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This paper presents an advanced computational method for the prediction of the responses in the frequency domain of general linear dissipative structural-acoustic and fluid-structure systems, in the low-and medium-frequency domains, including uncertainty quantification. The system under consideration is constituted of a deformable dissipative structure, coupled with an internal dissipative acoustic fluid including wall acoustic impedances and surrounded by an infinite acoustic fluid. The system is submitted to given internal and external acoustic sources and to prescribed mechanical forces. An efficient reduced-order computational model is constructed using a finite element discretization for the structure and the internal acoustic fluid. The external acoustic fluid is treated using an appropriate boundary element method in the frequency domain. All the required modeling aspects for the analysis of the medium-frequency domain have been introduced namely, a viscoelastic behavior for the structure, an appropriate dissipative model for the internal acoustic fluid including wall acoustic impedance and a model of uncertainty in particular for modeling errors. This advanced computational formulation, corresponding to new extensions and complements with respect to the state-of-the-art, is well adapted for developing new generation of software, in particular for parallel computers.

Nomenclature

a ijkh = elastic coefficients of the structure b ijkh = damping coefficients of the structure c 0 = speed of sound in the internal acoustic fluid c E = speed of sound in the external acoustic fluid f = vector of the generalized forces for the internal acoustic fluid f S = vector of the generalized forces for the structure
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Ω i = R 3 \(Ω E ∪ Γ E ) Ω E
= external acoustic domain Ω S = structural domain

Introduction

The fundamental objective of this paper is to present an advanced computational method for the prediction of the responses in the frequency domain of general linear dissipative structural-acoustic and fluid-structure systems in the low-and medium-frequency domains. The system under consideration is constituted of a deformable dissipative structure, coupled with an internal dissipative acoustic fluid including wall acoustic impedances. The system is surrounded by an infinite acoustic fluid and is submitted to given internal and external acoustic sources, and to prescribed mechanical forces.

Instead of presenting an exhaustive review of such a problem in this introductory section, we have preferred to move the review discussions in each relevant sections.

Concerning the appropriate formulations for computing the elastic, acoustic and elastoacoustic modes of the associated conservative fluid-structure system, including substructuring techniques, and for constructing reduced-order computational models in fluid-structure interaction and for structural-acoustic systems, we refer the reader to [START_REF] Morand | Fluid Structure Interaction[END_REF]; [START_REF] Ohayon | Dynamic substructuring of damped structures using singular value decomposition[END_REF]; [START_REF] Ohayon | Structural Acoustics and Vibration[END_REF]; Ohayon (2004b,a). For dissipative complex systems, the reader can find the details of the basic formulations in [START_REF] Ohayon | Structural Acoustics and Vibration[END_REF].

In this paper, the proposed formulation, which corresponds to new extensions and complements with respect to the state-of-the-art, can be used for the development of a new generation of computational software in particular, in the context of parallel computers. We present here an advanced computational formulation which is based on an efficient reduced-order model in the frequency domain and for which all the required modeling aspects for the analysis of the medium-frequency domain have been taken into account. More precisely, we have introduced a viscoelastic modeling for the structure, an appropriate dissipative model for the internal acoustic fluid including wall acoustic impedance and finally, a global model of uncertainty. It should be noted that model uncertainties must absolutely be taken into account in the computational models of complex vibroacoustic systems in order to improve the prediction of the responses in the mediumfrequency range.

The reduced-order computational model is constructed using the finite element discretization for the structure and for the internal acoustic fluid.

The external acoustic fluid is treated using an appropriate boundary element method in the frequency domain. 

Conclusion

The References are given at the end of the paper.

Statement of the Problem in the Frequency Domain

We consider a mechanical system made up of a damped linear elastic free-free structure Ω S containing a dissipative acoustic fluid (gas or liquid) which occupies a domain Ω. This system is surrounded by an infinite external inviscid acoustic fluid domain Ω E (gas or liquid) (see Fig. 2). A part Γ Z of the internal fluid-structure interface is assumed to be dissipative and is modeled by a wall acoustic local impedance Z. This system is submitted to a given internal acoustic source in the acoustic cavity and to given mechanical forces applied to the structure. In the infinite external acoustic fluid domain, external acoustic sources are given. It is assumed that the external forces are in equilibrium. We are interested in the responses in the low-and mediumfrequency domains for the displacement field in the structure, the pressure field in the acoustic cavity and the pressure fields on the external fluid-structure interface and in the external acoustic fluid (near and far fields). It is now well established that the predictions in the mediumfrequency domain must be improved by taking into account both the system-parameter uncertainties and the model uncertainties induced by modeling errors. Such aspects will be considered in the last section of the paper devoted to Uncertainty Quantification (UQ) in structural acoustics and in fluid-structure interaction.

Main notations

The physical space R 3 is referred to a cartesian reference system and we denote the generic point of R 3 by x =( x 1 ,x 2 ,x 3 ). For any function f (x), the notation f ,j means the partial derivative with respect to x j . We also use the classical convention for summations over repeated Latin indices, but not over Greek indices. As explained above, we are interested in vibration problems formulated in the frequency domain for structural-acoustic and fluidstructure interaction systems. Therefore, we introduce the Fourier transform for various quantities involved. For instance, for the displacement field u, the stress tensor σ ij and the strain tensor ε ij of the structure, we will use the following simplified notation consisting in using the same symbol for a quantity and its Fourier transform. We then have,

u(x,ω)= +∞ -∞ e -iωt u(x,t) dt , (1) 
σ ij (ω)= +∞ -∞ e -iωt σ ij (t) dt , (2) 
ε ij (ω)= +∞ -∞ e -iωt ε ij (t) dt , (3) 
in which the circular frequency ω is real. Nevertheless, for other quantities, some exceptions to this rule are done and in such a case, the Fourier transform of a function f will be noted f ,

f (ω)= +∞ -∞ e -iωt f (t) dt . (4)

Geometry -Mechanical and acoustical hypotheses -Given loadings

The coupled system is assumed to be in linear vibrations around a static equilibrium state taken as a natural state at rest.

Structure Ω S . In general, a complex structure is composed of a main part called the master structure, defined as the "primary" structure accessible to conventional modeling including uncertainties modeling, and a secondary part called the fuzzy substructure related to the structural complexity and including for example many equipment units attached to the master structure. In the present paper, we will not consider fuzzy substructures and concerning the fuzzy structure theory, we refer the reader to [START_REF] Soize | Probabilistic structural modeling in linear dynamic analysis of complex mechanical systems. itheoretical elements[END_REF][START_REF] Soize | A model and numerical method in the medium frequency range for vibroacoustic predictions using the theory of structural fuzzy[END_REF], to Chapter 15 of [START_REF] Ohayon | Structural Acoustics and Vibration[END_REF] for a synthesis, and to [START_REF] Fernandez | Fuzzy structure theory modeling of sound-insulation layers in complex vibroacoustic uncertain systems -theory and experimental validation[END_REF] for extension of the theory to uncertain complex vibroacoustic system with fuzzy interface modeling. Consequently, the so-called "master structure" will be simply called here "structure".

The structure at equilibrium occupies the threedimensional bounded domain Ω S with a boundary ∂Ω S which is made up of a part Γ E which is the coupling interface between the structure and the external acoustic fluid, a part Γ which is a coupling interface between the structure and the internal acoustic fluid and finally, the part Γ Z which is another part of the coupling interface between the structure and the internal acoustic fluid with acoustical properties. The structure is assumed to be free (free-free structure), i.e. not fixed on any part of boundary ∂Ω S . The outward unit normal to ∂Ω S is denoted as

n S =( n S 1 ,n S 2 ,n S 3 ) (see Fig. 2). The displacement field in Ω S is denoted by u(x,ω)=(u 1 (x,ω),u 2 (x,ω),u 3 (x,ω)). A surface force field G(x,ω)=( G 1 (x,ω),G 2 (x,ω),G 3 (x,ω)) is given on ∂Ω S and a body force field g(x,ω)=( g 1 (x,ω), g 2 (x,ω),g 3 (x,ω)) is given in Ω S .
The structure is a dissipative medium whose viscoelastic constitutive equation is defined in Section 5.2. Internal dissipative acoustic fluid Ω. Let Ω be the internal bounded domain filled with a dissipative acoustic fluid (gas or liquid) as described in Section 4. The boundary ∂Ω of Ω is Γ ∪ Γ Z . The outward unit normal to ∂Ω is denoted as n =(n 1 ,n 2 ,n 3 ) and we have n = -n S on ∂Ω (see Fig. 2). Part Γ Z of the boundary has acoustical properties modeled by a wall acoustic impedance Z(x,ω) satisfying the hypotheses defined in Section 4.2. We denote the pressure field in Ω as p(x,ω) and the velocity field as v(x,ω). We assume that there is no Dirichlet boundary condition on any part of ∂Ω. An acoustic source density Q(x,ω) is given inside Ω.

G x 1 x 2 x 3 Q(x,ω) . E ( x , ω ) Q Ω E Ω S Ω Γ Z Γ E Γ . n S n n S
External inviscid acoustic fluid Ω E . The structure is surrounded by an external inviscid acoustic fluid (gas or liquid) as described in Section 10. The fluid occupies the infinite three-dimensional domain Ω E whose boundary ∂Ω E is Γ E . We introduce the bounded open domain

Ω i defined by Ω i = R 3 \(Ω E ∪ Γ E ).
Note that, in general, Ω i does not coincide with the internal acoustic cavity Ω. The boundary ∂Ω i of Ω i is then Γ E . The outward unit normal to ∂Ω i is n S defined above (see Fig. 2). We denote the pressure field in Ω E as p E (x,ω). We assume that there is no Dirichlet boundary condition on any part of Γ E . An acoustic source density Q E (x,ω) is given in Ω E . This acoustic source density induces a pressure field p given (ω) on Γ E defined in Section 10. For the sake of brevity, we do not consider here the case of an incident plane wave and we refer the reader to [START_REF] Ohayon | Structural Acoustics and Vibration[END_REF] for this case.

External Inviscid Acoustic Fluid Equations

An inviscid acoustic fluid occupies the infinite domain Ω E and is described by the acoustic pressure field p E (x,ω) at point x of Ω E and at circular frequency ω. Let ρ E be the constant mass density of the external acoustic fluid at equilibrium. Let c E be the constant speed of sound in the external acoustic fluid at equilibrium and let k = ω/c E be the wave number at frequency ω. The pressure is then solution of the classical exterior Neumann problem related to the Helmholtz equation with a source term,

∇ 2 p E + k 2 p E = -iω Q E in Ω E , (5) ∂p E ∂n S = ω 2 ρ E u • n S on Γ E , (6) 
| p E | = O( 1 R ) , ∂p E ∂R + ikp E = O( 1 R 2 ) , (7) 
with R = x →+∞, where ∂/∂R is the derivative in the radial direction and where u • n S is the normal displacement field on Γ E induced by the deformation of the structure. Equation ( 7) corresponds to the outward Sommerfeld radiation condition at infinity. In Section 10, it is proven that the value p E | Γ E of the pressure field p E on the external fluid-structure interface Γ E is related to p given | Γ E and to u by Eq. ( 141),

p E | Γ E (ω)=p given | Γ E (ω)+iω Z ΓE (ω){u(ω) • n S } , (8) 
in which the different quantities are defined in Section 10 which is a self-contained section describing the computational modeling of the external inviscid acoustic fluid by an appropriate boundary element method. It should be noted that, in Eq. ( 8), the pressure field

p E | Γ E (ω)
is related to the value of the normal displacement field u(ω) • n S on the external fluid-structure interface Γ E through the operator Z ΓE (ω).

Internal Dissipative Acoustic Fluid Equations

Internal dissipative acoustic fluid equations in the frequency domain

The fluid is assumed to be homogeneous, compressible and dissipative. In the reference configuration, the fluid is at rest. The fluid is either a gas or a liquid and gravity effects are neglected (see [START_REF] Andrianarison | Reduced models for modal analysis of fluid-structure systems taking into account compressibility and gravity effects[END_REF] to take into account both gravity and compressibility effects for an inviscid internal fluid). Such a fluid is called a dissipative acoustic fluid. Generally, there are two main physical dissipations. The first one is an internal acoustic dissipation inside the cavity due to the viscosity and the thermal conduction of the fluid. These dissipation mechanisms are assumed to be small. In the model proposed, we consider only the dissipation due to the viscosity. This correction introduces an additional dissipative term in the Helmholtz equation without modifying the conservative part. The second one is the dissipation generated inside the "wall viscothermal boundary layer" of the cavity and is neglected here. We then consider only the acoustic mode (irrotational motion) predominant in the volume. The vorticity and entropy modes which mainly play a role in the "wall viscothermal boundary layer" are not modeled. For additional details concerning dissipation in acoustic fluids, we refer the reader to [START_REF] Lighthill | Waves in Fluids[END_REF]; [START_REF] Pierce | Acoustics: An Introduction to its Physical Principles and Applications[END_REF]; [START_REF] Landau | Fluid Mechanics[END_REF]; [START_REF] Bruneau | Fundamentals of Acoustics[END_REF].

The dissipation due to thermal conduction is neglected and the motions are assumed to be irrotational. Let ρ 0 be the mass density and c 0 be the constant speed of sound in the fluid at equilibrium in the reference configuration Ω. We have (see the details in [START_REF] Ohayon | Structural Acoustics and Vibration[END_REF],

iω p = -ρ 0 c 2 0 ∇• v + c 2 0 Q, ( 9 
)
iω ρ 0 v + ∇p = τc 2 0 ∇Q -iω τ∇p, (10) 
in which τ is given by

τ = 1 ρ 0 c 2 0 4 3 η + ζ > 0 . (11) 
The constant η is the dynamic viscosity, ν = η/ρ 0 is the kinematic viscosity and ζ is the second viscosity which can depend on ω. Therefore, τ can depend on frequency ω. To simplify the notation, we write τ instead of τ (ω).

Eliminating v between Eqs. ( 9) and (10), then dividing by ρ 0 , yield the Helmholtz equation with a dissipative term and a source term,

- ω 2 ρ 0 c 2 0 p -iω τ ρ 0 ∇ 2 p - 1 ρ 0 ∇ 2 p = 1 ρ 0 (iωQ -τc 2 0 ∇ 2 Q) in Ω . (12) 
Taking τ =0and Q =0in Eq. ( 12) yields the usual Helmholtz equation for wave propagation in inviscid acoustic fluid. Cavity Ω is partially filled with a liquid (dissipative acoustic fluid) occupying the domain Ω L . It is assumed that the complementary part Ω\Ω L is a vacuum domain. The boundary ∂Ω L of Ω L is constituted of three boundaries, Γ Z , Γ 0 corresponding to the free surface of the liquid and a part Γ L of Γ. The Neumann boundary condition on Γ L is given by Eq. ( 13), on Γ Z is given by Eq. ( 15) and, neglecting gravity effects, the following Dirichlet condition is written on the free surface, p =0 on Γ 0 .

Boundary conditions in

(1 + iω τ) ∂p ∂n = ω 2 ρ 0 u • n -iωρ 0 p Z + τc 2 0 ∂Q ∂n on Γ Z , (15 
(16)

Structure Equations

Structure equations in the frequency domain

The equation of the structure occupying domain Ω S is written as

-ω 2 ρ S u i -σ ij,j (u)=g i in Ω S , (17) 
in which ρ S (x) is the mass density of the structure. The constitutive equation (linear viscoelastic model, see Section 5.2, Eq. ( 31)) is such that the symmetric stress tensor σ ij is written as

σ ij (u)=(a ijkh (ω)+iω b ijkh (ω)) ε kh (u) , (18) 
in which the symmetric strain tensor ε kh (u) is such that

ε kh (u)= 1 2 (u k,h (x,ω)+u h,k (x,ω)) , (19) 
and where the tensors a ijkh (ω) and b ijkh (ω) depend on ω (see Section 5.2). The boundary condition on the fluidstructure external interface Γ E is such that

σ ij (u)n S j = G i -p E | Γ E n S i on Γ E , (20) 
in which p E | Γ E is given by Eq. ( 8) and yields

σ ij (u) n S j = G i -p given | Γ E n S i -iω Z ΓE (ω){u • n S } n S i on Γ E . ( 21 
)
Since n S = -n, the boundary condition on Γ ∪ Γ Z is written as

σ ij (u)n S j = G i + pn i on Γ ∪ Γ Z . ( 22 
)
in which p is the internal acoustic pressure field defined in Section 4.

Viscoelastic constitutive equation

In dynamics, the structure must always be modeled as a dissipative continuum. For the conservative part of the structure, we use the linear elasticity theory which allows the structural modes to be introduced. This was justified by the fact that, in the low-frequency range, the conservative part of the structure can be modeled as an elastic continuum. In this section, we introduce damping models for the structure based on the general linear theory of viscoelasticity presented in [START_REF] Truesdell | Encyclopedia of Physics[END_REF] (see also [START_REF] Bland | The Theory of Linear Viscoelasticity[END_REF]; [START_REF] Fung | Foundations of Solid Mechanics[END_REF]). Complementary developments are presented with respect to the viscoelastic constitutive equation detailed in [START_REF] Ohayon | Structural Acoustics and Vibration[END_REF].

In this section, x is fixed in Ω, and we rewrite the stress tensor σ ij (x,t) as σ ij (t), the strain tensor ε ij (x,t) as ε ij (t) and its time derivative εij (x,t) as εij (t).

Constitutive equation in the time domain. The stress tensor σ ij (t) is written as

σ ij (t)=G ijkh (0) ε kh (t) + +∞ 0 Ġijkh (τ )ε kh (t-τ )dτ , (23) 
where σ ij (t)=0and ε(t)=0for t ≤ 0. The real functions G ijkh (x,t), denoted as G ijkh (t), are called the relaxation functions. The tensor G ijkh (t) (and thus Ġijkh (t)) has the usual property of symmetry and G ijkh (0), which is called the initial elasticity tensor,i s positive definite. The relaxation functions are defined on [0 , +∞[, are differentiable with respect to t on ]0 , +∞[, their derivatives are denoted as Ġijkh (t) and are assumed to be integrable on [0 , +∞[. Functions G ijkh (t) can be written as

G ijkh (t)=G ijkh (0) + t 0 Ġijkh (τ ) dτ . (24) 
Therefore, the limit of

G ijkh (t), denoted as G ijkh (∞),is finite as t tends to +∞, G ijkh (∞)=G ijkh (0) + +∞ 0 Ġijkh (τ ) dτ . ( 25 
)
The tensor G ijkh (∞), called the equilibrium modulus at x, is symmetric, positive definite and corresponds to the usual elasticity coefficients of the elastic material for a static deformation. In effect, the static equilibrium state is obtained for t tends to infinity.

For all x fixed in Ω, we introduce the real functions t → g ijkh (x,t), denoted as g ijkh (t), such that

g ijkh (t)=0 if t<0 , g ijkh (t)= Ġijkh (t) if t ≥ 0 . ( 26 
)
Since g ijkh (t)=0for t<0, we deduce that g ijkh (t) is a causal function.

Using Eq. ( 26), Eq. ( 23) can be rewritten as

σ ij (t)=G ijkh (0) ε kh (t) + +∞ -∞ g ijkh (τ )ε kh (t-τ )dτ , (27) 
It should be noted that Eq. ( 27) corresponds to the most general formulation in the time domain within the framework of the linear theory of viscoelasticity. The usual approach which consists in modeling the constitutive equation in time domain by a linear differential equation in σ(t) and ε(t) (see for instance [START_REF] Truesdell | Encyclopedia of Physics[END_REF]; [START_REF] Dautray | Mathematical Analysis and Numerical Methods for Science and Technology[END_REF]), corresponds to a particular case which is an approximation of the general Eq. ( 27). An alternative approximation of Eq. ( 27) consists in representing the integral operator by a differential operator acting on additional hidden variables. This type of approximation can efficiently be described using fractional derivative operators (see for instance [START_REF] Deü | Simulation of fractionally damped mechanical systems by means of a newmarkdiffusive scheme[END_REF]; [START_REF] Bagley | Fractional calculus -a different approach to the analysis of viscoelastically damped struture[END_REF]).

Constitutive equation in the frequency domain. The general constitutive equation in the frequency domain is written as

σ ij (ω)=σ elas ij (ω)+iω s damp ij (ω) , (28) 
in which

σ elas ij (ω)=a ijkh (ω) ε kh (ω) , (29) 
s damp ij (ω)=b ijkh (ω) ε kh (ω) . (30) 
Equation ( 28) can then be rewritten as

σ ij (ω)=(a ijkh (ω)+iω b ijkh (ω)) ε kh (ω) . ( 31 
)
Tensors a ijkh (ω) and b ijkh (ω) must satisfy the symmetry properties

a ijkh (ω)=a jikh (ω)=a ijhk (ω)=a khij (ω) , (32) b ijkh (ω)=b jikh (ω)=b ijhk (ω)=b khij (ω) , (33) 
and the positive-definiteness properties, i.e., for all second-order real symmetric tensors X ij ,

a ijkh (ω) X kh X ij ≥ c a (ω) X ij X ij , (34) b ijkh (ω) X kh X ij ≥ c b (ω) X ij X ij , (35) 
in which the positive constants c a (ω) and c b (ω) are such that c a (ω) ≥ c 0 > 0 and c b (ω) ≥ c 0 > 0 where c 0 is a positive real constant independent of ω.

Since g ijkh (t) is an integrable function on ]-∞, +∞[, its Fourier transform g ijkh (ω), defined by

g ijkh (ω)= +∞ -∞ e -iωt g ijkh (t) dt = +∞ 0 e -iωt Ġijkh (t) dt , (36) 
is a complex function which is continuous on ]-∞, +∞[ and such that

lim |ω|→+∞ | g ijkh (ω)| =0. (37) 
The real part g R ijkh (ω)=ℜe{ g ijkh (ω)} and the imaginary part g I ijkh (ω)=ℑm{ g ijkh (ω)} of g ijkh (ω) are even and odd functions, that is to say g

R ijkh (-ω)= g R ijkh (ω) and g I ijkh (-ω)=-g I ijkh (ω).
We can then deduce that

g I ijkh (0) = 0 . ( 38 
)
We can now take the Fourier transform of Eq. ( 27) and using Eq. ( 31) yield the relations,

a ijkh (ω)=G ijkh (0) + g R ijkh (ω) , ( 39 
)
ωb ijkh (ω)= g I ijkh (ω) . (40) 
From Eqs. ( 37), ( 39) and ( 40) yields

lim |ω|→+∞ a ijkh (ω)=G ijkh (0) , (41) 
lim |ω|→+∞ ωb ijkh (ω)=0. ( 42 
)
From Eqs. ( 31), ( 41) and ( 42), we deduce that

σ ij (∞)=G ijkh (0) ε kh (∞) . (43) 
Eq. ( 43) shows that viscoelastic materials behave elastically at high frequencies with elasticity coefficients defined by the initial elasticity tensor G ijkh (0) which differs from the equilibrium modulus tensor G ijkh (∞) written, using Eqs. ( 25) and ( 38), as

G ijkh (∞)=G ijkh (0) + g R ijkh (0) . ( 44 
)
As pointed out before, the positive-definite tensor G ijkh (∞) corresponds to the usual elasticity coefficients of a linear elastic material for a static deformation process. More specifically, for ω =0, using Eqs. ( 38) to ( 40) and Eq. ( 31) yield

σ ijkh (0) = a ijkh (0) ε ijkh (0) . (45) 
in which σ ijkh (0) = {σ ijkh (ω)} ω=0 and ε ijkh (0) = {ε ijkh (ω)} ω=0 , and where

a ijkh (0) = G ijkh (0) + g R ijkh (0) = G ijkh (∞) . ( 46 
)
The reader should be aware of the fact that the constitutive equation of an elastic material in a static deformation process is defined by G ijkh (∞) and not by the initial elasticity tensor G ijkh (0). Referring to [START_REF] Coleman | On the thermodynamics, strain impulses and viscoelasticity[END_REF]; [START_REF] Truesdell | Encyclopedia of Physics[END_REF], it has been proven that

G ijkh (0) -G ijkh (∞) is a positive-definite tensor and consequently, g R ijkh (0) = G ijkh (∞) -G ijkh (0) is a negative-definite tensor.
Since g ijkh (t) is a causal function, the real part g R ijkh (ω) and the imaginary part g I ijkh (ω) of its Fourier transform g ijkh (ω) are related by the following relations involving the Hilbert transform (see [START_REF] Papoulis | Signal Analysis[END_REF]; [START_REF] Hahn | Hilbert transforms in signal processing[END_REF]),

g R ijkh (ω)= 1 π p.v +∞ -∞ g I ijkh (ω ′ ) ω -ω ′ dω ′ , (47) 
g I ijkh (ω)=- 1 π p.v +∞ -∞ g R ijkh (ω ′ ) ω -ω ′ dω ′ , (48) 
in which p.v denotes the Cauchy principal value defined as

p.v +∞ -∞ = lim ℓ→+∞,η→0 + { -η -ℓ + ℓ η } . ( 49 
)
The relations defined by Eqs. ( 47) and ( 48) are also called the Kramers and Kronig relations for function g ijkh (t) (see [START_REF] Kronig | On the theory of dispersion of x-rays[END_REF]; [START_REF] Kramers | La diffusion de la lumière par les atomes[END_REF]).

LF-range constitutive equation approximation.

In the low-frequency range and in most cases, the coefficients a ijkh (ω) given by the linear viscoelastic model defined by Eq. ( 39) are almost frequency independent. In such a case, they can be approximated by a ijkh (ω) ≃ a ijkh (0) which is independent of ω (but which depends on x). It should be noted that this approximation can only be made on a finite interval corresponding to the low-frequency range and cannot be used in all the frequency domain because Eqs. ( 47) and ( 48) are not satisfied and integrability property is lost.

MF range constitutive equation. In the mediumfrequency range, the previous LF-range constitutive equation approximation is generally not valid and the full linear viscoelastic theory defined by Eq. ( 31) must be used.

Bibliographical comments concerning expressions of frequency-dependent coefficients. Some algebraic representations of functions a ijkh (ω) and b ijkh (ω) have been proposed in the literature (see for instance [START_REF] Bland | The Theory of Linear Viscoelasticity[END_REF]; [START_REF] Truesdell | Encyclopedia of Physics[END_REF]; [START_REF] Bagley | Fractional calculus -a different approach to the analysis of viscoelastically damped struture[END_REF]; [START_REF] Golla | Dynamics of viscoelastic structures -a time domain, finite element formulation[END_REF]; [START_REF] Lesieutre | Finite element modeling of frequency-dependent material damping using augmenting thermodynamic fields[END_REF]; [START_REF] Dautray | Mathematical Analysis and Numerical Methods for Science and Technology[END_REF][START_REF] Mc Tavish | Modeling of linear viscoelastic space structures[END_REF]; [START_REF] Dovstam | Augmented Hooke's law in frequency domain. three dimensional material damping formulation[END_REF]; [START_REF] Ohayon | Structural Acoustics and Vibration[END_REF]; [START_REF] Lesieutre | Damping in structural dynamics[END_REF]). Concerning linear hysteretic damping correctly written in the present context, we refer the reader to [START_REF] Inaudi | Linear hysteretic damping and the Hilbert transform[END_REF]; [START_REF] Makris | Stiffness, flexibility, impedance, mobility and hidden delta function[END_REF].

Boundary Value Problem in Terms of {u,p}

The boundary value problem in terms of {u,p} is written as follows. For all real ω and for given G(ω), g(ω), p given | Γ E (ω) and Q(ω), find u(ω) and p(ω), such that

-ω 2 ρ S u -div σ(u)=g in Ω S , (50) 
σ(u) n S = G -p given | Γ E n S -iω Z ΓE (ω){u • n S } n S on Γ E , (51) 
σ(u) n S = G + p n on Γ ∪ Γ Z . ( 52 
) - ω 2 ρ 0 c 2 0 p -iω τ ρ 0 ∇ 2 p - 1 ρ 0 ∇ 2 p = 1 ρ 0 (iωQ -τc 2 0 ∇ 2 Q) in Ω . ( 53 
) (1 + iω τ) ∂p ∂n = ω 2 ρ 0 u • n + τc 2 0 ∂Q ∂n on Γ . (54) (1 + iω τ) ∂p ∂n = ω 2 ρ 0 u • n -iωρ 0 p Z + τc 2 0 ∂Q ∂n on Γ Z . (55) 
In case of a free surface in the internal acoustic cavity (see Section 4.3, we must add the following boundary condition p =0 on Γ 0 .

(56)

Comments.

• We are interested in studying the linear vibrations of the coupled system around a static equilibrium which is consider as a natural state at rest (then the external solid and acoustic forces are assumed to be in equilibrium).

• Eq. ( 50) corresponds to the structure equation (see Eqs. ( 17) and ( 28)), in which {div σ(u)} i = σ ij,j (u).

• Eqs. ( 51) and ( 52) are the boundary conditions for the structure (see Eqs. ( 21) and ( 22)).

• Eq. ( 53) corresponds to the internal dissipative acoustic fluid equation (see Eq. ( 12)).

• Finally, Eqs. ( 54) and ( 55) are the boundary conditions for the acoustic cavity (see Eqs. ( 13) and ( 15)).

• It is important to note that the external acoustic pressure field p E has been eliminated as a function of u using the acoustic impedance boundary operator Z ΓE (ω) while the internal acoustic pressure field p is kept.

Computational Model

The computational model is constructed using the finite element discretization of the boundary value problem. We consider a finite element mesh of structure Ω S and a finite element mesh of internal acoustic fluid Ω. We assume that the two finite element meshes are compatible on interface Γ ∪ Γ Z . The finite element mesh of surface Γ E is the trace of the mesh of Ω S (see Fig. 3). We classically use the finite element method to construct the discretization of the variational formulation of the boundary value problem defined by Eqs. ( 50) to (55), with additional boundary condition defined by Eq. ( 56) in case of a free surface for an internal liquid. For the details concerning the practical construction of the finite element matrices, we refer the reader to [START_REF] Ohayon | Structural Acoustics and Vibration[END_REF]. Let U(ω) be the complex vector of the n S degrees-of-freedom (DOFs) which are the values of u(ω) at the nodes of the finite element mesh of domain Ω S . For the internal acoustic fluid, let P(ω) be the complex vectors of the n DOFs which are the values of p(ω) at the nodes of the finite element mesh of domain Ω. The finite element method yields the following complex matrix equation,

[A FSI (ω)] U(ω) P(ω) = F S (ω) F(ω) , (57) 
in which the complex matrix [A FSI (ω)] is defined by

[A S (ω)]-ω 2 [A BEM (ω/c E )] [C] ω 2 [C] T [A(ω)]+[A Z (ω)] . (58) 
In Eq. ( 58), the symmetric (n S × n S ) complex matrix [A S (ω)] is defined by

[A S (ω)] = -ω 2 [M S ]+iω [D S (ω)] + [K S (ω)] , (59) 
in which [M S ], [D S (ω)] and [K S (ω)] are symmetric (n S × n S ) real matrices which represent the mass matrix, the damping matrix and the stiffness matrix of the structure. Matrix [M S ] is positive and invertible (positive definite) and matrices [D S (ω)] and [K S (ω)] are positive and not invertible (positive semidefinite) due to the presence of six rigid body motions since the structure has been considered as a free-free structure. The symmetric (n×n) complex matrix [A(ω)] is defined by 

[A(ω)] = -ω 2 [M]+iω [D(ω)] + [K] , (60) 
[A BEM (ω/c E )] = -ρ E [N] T [B ΓE (ω/c E )] [N] , (61) 
in which [B ΓE (ω/c E )] is the full symmetric (n E × n E ) complex matrix defined in Section 10.7 and where [N] is a sparse (n E ×n S ) real matrix related to the finite element discretization.

Reduced-Order Computational Model

The strategy used for constructing the reduced-order computational model consists in using the projection basis constituted of:

• the undamped elastic structural modes of the structure in vacuo for which the constitutive equation corresponds to elastic materials (see Eq. ( 45)), and consequently, the stiffness matrix has to be taken for ω =0.

• the undamped acoustic modes of the acoustic cavity with fixed boundary and without wall acoustic impedance. Two cases must be considered: one for which the internal pressure varies with a variation of the volume of the cavity (a cavity with a sealed wall called a closed cavity) and the other one for which the internal pressure does not vary with the variation of the volume of the cavity (a cavity with a non sealed wall called an almost closed cavity).

Computation of the elastic structural modes

This step concerns the finite element calculation of the undamped elastic structural modes of structure Ω S in vacuo for which the constitutive equation corresponds to elastic materials. Setting λ S = ω 2 , we then have the following classical (n S × n S ) generalized symmetric real eigenvalue problem

[K S (0)] U = λ S [M S ] U . ( 62 
)
It can be shown that there is a zero eigenvalue with multiplicity 6 (corresponding to the six rigid body motions) and that there is an increasing sequence of n S -6 strictly positive eigenvalues (corresponding to the elastic structural modes), each positive eigenvalue can be multiple (case of a structure with symmetries),

0 <λ S 1 ≤ ... ≤ λ S α ≤ ... . (63) 
Let U 1 ,...,U α ,...be the eigenvectors (the elastic structural modes) associated with λ S 1 ,...,λ S α ,.... Let 0 < N S ≤ n S -6. We introduce the (n S × N S ) real matrix of the N S elastic structural modes U α associated with the first N S strictly positive eigenvalues,

[ U ]=[U 1 ...U α ...U NS ] . (64) 
One has the classical orthogonality properties,

[ U ] T [M S ][U ]=[M S ] , (65) 
[ U ] T [K S (0)] [ U ]=[K S (0)] , (66) 
in which [M S ] is a diagonal matrix of positive real numbers and where [K S (0)] is the diagonal matrix of the eigenvalues such that [K S (0)] αβ = λ S α δ αβ (the eigenfrequencies are ω S α = λ S α ).

Computation of the acoustic modes

This step concerns the finite element calculation of the undamped acoustic modes of a closed (sealed wall) or an almost closed (non sealed wall) acoustic cavity Ω. Setting λ = ω 2 , we then have the following classical (n × n) generalized symmetric real eigenvalue problem

[K] P = λ [M] P . ( 67 
)
It can be shown that there is a zero eigenvalue with multiplicity 1, denoted as λ 0 (corresponding to constant eigenvector denoted as P 0 ) and that there is an increasing sequence of n -1 strictly positive eigenvalues (corresponding to the acoustic modes), each positive eigenvalue can be multiple (case of an acoustic cavity with symmetries),

0 <λ 1 ≤ ...≤ λ α ≤ ... . (68) 
Let P 1 ,...,P α ,... be the eigenvectors (the acoustic modes) associated with λ 1 ,...,λ α ,....

• Closed (sealed wall) acoustic cavity. Let be 0 < N ≤ n. We introduce the (n × N ) real matrix of the constant eigenvector P 0 and of the N -1 acoustic modes P α associated with the first N -1 strictly positive eigenvalues,

[ P ]=[P 0 , P 1 ...P α ...P N -1 ] . (69) 
• Almost closed (non sealed wall) acoustic cavity. Let be 0 <N ≤ n -1. We introduce the (n × N ) real matrix of the N acoustic modes P α associated with the first N strictly positive eigenvalues,

[ P ]=[P 1 ...P α ...P N ] . (70) 
One has the classical orthogonality properties,

[ P ] T [M][P ]=[M ] , (71) 
[ P ] T [K][P ]=[K] , (72) 
in which [M ] is a diagonal matrix of positive real numbers and where [K] is the diagonal matrix of the eigenvalues such that [K] αβ = λ α δ αβ (for non zero eigenvalue, the eigenfrequencies are ω α = √ λ α ).

Construction of the reduced-order computational model

The reduced-order computational model, of order N S ≪ n S and N ≪ n, is obtained by projecting Eq. ( 57) as follows,

U(ω)=[U] q S (ω) , (73) 
P(ω)=[P] q(ω) . ( 74 
)
The complex vectors q S (ω) and q(ω) of dimension N S and N are the solution of the following equation

[A FSI (ω)] q S (ω) q(ω) = f S (ω) f(ω) , (75) 
in which the complex matrix [A FSI (ω)] is defined by

[A S (ω)]-ω 2 [A BEM (ω/c E )] [ C ] ω 2 [ C ] T [A(ω)]+[A Z (ω)] . (76) 
In Eq. ( 76), the symmetric (N S × N S ) complex matrix [A S (ω)] is defined by 

[A S (ω)] = -ω 2 [M S ]+iω [D S (ω)] + [K S (ω)] , (77) in which [M S ], [D S (ω)] and [K S (ω)] are positive- definite symmetric (N S × N S ) real matrices such that [D S (ω)] = [U] T [D S (ω)] [U] and [K S (ω)] = [U] T [K S (ω)] [U]. The symmetric (N × N ) complex ma- trix [A(ω)] is defined by [A(ω)] = -ω 2 [M ]+iω [D(ω)] + [K] , (78) 
C]=[ U] T [C][P]. The sym- metric (N × N ) complex matrix [A Z (ω)] is such that [A Z (ω)] = [P] T [A Z (ω)] [P]
and finally, the symmetric

(N S × N S ) complex matrix [A BEM (ω/c E )] is given by [A BEM (ω/c E )] = [U] T [A BEM (ω/c E )] [U].
The given forces are written as f S (ω)=[ U] T F S (ω) and f(ω)=

[P] T F(ω).

Uncertainty Quantification

Short overview on uncertainty quantification

In this section, we summarize the fundamental concepts related to uncertainties and their stochastic modeling in computational structural-acoustic models (extracted from Soize (2012a,b)).

Uncertainty and variability

The designed structural-acoustic system is used to manufacture the real system and to construct the nominal computational model (also called the mean computational model or sometimes, the mean model) using a mathematical-mechanical modeling process for which the main objective is the prediction of the responses of the real system. The real system can exhibit a variability in its responses due to fluctuations in the manufacturing process and due to small variations of the configuration around a nominal configuration associated with the designed structural-acoustic system. The mean computational model which results from a mathematical-mechanical modeling process of the designed structural-acoustic system, has parameters (such as geometry, mechanical properties, boundary conditions) which can be uncertain (for example, parameters related to the structure, the internal acoustic fluid, the wall acoustic impedance). In this case, there are uncertainties on the computational model parameters. In the other hand, the modeling process induces some modeling errors defined as the model uncertainties. computational model to carry out robust optimization, robust design and robust updating with respect to uncertainties. Today, it is well understood that, as soon as the probability theory can be used, then the stochastic approach of uncertainties is the most powerful, efficient and effective tool for modeling and for solving direct problem and inverse problem related to the identification. The developments presented below are carried out within the framework of the probability theory.

Types of approach for stochastic modeling of uncertainties

The parametric probabilistic approach consists in modeling the uncertain parameters of the computational model by random variables and then, in constructing the stochastic model of these random variables using the available information. Such an approach is very well adapted and very efficient to take into account the uncertainties in the computational model parameters. Many works have been published and a state-of-the-art can be found, for instance, in Ghanem andSpanos (1991, 2003); [START_REF] Mace | Uncertainty in structural dynamics[END_REF]; [START_REF] Schueller | Uncertainties in structural mechanics and analysis-computational methods[END_REF][START_REF] Schueller | On the treatment of uncertainties in structural mechanics and analysis[END_REF]; [START_REF] Deodatis | 5th international conference on computational stochastic mechanics[END_REF].

Concerning model uncertainties induced by modeling errors, it is well understood that the prior and posterior probability models of the uncertain parameters of the computational model are not sufficient and do not have the capability to take into account model uncertainties in the context of computational mechanics as explained, for instance, in [START_REF] Beck | Updating models and their uncertainties. i: Bayesian statistical framework[END_REF] and in [START_REF] Soize | A nonparametric model of random uncertainties on reduced matrix model in structural dynamics[END_REF][START_REF] Soize | Maximum entropy approach for modeling random uncertainties in transient elastodynamics[END_REF]Soize ( , 2005b)). Two main methods can be used to take into account model uncertainties (modeling errors).

(i) Output-prediction-error method. It consists in introducing a stochastic model of the system output which is the difference between the real system output and the computational model output. If there are no experimental data, then this method cannot really be used because there is generally no information concerning the probability model of the noise which is added to the computational model output. If experiments are available, the observed prediction error is then the difference between the measured real system output and the computational model output. A posterior probability model can then be constructed [START_REF] Beck | Updating models and their uncertainties. i: Bayesian statistical framework[END_REF][START_REF] Beck | Bayesian updating of structural models and reliability using Markov chain Monte Carlo simulation[END_REF] using the Bayesian method [START_REF] Spall | Introduction to Stochastic Search and Optimization[END_REF][START_REF] Kaipio | Statistical and Computational Inverse Problems[END_REF]. Such an approach is efficient but requires experimental data. In this case, the posterior probability model of the uncertain parameters of the computational model strongly depends on the probability model of the noise which is added to the model output and which is often unknown. In addition, for many problems, it can be necessary to take into account the modeling errors at the operators level of the mean computational model. For instance, such an approach seems to be necessary to take into account the modeling errors on the mass and the stiffness operators of a computational dynamical model in order to analyze the generalized eigenvalue problem. It is also the case for the robust design optimization performed with an uncertain computational model for which the design parameters of the computational model are not fixed but vary inside an admissible set of values.

(ii) Nonparametric probabilistic approach of model uncertainties induced by modeling errors. This approach, proposed in [START_REF] Soize | A nonparametric model of random uncertainties on reduced matrix model in structural dynamics[END_REF] as an alternative method to the previous output-prediction-error method, allows modeling errors to be taken into account at the operators level by introducing random operators and not at the model output level by introducing an additive noise. It should be noted that this second approach allows a prior probability model of model uncertainties to be constructed even if no experimental data are available. This nonparametric probabilistic approach is based on the use of a reducedorder model and the random matrix theory. It consists in directly constructing the stochastic modeling of the operators of the mean computational model. The ran-dom matrix theory [START_REF] Mehta | Random Matrices, Revised and Enlarged Second Edition[END_REF] and its developments in the context of dynamics, vibration and acoustics [START_REF] Soize | A nonparametric model of random uncertainties on reduced matrix model in structural dynamics[END_REF][START_REF] Soize | Maximum entropy approach for modeling random uncertainties in transient elastodynamics[END_REF](Soize, , 2005b(Soize, , 2010b;;[START_REF] Wright | New Directions in Linear Acoustics: Random Matrix Theory, Quantum Chaos and Complexity[END_REF]) is used to construct the prior probability distribution of the random matrices modeling the uncertain operators of the mean computational model. This prior probability distribution is constructed by using the maximum entropy principle [START_REF] Jaynes | Information theory and statistical mechanics[END_REF], in the context of Information Theory [START_REF] Shannon | A mathematical theory of communication[END_REF], for which the constraints are defined by the available information [START_REF] Soize | A nonparametric model of random uncertainties on reduced matrix model in structural dynamics[END_REF][START_REF] Soize | Maximum entropy approach for modeling random uncertainties in transient elastodynamics[END_REF](Soize, , 2003a(Soize, , 2005a(Soize, ,b, 2010b)). Since the basic paper [START_REF] Soize | A nonparametric model of random uncertainties on reduced matrix model in structural dynamics[END_REF], many works have been published in order:

• to validate, using experimental results, the nonparametric probabilistic approach of both the computational model-parameter uncertainties and the model uncertainties induced by modeling errors [START_REF] Chebli | Experimental validation of a nonparametric probabilistic model of non homogeneous uncertainties for dynamical systems[END_REF]Soize, 2005b;[START_REF] Chen | Probabilistic approach for model and data uncertainties and its experimental identification in structural dynamics: Case of composite sandwich panels[END_REF][START_REF] Duchereau | Transient dynamics in structures with nonhomogeneous uncertainties induced by complex joints[END_REF]Soize et al., 2008a;[START_REF] Durand | Structuralacoustic modeling of automotive vehicles in presence of uncertainties and experimental identification and validation[END_REF][START_REF] Fernandez | Fuzzy structure theory modeling of sound-insulation layers in complex vibroacoustic uncertain systems -theory and experimental validation[END_REF][START_REF] Fernandez | Soundinsulation layer modelling in car computational vibroacoustics in the medium-frequency range[END_REF],

• to extend the applicability of the theory to other areas (Soize, 2003b;[START_REF] Soize | Random uncertainties model in dynamic substructuring using a nonparametric probabilistic model[END_REF][START_REF] Capiez-Lernout | Nonparametric modeling of random uncertainties for dynamic response of mistuned bladed disks[END_REF][START_REF] Desceliers | Nonparametric -parametric model for random uncertainties in nonlinear structural dynamics -application to earthquake engineering[END_REF][START_REF] Capiez-Lernout | Blade manufacturing tolerances definition for a mistuned industrial bladed disk[END_REF][START_REF] Cottereau | Construction of a probabilistic model for impedance matrices[END_REF][START_REF] Soize | Construction of probability distributions in high dimension using the maximum entropy principle. applications to stochastic processes, random fields and random matrices[END_REF][START_REF] Das | A bounded random matrix approach for stochastic upscaling[END_REF][START_REF] Kassem | Energy density field approach for low-and medium-frequency vibroacoustic analysis of complex structures using a stochastic computational model[END_REF],

• to extend the theory to new ensembles of positivedefinite random matrices yielding a more flexible description of the dispersion levels (Mignolet and Soize, 2008a),

• to apply the theory for the analysis of complex dynamical systems in the medium-frequency range, including structural-acoustic systems, [START_REF] Ghanem | Reduced models for the medium-frequency dynamics of stochastic systems[END_REF]Soize, 2003b;[START_REF] Chebli | Experimental validation of a nonparametric probabilistic model of non homogeneous uncertainties for dynamical systems[END_REF][START_REF] Capiez-Lernout | Data and model uncertainties in complex aerospace engineering systems[END_REF][START_REF] Duchereau | Transient dynamics in structures with nonhomogeneous uncertainties induced by complex joints[END_REF][START_REF] Arnst | A nonparametric probabilistic model for ground-borne vibrations in buildings[END_REF][START_REF] Durand | Structuralacoustic modeling of automotive vehicles in presence of uncertainties and experimental identification and validation[END_REF][START_REF] Pellissetti | Reliability analysis of a satellite structure with a parametric and a non-parametric probabilistic model[END_REF][START_REF] Desceliers | Determination of the random anisotropic elasticity layer using transient wave propagation in a fluidsolid multilayer: Model and experiments[END_REF][START_REF] Fernandez | Fuzzy structure theory modeling of sound-insulation layers in complex vibroacoustic uncertain systems -theory and experimental validation[END_REF][START_REF] Fernandez | Soundinsulation layer modelling in car computational vibroacoustics in the medium-frequency range[END_REF][START_REF] Kassem | Structural partitioning of complex structures in the mediumfrequency range. an application to an automotive vehicle[END_REF]Soize, 2012a),

• to analyze nonlinear dynamical systems (i) with local nonlinear elements [START_REF] Desceliers | Nonparametric -parametric model for random uncertainties in nonlinear structural dynamics -application to earthquake engineering[END_REF]Sampaio and Soize, 2007a,b;Batou and Soize, 2009b,a;[START_REF] Ritto | Nonlinear dynamics of a drill-string with uncertainty model of the bitrock interaction[END_REF][START_REF] Ritto | Robust optimization of the rate of penetration of a drill-string using a stochastic nonlinear dynamical model[END_REF][START_REF] Wang | Stochastic reduced order models for uncertain infinitedimensional geometrically nonlinear dynamical system. Stochastic excitation cases[END_REF] and (ii) with nonlinear geometrical effects (Mignolet and Soize, 2008b;[START_REF] Capiez-Lernout | Computational stochastic statics of an uncertain curved structure with geometrical nonlinearity in threedimensional elasticity[END_REF].

Concerning the coupling of the parametric probabilistic approach of uncertain computational model parameters, with the nonparametric probabilistic approach of model uncertainties induced by modeling errors, a methodology has recently been proposed (Soize, 2010a;[START_REF] Batou | Experimental identification of an uncertain computational dynamical model representing a family of structures[END_REF]. This generalized probabilistic approach of uncertainties in computational dynamics uses the random matrix theory. The proposed approach allows the prior probability model of each type of uncertainties (uncertainties on the computational model parameters and model uncertainties) to be separately constructed and identified.

Concerning robust updating or robust design optimization which consists in updating a computational model or in optimizing the design of a mechanical system with a computational model, in taking into account the uncertainties in the computational model parameters and the modeling uncertainties. An overview of the computational methods in optimization considering uncertainties can be found in [START_REF] Schueller | Computational methods in optimization considering uncertainties -an overview[END_REF]. 

Uncertainties and stochastic reduced-order computational structural-acoustic model

This section is devoted to the construction of the stochastic model of both computational model-parameters uncertainties and modeling errors using the nonparametric probabilistic approach and random matrix theory (for the details, see [START_REF] Durand | Structuralacoustic modeling of automotive vehicles in presence of uncertainties and experimental identification and validation[END_REF]; Soize (2010bSoize ( , 2012a,b),b)). We apply this methodology to the reducedorder computational structural acoustic model defined by Eqs. ( 73) to (78). It is assumed that there is no uncertainties in the boundary element matrix [A BEM (ω/c E )] and in the wall acoustic impedance matrix [A Z (ω)]. Consequently, for fixed values N S and N , the stochastic reduced-order computational structural-acoustic model of order N S and N is written as

U(ω)=[U] Q S (ω) , (79) 
P(ω)=[P] Q(ω) , (80) 
in which, for all fixed ω, the complex random vectors Q S (ω) and Q(ω) of dimension N S and N are the solution of the following equation

[A FSI (ω)] Q S (ω) Q(ω) = f S (ω) f(ω) , (81) 
and where the complex random matrix [A FSI (ω)] is written as

[A S (ω)]-ω 2 [A BEM (ω/c E )] [ C ] ω 2 [ C ] T [A(ω)]+[A Z (ω)] . (82) 
The symmetric (N S × N S ) complex random matrix [A S (ω)] is defined by

[A S (ω)] = -ω 2 [M S ]+iω [D S (ω)] + [K S (ω)] , ( 83 
)
in which the positive-definite symmetric ω)] and [K S (ω)] are random matrices whose probability distributions are constructed in Sections 9.4 and 9.5. The symmetric (N × N ) complex random matrix [A(ω)] is written as 

(N S × N S ) real matrices [M S ], [D S (
[A(ω)] = -ω 2 [M]+iω [D(ω)] + [K] , (84) 

Preliminary results for the stochastic modeling of the random matrices for the stochastic reduced-order computational structural-acoustic model

In the framework of the nonparametric probabilistic approach of uncertainties, the probability distributions and the generators of independent realizations of such random matrices are constructed using random matrix theory [START_REF] Mehta | Random Matrices, Revised and Enlarged Second Edition[END_REF] and the maximum entropy principle [START_REF] Jaynes | Information theory and statistical mechanics[END_REF][START_REF] Soize | Construction of probability distributions in high dimension using the maximum entropy principle. applications to stochastic processes, random fields and random matrices[END_REF] from Information Theory [START_REF] Shannon | A mathematical theory of communication[END_REF], in which Shannon introduced the notion of entropy as a measure of the level of uncertainties for a probability distribution. For instance, if p X (x) is a probability density function on a real random variable X, the entropy E(p X ) of p X is defined by

E(p X )=- +∞ -∞ p X (x) log(p X (x)) dx.
The maximum entropy principle consists in maximizing the entropy, that is to say, maximizing the uncertainties, under the constraints defined by the available information. Consequently, it is important to define the algebraic properties of the random matrices for which the probability distributions have to be constructed. Let E be the mathematical expectation. For instance, E{X} =

+∞ -∞ xp X (x) dx. Consequently, we have E(p X )=-E{log(p X (X))}.
In order to construct the probability distributions of the random matrices introduced in Section 9.2, we need to define a basic ensemble of random matrices.

It is well known that a real Gaussian random variable can take negative values. Consequently, the Gaussian orthogonal ensemble (GOE) of random matrices [START_REF] Mehta | Random Matrices, Revised and Enlarged Second Edition[END_REF], which is the generalization for the matrix case of the Gaussian random variable, cannot be used when positiveness property of the random matrix is required. Therefore, new ensembles of random matrices are required to implement the nonparametric probabilistic approach of uncertainties. Below, we summarize the construction [START_REF] Soize | A nonparametric model of random uncertainties on reduced matrix model in structural dynamics[END_REF][START_REF] Soize | Maximum entropy approach for modeling random uncertainties in transient elastodynamics[END_REF] of an ensemble of positivedefinite symmetric (m × m) real random matrices.

Definition of the available information

For the probabilistic construction using the maximum entropy principle, the available information corresponds to two constraints. The first one is the mean value which is given and equal to the identity matrix. The second one is an integrability condition which has to be imposed in order to ensure the decreasing of the probability density function around the origin. These two constraints are written as

E{[G 0 ]} =[I m ] ,E {log(det[G 0 ])} = χ, (86)
in which |χ| is finite and where [I m ] is the (m × m) identity matrix.

Probability density function

The value of the probability density function of the random matrix

[G 0 ] for the matrix [G ] is noted p [G0] ([G ])
and satisfies the usual normalization condition,

p [G0] ([G ]) dG =1, ( 87 
)
in which the integration is carried out on the set of all the positive-definite symmetric (m × m) real matrices and where it can be shown that the volume element dG is written as dG =2 m(m-1)/4 Π 1≤j≤k≤m dG jk .

Let δ be the positive real number defined by

δ = 1 m E{ [G 0 ] -[I m ] 2 F } 1/2 , ( 88 
)
which will allow the dispersion of the probability model of random matrix [G 0 ] to be controlled and where M F is the Frobenius matrix norm of the matrix

[M] such that M 2 F = tr{[M] T [M]} .F o rδ such that 0 <δ<(m + 1) 1/2 (m +5) -1/2
, the use of the maximum entropy principle under the two constraints defined by Eq. ( 86) and the normalization condition defined by Eq. ( 87), yields, for all positive-definite symmetric (m × m) real matrix [G ],

p [G0] ([G ]) = c 0 det [G ] c1 exp{-c 2 tr[G ]} , ( 89 
)
in which the positive constant of normalization c 0 , the constant c 1 =( m + 1)(1 -δ 2 )/(2δ 2 ) and the constant c 2 =(m +1)/(2δ 2 ) depend on m and δ.

Generator of independent realizations

The generator of independent realizations (which is required to solve the random equations with the Monte Carlo method) is constructed using the following algebraic representation. Using the Cholesky decomposition, random matrix

[G 0 ] is written as [G 0 ]=[L] T [L] in which [L] is an upper triangular (m × m) random matrix such that: • random variables {[L] jj ′ ,j ≤ j ′ } are independent; • for j<j ′ , the real-valued random variable [L] jj ′ is written as [L] jj ′ = σ m U jj ′ in which σ m = δ(m +1) -1/2
and where U jj ′ is a real-valued Gaussian random variable with zero mean and variance equal to 1;

• for j = j ′ , the positive-valued random variable [L] jj is written as [L] jj = σ m 2V j in which V j is a positive-valued Gamma random variable with probability density function Γ(a j , 1) in which a j = m+1 2δ 2 + 1-j 2 .

Ensemble SG +

ε of random matrices Let 0 ≤ ε ≪ 1 be a positive number (for instance, ε can be chosen as 10 -6 ). We then define the ensemble SG + ε of all the random matrices such that

[G]= 1 1+ε {[G 0 ]+ε [I m ]} , ( 90 
)
in which [G 0 ] is a random matrix whose probability density function is defined in Section 9.3.2 and whose generator of independent realizations is defined in Section 9.3.3.

Cases of several random matrices

It can be proven (Soize, 2005b) that, if there are several random matrices for which there is no available information concerning their statistical dependencies, then the use of the maximum entropy principle yields that the best model which maximizes the entropy (the uncertainties) is a stochastic model for which all these random matrices are independent.

Stochastic modeling of random matrix [M S ]

Since there is no available information concerning the statistical dependency of [M S ] with the other random matrices of the problem, then random matrix [M S ] is independent of all the other random matrices. The deterministic matrix [M S ] is positive definite and consequently, can be written as

[M S ]=[ L M S ] T [L M S ] in which [L M S ]
is an upper triangular real matrix. Using the nonparametric probabilistic approach of uncertainties, the stochastic model of the positive-definite symmetric random matrix [M S ] is then defined by

[M S ]=[L M S ] T [G M S ][L M S ] , (91) 
where [G M S ] is a (N S × N S ) random matrix belonging to ensemble SG + ε defined in Section 9.3.4 and whose probability distribution and generator of independent realizations depend only on dimension N S and on the dispersion parameter δ M S . 9.5. Stochastic modeling of the family of random matrices [D S (ω)] and [K S (ω)] Since there is no available information concerning the statistical dependency of the random matrices {[D S (ω)], [K S (ω)]} with the other random matrices of the problem, then {[D S (ω)], [K S (ω)]} are independent of all the other random matrices. But we will see below that [D S (ω)] and [K S (ω)] are statistically dependent random matrices. For stochastic modeling of [D S (ω)] and [K S (ω)] related to the linear viscoelastic structure, we propose to use the new extension presented in [START_REF] Soize | Time-domain formulation in computational dynamics for linear viscoelastic media with model uncertainties and stochastic excitation[END_REF] which is based on the Hilbert transform [START_REF] Papoulis | Signal Analysis[END_REF] in the frequency domain to express the causality properties (similarly to the transforms used in Section 5.2). The nonparametric probabilistic approach of uncertainties then consists in modeling the positivedefinite symmetric

(N S × N S ) real matrices [D S (ω)] and [K S (ω)] by random matrices [D S (ω)] and [K S (ω)] such that, E{[D S (ω)]} =[D S (ω)] ,E{[K S (ω)]} =[K S (ω)], (92) [D S (-ω)] = [D( S ω)] , [K S (-ω)] = [K S (ω)] . (93)
For ω ≥ 0, the construction of the stochastic model of the family of random matrices [D S (ω)] and [K S (ω)] is carried out as follows.

• Constructing the family

[D S (ω)] of random matrices such that [D S (ω)] = [L D S (ω)] T [G D S ][L D S (ω)],
where

[L D S (ω)] is such that [D S (ω)] = [L D S (ω)] T [L D S (ω)] and where [G D S ] is a (N S × N S ) random matrix belonging to ensemble SG +
ε , defined in Section 9.3.4. Its probability distribution and its generator of independent realizations depend only on dimension N S and on the dispersion parameter δ D S which allows the level of uncertainties to be controlled.

• Defining the family [ N I (ω)] of random matrices such that [ N I (ω)] = ω [D S (ω)].
• Constructing the family [ N R (ω)] of random matrices using the equation

[ N R (ω)] = 2 π p.v +∞ 0 ω ′ 2 ω 2 -ω ′ 2 [D S (ω ′ )] dω ′ , (94)
or equivalently, using the two following equations which are useful for computation:

[ N R (0)] = - 2 π +∞ 0 [D S (ω)] dω , (95) 
and, for ω>0,

[ N R (ω)] = 2 π p.v +∞ 0 u 2 1 -u 2 ω [D S (ωu)] du , = 2 π lim η→0 { 1-η 0 + +∞ 1+η } . (96) 
• Defining the family

[ N(ω)] of random matrices such that [ N(ω)] = [ N R (ω)] + i [ N I (ω)].
• Constructing the random matrix

[K S (0)] = [L K S (0) ] T [G K S (0) ][L K S (0) ] where [L K S (0) ] is such that [K S (0)] = [L K S (0) ] T [L K S (0)
] and where [G K S (0) ] is a (N S × N S ) random matrix belonging to ensemble SG + ε defined in Section 9.3.4 and whose probability distribution and generator of independent realizations depend only on dimension N S and on the dispersion parameter δ K S (0) which allows the level of uncertainties to be controlled. It should be noted that random matrix

[G K S (0) ] is independent of random matrix [G D S ]. • Computing the random matrix [D + ]=-[ N R (0)] = 2 π +∞ 0 [D S (ω)] dω.
• Defining the random matrix ω)] and verifying that [K S (ω)] is effectively an increasing function on [0 , +∞[.

[K S 0 ]=[K S (0)] + [D + ]. • Constructing the random matrix [K S (ω)] = [K S 0 ]+ [ N R ( 

Stochastic modeling of random matrix [M]

Since there is no available information concerning the statistical dependency of [M] with the other random matrices of the problem, then random matrix [M] is independent of all the other random matrices. The deterministic matrix [M ], is positive definite and consequently, can be written as

[M ]=[L M ] T [L M ] in which [L M
] is an upper triangular real matrix. Using the nonparametric probabilistic approach of uncertainties, the stochastic model of the positive-definite symmetric random matrix [M] is then defined by

[M]=[L M ] T [G M ][L M ] , (97) 
where [G M ] is a (N × N ) random matrix belonging to ensemble SG + ε defined in Section 9.3.4 and whose probability distribution and generator of independent realizations depend only on dimension N and on the dispersion parameter δ M .

Stochastic modeling of random matrix [K]

Since there is no available information concerning the statistical dependency of [K] with the other random matrices of the problem, then random matrix [K] is independent of all the other random matrices. For the stochastic modeling of [K], two cases have to be considered.

• Closed (sealed wall) acoustic cavity. In such a case, the symmetric positive matrix [K] is of rank N -1 and can then be written as

[K]=[ L K ] T [L K ] in which [L K ] is a rectangular (N, N -1) real ma- trix.
Using the nonparametric probabilistic approach of uncertainties, the stochastic model of the positive symmetric random matrix [K] of rank N -1 is then defined (Soize, 2005b) by

[K]=[L K ] T [G K ][L K ] , (98) 
where

[G K ] is a ((N -1) × (N - 1 
)) random matrix belonging to ensemble SG + ε defined in Section 9.3.4 and whose probability distribution and generator of independent realizations depend only on dimension N -1 and on the dispersion parameter δ K .

• Almost closed (non sealed wall) acoustic cavity.

The matrix [K] is positive definite and thus invertible. Consequently, it can be written as

[K]= [L K ] T [L K ] in which [L K
] is an upper triangular (N, N) real matrix. Using the nonparametric probabilistic approach of uncertainties, the stochastic model of this positive symmetric random matrix yields

[K]=[L K ] T [G K ][L K ] , (99) 
where [G K ] is a (N × N ) random matrix belonging to ensemble SG + ε defined in Section 9.3 and whose probability distribution and generator of independent realizations depend only on dimension N and on the dispersion parameter δ K .

Stochastic modeling of random matrix [C]

Since there is no available information concerning the statistical dependency of [C] with the other random matrices of the problem, then random matrix [C] is independent of all the other random matrices. We use the construction proposed in (Soize, 2005b) in the context of the nonparametric probabilistic approach. Let us assumed that N S ≥ N and that the 

(N S × N ) real matrix [C] is such that [C] q =0implies q =0 .I f N ≥ N S ,
[C]=[R][T] , [T]=[L T ] T [G C ][L T ] , (100)
where [G C ] is a (N × N ) random matrix belonging to ensemble SG + ε defined in Section 9.3.4 and whose probability distribution and generator of independent realizations depend only on dimension N S ,N and on the dispersion parameter δ C .

Comments about the stochastic model parameters of uncertainties and the stochastic solver

The dispersion parameter δ of each random matrix [G] allows its level of dispersion (statistical fluctuations) to be controlled. The dispersion parameters of random matrices

[G M S ], [G D S ], [G K S (0) ], [G M ], [G K ] and [G C ] is represented by a vector δ such that δ =(δ M S ,δ D S ,δ K S (0) ,δ M ,δ K ,δ C ) , (101) 
which belongs to an admissible set C δ and which allows the level of uncertainties to be controlled for each type of operators introduced in the stochastic reduced-order computational structural-acoustic model. Consequently, if no experimental data are available, then δ has to be used to analyze the robustness of the solution of the structural-acoustic problem with respect to uncertainties by varying δ in C δ .

For a given value of δ, there are two major classes of methods for solving the stochastic reduced-order computational structural-acoustic model defined by Eqs. ( 79) to ( 85). The first one belongs to the category of the spectral stochastic methods (see Ghanem andSpanos (1991, 2003); [START_REF] Lemaitre | Spectral Methods for Uncerainty Quantification with Applications to Computational Fluid Dynamics[END_REF]). The second one belongs to the class of the stochastic sampling techniques for which the Monte Carlo method is the most popular. Such a method is often called non-intrusive since it offers the advantage of only requiring the availability of classical deterministic codes. It should be noted that the Monte Carlo numerical simulation method (see for instance [START_REF] Fishman | Monte Carlo: Concepts, algorithms, and applications[END_REF][START_REF] Rubinstein | Simulation and the Monte Carlo Method[END_REF]) is a very effective and efficient one because it as the four following advantages,

• it is a non-intrusive method,

• it is adapted to massively parallel computation without any software developments,

• it is such that its convergence can be controlled during the computation,

• the speed of convergence is independent of the dimension.

If experimental data are available, there are several possible methodologies (whose one is the maximum likelihood method) to identify the optimal values of δ (for sake of brevity, these aspects are not considered in this paper and we refer the reader to Soize (2012a)).

Symmetric Boundary Element Method Without Spurious Frequencies for the External Acoustic Fluid

The inviscid acoustic fluid occupies the infinite three-dimensional domain Ω E whose boundary ∂Ω E is Γ E . This section is devoted to the construction of the frequency-dependent impedance boundary operator Z ΓE (ω), for the external acoustic problem. We recall that the operator Z ΓE (ω) is such that p E | ΓE (ω)=Z ΓE (ω) v(ω) which relates the pressure field p E | ΓE (ω) exerted by the external fluid on Γ E to the normal velocity field v(ω) induced by the deformation of this boundary Γ E .

Many methods can be found in literature for solving this problem: the boundary element methods, the artificial boundary conditions and the local/nonlocal non-reflecting boundary condition (NRBC) to take into account the Sommerfeld radiation condition at infinity, the Dirichlet-to-Neumann (DtN) boundary condition related to a nonlocal artificial boundary condition which match analytical and numerical solutions, the infinite element method, the doubly asymptotic approximation method, the finite element method in unbounded domain and related a posteriori error estimation and, finally, the wave based method for unbounded domain, see for instance [START_REF] Geers | Doubly asymptotic approximations for vibration analysis of submerged structures[END_REF]; [START_REF] Givoli | Numerical Methods for Problems in Infinite Domains[END_REF]; [START_REF] Harari | Recent development in finite element methods for structural acoustics[END_REF]; [START_REF] Astley | Infinite elements for wave problems: a review of current formulations and assessment of accuracy[END_REF]; [START_REF] Farhat | A discontinuous Galerkin method with Lagrange multipliers for the solution of Helmholtz problems in the mid-frequency regime[END_REF][START_REF] Farhat | A discontinuous Galerkin method with plane waves and Lagrange multipliers for the solution of short wave exterior Helmholtz problems on unstructured meshes[END_REF]; [START_REF] Oden | A posteriori error estimation for acoustic wave propagation[END_REF]; [START_REF] Bergen | An efficient Trefftz-based method for threedimensional Helmholtz in unbounded domain[END_REF]. This section is devoted to the presentation on the boundary element methods.

The frequency-dependent impedance boundary operator Z ΓE (ω) can be constructed, either in time domain and then, taking the Fourier transform, or directly constructed in the frequency domain. One technique for constructing Z ΓE (ω) consists in using boundary integral formulations [START_REF] Jones | Integral equations for the exterior acoustic problem[END_REF][START_REF] Costabel | A direct boundary integral equation method for transmission problems[END_REF][START_REF] Jones | Acoustic and Electromagnetic Waves[END_REF][START_REF] Kress | Linear Integral Equations[END_REF][START_REF] Colton | Integral Equation Methods in Scattering Theory[END_REF][START_REF] Dautray | Mathematical Analysis and Numerical Methods for Science and Technology[END_REF][START_REF] Bonnet | Boundary Integral Equation Methods for Solids and Fluids[END_REF][START_REF] Nedelec | Acoustic and Electromagnetic Equations. Integral representation for harmonic Problems[END_REF][START_REF] Hsiao | Boundary Integral Equations[END_REF]. In the time domain, it uses the so-called Kirchhoff retarded potential formula (see for instance [START_REF] Baker | The Mathematical Theory of Huygens Principle[END_REF]; [START_REF] Lee | New approximations of external acoustic-structural interactions: Derivation and evaluation[END_REF]). It should be noted that the formulations in the frequency domain can easily be implemented in massively parallel computers.

The finite element discretization of the boundary integral equations yields the Boundary Element Method [START_REF] Brebbia | Boundary Elements: An Introductory Course[END_REF][START_REF] Chen | Boundary Element Methods[END_REF][START_REF] Hackbusch | Integral Equations, Theory and Numerical Treatment[END_REF][START_REF] Ohayon | Structural Acoustics and Vibration[END_REF][START_REF] Gaul | Boundary Element Methods for Engineers and Scientists[END_REF]. Furthermore, most of those formulations yield unsymmetric fully populated complex matrices. The computational cost can then be reduced using the fast multipole methods [START_REF] Greengard | A fast algoritm for particle simulations[END_REF][START_REF] Gumerov | Fast Multipole Methods for the Helmholtz Equation in Three Dimension[END_REF][START_REF] Schanz | Boundary Element Analysis[END_REF][START_REF] Bonnet | Multilevel fast multipole BEM for 3-d elastodynamics[END_REF][START_REF] Brunner | A comparison of FE-BE coupling schemes for large scale problems with fluid-structure interaction[END_REF].

A major drawback of the classical boundary integral formulations for the exterior Neumann problem related to the Helmholtz equation is related to the uniqueness problem although the boundary value problem has a unique solution for all real frequencies [START_REF] Sanchez-Hubert | Vibration and Coupling of Continuous Systems[END_REF][START_REF] Dautray | Mathematical Analysis and Numerical Methods for Science and Technology[END_REF]. Precisely, there is not a unique solution of the physical problem for a sequence of real frequencies called spurious or irregular frequencies, also called Jones eigenfrequencies [START_REF] Burton | The application of integral equation methods to the numerical solution of some exterior boundary value problems[END_REF][START_REF] Jones | Low-frequency scattering by a body in lubricated contact[END_REF][START_REF] Colton | Integral Equation Methods in Scattering Theory[END_REF][START_REF] Luke | Fluid-solid interaction: acoustic scattering by a smooth elastic obstacle[END_REF][START_REF] Jentsch | Non-local approach in mathematical problems of fluid-structure interaction[END_REF]. Various methods are proposed in the literature to overcome this mathematical difficulty arising in the boundary element method [START_REF] Panich | On the question of solvability of the exterior boundary value problems for the wave equation and Maxwell's equations[END_REF][START_REF] Schenck | Improved integral formulation for acoustic radiation problems[END_REF][START_REF] Burton | The application of integral equation methods to the numerical solution of some exterior boundary value problems[END_REF][START_REF] Angelini | Exterior Neumann problem for Helmholtz equation. problem of irregular frequencies[END_REF][START_REF] Mathews | Numerical techniques for threedimensional steady-state fluid-structure interaction[END_REF][START_REF] Amini | A comparison between various boundary integral formulations of the exterior acoustic problem[END_REF][START_REF] Amini | Coupled Boundary and Finite Element Methods for the Solution of the Dynamic Fluid-Structure Interaction Problem[END_REF][START_REF] Ohayon | Structural Acoustics and Vibration[END_REF].

In this section, we present a method, initially developed in [START_REF] Angelini | Exterior Neumann problem for Helmholtz equation. problem of irregular frequencies[END_REF], yielding an appropriate symmetric boundary element method valid for all real values of the frequency which is numerically stable and very efficient. This method is detailed in [START_REF] Ohayon | Structural Acoustics and Vibration[END_REF] and does not require introducing additional degrees of freedom in the numerical discretization for treatment of irregular frequencies. This method has been extended to the Maxwell equations [START_REF] Angelini | Hybrid numerical method for harmonic 3d Maxwell equations: scattering by mixed conducting and inhomogeneousanisotropic dielectric media[END_REF]. In the case of an external liquid domain with a zero-pressure free surface (which is not presented here for sake of brevity) the method presented below can be adapted using the image method (for the details, see Ohayon and Soize (1998)).

Exterior Neumann problem related to the

Helmholtz equation The geometry is defined in Fig. 5. The inviscid fluid occupies the infinite domain Ω E . For practical computational considerations, the exterior Neumann problem related to the Helmholtz equation (see Eqs. ( 5) to ( 7)) is rewritten in terms of a velocity potential ψ(x,ω). Let v(x,ω)=∇ψ(x,ω) be the velocity field of the fluid. The acoustic pressure p(x,ω) is related to ψ(x,ω) by the following equation,

p(x,ω)=-iω ρ E ψ(x,ω) in Ω E , (102) 
where ρ E is the constant mass density of the external fluid at equilibrium. Let c E be the constant speed of sound in the external fluid at equilibrium and let k = ω/c E be the wave number at frequency ω. The exterior Neumann problem is written as

∇ 2 ψ(x,ω)+k 2 ψ(x,ω)=0 in Ω E , (103) ∂ψ 
(y,ω) ∂n y = v(y) on Γ E , (104) 
| ψ | = O( 1 R ) , ∂ψ ∂R + ikψ = O( 1 R 2 ) , (105) 
with R = x →+∞, where ∂/∂R is the derivative in the radial direction and where v(y) is the prescribed normal velocity field on Γ E . Equation ( 103) is the Helmholtz equation in the external acoustic fluid, Eq. ( 104) is the Neumann condition on external fluid-structure interface Γ E and Eq. ( 105) corresponds to the outward Sommerfeld radiation condition at infinity.

Pressure field in Ω E and on Γ E

For arbitrary real ω =0 , it can be shown that the boundary value problem defined by Eqs. ( 103) to (105) admits a unique solution denoted ψ sol which depends linearly of the normal velocity v (Sanchez-Hubert and Sanchez-Palencia, 1989; [START_REF] Dautray | Mathematical Analysis and Numerical Methods for Science and Technology[END_REF]. Let ψ sol Γ E be the value of ψ sol on Γ E . For all x in Ω E , let us introduce the linear operator R(x,ω/c E ) such that

ψ sol (x,ω)=R(x,ω/c E ) v. ( 106 
)
We also introduce the linear boundary operator B ΓE (ω/c E ) such that

ψ sol Γ E = B ΓE (ω/c E ) v. (107) 
Using Eq. ( 102), for all x in Ω E , the pressure field p(x,ω) is written as

p(x,ω)=Z rad (x,ω) v, (108) 
in which Z rad (x,ω) is called the radiation impedance operator which can then be written as

Z rad (x,ω)=-iωρ E R(x,ω/c E ) . (109) 
Similarly, the pressure field p| Γ E (ω) on Γ E is written as

p| Γ E (ω)=Z ΓE (ω) v, (110) 
in which Z ΓE (ω) is called the acoustic impedance boundary operator and which can then be written as

Z ΓE (ω)=-iωρ E B ΓE (ω/c E ) . (111) 
Note that Z ΓE (ω) is nonlocal operator.

Symmetry property of the acoustic impedance boundary operator

The transpose of operator B ΓE (ω/c E ) is denoted by t B ΓE (ω/c E ). It can then be proven (see [START_REF] Ohayon | Structural Acoustics and Vibration[END_REF]) the following symmetry property,

t B ΓE (ω/c E )=B ΓE (ω/c E ) , (112) 
and from Eq. ( 111), we deduce that

t Z ΓE (ω)=Z ΓE (ω) . (113) 
It should be noted that these complex operators are symmetric but not hermitian.

Positivity of the real part of the acoustic impedance boundary operator

Operator iωZ ΓE (ω) can be written as

iωZ ΓE (ω)=-ω 2 M ΓE (ω/c E )+iωD ΓE (ω/c E ), (114) in which M ΓE (ω/c E ) and D ΓE (ω/c E ) are two linear op- erators such that ω M ΓE (ω/c E )=ℑm Z ΓE (ω) , (115) 
D ΓE (ω/c E )=ℜe Z ΓE (ω) . (116) 
It can be shown [START_REF] Ohayon | Structural Acoustics and Vibration[END_REF] the following positivity property of the real part D ΓE (ω/c E ) of the acoustic impedance boundary operator, which is due to the Sommerfeld radiation condition at infinity.

Construction of the acoustic impedance boundary operator for all real value of the frequency

We present here the appropriate symmetric boundary element method without spurious frequencies, for which details can be found in [START_REF] Ohayon | Structural Acoustics and Vibration[END_REF]. This formulation simultaneously uses two boundary singular integral equations on Γ E . The first one is based on the use of a single-and double-layer potentials on Γ E . The second integral equation is obtained by a normal derivative on Γ E of the first one. We then obtained the following system relating ψ sol Γ E to v which then allows B ΓE (ω/c E ) to be defined using Eq. ( 107),

0 ψ sol Γ E = -S T (ω/c E ) 1 2 t I -t S D (ω/c E ) 1 2 I -S D (ω/c E ) S S (ω/c E ) ψ Γ E v .
(117) The linear boundary integral operators S S (ω/c E ), S D (ω/c E ) and S T (ω/c E ) are defined by

< S S (ω/c E ) v,δv>= ΓE ΓE G(x -y) v(y) δv(x) ds y ds x , (118) < S D (ω/c E ) ψ Γ E ,δv>= ΓE ΓE ∂G(x-y) ∂n y ψ Γ E (y) δv(x) ds y ds x , (119) < S T (ω/c E )ψ Γ E ,δψ Γ E > = -k 2 ΓE ΓE G(x-y) n x • n y ψ Γ E (y) δψ Γ E (x) ds y ds x + ΓE ΓE G(x-y) {n y ×∇ y ψ Γ E (y)}•{n x ×∇ x δψ Γ E (x)} ds y ds x .( 120 
)
where G(x-y) is the Green function which is written as

G(x -y)=g( x -y )=-(4π) -1 e -ikr /r , (121) 
in which r = xy . In Eqs. ( 118) to ( 120), the brackets correspond to bilinear forms which allow the operators to be defined and the functions δv and δψ Γ E are associated with functions v and ψ Γ E . Considering Eq. ( 117), let H(ω/c E ) be the operator defined by

H(ω/c E )= -S T (ω/c E ) 1 2 t I -t S D (ω/c E ) 1 2 I -S D (ω/c E ) S S (ω/c E ) . (122) 
It can be proven that operator H(ω/c E ) has the symmetric property, t H(ω/c E )=H(ω/c E ). In Eq. ( 117), the first equation can be rewritten as

S T (ω/c E ) ψ Γ E = ( 1 2 t I -t S D (ω/c E )) v.
This classical boundary equation which allows the velocity potential to be calculated for a given normal velocity, has a unique solution for all real ω which does not belong to the set of frequencies for which S T (ω/c E ) has a null space which is not reduced to {0}. This set of frequencies is called the set of the spurious or irregular frequencies. Consequently, as proven in [START_REF] Ohayon | Structural Acoustics and Vibration[END_REF], for a spurious frequency,

ψ Γ E is the sum of solution ψ sol Γ E
with an arbitrary element belonging to the null space of operator S T (ω/c E ). The originality of the proposed method [START_REF] Angelini | Exterior Neumann problem for Helmholtz equation. problem of irregular frequencies[END_REF][START_REF] Ohayon | Structural Acoustics and Vibration[END_REF] (extended to the Maxwell equations in [START_REF] Angelini | Hybrid numerical method for harmonic 3d Maxwell equations: scattering by mixed conducting and inhomogeneousanisotropic dielectric media[END_REF]), then consists in using the second equation which is written as , for all real values of ω, using Eq. ( 117), a particular elimination procedure will be described in Section 10.7.

ψ sol Γ E =( 1 2 I -S D (ω/c E )) ψ Γ E + S S (ω/c E ) v,

Construction of the radiation impedance operator

The solution {ψ sol (x,ω), x ∈ Ω E } of Eqs. ( 103) to (105) can be calculated using the following integral equation

ψ sol (x,ω)= ΓE {G(x -y) v(y) -ψ sol Γ E (y,ω) ∂G(x -y) ∂n y } ds y . (123) 
For all x fixed in Ω E , we define the linear integral operators R S (x,ω/c E ) and R D (x,ω/c E ) by

R S (x,ω/c E ) v = ΓE G(x -y) v(y) ds y , (124) 
R D (x,ω/c E ) ψ Γ E = ΓE ψ Γ E (y) ∂G(x -y) ∂n y ds y . ( 125 
)
Using Eq. ( 107), Eq. ( 123) can be rewritten as

ψ sol (x,ω)={R S (x,ω/c E ) -R D (x,ω/c E ) B ΓE (ω/c E )} v. (126) 
From Eq. ( 106), we deduce that, for all x fixed in Ω E , 

R

Symmetric boundary element method without spurious frequencies

We use the finite element method to discretize the boundary integral operators S S (ω/c E ), S D (ω/c E ) and S T (ω/c E ) (corresponding to a boundary element method). Let us consider a finite element mesh of boundary Γ E . Let V =( V 1 ,...,V nE ) and Ψ Γ E =( Ψ Γ E ,1 ,...,Ψ Γ E ,nE ) be the complex vectors of the n E degrees-of-freedom constituted of the values of v and ψ Γ E at the nodes of the mesh. Let [S S (ω/c E )], [S D (ω/c E )] and [S T (ω/c E )] be the full complex matrices corresponding to the discretization of the operators defined in Eqs. ( 118) to (120). The complex matrices [S S (ω/c E )] and [S T (ω/c E )] are symmetric. The finite element discretization of Eq. ( 117) yields

0 Ψ sol Γ E =[H(ω/c E )] Ψ Γ E V , (129) 
in which the symmetric complex matrix [H(ω/c E )] is the matrix

-[S T (ω/c E )] 1 2 [ E ] T -[S D (ω/c E )] T 1 2 [ E ] -[S D (ω/c E )] [S S (ω/c E )] . (130) 
In Eq. ( 129), Ψ sol Γ E

is the complex vector of the nodal unknowns corresponding to the finite element discretization of ψ sol and V which defines the symmetric (n E × n E ) complex matrix [B ΓE (ω/c E )] which corresponds to the finite element discretization of boundary integral operator B ΓE (ω/c E ). We then have

Ψ sol Γ E =[B ΓE (ω/c E )] V . ( 131 
)
The particular elimination procedure discussed in Section 10.5, which avoids the spurious frequencies, is defined below. Vector Ψ Γ E is eliminated using a Gauss elimination with a partial row pivoting algorithm [START_REF] Golub | Matrix Computations[END_REF]. If ω does not belong to the set of the spurious frequencies, then [S T (ω/c E )] is invertible and the elimination in Eq. ( 129) is performed up to row number n E .I fω coincides with a spurious frequency ω α that is to say ω = ω α , then [S T (ω α /c E )] is not invertible and its null space is a real subspace of C nE of dimension n α <n E . In this case, the elimination in Eq. ( 129) is performed up to row number n E -n α . In practice, n α is unknown. During the Gauss elimination with a partial row pivoting algorithm, the elimination process is stopped when a "zero" pivot is encountered. It should be noted that when the elimination is stopped, the equations corresponding to row numbers n E -n α +1,...,n E are automatically satisfied. From Eq. ( 111), we deduce that the (n E × n E ) complex symmetric matrix [Z ΓE (ω)] of operator Z ΓE (ω) is such that

[Z ΓE (ω)] = -iωρ E [B ΓE (ω/c E )] . (132) 
Finally, the finite element discretization of the acoustic radiation impedance operator Z rad (x,ω) defined by Eq. ( 129) is written as

[Z rad (x,ω)] = -iωρ E {[R S (x,ω/c E )] -[R D (x,ω/c E )] [B ΓE (ω/c E )]} . ( 133 
)
10.8. Acoustic response to prescribed wall displacement field and acoustic source density We now consider the acoustic response of the infinite external acoustic fluid submitted to a prescribed external acoustic excitation, namely an acoustic source Q E (x,ω), and to a prescribed normal velocity field on Γ E which is written as v = iω u(ω) • n S in which n S is the unit normal to Γ E , external to structure Ω S , and where u is the displacement field of the external fluid-structure interface Γ E . This response is formulated using the results related to the exterior Neumann problem for the Helmholtz equation which have been presented in Sections 10.1 to 10.7 and using the linearity of the problem.

Pressure in Ω E . At any point x fixed in Ω E , the resultant pressure p E (x,ω) is written as p E (x,ω)=p rad (x,ω)+p given (x,ω) ,

in which p rad (x,ω) is the field radiated by the boundary Γ E submitted to the prescribed velocity field v and written (see Eq. ( 108)) as p rad (x,ω)=iω Z rad (x,ω){u(ω) • n S } .

The pressure p given (x,ω) is such that

p given (x,ω)=p inc,Q (x,ω) -Z rad (x,ω){ ∂ψ inc,Q ∂n S } , ( 136 
)
where p inc,Q (x,ω) is the pressure in the free space induced by the acoustic source Q E and which is written as

p inc,Q (x,ω)=-iω KQ G(x -x ′ ) Q(x ′ ,ω) dx ′ , ( 137 
)
in which the Green function G is defined by Eq. ( 121) and where ∂ψ inc,Q /∂n S is deduced from Eqs. ( 137) and ( 102). The second term in the right-hand side of Eq. ( 136) corresponds to the scattering of the incident wave (induced by the external acoustic source) by the boundary Γ E considered as rigid and fixed.

Pressure on Γ E . The resultant pressure on Γ E is then written as

p E | Γ E (ω)=p rad | Γ E (ω)+p given | Γ E (ω) , (138) 
in which p rad | Γ E (ω) is written as

p rad | Γ E (ω)=iω Z ΓE (ω){u(ω) • n S } , (139) 
and the pressure field p given | Γ E (ω) on Γ E is such that

p given | Γ E (ω)=p inc,Q | Γ E (ω) -Z ΓE (ω){ ∂ψ inc,Q ∂n S } . ( 140 
)
Substituting Eq. ( 139) in (138) yields

p E | Γ E (ω)=p given | Γ E (ω)+iω Z ΓE (ω){u(ω)•n S }. (141) 
For details, we refer the reader to Chapter 12 of [START_REF] Ohayon | Structural Acoustics and Vibration[END_REF].

10.9. Asymptotic formula for the radiated pressure far field At point x in the external domain Ω E , the radiated pressure p(x,ω) is given (see Eq. ( 108)) by p(x,ω)= Z rad (x,ω) v. Let R and e be such that (see Fig. 

From Eq. ( 127), we deduce the asymptotic formula for the radiation impedance operator 

Conclusion

We have presented an advanced computational formulation for dissipative structural-acoustics systems and fluid-structure interaction which is adapted for developing new generation of software. An efficient stochastic reduced-order model in the frequency domain is proposed to analyze low-and medium-frequency ranges. All the required modeling aspects for the analysis of the mediumfrequency domain have been introduced namely, a viscoelastic behavior for the structure, an appropriate dissipative model for the internal acoustic fluid including wall acoustic impedance and a model of uncertainty in particular for modeling errors.

  Soize) g = mechanical body force field in the structure i = imaginary complex number i k = wave number in the external acoustic fluid n = number of internal acoustic DOF n pressure field p E | Γ E = value of the external acoustic pressure field on Γ E p given = given external acoustic pressure field p given | Γ E = value of the given external acoustic pressure field on Γ E q = vector of the generalized coordinates for the internal acoustic fluid q S = vector of the generalized coordinates for the structure s damp ij = component of the damping stress tensor in the structure t = time u = structural displacement field v = internal acoustic velocity field x j = coordinate of point x x = generic point of R 3 [A] = reduced dynamical matrix for the internal acoustic fluid [A] = random reduced dynamical matrix for the internal acoustic fluid [A] = dynamical matrix for the internal acoustic fluid [A BEM ] = reduced matrix of the impedance boundary operator for the external acoustic fluid [A BEM ] = matrix of the impedance boundary operator for the external acoustic fluid [A FSI ] = reduced dynamical matrix for the fluidstructure coupled system [A FSI ] = random reduced dynamical matrix for the fluid-structure coupled system [A FSI ] = dynamical matrix for the fluid-structure coupled system [A S ] = reduced dynamical matrix for the structure [A S ] = random reduced dynamical matrix for the structure [A S ] = dynamical matrix for the structure [A Z ] = reduced dynamical matrix associated with the wall acoustic impedance [A Z ] = dynamical matrix associated with the wall acoustic impedance [C] = reduced coupling matrix between the internal acoustic fluid and the structure [C] = random reduced coupling matrix between the internal acoustic fluid and the structure [C] = coupling matrix between the internal acoustic fluid and the structure [D] = reduced damping matrix for the internal acoustic fluid [D] = random reduced damping matrix for the internal acoustic fluid [D] = damping matrix for the internal acoustic fluid [D S ] = reduced damping matrix for the structure [D S ] = random reduced damping matrix for the structure [D S ] = damping matrix for the structure DOF = degrees of freedom F = vector of discretized acoustic forces F S = vector of discretized structural forces G ijkh (0) = initial elasticity tensor for viscoelastic material G ijkh (t) = relaxation functions for viscoelastic material G = mechanical surface force field on ∂Ω S [G] = random matrix [G 0 ] = random matrix [K] = reduced "stiffness" matrix for the internal acoustic fluid [K] = random reduced "stiffness" matrix for the internal acoustic fluid [K] = "stiffness" matrix for the internal acoustic fluid [K S ] = reduced stiffness matrix for the structure [K S ] = random reduced stiffness matrix for the structure [K S ] = stiffness matrix for the structure [M ] = reduced "mass" matrix for the internal acoustic fluid [M] = random reduced "mass" matrix for the internal acoustic fluid [M] = "mass" matrix for the internal acoustic fluid [M S ] = reduced mass matrix for the structure [M S ] = random reduced mass matrix for the structure [ε kh = component of the strain tensor in the structure ω = circular frequency in rad/s ρ 0 = mass density of the internal acoustic fluid ρ E = mass density of the external acoustic fluid ρ S = mass density of the structure σ = stress tensor in the structure σ ij = component of the stress tensor in the structure σ elas ij = component of the elastic stress tensor in the structure τ = damping coefficient for the internal acoustic fluid ∂Ω = boundary of Ω ∂Ω E = boundary of Ω E equal to Γ E ∂Ω S = boundary of Ω S Γ = coupling interface between the structure and the internal acoustic fluid Γ E = coupling interface between the structure and the external acoustic fluid Γ Z = coupling interface between the structure and the internal acoustic fluid with acoustical properties Ω = internal acoustic fluid domain
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 1 Figure 1: Configuration of the system.

Figure 2 :

 2 Figure 2: Configuration of the structural-acoustic system for a liquid with free surface.

Figure 3 :

 3 Figure 3: Example of structure and internal fluid finite element meshes.

  in which [M], [D(ω)] and [K] are symmetric (n × n) real matrices. Matrix [M] is positive and invertible and matrices [D(ω)] and [K] are positive and not invertible with rank n -1. From Eq. (53), it can easily be deduced that [D(ω)] = τ (ω)[K] in which τ (ω) is defined by Eq. (11). The internal fluid-structure coupling matrix [C], related to the coupling between the structure and the internal fluid on the internal fluid-structure interface, is a (n S × n) real matrix which is only related to the values of U and P on the internal fluid-structure interface. The wall acoustic impedance matrix [A Z (ω)] is a symmetric (n × n) complex matrix depending on the wall acoustic impedance Z(x,ω) on Γ Z and which is only related to the values of P on boundary Γ Z . The boundary element matrix [A BEM (ω/c E )], which depends on ω/c E , is a symmetric (n S × n S ) complex matrix which is only related to the values of U on the external fluid-structure interface Γ E . This matrix is written as

  in which [M ], [D(ω)] and [K] are symmetric (N × N ) real matrices. Matrix [M ] is positive and invertible. The diagonal (N × N ) real matrix [D(ω)] is written as [D(ω)] = τ (ω)[K] in which τ (ω) is defined by Eq. (11). For a closed (sealed wall) acoustic cavity, matrix [K] is positive and not invertible with rank N -1, while for an almost closed (non sealed wall) acoustic cavity, matrix [K] is positive and invertible. The (N S × N ) real matrix [C] is written as [

Figure 4 :

 4 Figure 4: Variabilities and types of uncertainties in computational structural acoustics and fluid-structure interaction

  Robust updating and robust design developments with uncertainties in the computational model parameters are developed in Papadimitriou et al. (2001); Taflanidis and Beck (2008); Goller et al. (2009) while robust updating and robust design optimization with modeling uncertainties can be found in Capiez-Lernout and Soize (2008b,a,c); Soize et al. (2008b); Ritto et al. (2010).

  in which [M], [D(ω)] and [K] are symmetric (N × N ) real random matrices. Random matrix [M] is positive definite. The diagonal (N × N ) real random matrix [D(ω)] is written as [D(ω)] = τ (ω)[K] , (85) in which τ (ω) is deterministic and defined by Eq. (11). For a closed (sealed wall) acoustic cavity, random matrix [K] is positive and not invertible with rank N -1, while for an almost closed (non sealed wall) acoustic cavity, random matrix [K] is positive definite. The probability distributions of random matrices [M], [K] and of the (N S × N ) real random matrix [C] are constructed in Sections 9.6 to 9.8.

  the following construction must be applied to [C] T instead of [C]. Using the singular value decomposition of rectangular matrix [C], one can write [C]=[ R][T ] in which the (N S × N ) real matrix [R] is such that [R] T [R]=[I N ] and where the symmetric square matrix [T ] is a positivedefinite symmetric (N × N ) real matrix. Using the Cholesky decomposition, we then have [T ]=[L T ] T [L T ] in which [L T ] is an upper triangular matrix. The (N S ×N ) real random matrix [C] is then written as

Figure 5 :

 5 Figure 5: Geometry of the external infinite domain.

  ω, because the elements belonging to the null space are filtered when ω is a spurious frequency. Concerning the practical construction of ψ sol Γ E

  (x,ω/c E )=R S (x,ω/c E ) -R D (x,ω/c E ) B ΓE (ω/c E ) ,(127)and the radiation impedance operator Z rad (x,ω) is calculated using Eqs. (109) and (127),Z rad (x,ω)=-iωρ E {R S (x,ω/c E ) -R D (x,ω/c E ) B ΓE (ω/c E )} .(128)

.

  The matrix [ E ] is the non-diagonal (n E × n E ) real matrix corresponding to the discretization of identity operator I. The elimination of Ψ Γ E in Eq. (129) yields a linear equation between Ψ sol Γ E

  Figure 6: Geometrical configuration. R ∞ D (x,ω/c E ). For all x = R e fixed in external domain

Z

  rad (Re,ω)=-iωρ E {R ∞ S (Re,ω/ c E ) -R ∞ D (Re,ω/c E ) B ΓE (ωc E )} .(147)