognal di-re
tions, then all the level sets of u are symmetri
 and 
onvex in thosedire
tions, and they are star-shaped. Under those assumptions, thegradient of u vanishes only in a single point, the 
enter of symmetry.2. If Ω is not simply 
onne
ted then W 
an be a 
urve. For example if

Ω is the annulus Ω = {(x, y) ; 1 ≤ x2 + y2 ≤ 4}. It is easy to see that
u(x, y) = 3

8 log 2 log(x
2 + y2)− 1

4(x
2 + y2 + 1

4 ) is the solution of (8) and
ux =

3

4 log 2

x

x2 + y2
− 1

2
x (9)

uy =
3

4 log 2

y

x2 + y2
− 1

2
y (10)Moreover, we have: ∇u(x, y) = (0, 0) if and only if x2 + y2 = 3

2 log 2 ≈
2.16 (noti
e that (0, 0) does not belong to Ω). Hen
e the set of 
riti
alpoints is a 
ir
le of radius √

2.16 ≈ 1.47. It is 
lose to 1.5, but notequal to it.Corollary 1 If x is in W and Ω simply 
onne
ted, then x is a non degen-erated points, i.e. λ1 6= 0 and λ2 6= 0.Proof: If one of the eigenvalue is zero, then there exist non isolated 
riti
alpoints (see [11℄ page 326), whi
h 
ontradi
ts Theorem 1.
�
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Remark: As a 
onsequen
e, F (de�ned by (5) is in fa
t :
F = {x ∈ Ω , ∇u(x) = 0, λ1 < 0 < λ2} (11)Proposition 2 There exists α > 0 su
h that ∇u.N ≥ α on ∂Ω, with N theinner normal to ∂Ω.Proof: This is a 
onsequen
e of the Hopf lemma [8℄, and of the fa
t that

∂Ω is C2 and Ω bounded.
�Corollary 2 Let β in (0, α) (with α given by Proposition 2). Then thereexists r > 0 su
h that ∇u.Nr ≥ β on ∂Ωr, with Nr the inner normal to ∂Ωr,and

Ωr = {x ∈ Ω , d(x,Ω) ≥ r} (12)Proof: This is a 
onsequen
e of the fa
t that u is in C2(R2) and of Propo-sition 2.
�3 Relating the Poisson equation with the distan
efun
tionIn this se
tion we give some heuristi
 reason showing the 
onne
tion betweenthe solution of the Poisson equation and the distan
e fun
tion. Further
onne
tion will be explained in Se
tion 5. In all this se
tion we denote by

u(x) the unique solution of Poisson equation:
∆u(x) = −1 if x is in Ω, u(x)=0 on ∂Ω. (13)Now for ǫ > 0, let us 
onsider the following PDE:






ǫ∂z∂t (x, t) = ∆z(x, t) + 1 in Ω× (0,∞)
z(x, t) = 0 on ∂Ω× (0,∞)
z(x, 0) = d(x)

(14)From [8℄, equation (14) admits a unique regular solution zǫ(x, t).Thanks to (13), equation (14) 
an be written into






ǫ∂z∂t (x, t) = ∆z(x, t)−∆u(x) in Ω× (0,∞)
z(x, t) = 0 on ∂Ω× (0,∞)
z(x, 0) = d(x)

(15)Setting wǫ(x, t) = zǫ(x, t)−u(x) then wǫ(x, t) is a solution of the followingheat equation: 6









ǫ∂wǫ

∂t (x, t) = ∆wǫ(x, t) in Ω× (0,∞)
wǫ(x, t) = 0 on ∂Ω× (0,∞)
wǫ(x, 0) = d(x) − u(x)

(16)From 
lassi
al estimations [8℄ for the heat equation we get the followingestimate:
‖wǫ(., t)‖L2(Ω) ≤ ‖d− u‖L2(Ω)e

−(µ1t/ǫ) (17)where µ1 is the �rst eigenvalue of the Lapla
ian. From (17) we dedu
ewhen ǫ → 0+ that for all t > 0 then zǫ(., t) → u(.). Therefore this 
onver-gen
e shows that zǫ(x, t) is 
lose to u(x) for ǫ small and for all t > 0. Butfor small t > 0, zǫ(x, t) 
an be viewed as a smoothed version of the distan
efun
tion d(x). Thus these heuristi
 arguments show some 
onne
tion be-tween the solution of the Poisson equation and the distan
e fun
tion. Morearguments will given later in se
tion 5.4 Study of the dynami
al systemIn this se
tion we �rst study the gradient �ow (2) asso
iated to u and then wejustify why its traje
tories 
an be used as an approximation of the skeleton.From now on, we assume that the shape Ω is a simply 
onne
ted open set(thus the points in W are isolated thanks to Theorem 1).4.1 De�nitions and basi
 resultsWe 
onsider the following problem. Let x0 in Ω̄, and:
{

ξ′(s) = ∇u(ξ(s))
ξ(0) = x0

(18)where u is the unique solution of (8).Remark: Noti
e that if x0 ∈ W , then ξ(s) = x0 for all s in R.Proposition 3 There exists a unique C1 fun
tion ξ solution of (18). Thissolution is de�ned on R.Proof: The uniqueness of ξ is given by Cau
hy-Lips
hitz theorem for ODE.The existen
e on R is standard, sin
e ∇u remains bounded on R
2.

�
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From Theorem 1, we know that the set of 
riti
al points of∇u are isolatedpoints. Moreover, we saw that W = {x ∈ Ω , ∇u(x) = 0} = E
⋃

F , with Ethe set of maximal points of u in Ω, and F the set of of saddle points of uin Ω.Let us now state some basi
 results about the qualitative property of (18)in a neighbourhood of a point in E.Proposition 4 If x is in E, then x is an attra
tive point. There exists r > 0su
h that if x0 belongs to B(x, r) (the ball of radius r 
entered in x), then
ξ(s) → x as s → +∞.Proof: See Theorem 8.4 page 366 of [11℄.

�Proposition 5 If x is in F , then x is a saddle point, and we have thefollowing properties :1. There exists exa
tly two traje
tories ξi, i = 1, 2, su
h that ξi(s) → x as
s → +∞.2. There exists exa
tly two traje
tories ξi, i = 1, 2, su
h that ξi(s) → x as
s → −∞.Proof: See Theorem 8.5 page 371 of [11℄.

�Corollary 3 Let us 
onsider ξ the unique solution of (18).1. Let us assume that there exists an in
reasing sequen
e sn su
h that
sn → +∞, and ξ(sn) 
onverges to some element w of W . Then ξ(s) →
w as s → +∞.2. Let us assume that there exists an de
reasing sequen
e sn su
h that
sn → −∞, and ξ(sn) 
onverges to some element w of W . Then ξ(s) →
w as s → −∞.Proof: We �rst remark that the points of W are isolated thanks to The-orem 1. The rest of the proof is a straightforward 
onsequen
e of Proposi-tions 4 and 5.

�
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4.2 Qualitative resultsThe next theorem states the following fa
t: given a point x0 in n Ω̄\W , thereexists a traje
tory of the �ow (18) su
h that when s → +∞, ξ(s) → y∞with y∞ in W . Moreover, there exits s0 in R
∗
− su
h that ξ(s0) ∈ ∂Ω or

ξ(s) → z−∞ ∈ F as s → −∞.Theorem 2 Let x0 in Ω̄\W . The unique solution ξ of (18) satis�es the twofollowing properties.1. ξ(s) belongs to Ω for all s > 0. Moreover, there exists y∞ in W (givenby (3)) su
h that: ξ(s) → y∞ as s → +∞.2. One of the two following properties hold:(a) There exists s0 in R
∗
− su
h that ξ(s0) belongs to ∂Ω, and ξ(s) ∈

R
2\Ω̄ if s < s0.(b) ξ(s) remains in Ω for all s in R, and there exists z−∞ in F su
hthat: ξ(s) → z−∞ as s → −∞. Moreover, the set of elements x0,whi
h satis�es this last property, is embedded into a �nite numberof 
urves.Proof:1. We begin by showing the �rst point of the proposition. The fa
t that

ξ(s) belongs to Ω for all s > 0 is a straightforward 
onsequen
e ofProposition 2.Let us 
onsider y0 in Ω su
h that u(y0) = maxx∈Ω̄ u(x) and let F bethe fun
tion:
F (x) = ‖u(x)− u(y0)‖2 (19)

F is a Liapounov fun
tion for problem (18). Indeed, F has a minimumin y0, and if x is in Ω, x ∈ Ω̄\W , then:
〈∇F (x),∇u(x)〉 = 2‖∇u(x)‖2(u(x) − u(y0)) < 0 (20)(using the fa
t that y0 is a maximum of u). Assertion 1. is then astandard result on ODE (see [11℄ page 363 Theorem 8.2 and Remarkpage 364). For the 
onvenien
e of the reader we detail the proof below.We have:

d

ds
(F (ξ(s))) = 〈ξ′(s),∇F (ξ(s))〉 = 〈∇u(ξ(s)),∇F (ξ(s))〉 (21)Hen
e:

d

ds
(F (ξ(s))) = 2(u(ξ(s)) − u(y0))‖∇u(ξ(s))‖2 < 0 (22)9



for all s ≥ 0 sin
e ξ(0) = x0 is not in W , so s 7→ F (ξ(s)) is a stri
tlyde
reasing non negative fun
tion.
ξ(s) belongs to Ω̄ for all s ≥ 0, and Ω is bounded. Let us 
onsider anin
reasing sequen
e sn whi
h goes to +∞ as n → +∞. Let us denote
ξ(sn) by ξn. (ξn) is a bounded sequen
e in Ω̄. Up to a subsequen
e, itis thus a 
onvergent sequen
e.
F (ξn) is a stri
tly de
reasing non negative sequen
e. It is therefore a
onvergent sequen
e. In parti
ular, we have F (ξn)− F (ξn+1) → 0.But we know that there exists tn in (sn, sn+1) su
h that:

d

ds
F (ξ(tn)) = F (ξn+1)− F (ξn) (23)

ξ(tn) is a bounded sequen
e. Hen
e, up to a subsequen
e, it is a 
on-verging sequen
e. Let us denote by y∞ its limit. We have
d

ds
F (y∞) = 0 (24)This implies with (22) that ∇u(y∞) = 0 and so y∞ belongs to W . Wetherefore have shown that any 
luster point of ξn belongs to W . We
on
lude thanks to Corollary 3 that ξ(s) 
onverges to y∞.Remark: If W is a singleton then y∞ = y0 (this is in parti
ular the
ase when Ω is 
onvex).2. To show the se
ond point, we �rst see that if there exists s0 in R

∗
−su
h that ξ(s0) belongs to ∂Ω, then ξ(s) ∈ R

2\Ω̄ if s < s0 (as astraightforward 
onsequen
e of Proposition 2).Let β in (0, α) as in Corollary 2. Then if there exists s1 in R su
h that
ξ(s1) belongs to R

2\Ωr, there exits s0 in R
∗
− su
h that ξ(s0) belongsto ∂Ω (as a 
onsequen
e of Corollary 2).Now let us assume that ξ(s) remains in Ωr for all s in R, and let us
onsider the fun
tion:

G(x) = ‖u(x)‖2 (25)
G is a Liapounov fun
tion for problem (18) with reversed time. Therest of the proof is the same as before.

�We have thus 
ompletely determined the behaviour of the traje
tories ofthe �ow (18). This is the basis of the algorithm we introdu
e in the nextse
tion. 10



5 Detailed algorithm5.1 Our approa
hIn this se
tion we des
ribe our algorithm for 
onstru
ting the Poisson skele-ton of a shape Ω and we show more 
onne
tion between that skeleton andthe real skeleton 
onstru
ted from the distan
e fun
tion.We �rst de�ne the set:
A = {x ∈ ∂Ω , the 
urvature of ∂Ω in x has lo
al maximum.} (26)Then let u be the solution of Poisson equation (8) and the sets W , Eand F de�ned respe
tively in (3), (4) and (5). For 
onstru
ting the Poissonskeleton of Ω we 
onsider the following �ow starting from x in A:

{

ξ′(s) = ∇u(ξ(s))
ξ(0) = x

(27)We denote by S1 the set of traje
tories of these �ows. Thanks to Theorem2, we know that these traje
tories 
onverge to points in W . Of 
ourse,sin
e the �ow starts from x on ∂Ω, we need to remove the beginning ofthese traje
tories. Sin
e x is in A, it is easy to see that the lenght of thetraje
tory to be removed is equal to 1/ρ, where ρ is the 
urvature of ∂Ω in
x [14℄. To 
ompute �ow (27), we use a dynami
al programming approa
h.Given a point x on the �ow, we 
ompute the next point y on the �ow, inthe neighbourhood of x (8-neighbourhood of x in pra
ti
e), as the point yfor whi
h u(y) is minimum.We set S2 the traje
tories from F to E. If x is in F , then it is an unstable�xed point of the �ow 
onsidered here. Thus, from a numeri
al point of view,one just need to sele
t points in the neighbourhood of x (in 4 or 8 
onnexity),and to 
ompute the traje
tories from theses points with the �ow (27).So the question remains on how to 
ompute the lo
ation of the points in
F . This 
ould be done by 
omputing the zeros of the fun
tion x 7→ ‖∇u(x)‖2in Ω. But we have found it to be more a

urate to see the points in F as thepoints where the sign of the 
urvature 
hanges as explained later.De�nition: The Poisson skeleton is de�ned as

S = S1

⋃

S2

⋃

W (28)Let us explain why the Poisson skeleton 
an be regarded as an approx-imation of the real skeleton. The fa
t that the skeleton tends to terminateat points on the boundary of maximal 
urvature is well established in the
omputer vision 
ommunity (see [15, 14℄).11



A

B

skeleton

X X’

Figure 1: Lo
al parameterization of the skeleton of an arbitray shape. Xis on the skeleton, and points A and B realize the distan
e of X to theboundary of the shape. The tangent ve
tor X ′ is the bisse
tor of the angle
(XA,XB), and the segment AB is orthogonal to X ′.But why using equation (27) ? Let us suppose that the real skeletonis given by a parameterized 
urve X(t) and let be X0 = X(t0) a point onthe skeleton. By de�nition there exist two points A and B on the boundary
∂Ω su
h that d(x0, ∂Ω) = ‖X0A‖ = ‖X0B‖. It 
an also be shown that thetangent X ′(t0) is the bisse
tor of the angle (X0A,X0B) and that the segment
AB is orthogonal to X ′

0 = X ′(t0) (see Figure 1).Let us now de�ne ∇+d(X0) (respe
tively ∇−d(X0)) as the gradient ofthe distan
e fun
tion in the dire
tion AX0 ((respe
tively BX0)). It is easilyseen that these ve
tors do exist and that the ve
tor (∇+d(X0)+∇−d(X0)) isparallel to X ′(t0). Let us denote ∇•d(X(t)) = 1
2(∇+d(X(t)) +∇−d(X(t))).From the above 
onsiderations the ve
tor ∇•d(X(t)) is parallel to X ′(t) andthis 
an be formally expressed as

∇•d(X(t)) = X ′(t) (29)So we have just shown that if the skeleton is represented by a 
urve X(t)then ne
essarily X(t) satis�es (29) whi
h is the �ow (27) where u is repla
edby d. We think that this observation fully justi�es the 
onstru
tion of thePoisson skeleton.Remarks:1. From a mathemati
al point of view the writing of (29) 
an be justi-�ed. A
tually the distan
e fun
tion belongs to the spa
e BV 2(Ω) =
{f ∈ W 1,1(Ω) ; ∂f

∂xi
∈ BV (Ω) for i = 1, ..., n} and ∇•d is 
alled the

precise representation of ∇d. In this setting it 
an be shown that(29) admits a solution in a generalized meaning (see [21, 2℄).12



2. Our 
onstru
tion of the Poisson skeleton shares some similarities withthe one of Shah et al [23℄. In that paper the authors de�ne an ap-proximation of the skeleton as the lo
us of points where the norm ofthe gradient of a smoothed distan
e fun
tion v(x) is minimum alongthe level 
urves i.e. they solve d‖∇v‖
ds = 0 where s is the ar
-lengthalong the level 
urves of v. The smoothed distan
e v is 
onstru
ted asthe minimum of a Modi
a-Mortola fun
tional. A dire
t 
omputationshows that the equation d‖∇v‖

ds = 0 is equivalent to
vxy(v

2
x − v2y)− vxvy(vxx − vyy)

|∇v|3 = 0 (30)But this expression is exa
tly the 
urvature of the traje
tories de-�ned in (27). Indeed, we have: ξ
′

(s) = ∇u(ξ(s)), and thus ξ
′′

(s) =
∇u(ξ(s))ξ

′

(s). We remind the reader that the 
urvature of a parametrized
s 7→ ξ(s) is:

κ(s) =
ξ
′

1ξ
′′

2 − ξ
′

2ξ
′′

1

((ξ
′

1)
2 + (ξ

′

1)
2)3/2

(31)So here ξ
′

1 = ux, ξ′

2 = uy, ξ′′

1 = uxxux + uyxuy, ξ′′

2 = uxyux + uyyuy.Hen
e:
κ(s) =

ux(uyuyy + uxuxy)− uy(uxuxx + uyuyx)

|∇u|3 (32)i.e.:
κ(s) =

uxy(u
2
x − u2y)− uxuy(uxx − uyy)

|∇u|3 (33)whi
h is pre
isely the expression (30) where v is repla
ed by u.As will be seen in the next se
tion on Figures 2 to 5, the sign of the
urvature gives some indi
ation on where the skeleton is (see [23℄ for furtherdetails). However, as pointed in [23℄, su
h an approa
h gives an approxi-mation of both the skeleton and the anti skeleton: a pruning step is neededafterwards. Morevoer, as 
an be seen Figures 2 to 5, our approa
h seems tolead to a better approximation of the skeleton in pra
ti
e.5.2 Basi
 examples for ΩHere we detail basi
 examples of Ω where we 
an a
tually show that theskeleton 
omputed with our algorithm is the true skeleton.Cir
le In su
h a simple 
ase, it is easy to see that our algorithm give the
enter of the 
ir
le as the unique element of the inner skeleton of the 
ir
le.13



Ellipse Again it is easy to show that the 
enter of the ellipse is the unique
riti
al point of u and that ∂u
∂y (x, 0) = 0. Moreover, Ω has only two pointswith maximal 
urvature: the summits 
orresponding to the largest radius ofthe ellipse.Without any restri
tion, let us assume that the horizontal axis is thelargest radius of the ellipse. Then, sin
e ∂u

∂y (x, 0) = 0, it implies that thetraje
tories starting from these two summits go straight to the 
enter of theellipse.We 
on
lude that in this parti
ular 
ase, our algorithm give the exa
tsolution.Square Sin
e the diagonal are symmetry axis for Ω, and sin
e the twodiagonals are non parallel (in fa
t they are even orthogonal), we 
on
ludewith the same arguments as above that our algorithm provide the user withthe exa
t solution.Re
tangle Unfortunately, even in su
h a simple example, it remains anopen question to prove that the skeleton given by our algorithm is indeedan approximatin of the genuine skeleton. Nevertheless, as will be shown onFigure 4, our algorithm provide numeri
ally a perfe
t result.6 Numeri
al examplesIn this se
tion, we show some numeri
al examples to illustrate that indeedour algorithm gives a good approximation of the skeleton. As a 
omparison,we also give the sign of the 
urvature given by equation (33), whi
h is the�rst step of the approa
h of [23℄.Figures 2 to 5 present results on di�erent simply 
onne
ted shapes. Ouralgorithm gives a very good approximation in all 
ases. The reader shouldnoti
e the di�eren
e between the skeleton provided by our method, and theinformation given by the sign of the 
urvature. One should also noti
e thatthe interse
tion of the boundary with the 
hange of sign of the 
urvature givesa robust and a

urate approximation of the lo
ation of the lo
al maximumof the 
urvature along the boundary.In Figure 2, we show the obtained result on a moon-like shape. In Fig-ure 3, we show the obtained result on a star-like shape. These two examplesare perfe
t mat
hes for our algorithm.In Figure 4, we show the obtained result on a re
tangle. Noti
e that themethod works although the re
tangle boundary is not C2. In Figure 5, weshow the obtained result on a 
ompli
ated shape. One should noti
e thatthe approximate lo
ation of the stationary points of the �ow are given bythe lo
ation of the 
hange of signs of the 
urvature.14



Moon-like shape Sign of the 
urvature Skeletonof the �ow
Figure 2: Skeleton 
omputation of a moon-like shape. The 
hange of signof the 
urvature gives the lo
ation of the maximum of the 
urvature on theboundary of the shape.We 
an noti
e that in all these examples the only one for whi
h E is nonvoid is the one given in Figure 5.7 Con
lusionIn this paper, we have proposed a novel algorithm to 
ompute an approx-imation of the skeleton. Based on a mathemati
al analysis, we gave someinsight on why su
h an approa
h is e�
ient. The Poisson equation has al-ready been used to 
ompute approximation of the skeleton in the 
omputervision 
ommunity [23, 10℄. We gave here new mathemati
al arguments tojustify su
h an approa
h, and we have proposed a 
ompletely new algorithmthat seems to perfom well, as demonstrated in our numeri
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Star-like shape Sign of the 
urvature Skeletonof the �ow
Figure 3: Skeleton 
omputation of a star-like shape. This kind of shape isperfe
t for the framework developped in this paper.

Re
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urvature Skeletonof the �ow
Figure 4: Skeleton 
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urvature Skeletonof the �ow
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