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1 Introduction

No-regret strategies are simple adaptive learning rules that recently received a lot of

attention in the literature.1 In a repeated game, a player has a regret for an action if,

loosely speaking, she could have obtained a greater average payoff had she played that

action more often in the past. In the course of the game, the player reinforces actions

that she regrets not having played enough, for instance, by choosing next action with

probability proportional to the regret for that action, as in Hart and Mas-Colell’s (2000)

regret matching rule. A player’s objective is to have no regrets in the long run, no matter

what the opponent does. A behavior rule of a player which fulfills this objective is called

a no-regret strategy. Existence of no-regret strategies is known since Hannan (1957); wide

classes of no-regret strategies are identified by Hart and Mas-Colell (2001) and Cesa-

Bianchi and Lugosi (2003).2

A no-regret dynamics is a stochastic process that describes trajectories of the average

correlated play of players and that emerges when every player follows a no-regret strategy

(different players may play different strategies). By definition, it converges to the Hannan

set (the set of all correlated actions that satisfy the no-regret condition first stated by

Hannan (1957)).3 The Hannan set, however, is typically large. It contains, and generally

properly contains, the set of correlated equilibria of the game. We show that it may even

contain correlated actions that put positive weight only on strictly dominated actions.

Thus convergence of the average play to the Hannan set often provides very little infor-

mation about what the players will actually play, as it does not even imply exclusion of

strictly dominated actions.

In this paper we show that no-regret dynamics are intimately linked to the classical

fictitious play process (Brown, 1951). Drawing on Monderer et al. (1997), we first show

that contrary to the standard, discrete-time version, continuous fictitious play leads to no-

1These rules have been used to investigate convergence to equilibria in the context of learning in games
(Fudenberg and Levine (1995), Freund and Schapire (1999), Hart and Mas-Colell (2000, 2001, 2003)), for
combining different forecasts (Foster and Vohra, 1993, 1999; for an overview of the forecast combination
literature see Timmerman, 2006, and Clemen and Winkler, 2007) and for combining opinions, which is
also of interest to management science (Larrick and Soll, 2006). In finance this method has been used to
derive bounds on the prices of financial instruments (DeMarzo et al., 2006, Chen and Vaughan, 2010).
This method can be applied to various tasks in computer science, such as job scheduling (Mansour, 2010)
and routing (Blum et al., 2006) (for a survey of applicable problems in computer science see Irani and
Karlin, 1996).

2This paper deals with the simplest notion of regret known as unconditional (or external) regret
(Fudenberg and Levine, 1995; Hart and Mas-Colell, 2001, 2003). For more sophisticated regret notions,
see Hart and Mas-Colell (2000), Lehrer (2003), and Cesa-Bianchi and Lugosi (2006).

3The Hannan set of a game is also known as the set of weak correlated equilibria (Moulin and Vial,
1978) or coarse correlated equilibria (Young, 2004, Ch.3).
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regret. We then show that, for a large class of no-regret dynamics, the period-by-period

behavior of each player converges to an approximate best reply to the average correlated

play of the other players. For two-player finite games, the theory of perturbed differential

inclusions (Benäım et al., 2005, 2006) allows us to relate formally the asymptotic behav-

ior of no-regret dynamics and of continuous fictitious play (or its time-rescaled version,

the best-reply dynamics (Gilboa and Matsui, 1991)). In classes of games in which the

behavior of continuous fictitious play is well known, this provides substantial information

on the asymptotic behavior of no-regret dynamics. In particular, we recover most known

convergence properties of no-regret dynamics. Our results do not just allow to find new

and sometimes much shorter proofs of convergence of no-regret dynamics towards the set

of Nash equilibria in some classes of games, such as dominance solvable game or poten-

tial games. They also allow to relate the asymptotic behavior of no-regret dynamics and

continuous fictitious play in case of divergence, as in the famous Shapley game (Shapley,

1964).

These results extend only partially to n-player games (though they fully extend to n-

player games with linear incentives (Selten, 1995)). The issue is that in n-player games no-

regret dynamics turn out to be related with the correlated version of continuous fictitious

play, in which the players play a best-reply to the correlated past play of the others. This

version of fictitious play is defined through a correspondence which is not convex valued.

This creates technical difficulties, because the theory of perturbed differential inclusions

is not developed for non convex valued correspondences.

A different way to analyze no-regret dynamics is to show that that some sets attract

nearby solution trajectories. We show that strict Nash equilibria and, more generally, the

intersection of the Hannan set and the sets that are closed under rational behavior (curb)4

are attracting for no-regret dynamics, in a sense to be defined in Section 4.

The remainder of the article is organized as follows. The next section introduces no-

regret dynamics. Section 3 studies the links between no-regret dynamics and fictitious

play. Section 4 shows that the intersection of the Hannan set and curb sets is attracting

for no-regret dynamics. Section 5 shows similar results for the continuous-time version

and the expected version of no-regret dynamics. Finally, the Appendix contains the proofs

of the main results and a counterexample.

4A product set of action profiles is called closed under rational behavior (curb) if it contains all best
replies of each player whenever she believes that no actions outside this set are being played by the other
players (Basu and Weibull, 1991).
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2 Preliminaries

Consider a bimatrix game Γ = (Ai, ui)i=1,2, where Ai is the set of actions of player i and

ui : A → R is her payoff function, with A = A1 ×A2 (we use the term action for the base

game, and strategy for the repeated game). For any finite set B, denote by ∆(B) the set

of probability distributions over B. A mixed action of player i is an element of ∆(Ai).

A correlated action z is a probability distribution over the set of pure action profiles, i.e.

z ∈ ∆(A). Given such a z, let zi ∈ ∆(Ai) and z−i ∈ ∆(A−i) denote its marginals for

player i and her opponent, respectively. Thus, zi(ai) =
∑

a−i∈A−i
z(ai, a−i). Through-

out, −i refers to i’s opponent. As usual, let ui(z) =
∑

a∈A ui(a)z(a) and ui(k, z−i) =∑
a−i∈A−i

z−i(a−i)ui(k, a−i) for k ∈ Ai.

The game is played repeatedly in discrete time periods t ∈ N
∗ = {1, 2, . . .}. In every

period t each player i chooses an action ai(t) ∈ Ai and receives the payoff ui(a(t)) where

a(t) = (a1(t), a2(t)). Denote by h(t) = (a(1), a(2), . . . , a(t)) the history of play up to t,

and let H be the set of all finite histories (including the empty history). A strategy of

player i is a function qi : H → ∆(Ai) that stipulates to play in every period t = 1, 2, . . .

a mixed action qi(t) ≡ qi(h(t− 1)) as a function of the history before t. The weight that

this mixed action puts on action k ∈ Ai is denoted by qi,k(t)

The average correlated play up to period t is z(t) = 1
t

∑t
τ=1 a(τ), where we identify

a(τ) with the corresponding vertex of ∆(A). Since z(t) = 1
t
[a(t) + (t− 1)z(t− 1)], it

follows that for all t > 1,

z(t)− z(t− 1) =
1

t
(a(t)− z(t− 1)) . (1)

For a correlated action z, the regret of player i for action k is defined as Ri,k(z) =

ui(k, z−i) − ui(z), and her maximal regret as Ri,max(z) = maxk∈Ai
Ri,k(z). Typically we

deal with the regret based on the average correlated play, z(t), up to every period t. In this

case the regret of player i for action k ∈ Ai is equal to the difference between the average

payoff she would have obtained by always playing k (assuming that her opponent’s play

remains the same) and her average realized payoff:

Ri,k(z(t)) = ui(k, z−i(t))− ui(z(t)) =
1

t

t∑

τ=1

[ui(k, a−i(τ))− ui(a(τ))].

To simplify notations, we will often write Ri,k(t) forRi,k(z(t)) andRi,max(t) forRi,max(z(t)).

Player i has no asymptotic regret if her average realized payoff is asymptotically no
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less than her best-reply payoff against the empirical distribution of her opponent:

lim sup
t→∞

Ri,max(t) ≤ 0. (2)

A strategy of player i is a no-regret strategy if for any strategy of the other player, in-

equality (2) holds almost surely. This property is also called Hannan consistency (Hart

and Mas-Colell, 2001) or universal consistency (Fudenberg and Levine, 1995).

It is well known in the literature starting from Hannan (1957) that there exist simple

no-regret strategies. Hart and Mas-Colell (2001) describe a wide class of potential based

no-regret strategies. A twice differentiable, convex function Pi : RAi → R is called a

potential if it satisfies the following conditions:

(R1) Pi(·) ≥ 0, and Pi(x) = 0 for all x ∈ R
Ai

− ;

(R2) ∇Pi(·) ≥ 0, and ∇Pi(x) · x > 0 for all x /∈ R
Ai

− ;

(R3) if x /∈ R
Ai

− and xk ≤ 0, then ∇kPi(x) = 0,

where ∇k denote the partial derivative with respect to xi(k). The potential Pi can be

viewed as a generalized distance function between a vector x ∈ RAi
and the nonpositive

orthant RAi

− . Let Ri(t) = (Ri,k(t))k∈Ai
denote player i’s regret vector.

Proposition 1. Let Pi satisfy (R1)–(R3) and let strategy qi satisfy

qi,k(t+ 1) =
∇kPi(Ri(t))∑

s∈Ai
∇sPi(Ri(t))

, ∀k ∈ Ai, (Q1)

whenever Ri,max(t) > 0. Then qi is a no-regret strategy.

Proof. This holds by Theorem 3.3 of Hart and Mas-Colell (2001), whose conditions (R1)

and (R2) are satisfied by our conditions (R1)–(Q1) and (R2), respectively.

By condition (R3), qi,k(t + 1) > 0 only if Ri,k(t) > 0, or equivalently, ui(k, z−i(t)) >

ui(z(t)). Thus, condition (R3) is a better reply property that stipulates to assign a positive

probability only on better reply actions to the opponent’s empirical distribution of play

(“better” with respect to the realized payoff).

A standard example of no-regret strategy satisfying the above conditions is obtained

by letting Pi be the lp-norm on R
Ai

+ , i.e. Pi(x) = (
∑

k∈Ai
[xk]

p

+)
1/p with 1 < p < ∞.

The resulting strategy qi is called the lp-norm strategy (Hart and Mas-Colell, 2001; Cesa-
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Bianchi and Lugosi, 2003). It is defined by

qi,k(t+ 1) =
[Ri,k(t)]

p−1
+∑

s∈Ai
[Ri,s(t)]

p−1
+

, ∀k ∈ Ai,

whenever Ri,max(t) > 0. The l2-norm strategy is the regret-matching strategy (Hart and

Mas-Colell, 2000), that stipulates to play an action in the next period with probability

proportional to the regret for that action. For large p, the lp-norm strategies approximate

fictitious play.

We say that the average correlated play z(t) follows a no-regret dynamics if both

players use (possibly different) no-regret strategies. A trajectory (z(t))1≤t≤+∞ of a no-

regret dynamics is thus a solution of (1) where a(t) is a realization of (q1(t), q2(t)) and

q1, q2 are no-regret strategies. We focus on the class R of no-regret dynamics such that:

(i) the no-regret strategies q1, q2 of the players are potential-based: they satisfy (Q1)

for some potentials P1, P2 satisfying (R1)-(R3);

(ii) if a player has no-regret then he takes some constant pure action: for each i = 1, 2,

there exists c ∈ Ai such that

qi(t+ 1) = c whenever Ri,max(t) ≤ 0. (Q2)

Our results are valid for a somewhat wider class of no-regret dynamics. What we really

need, beside a no-regret dynamics, is that from some period t0 on:

(i′) if a player has positive regret for some actions, then she plays one of these actions.

(ii′) If a player never has any positive regret, then she plays an ε(t)-best-reply to the

empirical distribution of her opponent, where ε(t) = ε(h(t)) → 0 almost surely.

Remark 1. Property (i′) follows from (Q1). It implies that if Ri,max(t) > 0 in some

period t, then Ri,max(t
′) > 0 for all t′ > t. Indeed, when an action k with positive regret

is played, the sign of Ri,k(t) does not change, hence the maximal regret remains positive

(Hart and Mas-Colell, 2001, Proposition 4.3).

Remark 2. Assumption (Q2) is a simple way of ensuring (ii′), and in addition, that

if Ri,max(t) ≤ 0 for all t, then Ri,max(t) → 0 as t → +∞.5 Indeed, if Ri,max(t) ≤ 0

for all t > t0 then by (Q2), for all t > t0, tRi,c(t) = t0Ri,c(t0), hence Ri,c(t) → 0. It

follows that Ri,max(t) → 0 and that for all t > t0, player i plays an ε(t)-best reply with

ε(t) := maxk∈Ai
ui(k, z−i(t))− ui(c, z−i(t)) = Ri,max(t) − Ri,c(t) → 0. For a discussion of

other possible assumptions, see Hart and Mas-Colell (2003), Appendix A.

5This additional property is needed for Corollary 1 below, but for our main results (ii′) suffices.
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Note that there are no-regret dynamics that do not satisfy (i′). For instance, stochastic

fictitious play with a noise parameter that varies with time and approaches zero at an

appropriate rate (see, e.g., Benäım and Faure, 2011).

Define the Hannan set H of the stage game Γ as the set of all correlated actions of

the players where each player has no regret:

H =

{
z ∈ ∆(A)

∣∣∣∣max
k∈Ai

ui(k, z−i) ≤ ui(z) for each i = 1, 2

}
.

The reduced Hannan set HR is the subset of H in which at least one regret is exactly zero

for each player:

HR =

{
z ∈ ∆(A)

∣∣∣∣max
k∈Ai

ui(k, z−i) = ui(z) for each i = 1, 2

}
.

The next property of no-regret dynamics is straightforward by the definition of no-

regret strategy and Remark 2 (see, e.g., Hart and Mas-Colell, 2003, Corollary 3.2).

Corollary 1. For every no-regret dynamics in class R, the trajectories converge almost

surely to the reduced Hannan set.

Convergence of the average play z(t) to set HR does not imply its convergence to any

particular point in HR. Moreover, even if z(t) converges to a point, this point need not

be a Nash equilibrium.

3 Fictitious play and no-regret dynamics

3.1 Fictitious play

In discrete fictitious play, in every period t after the initial one, player i plays a best reply

qi(t) to the average past play of her opponent x−i(t− 1) := 1
t−1

∑t−1
τ=1 q−i(τ). The latter is

called the belief of player i on her opponent’s next move. Formally, for any x = (x1, x2)

in ∆(A1)×∆(A2), denote by BRi(x−i) player i’s set of best replies to x−i:

BRi(x−i) :=
{
σi ∈ ∆(Ai)

∣∣∣ui(σi, x−i) ≥ max
k∈Ai

ui(k, x−i)
}
, i = 1, 2. (3)
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Let BR(x) = BR1(x2)×BR2(x1). A discrete-time trajectory (x(t))∞t=1 on ∆(A1)×∆(A2)

is a solution of discrete fictitious play (DFP) if for every t > 1

x(t)− x(t− 1) =
1

t
(q(t)− x(t− 1)) . (4)

where q(t) = (q1(t), q2(t)) is a pure best reply action profile, i.e., q(t) ∈ A∩BR(x(t− 1)).

Analogously, an absolutely continuous function x : [1,∞) → ∆(A1) × ∆(A2) is a

solution of continuous fictitious play (CFP) if for almost all t ≥ 1, x(t) is differentiable

and

ẋ(t) =
1

t
(q(t)− x(t)) , (5)

where q(t) ∈ BRi(x(t)) is now a profile of mixed actions. This may be written as the

differential inclusion:

ẋ ∈ 1

t
(BR(x)− x) . (6)

The average correlated play satisfies z(t) := 1
t

(
z(1) +

∫ t

1
q(τ)dτ

)
for some initial condition

z(1) such that zi(1) = xi(1), i = 1, 2. Thus,

ż(t) =
1

t
(q(t)− z(t)), (7)

where for almost all t, qi is a best-reply to z−i.
6

In discrete or continuous fictitious play, the marginals z1(t), z2(t) of the average past

play are equal to the beliefs x1(t), x2(t). By analogy, if z(t) is the average past play

generated by a no-regret dynamics, it is convenient to call z−i(t) the belief of player i on

her opponent’s next move. This illuminates a crucial difference between fictitious play

and no-regret dynamics in class R: under fictitious play, a player chooses a best reply to

her belief, whereas under no-regret dynamics, she chooses a better reply (“better” with

respect to her average realized payoff).

6 This definition of CFP guarantees that solutions exist in all games and for all initial conditions,
and that by the change of time scale y(t) = x(et), CFP corresponds to best-reply dynamics (Gilboa and
Matsui, 1991; Matsui, 1992) defined by ẏ ∈ BR(y)− y. Another definition of CFP (e.g., Monderer et al.,
1997, p. 445; Berger, 2007, pp. 252–253) considers only trajectories that are piecewise linear, such that
qi(t) is always a pure strategy, and that the times at which q(t) changes have no finite accumulation
point. This restricted definition is easier to handle, but in many games such trajectories do not exist.

8



3.2 Continuous fictitious play leads to no regret

It is well known that discrete fictitious play does not lead to no regret (Young, 1993; Hart

and Mas-Colell, 2001). Consider the following example:

L R

L 1,
√
2 0, 0

R 0, 0
√
2, 1

Fig. 1

Because
√
2 is irrational, L and R cannot both be best-replies to the empirical past play of

the other player. Thus, any DFP process is entirely determined by its first move. Assume

that the first move is off the diagonal, say (L,R). Due to the symmetry of the game and

the absence of ties, both players always switch to another action simultaneously. Therefore

the play is locked off the diagonal and the maximal regret is at least
√
2/(1 +

√
2) at any

stage. This holds in the mixed extension of the game, since at any stage the players have

a unique, pure best reply.

Since the continuous fictitious play process is a continuous-time version of DFP, intu-

itively, it should not lead to no regret either. The following result — a generalization of

Theorem D of Monderer et al. (1997) — shows that this intuition is misleading.

Proposition 2. Under any solution of continuous fictitious play, the average correlated

play converges to the reduced Hannan set.

This discrepancy between DFP and CFP may be explained as follows. Playing an

action with positive regret decreases the regret for this action. In CFP, when an action

is played it remains a best reply, hence it is associated with maximal regret for a small

time increment.7 Since the regret for this action decreases, so does the maximal regret.

In contrast, in DFP, an action played at stage t has maximal regret at stage t, but not

necessarily at stage t+1. Thus the fact that the regret for this action decreases does not

entail that the maximal regret does.

Proof of Proposition 2. For comparison with Hart and Mas-Collel (2003, Theorem

3.1), rescale time (let t̃ = exp t) so that (7) become ż = q − z. For any mixed action

σi ∈ ∆(Ai), let

Ri,σi(t) :=
∑

k∈Ai

σi(k)Ri,k(t) = ui(σi, z−i(t))− ui(z(t))

7This only holds up to a second order term (see the proof below), but this suffices.
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Let vi(t) = Ri,max(t). For almost all t, the function vi is differentiable and the following

holds: if k ∈ Supp(qi(t)), then for any integer n ∈ N
∗, there exists tn ∈]t, t+1/n[ such that

k is a best-reply to z−i(tn) (otherwise, żi,k = −zi,k on ]t, t+1/n[, hence zi(t+s) = zi(t)e
−s

for all s ∈]0, 1/n[; this implies qi,k = 0, a contradiction). Therefore, vi(tn) = Ri,k(tn).

Moreover, vi(t) = Ri,k(t). It follows that for any k ∈ Supp(qi(t)), v̇i = Ṙi,k(t), hence

v̇i =
∑

k qi,kṘi,k = Ṙi,qi. Furthermore:

Ṙi,qi = ui(qi, ż−i)−ui(ż) = ui(qi, q−i−z−i)−ui(q−z) = −[ui(qi, z−i)−ui(z)] = −Ri,qi = −vi.

Thus, v̇i = −vi. Therefore, vi(t) converges to zero for all i = 1, 2, hence z(t) → Hr.

Remark 3. In the proof, we did not use that q−i is a best-reply to zi. This shows

that the fact that CFP leads to no-regret is a unilateral property. That is, if a player’s

behavior evolves according to CFP, then she has no asymptotic regret, independently of

her opponent’s behavior (see also Monderer et al., 1997, p. 445).

Remark 4. CFP and the best-reply dynamics converge to the set of Nash equilibria in

finite zero-sum games (Hofbauer and Sorin, 2006). The usual proof is to show that the

“duality gap”W (x) = maxk∈A1
u1(k, x2)−mins∈A2

u1(x1, s) converges to zero. This follows

from the above proof, since in a two-player zero sum game W (x(t)) = R1,max(z(t)) +

R2,max(z(t)), where x is a solution of CFP and z the associated correlated play.

3.3 No-regret dynamics is perturbed CFP

In the previous subsection we showed that CFP leads to no regret. Conversely, we now

show that any no-regret dynamics in class R (as defined in Section 2) is closely related

to CFP. We first explain the intuition. The crucial observation is the following.

Lemma 1. Assume that the maximal regret is less than ε. Then any action with positive

regret is an ε-best reply to the average play of the opponent.

Proof. If player i has positive regret for action ai at some z ∈ ∆(A), then ui(z) −
ui(ai, z−i) < 0. But by assumption maxk∈Ai

ui(k, z−i)−ui(z) ≤ ε. Therefore, maxk∈Ai
ui(k, z−i)−

ui(ai, z−i) < ε, and ai is an ε-best reply to z−i.

Since no-regret dynamics in class R only pick actions with positive regret, they only

pick ε-best replies to the average play of the others, where ε is the maximal regret.

Since this maximal regret approaches zero almost surely, eventually only almost-exact
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best replies are picked. This provides the intuition why no-regret dynamics and fictitious

play may exhibit similar asymptotic behavior. Finding a precise link, however, is not

obvious. For instance, there could exist actions that are εt-best replies in each period t,

with εt → 0, but never exact best replies. Thus a limit play of no-regret dynamics may

include such actions, but this cannot happen under fictitious play.

L R

L 1, 0 0,
√
2

R 0, 1
√
2, 0

C η, 0 η, 0

Fig. 2

Consider the example shown on Fig. 2. Let η =
√
2/(1+

√
2). It is easy to verify that

action C is player 1’s best reply to player 2’s mixed action x2 if and only if x2 = (η, 1−η).

Let us first consider DFP. Since η is an irrational number, after every finite history of

play, C 6∈ BR1(x2(t)); consequently DFP never picks C (except, possibly, at the initial

period).8 However, it may be shown that under any DFP trajectory, the average play

x2(t) of player 2 converges to (η, 1 − η), to which C is a best-reply. It follows that C is

an εt-best reply to x2(t) for some sequence εt → 0. Thus a no-regret dynamics with the

same trajectory of the marginal play of player 2 might choose action C a positive fraction

of time in the long run.

This example does not apply to CFP, as in this case x2(t) need not be a rational

number; and as we show below, the asymptotic behavior of no-regret dynamics and CFP

can be formally related using the theory of perturbed differential inclusions (Benäım et al.,

2005, 2006).

Before stating a precise result, we need some definitions. A set L ⊂ ∆(A1) × ∆(A2)

is invariant under CFP if for every initial point x ∈ L there exists a solution x(·) of

CFP, defined for all t > 0 (not only t ≥ 1) and such that x(1) = x and x(t) ∈ L for

all t > 0. A nonempty compact invariant set is an attractor if it attracts uniformly all

trajectories starting in its neighborhood. An invariant set L is attractor-free if no proper

subset of L is an attractor for the dynamics restricted to L. A nonempty compact set

L is internally chain transitive (ICT) if every pair of points in L can be connected by

finitely many arbitrarily long pieces of orbits of the best-reply dynamics lying completely

8Starting with an arbitrary belief x2(1) would not help since C is a best-reply only when x2(t) =
(η, 1− η), which happens at most once.
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within L with arbitrarily small jumps between them.9 Every ICT set is invariant and

attractor free (Benäım et al., 2006, Property 2). The limit set of the beliefs of a trajectory

z(t) on ∆(A1 × A2) is the set of all accumulation points of its marginals (z1(t), z2(t)) ∈
∆(A1)×∆(A2) as t → ∞.

Theorem 1. For every no-regret dynamics in class R, the limit set of the beliefs is almost

surely internally chain transitive for continuous fictitious play.10

The proof is deferred to the Appendix. A consequence of this theorem is the following:

Corollary 2. Let A be the global attractor (i.e. the maximal invariant set) of CFP. For

any no-regret dynamics in class R, the limit set of the beliefs is almost surely a subset of

A.

Note the similarity with Propositions 5.1 and 5.2 of Hofbauer et al. (2009), who study

the links between the time-average of the replicator dynamics and CFP.

3.4 Applications of Theorem 1 and comments.

Theorem 1 allows us to find alternative and sometimes much shorter proofs of most known

properties of no-regret dynamics. Note that some applications of Theorem 1 (points (a),

(b) and (c) below) lead to the same conclusions about no-regret dynamics as those about

the time average of the replicator dynamics described in Hofbauer et al. (2009, p. 267,

points (2), (3) and (4)).

Below, we write that no-regret dynamics converge to some set E if the limit set of the

beliefs is almost surely a subset of E.

(a) For any game which is best-reply equivalent to a two-person zero sum game, the

global attractor of CFP is the set of Nash equilibria (Hofbauer and Sorin, 2006). Hence

all no-regret dynamics in class R converge to the set of Nash equilibria. Actually, in

zero-sum games, if the correlated action z is in the Hannan set (recall that this is the

set of correlated actions that satisfy no-regret for all players), then (z1, z2) is a Nash

equilibrium. Consequently, in zero-sum games all dynamics that lead to no regret (not

9For the formal definitions of attractor and attractor-free set see Benäım et al. (2006, p. 675); for the
definition of ICT see Benäım et al. (2005, p. 337). Note that the definition of invariance in Benäım et al.
(2005, 2006) applies to the best-reply dynamics, so an appropriate time rescaling must be used to apply
it to CFP (see footnote 6). This explains that their definition considers solutions defined for all t ∈ R

while ours considers solutions defined for all t > 0.
10In the statement of Theorem 1, CFP can be replaced by the best-reply dynamics since they clearly

have the same ICT sets (see footnote 6).
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only those in class R) converge to the set of Nash equilibria. This holds more generally

for stable bimatrix games (Hofbauer and Sandholm, 2009), because these are rescaled

zero-sum games in the sense of Hofbauer and Sigmund (1998), as is easily shown and was

known to Josef Hofbauer (private communication).

(b) For games with strictly dominated strategies, the global attractor of CFP is contained

in the face of the simplex with no weight on these strategies. Hence all no-regret dynamics

in class R converge to this face. Similarly, these dynamics converge to the unique Nash

equilibrium in strictly dominance solvable games.

A B C
A 2 1 −4
B 1 0 −1
C −4 −1 −2

A A− B B−

A 1 1 0 0
A− 1− ε 1− ε −ε −ε
B 0 0 1 1
B− −ε −ε 1− ε 1− ε

(i) (ii)

Fig. 3

Contrary to (a), this need not be true for all dynamics that lead to no regret. Indeed,

convergence to the Hannan set or even to the reduced Hannan set does not guarantee

elimination of strictly dominated strategies. Consider, for instance, the games shown on

Fig. 3. Both games are symmetric, so we indicate only the payoffs of the row player. Game

(i) is an identical interest game which is strictly dominance solvable; yet the correlated

action putting probabilities 1/3 on each diagonal square is in the reduced Hannan set.

For ε = 0, game (ii) is a coordination game with duplicate strategies. For ε > 0, the

duplicates A−, B− are penalized and become strictly dominated. Thus, the correlated

action putting probability 1/2 on (A−, A−) and 1/2 on (B−, B−) puts only weight on

strictly dominated actions. Yet, for ε ≤ 1/2, it belongs to the Hannan set.11

(c) In weighted potential games, all internally chain transitive sets of CFP are (subsets of)

connected components of Nash equilibria on which the payoffs are constant (see Benäım

et al., 2005, Theorem 5.5 and Remark 5.6). Hence by Theorem 1, all no-regret dynamics

in class R converge to such components. Note that the original proof is much longer (Hart

and Mas-Colell, 2003, Appendix A).

(d) If the beliefs (z1(t), z2(t)) of a no-regret dynamics converge to the set of Nash equi-

libria, then the average realized payoff converges to the set of Nash equilibrium payoffs.

11See also the game of Moulin and Vial (1978, p. 205), where the third strategy of player 1 is strictly
dominated but has a positive marginal probability under some correlated actions in the Hannan set.
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To see why this is true, let ẑ ∈ ∆(A) be a limit point of {z(t)} and let the marginals

(ẑ1, ẑ2) ∈ ∆(A1) × ∆(A2) constitute a Nash equilibrium. By Corollary 1 the maximal

regret converges to zero, so for every i = 1, 2

ui(ẑ) = max
k∈Ai

ui(k, ẑ−i) = ui(ẑi, ẑ−i).

This result illuminates an important difference between no-regret dynamics and discrete

fictitious play. It is well known that under DFP, if the beliefs of the players converge

to a Nash equilibrium, their average realized payoffs need not approach the set of Nash

equilibrium payoffs (as in the example illustrated by Fig. 1), whereas under no-regret

dynamics it is always the case.

(e) Consider the 3×3 game of Fig. 4 due to Shapley (1964), the historical counterexample

to the convergence of fictitious play. This game has a unique equilibrium, in which both

A B C
A 0, 0 1, 0 0, 1
B 0, 1 0, 0 1, 0
C 1, 0 0, 1 0, 0

Fig. 4

players randomize uniformly. Though this equilibrium attracts some solutions of contin-

uous fictitious play (e.g. all those that start and remain symmetric), almost all solutions

converge to an hexagon, the so-called Shapley polygon (Shapley, 1964; Gaunersdorfer and

Hofbauer, 1995; Sparrow et al., 2008). It may be shown that the only ICT sets are the

Nash equilibrium and the Shapley polygon. Consequently, the limit set of any no-regret

dynamics in class R is almost surely one of these two sets.

(f) In a number of classes of games, convergence of discrete fictitious play to the set of

Nash equilibria has been established, but analogous results for continuous fictitious play

are lacking. Thus we cannot use Theorem 1. These classes of games include generic

2×n games (Berger, 2005), generic ordinal potential games, quasi-supermodular games12

with diminishing returns (Berger, 2007) and some other special classes (see, e.g., Sparrow

et al., 2008, p. 260). For ordinal potential games and quasi-supermodular games with

diminishing returns, Berger (2007) proves convergence to the set of Nash equilibria of

some solutions of continuous fictitious play as defined by (6) (see our footnote 6). This

12Also known as games of strategic complementarities (e.g., Tirole, 1988).
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is not enough to apply the results of Benäım et al. (2005). The same problem arises in

Krishna and Sjöström (1998). Actually, as explained below, convergence of CFP to the

set of Nash equilibria would not suffice to use Theorem 1: we would need some additional

structure, such as a Lyapunov function, to get more information on the ICT sets.

(g) Consider a bimatrix game in which all solutions of CFP converge to the set of Nash

equilibria. Because the definition of attractor requires a uniform attraction, this does not

imply that the set of Nash equilibria is an attractor. Neither does it imply that all ICT

sets are contained in the set of Nash equilibria, as shown in Appendix A.2. Therefore, we

cannot deduce from Theorem 1 that no-regret dynamics in class R converge to the set of

Nash equilibria; whether this is always the case remains an open question.

(h) We show in Section 5 that Theorem 1 also applies, and under weaker assumptions,

to the continuous-time version and to the expected version of no-regret dynamics in class

R. As apparent from the proof, the existence of a potential is not essential: for a good

choice of behavior when there are no regrets, Theorem 1 holds for any no-regret dynamics

such that a player always chooses an action with positive regret whenever he has some. It

also applies to no-regret dynamics that do not have this property, such as the exponential

weight algorithm (see Remark 6 at the end of Appendix A.1).

(i) Let us now comment on extensions of our results to n-player games. The definition of

no-regret dynamics, as well as Proposition 1, extend to the n-player setting straightfor-

wardly (e.g., Hart and Mas-Colell, 2001). The appropriate extension of CFP is correlated

CFP where at each time t every player chooses a best reply action to the correlated past av-

erage play of the others. Specifically, an absolutely continuous function z : [1,∞) → ∆(A)

is a solution of correlated CFP if it is almost everywhere differentiable and satisfies

ż(t) ∈ 1

t
(BR(z(t))− z(t)),

where the correlated best-reply correspondence BR : ∆(A) ⇉ ∆(A) is defined byBR(z) =

×n
i=1BRi(z−i) where BRi(z−i) is the set of mixed best replies of player i to the correlated

action z−i ∈ ∆(A−i).

In n-player games with linear incentives (Selten, 1995), also known as polymatrix

games (Yanovskaya, 1968), the correlated and independent best-reply correspondences

coincide; that is, for any correlated action z ∈ ∆(A), BR(z) = BR((z1, .., zn)) where

(z1, ..., zn) is the vector of marginals of z, and BR the standard (independent) best-reply

correspondence. For such games, our results extend easily. However, this is not the case

in general. The main problem is that the correlated best reply correspondence is not
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convex valued; that is, BR(z) is not in general a convex subset of ∆(A).13 This creates

two issues:

(i) Existence of solutions of correlated CFP is not guaranteed by the classical results

on differential inclusions we are aware of (e.g., Aubin and Celina, 1984).

(ii) The theory of perturbed differential inclusions (Benäım et al., 2005) does not apply

to non-convex valued correspondences.

The first issue can be solved by building piecewise linear solutions of correlated CFP

following the same ideas as for two-player games.14 Moreover, due to Remark 3, Propo-

sition 2 extends to the n-player setting. It then asserts that correlated CFP leads to no

regrets. Lemma 1 also extends: it asserts that if the maximal regret of player i is less than

ε, then she plays only ε-best reply actions to the correlated average play of the opponents.

It follows that, analogously to two-player games, interpolated trajectories of no-regret

dynamics are almost surely perturbed solutions of correlated CFP/ However, we cannot

proceed to an analog of Theorem 1 because of the second issue. Thus, whether there

is a formal relation between no-regret dynamics and correlated CFP in n-player games

remains an open question. Similarly, the results of Hofbauer et al. (2009) on the links

between the time-average of the replicator dynamics and CFP are restricted to bimatrix

games (or games with linear incentives).

4 Curb sets

Theorem 1 does not answer whether attracting sets of CFP have a analogous property

under no-regret dynamics.

A set C ⊂ ∆(A) is eventually attracting under a no-regret dynamic process if with

any given probability it captures all no-regret trajectories originated from a small enough

neighborhood of C at all distant enough periods. Formally, C is eventually attracting if

for every π > 0 there exists ε > 0 and a period T such that: for every t0 ≥ T , if z(t0) is in

13This is due to the fact that elements of BR(z) are independent distributions and that the average of
two independent distributions need not be an independent distribution.

14Assuming that z(t) is well defined, call Gr(t) the game in which the players are reduced to their best-
replies to z(t). Start with some initial condition z(t0). Then point to a Nash equilibrium of Gr(t0) (i.e.
fix b ∈ NE(Gr(T0)) and choose q(t) = b) till the first time, t1, when, for some player i, a strategy which
was not a best-reply to z(t0) is a best-reply to z(t1). Then iterate. If the times tn accumulate towards
some time t∗, then use the fact that z(t) must have a limit when t → t∗ (because z(t) is Lipschitz).
Call it z(t∗) and restart from z(t∗). Note that there might in principle be a countable infinity of such
accumulation points t∗, and that they might themselves accumulate in some point t∗∗, but then define
z∗∗ as before and restart from there, etc. The largest (forward time) interval on which such a solution
can be built is both open and closed in [t0,+∞[ and is thus equal to [t0,+∞[.
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an ε-neighborhood of C, then z(t) converges to the set C with probability at least 1−π.15

For this section it is convenient to replace assumption (Q2) by the following one:

If a player’s maximal regret is nonpositive, then she plays a best-reply

to the empirical distribution of her opponent.
(Q2′)

This is not essential, since the interesting histories are those where both players have

positive regrets, in which case (Q2) plays no role.16

A strict Nash equilibrium is eventually attracting. Indeed, if z(t0) is close enough

to a strict Nash equilibrium a = (a1, a2), then for each player i, action ai is the unique

best reply and there is a negative regret for any action other than ai. Since by (R3)

only actions with positive regret can be chosen, and by (Q2′) only best-reply actions can

be chosen if all regrets are nonpositive, action ai will be played by each player i in the

following period, and so on.

Let us now consider a standard generalization of strict Nash equilibria. For each

i = 1, 2, let Bi ⊂ Ai. With a slight abuse of notation, denote by ∆(Bi) the set of

probability measures on Ai with support on Bi only. The product set B = B1 × B2 is

closed under rational behavior (curb) (Basu and Weibull (1991)) if

BRi(y−i) ⊂ ∆(Bi) whenever y−i ∈ ∆(B−i), i = 1, 2.

That is, the set B is curb if the players’ pure best reply profiles are contained in B

whenever they believe that no actions outside of B should be played.

Curb sets are known to be attracting under CFP (e.g., Balkenborg et al., 2011, Lemma

7). However, they need not be attracting under no-regret dynamics in class R. Indeed,

even if the support of z(t0) is contained in some curb set B, there may be positive regrets

for actions outside of B, since B need not be closed under better replies. However, we

show that the intersection of the Hannan set and of the set of correlated actions with

support on a curb set is eventually attracting.

Formally, let B = B1 × B2 be a curb set. Let ∆B(A) denote the set of correlated

actions with support on B only. Let HB = H ∩∆B(A).

15We say that z(t) converges to C if infc∈C ||z(t)− c|| → 0 as t → ∞.
16Recall that by Remark 1, if a player has positive maximal regret, then it remains positive forever. So

we can consider histories from a distant enough period t0 where both players have positive regrets and
(Q2) plays no role. If t0 does not exist, i.e., some player always has nonpositive maximal regret, then
Proposition 1 and (Q2) imply that her play is constant, whereas her opponent’s play must approach a
best reply to it, leading to Nash equilibrium. By replacing (Q2) by (Q2′) we avoid dealing with this issue.
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Proposition 3. For every curb set B, the set HB is eventually attracting under every

no-regret dynamics in R.

The proof is deferred to the Appendix. Note that Proposition 3 does not claim that if

the play is locked on some curb set, all actions of that set will be played infinitely often.

For example, a no-regret trajectory may lock on a Nash equilibrium which is not strict,

hence not curb, thus being properly contained in some minimal curb set whose other

actions are never played.

5 Continuous-time and expected no-regret dynamics

We now prove an analog of Theorem 1 for continuous-time dynamics (Hart and Mas-Colell,

2003) and the expected version of discrete-time dynamics. Consider a continuous-time

dynamics

ż(t) =
1

t
(q(t)− z(t)) (8)

where q(t) ∈
∏

i∆(Ai) is the (independent) joint play at time t and z(t) ∈ ∆(A) the

average correlated play. Note that qi(t) is now a mixed action. As in continuous fictitious

play, start at time 1 with some initial condition z(1) ∈ ∆(A). Assume that whenever

Ri,max(t) > 0

qi,k(t) =
∇kPi(Ri(t))∑

s∈Ai
∇sPi(Ri(t))

, k ∈ Ai (9)

where Pi is a C1 potential function satisfying (R1), (R2) and the technical condition:

(P4′) There exists 0 < ρ2 < ∞ such that ∇Pi(x) · x ≤ ρ2Pi(x) for all x ∈ R
Ai

− .

This is a part of condition (P4) in Hart and Mas-Colell (2003). Note that we do not need

the better-reply condition (R3).

Proposition 4. Let z(t) be a solution of (8) and (9) with Pi satisfying conditions (R1),

(R2) and (R4) for all i = 1, 2. Assume that the initial condition z(1) is such that both

players have some positive regrets: Ri,max(1) > 0 for all i = 1, 2. Then the conclusion of

Theorem 1 applies.

Proof. (We advise the reader to first read Appendix A.1.) Let εi(t) := maxk∈Ai
Ri,k(t).

Hart and Mas-Colell (2003, Theorem 3.1 and Lemma 3.317) show that if εi(1) > 0, then

17Note a typo in the proof of Lemma 3.3 in Hart and Mas-Colell (2003): (P3) should be replaced by
(P4); beside, only our condition (P4′) is used.
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εi(t) > 0 for all t, and that εi(t) → 0 as t → +∞. Moreover, by (R2) applied to x = Ri(t)

and definition of qi, we have: ui(qi, z−i)−ui(z) = qi ·Ri > 0 (this is equation (3.3) in Hart

and Mas-Colell, 2001). Thus by Lemma 1, qi ∈ BR
εi(t)
i (z−i). Together with Lemma 3 of

Appendix A.1, this implies that (z1(·), z2(·)) is a perturbed solution of CFP. The result

then follows from Theorem 3.6 of Benäım et al. (2005).

Remark 5. Assume that if all initial regrets of a player are nonpositive then the dynamics

is defined as in Hart and Mas-Colell (2003), equation (4.9). Then it is easily seen that

Theorem 1 applies for any initial condition z(1).

Expected discrete-time dynamics. The expected motion in (1) is described by

z(t)− z(t− 1) =
1

t
(qi(t)− z(t− 1)) . (10)

where qi ∈ ∆(Ai) is the expectation of a. Assume that qi is derived by (Q1) from a

potential function satisfying (R1)–(R2). Let εi(t) := Ri,max(t). It is easily seen that, as

for continuous-time dynamics, εi(t) → 0 as t → +∞, and if εi(1) > 0, then εi(t) > 0 for

all t and qi ∈ BRεi(t)(z−i). It follows that (for a good choice of behavior when all regrets

are initially nonpositive) Theorem 1 holds for the expected process (10).

This shows that the reason why the proof of Theorem 1 is easier in continuous-time

is not continuous-time per se. It is that (8), as (10), is an expected version of (1).

Appendix

A.1 Proof of Theorem 1

Denote by B̂Rε
i (x) the correspondence whose graph is the ε-neighborhood of the graph

of BRi:

B̂Rε
i (x−i) =

{
xi ∈ ∆(Ai)

∣∣∣∣∣
∃(x∗

i , x
∗
−i) ∈ ∆(A1)×∆(A2) s.t.

x∗
i ∈ BRi(x

∗
−i), and ||(x∗

i , x
∗
−i)− (xi, x−i)||∞ ≤ ε

}
(11)

Let B̂Rε(x) = B̂Rε
1(x2)× B̂Rε

2(x1). In words, action yi is an ε-graph perturbed best reply

to x−i if there is an action ε-close to yi which is an exact best-reply to an action ε-close

to x−i. This is the notion of perturbation used in the theory of perturbed differential

inclusions (Benäım et al., 2005, 2006). As illustrated by the following example, it is

different from the notion of perturbation of payoffs in the ε-best reply correspondence,
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i.e. BRε(x) = BRε
1(x2)× BRε

2(x1) with

BRε
i (x−i) =

{
σi ∈ ∆(Ai)

∣∣∣ ui(σi, x−i) ≥ max
k∈Ai

ui(k, x−i)− ε
}
, i = 1, 2. (12)

L R
T 1 0
C 0 1
B 1

2
− η 1

2
− η

Fig. 5

Consider a game where the payoffs of player 1 are given by Fig 5. Let ε ∈ (0, 1/2)

and let xε
2 =

(
1
2
+ ε

)
L +

(
1
2
− ε

)
R. The pure action C is a 2ε-best reply to xε

2. Using

the sup norm, it is at distance 1 from pure action T , the unique exact best reply to xε
2.

Nevertheless, C is an ε-graph perturbed best reply, because it is an exact best reply to x0
2,

which is ε-close (in sup norm) to xε
2. By contrast, for all η > 0, action B is an (ε+η)-best

reply, but only a 1-graph perturbed best reply to xε
2.

A discrete-time trajectory (x1(t), x2(t))
∞
t=1 on ∆(A1) × ∆(A2) is a payoff perturbed

fictitious play trajectory if there exists a positive sequence (εt) converging to zero such

that (4) holds with qi(t) ∈ Ai∩BRεt
i (x−i(t−1)) for all i = 1, 2 and all t ∈ N

∗. It is a graph

perturbed fictitious play trajectory if the same holds but replacing BRεt
i with B̂Rεt

i . A

trajectory (z(t))∞t=1 on ∆(A) generates a sequence of beliefs (z1(t), z2(t)) in ∆(A1)×∆(A2)

The proof goes as follows. Lemma 2 shows that the sequence of beliefs generated

by a no-regret dynamics is a payoff perturbed FP trajectory. Together with Lemma 3,

this implies that it is a graph-perturbed FP trajectory (Lemma 4). It follows that the

interpolated process of a no-regret dynamics trajectory is a perturbed solution of CFP

(Lemma 5). The result then follows from Benäım et al. (2005).

Lemma 2. The sequence of beliefs of a solution of a no-regret dynamics in class R is

almost surely a payoff perturbed DFP trajectory.

Proof. If Ri,max(t) ≤ 0 for all t, then by Remark 2, player i plays an ε(t)-best reply for

some ε(t) converging to zero. Otherwise, Ri,max(t0) > 0 for some t0 ∈ N
∗. Then for all

times t ≥ t0, Ri,max(t) > 0 (by Remark 1) and player i plays an Ri,max(t)-best reply by

Lemma 1 and condition (R3). Since Ri,max(t) → 0 almost surely, the result follows.

Lemma 3. Let X be a compact subset of Rm and F a correspondence from X to itself. For

any δ ≥ 0, let F̂δ : X ⇉ X denote the correspondence whose graph is the δ-neighborhood
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of the graph of F :

F̂δ(x) =
{
y ∈ X

∣∣∣ ∃(x∗, y∗) ∈ X2 s.t. y∗ ∈ F (x∗) and ||(x∗, y∗)− (x, y)||∞ ≤ δ
}
.

For any α > 0, let Gα be an u.s.c. correspondence from X to itself. Assume that for each

x in X:

(i) α < α′ ⇒ Gα(x) ⊂ Gα′(x) (that is, (Gα)α>0 is increasing w.r.t. inclusion);

(ii)
⋂

α>0Gα(x) ⊂ F (x).

Then for every δ > 0 there exists α > 0 such that for each x in X, Gα(x) ⊂ F̂δ(x).

Proof. By contradiction, assume that there exists δ > 0, a decreasing sequence (αn) con-

verging to zero, and sequences (xn) and (yn) of points inX such that yn ∈ Gαn
(xn)\F̂δ(xn)

for all n. By compactness of X , we can assume that (xn) and (yn) converge respectively

to x∗ and y∗. Fix k ∈ N. For all n ≥ k, yn ∈ Gαn
(xn) ⊂ Gαk

(xn) by (i). Since Gαk
is

u.s.c., it follows that y∗ ∈ Gαk
(x∗). Therefore, by (i) and (ii)

y∗ ∈
⋂

k∈N
Gαk

(x∗) =
⋂

α>0

Gα(x
∗) ⊂ F (x∗)

But for n large enough, ||(x∗, y∗)− (xn, yn)||∞ < δ, hence yn ∈ F̂δ(xn), a contradiction.

Applied to the best-reply correspondence, Lemma 3 means that for any δ > 0, an ε-

perturbed best-reply is a δ-graph perturbed best-reply, provided ε is small enough. Thus

we have the next result.

Lemma 4. Any payoff perturbed DFP trajectory is a graph perturbed DFP trajectory.

Proof. Let εt → 0. Let

δt = min
{
δ ≥ 0

∣∣∣ ∀i = 1, 2, ∀x ∈ ∆(A1)×∆(A2), BRεt
i (x−i) ⊂ B̂Rδ

i (x−i)
}
.

Applying Lemma 3 with X = ∆(A1) ×∆(A2), Gε = BRε and F = BR, we obtain that

δt → 0. The result follows.

Given a discrete-time trajectory x(n) = (x1(n), x2(n)) on ∆(A1)×∆(A2), with n ∈ N
∗,

define its interpolated process x : [1,+∞[→ ∆(A1)×∆(A2) as follows. For all t ∈ [n, n+1)

let tx(t) = nx(n) + (t− n)q(n), where qi(n) = (n+ 1)xi(n+ 1)− nxi(n), i = 1, 2. This is

equivalent to

xi(t)− xi(n) =
t− n

t
(qi(n)− xi(t)), i = 1, 2.
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Hence for all t ∈ (n, n + 1) we have ||x(t)− x(n)||∞ ≤ 1
n+1

and

ẋ(t) =
1

t
(q(n)− x(t)) (13)

An absolutely continuous function x : [1,+∞[→ ∆(A1) ×∆(A2) is a perturbed solution

of CFP if there exists a vanishing function ε : R+ → R+ such that for almost all t,

ẋ ∈ 1

t

(
B̂Rε(t)(x)− x

)
where x = x(t). (14)

Lemma 5. The interpolated process of a graph perturbed DFP trajectory is a perturbed

solution of CFP.

Proof. Consider a discrete time trajectory (x1(n), x2(n))n∈N such that

xi(n)− xi(n− 1) =
1

n
(qi(n)− xi(n)) , i = 1, 2,

with qi(n) ∈ B̂Rεn
i (x−i(n − 1)) and εn → 0. For all n and all t ∈ [n, n + 1), let ε(t) =

εn+2/n. Obviously, ε(t) → 0 as t → ∞. Moreover, for all t ∈ (n, n+1), the interpolated

process satisfies ||x−i(t) − x−i(n − 1)||∞ ≤ 1
n
+ 1

n+1
< 2/n, so qi(n) ∈ B̂R

ε(t)
i (x−i(t)).

Therefore (13) implies (14).

We can now prove Theorem 1. By Lemmata 2 and 4, the sequence of beliefs of a

solution of a no-regret dynamics in class R is almost surely a graph perturbed DFP

trajectory. Hence, by Lemma 5, its interpolated process x(t) is a perturbed solution

of CFP. This implies that x(et) is almost surely a perturbed solution of the best-reply

dynamics, in the sense of Benäım et al. (2005, Definition II). Theorem 1 now follows from

Theorem 3.6 of Benäım et al. (2005).18

Remark 6. Assume that at stage t, for each i = 1, 2, player i chooses a pure action

according to a mixed action qi(t) that depends on the previous history h(t − 1). Do not

assume conditions (R1)–(R3) and (Q1), but assume that there exists a vanishing sequence

εt such that for any previous history h(t − 1), qi(t) ∈ BRεt(z−i(t − 1)) for all t > 1 and

all i = 1, 2. Then it follows from Lemma 3, the above proof and Benäım et al. (2005,

Proposition 1.4 and a variant of Proposition 1.3) that Theorem 1 applies. As is well

known, this is the case for the exponential weight algorithm (Freund and Schapire, 1999;

18The definition of perturbed solution in Benäım et al. (2005) is different from ours but equivalent.
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Littlestone and Warmuth, 1994) that corresponds to

qi,k(t) :=
exp βtui(k, z−i)∑

s∈Ai
exp(βtui(s, z−i))

with z−i = z−i(t−1), βt →t→+∞ +∞, and βt < tα for some α ∈]0, 1[ to ensure that this is

a no-regret dynamics (see, e.g., Benäım and Faure, 2011). The above assumptions are not

(or not trivially) satisfied by no-regret dynamics in class R. Indeed, the rate at which the

maximal regret vanishes, hence the value εt such that qi(t) ∈ BRεt
i (z−i(t)), may depend

on the trajectory.

A.2 ICT sets when all solutions converge to Nash equilibria

The fact that all solutions of the best-reply dynamics converge to the set of Nash equilibria

does not guarantee that ICT sets contain only Nash equilibria. We provide counterexam-

ples below.

Example 1 (single-population dynamics). Consider the following symmetric 3×3 game:

A B C

A 0 0 0

B 0 0 0

C −1 0 0

Denote a mixed action by x = (xA, xB, xC). Then (x, x) is a Nash equilibrium if and

only if xA = 0 or xC = 0. It is easily seen that all solutions of the best-reply dynamics

converge to the set of symmetric Nash equilibria. However, the whole state space is ICT.

Indeed, any mixed action x can be connected to any other mixed action y as follows:

starting from x, follow a solution pointing towards the edge xC = 0, then jump on this

edge and follow a solution pointing towards the pure strategy B; once close to B, jump

on the edge xA = 0, and follow a solution pointing towards C; once close to C, make a

small jump to reach a point from which a solution points toward y; follow this solution

and if needed (i.e. if yC = 0), make one more jump to reach y.

This example is also valid for the replicator dynamics and any payoff monotone dy-

namics in the sense of, e.g., Hofbauer and Weibull (1996). The only difference is that

traveling from A to B and from B to C cannot be done by following solutions of the

dynamics but only through long sequences of jumps. Note also that in an inward cycling

Rock-Paper-Scissors game (see e.g., Hofbauer and Sigmund, 1998, or Weibull, 1995), all
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solutions of the replicator dynamics converge to one of the four rest points but the whole

boundary of the state space is ICT (for the replicator dynamics).

Example 2 (n-population dynamics). Similarly, in the bimatrix version of example 1, all

solutions of the two-population best-reply dynamics converge to the set of Nash equilibria

but the whole state space is ICT. Again, this is true for all payoff monotone dynamics.

Similar examples can be given for n-population dynamics for any n ≥ 1.

At least for the best-reply dynamics, 2× 2 examples can also be given. Consider, for

instance, the 2× 2 game:

L R

T 0, 0 0, 0

B 0, 0 −1, 0

Denote mixed actions of players 1 and 2 by x = (xT , xB) and y = (yL, yR), respectively.

The set of Nash equilibria is the union of the edges xB = 0 and yR = 0 and all solutions of

the two-population best-reply dynamics converge to this set. However, the whole triangle

xT + yL ≥ 1 is ICT.

In these examples, a direct analysis shows that all solutions of no-regret dynamics in

class R converge to the set of Nash equilibria. Thus we do not know whether, in general,

convergence of all solutions of CFP to the set of Nash equilibria entails convergence of

no-regret dynamics. The point is that this is not guaranteed by Theorem 1.

A.3 Proof of Proposition 3

We need some notation. For z ∈ ∆(A) and a ∈ A, let za denote the probability of a under

the correlated action z. Let Uγ(HB) be the neighborhood of HB in which the total weight

on action profiles outside of B and the potential of each player are below γ:

Uγ(HB) =



z ∈ ∆(A)

∣∣∣∣∣∣

∑
a/∈B

za < γ, and

Pi(Ri(z)) < γ, i = 1, 2,





where Ri(z) is the regret vector of player i: Ri(z) =
(
ui(s, z−i)− ui(z)

)
s∈Ai

.

Let B = B1 × B2 be a curb set. Let

δB = min
i=1,2

min
z−i∈∆(B−i)

{
max
s∈Ai

ui(s, z−i)− max
k∈Ai\Bi

ui(k, z−i)

}

and note that δB > 0, since B is curb. Now, consider a no-regret dynamics in R defined
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by potentials Pi, i = 1, 2, with trajectory (z(t))t≥1. Let ρi(γ) be the smallest number such

that for all z ∈ ∆(A)

Pi(z) ≤ γ =⇒ Ri,max(z) ≤ ρi(γ),

and let ρ(γ) = max{ρ1(γ), ρ2(γ)}. Let γB be the solution of

(2Ū + δB)γB + ρ(γB)− δB = 0 (15)

where Ū = maxi=1,2maxa∈A |ui(a)| is a payoff bound. Since ρ(γ) is weakly increasing in

γ and ρ(0) = 0, there exists a unique solution γB of (15) and γB > 0.

Consider the following event Et:

Pi(Ri(t+ n)) < γB for each i = 1, 2 and all n ∈ N
∗. (Et)

The statement of Proposition 3 is immediate by the following claims and Corollary 1.

Claim 1. If z(t) ∈ UγB (HB) and event Et holds, then a(t + n) ∈ B for all n ∈ N
∗.

Claim 2. For every π ∈ (0, 1] and every γ ∈ (0, γB) there exists t0 such that for every

t ≥ t0, if z(t) ∈ Uγ(B), then event Et holds with probability at least 1− π.

For the proof of Claim 1 we need the following lemma.

Lemma 6. For any t, if z(t) ∈ UγB(HB), then a(t + 1) ∈ B.

Proof. Let z ∈ ∆(A). If z is close enough toB, then maxs∈Ai
ui(s, z−i)−maxk∈Ai\Bi

ui(k, z−i) >

δB/2 for all i = 1, 2. If z is close enough to H , then maxs∈Ai
ui(s, z−i) − ui(z) < δB/2.

Thus in the neighborhood of HB, maxk∈Ai\Bi
ui(k, z−i) < ui(z) hence Ri,k(z) < 0 for all

k ∈ Ai\Bi. In particular, this holds if z ∈ UγB(HB) (we omit the proof: easy but lengthy).

It follows that if z(t) ∈ UγB (HB), then by conditions (R3) and (Q2′), ai(t + 1) ∈ Bi for

each i = 1, 2.

Proof of Claim 1. Suppose that Et holds and let z(t) ∈ UγB (B). Then a(t+1) ∈ B by

Lemma 6. We proceed by induction. Assume a(t+ 1), . . . , a(t+ n) ∈ B for some n ∈ N
∗.

Since z(t) ∈ UγB (B), ∑

a∈A\B
za(t + n) <

∑

a∈A\B
za(t) < γB.

Together with Et, this implies that z(t + n) ∈ UγB(B). Consequently, by Lemma 6,

a(t + n+ 1) ∈ B.
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The proof of Claim 2 builds up on the proof of Theorem 2.1 of Hart and Mas-Colell

(2001). It is different though, since we need to find the convergence rate of of the maximal

regret conditional on a given initial history (in particular, on those where the past average

play is close to a curb set), which Hart and Mas-Colell (2001) do not provide. So our

result cannot be directly derived from their proof.

For the proof of Claim 2 we need the following lemmata.

Lemma 7. Let x1, x2, . . . be a sequence of real random variables with E[xn|xn−1, . . . , x1] =

0 and V ar[xn] ≤ σ̄2 for all n. Then for every π > 0 and every m = 1, 2, . . .

Pr

[
max
n>m

∣∣∣∣
1

n

∑n

k=m+1
xk

∣∣∣∣ ≥
σ̄√
mπ

]
≤ π.

Proof. Hájek-Rényi inequality (e.g., Bullen, 1998) implies

Pr

[
max

m<k≤n
ck |xm+1 + . . .+ xk| ≥ ε

]
≤ 1

ε2

∑n

k=m+1
c2kV ar[xk].

Using ck = 1/k and V ar[xk] ≤ σ̄2, the right-hand side can be bounded as follows,

∑n

k=m+1
c2kV ar[xk] ≤ σ̄2

∑n−m

k=1

1

(m+ k)2
≤ σ̄2 1

m
.

Taking the limit n → ∞ yields

Pr

[
max
k>m

1

k
|xm+1 + . . .+ xk| ≥ ε

]
≤ σ̄2

mε2
.

The result is immediate by substitution π = σ̄2/(mε2).

Define ξ(1) = Pi(Ri(1)) and for all t = 2, 3, . . .

ξ(t) = tPi(Ri(t))− (t− 1)Pi(Ri(t− 1)). (16)

Lemma 8. ξ(t) is uniformly bounded and E[ξ(t)|h(t− 1)] ≤ C/t holds for some constant

C uniformly for all t.

Proof. Let x0 = Ri(t − 1) and x = Ri(t). Note that Ri(t) =
t−1
t
Ri(t − 1) + 1

t
ri, where

ri = [ui(k, a−i(t))− ui(a(t))]k∈Ai
. Hence

x− x0 =
1

t
(ri − x0). (17)

26



The regret for an action is bounded by 2Ū and the difference between two regret terms

by 4Ū . Thus, in sup norm, ||ri − x0|| ≤ 4Ū and ||x− x0|| ≤ 4Ū/t.

Since Pi is C
2, there exist constants c, c′ and c′′ such that if ||y|| ≤ 4Ū ,

||Pi(y)|| ≤ c, ||∇Pi(y) · y|| ≤ c′||y||, and ||y · ∇2Pi(y)y|| ≤ c′′||y||2.

Moreover, ξ(t) = Pi(x0) + t(Pi(x) − Pi(x0)) hence |ξ(t)| ≤ c + tc′||x − x0|| ≤ c + 4Ūc′.

Thus ξ(t) is uniformly bounded.

We now show that E[ξ(t)|h(t − 1)] ≤ C/t for C = 8Ū2c′′. By definition of c′′ and

Taylor-Lagrange theorem,

Pi(x) ≤ Pi(x0) +∇Pi(x0) · (x− x0) +
1

2
c′′||x− x0||2.

Using (17) we get:

Pi(x) ≤
t− 1

t
Pi(x0) +

1

t
(Pi(x0)−∇Pi(x0) · x0) +

1

t
∇Pi(x0) · ri(t) +

C

t2
.

Since Pi is convex and Pi(0) = 0, we have:

Pi(x0)−∇Pi(x0) · x0 = Pi(x0) +∇Pi(x0) · (0− x0) ≤ Pi(0) = 0.

Therefore

Pi(x) ≤
t− 1

t
Pi(x0) +

1

t
∇Pi(x0) · ri +

C

t2
,

so that

ξ(t) = tPi(x)− (t− 1)Pi(x0) ≤ ∇Pi(x0) · ri +
C

t
.

To prove that E[ξ(t)|h(t− 1)] ≤ C/t, it suffices to show that E[∇Pi(x0) · ri|h(t− 1)] = 0.

To see this, note that E[ri,k|h(t− 1)] = ui(k, a−i(t))− ui(qi(t), a−i(t)) hence

E[qi(t) · ri|h(t− 1)] = qi(t) · E[ri|h(t− 1)] =
∑

k∈Ai

qi,k[ui(k, a−i)− ui(qi, a−i)] = 0.

Since qi(t) is proportional to ∇Pi(x0), the result follows.
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Proof of Claim 2. By (16) we have

Pi(Ri(t+ n)) =
1

t+ n

t+n∑

s=t+1

ξ(t) +
t

t + n
Pi(Ri(t))

=
1

t+ n

t+n∑

s=t+1

ζ(s) +
1

t+ n

t+n∑

s=t+1

E[ξ(s)|h(s− 1)] +
t

t + n
Pi(Ri(t)),

where ζ(s) = ξ(s)− E[ξ(s)|h(s− 1)]. As we have assumed z(t) ∈ Uγ(B), we have

t

t+ n
Pi(Ri(t)) <

t

t+ n
γ ≤ γ.

Next, by Lemma 8,

1

t+ n

t+n∑

s=t+1

E[ξ(s)|h(s− 1)] ≤ 1

t+ n

t+n∑

s=t+1

C

s
≤ C

ln(t + n)− ln t

t + n
.

Maximizing ln(t+n)−ln t
t+n

among all n > 0 yields ln(t+n)−ln t
t+n

≤ (te)−1, hence

1

t+ n

t+n∑

s=t+1

E[ξ(s)|h(s− 1)] ≤ C

te
.

Let σ̄2 be a bound on V ar[ζ(s)] for all s (this bound exists, since by Lemma 8 variables

ξ(s) are uniformly bounded). Applying Lemma 7, we obtain that for every π > 0 and

every t,

Pr

[
max
n∈N

∣∣∣∣∣
1

t + n

t+n∑

s=t+1

ζ(s)

∣∣∣∣∣ ≥
σ̄√
tπ/2

]
≤ π

2
.

Hence with probability at least 1− π/2 the following holds for all n ∈ N
∗,

Pi(Ri(t+ n)) <

√
2σ̄√
tπ

+
C

te
+ γ.

and it holds for both i = 1, 2 simultaneously with probability at least (1− π/2)2 ≥ 1− π.

Choosing t0 = t0(π, γ) so large that
√
2σ̄√
t0π

+ C
t0e

≤ γB − γ, we obtain that event Et:

Pi(Ri(t+ n)) < γB for each i = 1, 2 and all n ∈ N
∗

occurs with probability at least (1− π/2)2 ≥ 1− π.
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Benäım, M. and M. Faure (2011). Consistency of vanishing smooth fictitious play. Mimeo.
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Krishna, V. and T. Sjöström (1998). On the convergence of fictitious play. Mathematics
of Operations Research 23, 479–511.

Larrick, R. P. and J. B. Soll (2006). Intuitions about combining opinions: misappreciation
of the averaging principle. Management Science 52, 111–127.

Lehrer, E. (2003). A wide range no-regret theorem. Games and Economic Behavior 42,
101–115.

Mansour, Y. (2010). Regret minimization and job scheduling. In Proceedings of the 36th
Conference on Current Trends in Theory and Practice of Computer Science, pp. 71–76.
Springer.

Matsui, A. (1992). Best response dynamics and socially stable strategies. Journal of
Economic Theory 57, 343–362.

Monderer, D., D. Samet, and A. Sela (1997). Belief affirming in learning processes. Journal
of Economic Theory 73, 438–452.

Moulin, H. and J. P. Vial (1978). Strategically zero-sum games: the class of games whose
completely mixed equilibria cannot be improved upon. International Journal of Game
Theory 7, 201–221.

Selten, R. (1995). An axiomatic theory of a risk dominance measure for bipolar games
with linear incentives. Games and Economic Behavior 8, 213–263.

Shapley, L. S. (1964). Some topics in two person games. In M. Dresher, L. S. Shapley,
and A. W. Tucker (Eds.), Advances in Game Theory, pp. 1–28. Princeton University
Press.

Sparrow, C., S. van Strien, and C. Harris (2008). Fictitious play in 3 × 3 games: The
transition between periodic and chaotic behaviour. Games and Economic Behavior 63,
259–291.

Timmerman, A. (2006). Forecast combinations. In G. Elliott, C. W. Granger, and A. Tim-
mermann (Eds.), Handbook of Economic Forecasting. Elsevier.

Tirole, J. (1988). The Theory of Industrial Organization. MIT Press.

Weibull, J. W. (1995). Evolutionary Game Theory. Cambridge, MA: Cambridge Univer-
sity Press.

Yanovskaya, E. (1968). Equilibrium points in polymatrix games (in Russian). Litovskii
Matematicheskii Sbornik 8, 381–384.

Young, H. P. (1993). The evolution of conventions. Econometrica 61, 57–84.

Young, H. P. (2004). Strategic Learning and Its Limits. Oxford University Press.

31


