
HAL Id: hal-00713858
https://hal.science/hal-00713858v1

Submitted on 2 Jul 2012

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Scheduling Scientific Experiments on the Rosetta/Philae
Mission

Gilles Simonin, Christian Artigues, Emmanuel Hébrard, Pierre Lopez

To cite this version:
Gilles Simonin, Christian Artigues, Emmanuel Hébrard, Pierre Lopez. Scheduling Scientific Experi-
ments on the Rosetta/Philae Mission. Eighteenth International Conference on Principles and Practice
of Constraint Programming, Oct 2012, Quebec, Canada. pp.23-37, �10.1007/978-3-642-33558-7_5�.
�hal-00713858�

https://hal.science/hal-00713858v1
https://hal.archives-ouvertes.fr

Scheduling Scientific Experiments on the Rosetta/Philae
Mission

G. Simonin, C. Artigues, E. Hebrard, and P. Lopez

CNRS, LAAS, 7 avenue du colonel Roche, F-31400 Toulouse, France
Univ de Toulouse, LAAS, F-31400 Toulouse, France

{gsimonin,artigues,hebrard,lopez}@laas.fr

Abstract. The Rosetta/Philae mission was launched in 2004 by the European
Space Agency (ESA). It is scheduled to reach the comet 67P /Churyumov-
Gerasimenko in 2014 after traveling more than six billion kilometers. The Philae
module will then be separated from the orbiter (Rosetta) to attempt the first ever
landing on the surface of a comet. If it succeeds, it will engage a sequence of
scientific exploratory experiments on the comet.
In this paper we describe a constraint programming model for scheduling the
different experiments of the mission. A feasible plan must satisfy a number of
constraints induced by energetic resources, precedence relations on activities, or
incompatibility between instruments. Moreover, a very important aspect is related
to the transfer (to the orbiter then to Earth) of all the data produced by the instru-
ments. The capacity of inboard memories and the limitation of transfers within
visibility windows between lander and orbiter, make the transfer policy imple-
mented on the lander’s CPU prone to data loss. We introduce a global constraint to
handle data transfers. The goal of this constraint is to ensure that data-producing
activities are scheduled in such a way that no data is lost.
Thanks to this constraint and to the filtering rules we propose, mission control
engineers are now able to compute feasible plans in a few seconds for scenarios
where minutes or even hours were previously often required. Moreover, in many
cases, data transfers are now much more accurately simulated, thus increasing the
reliability of the plans.

1 Introduction

The international Rosetta/Philae project is an European consortium mission approved
in 1993, and is under the leadership of the German Aerospace Research Institute (DLR)
and ESA1. The spacecraft was launched in 2004 by Ariane 5, and is set to travel more
than six billion kilometers to finally reach and land on the comet 67P /Churyumov-
Gerasimenko in 2014 in order to analyze the comet structure. It will follow a complex
trajectory which includes four gravity assist maneuvers (3 x Earth, 1 x Mars) before
finally reaching the comet and enter its orbit. Then, the lander Philae will be deployed
and will land on the surface of the comet. Philae features ten instruments, each devel-
oped by a European laboratory, to accomplish a given scientific experiment when ap-
proaching, or once landed on the comet. For instance, CIVA and ROLIS are two imaging

1 European Space Agency

instruments, used to take panoramic pictures of the comet and microscopic images. The
Alpha Proton X-ray Spectrometer (APXS) experiment analyses the chemical composi-
tion of the landing site and its potential alteration during the comet’s approach to the
Sun. The data obtained will be used to characterize the surface of the comet, to deter-
mine the chemical composition of the dust component, and to compare the dust with
known meteorite types.

The exploratory mission will have three phases. The first one, SDL (Separation-
Descent-Landing), will run for 30 minutes during which many experiments will be
done. For the second phase, FSS (First Science Sequence), the execution of experiments
will last 5 days. This phase is critical because the execution of the most energetically
greedy experiments requires battery power. The quality of this schedule conditions the
longevity of the batteries and is therefore key to the sucess of the mission. Finally,
during the LTS phase (Long Term Science), scientific activities will be resumed at a
much slower pace, using the lander’s own solar panels to partially reload the batteries.
This phase will continue for months until the probe is destroyed due to the extreme
temperatures of the Sun.

This project is a collaboration with CNES2 in Toulouse (France). The goal of the
Scientific Operation and Navigation Centre (SONC) is to plan the sequence of experi-
ments and maneuvers to be done in each of these phases while making the best use of
the available resources. This project has many similarities with the (interrupted) Net-
Lander program [6]. A first software (called MOST) has been developed on top of the
Ilog-Scheduler/Solver library by an industrial subcontractor. Every instrument, subsys-
tem and experiment has been modeled precisely in this framework, and it is therefore
possible to check solutions with a high degree of confidence on their feasibility.

The main scientific experiments need to be scheduled to satisfy a number of con-
straints involving the concurrent use of energy (batteries), and of the main CPUs as
well as each instrument’s memory. Moreover, each experiment produces data that must
be transferred to Earth. Each experiment has its own memory, collecting data as it is
produced. This data is then transferred to a central mass-memory, then sent to Rosetta
(the orbiter) when it is in visibility, i.e., above the horizon of the comet with respect
to Philae. All transfers from the experiments to the mass memory, and from the mass
memory to the orbiter are executed (that is, computed onboard) by the Command and
Data Management System (CDMS). The transfer policy of the CDMS may lead to data
loss when an experiment produces more data than its memory can store and its prior-
ity is not high enough to allow a transfer to the mass-memory. This is modeled within
MOST using RESERVOIR constraints [5]. Data-producing activities fill the reservoir,
while multiple pre-defined data transfer tasks of variable duration empty it. There are
numerous problems related to data transfers in spatial applications [4,2], however the
problem at hand is significantly different since plans are computed on the ground, and
the data transfer policy is beyond our control.

This modeling choice has several drawbacks and it quickly became apparent that it
was the critical aspect of the problem to tackle in order to find better solutions faster.
The first problem with this model is that data transfers are not accurately represented.
For each experiment, a sequence of tasks standing for data transfers are pre-defined.

2 Centre National d’Etudes Spatiales

Their duration is constrained so that the experiment with the highest priority is allowed
to transfer as much as possible, and no overlap is allowed among transfers. In the cur-
rent implementation there is a transfer task every 120 seconds over the horizon, with a
maximum duration of 120 seconds. This is too few to accurately represent the policy of
the CDMS, however, this is already too much for Ilog-Scheduler to handle (the planning
horizon may be up to one day, i.e., about 700 transfer tasks for each experiment).

Instead we propose to encapsulate data transfers into a global constraint. The de-
cision variables are start times of data-producing activities (data-producing rate and
duration are known in advance) and the priority permutation. This allows us to very
quickly check the satisfiability of a schedule with respect to data transfer. Moreover, we
can compute bounds allowing to filter out the domain of the variables standing for start
time of the data-producing activities. Unfortunately enforcing arc consistency or even
bounds consistency on this constraint is NP-hard, so we do not give a complete filtering
algorithm. However, our approach reduces the solving time dramatically: from hours in
some cases to seconds in all scenarios currently considered by the SONC. Moreover,
the result is much more accurate, to the point that some scenarios for which MOST
could not show that transfers were feasible can now be solved efficiently.

In Section 2 we briefly outline the energetic aspect of the problem and more for-
mally define the data transfer aspect. Then, in Section 3 we introduce our approach to
modeling data transfers. In particular we give an efficient satisfiability checking proce-
dure and two filtering rules for the introduced global constraint. Last in Section 5, we
report experimental results and compare results between old and new models.

2 Problem Description

Each experiment and subsystem can be seen as a list of activities to be scheduled.
Notwithstanding data transfers, the problem can be seen as a scheduling problem over
a set of experiments with relatively standard constraints.

Precedences: Activities within the same experiment might have precedence con-
straints; for instance the Lander also carries a Sampling Drilling and Distribution device
(SD2), which will drill more than 20 cm into the surface, collect samples and deposit
them in an oven. The oven then rotates to a position whereby it can be connected to
the inlet of the gas management system of another instrument: Ptolemy. At this point,
sample volatiles can be released into the analytical system of Ptolemy by heating the
oven, and the analysis can begin.

Cumulative Resources: Activities within the experiments concurrently use the energy
from a centralized source, mainly from batteries. All the energy sources (batteries and
solar panels) are centralized on a main power line. The energy needed to run each task
is supplied by an auxiliary power line. Each auxiliary power linked to a converter, and
each converter is linked to the main power line. At each level, the total instant power
delivered (by a line or a converter) cannot exceed a given threshold. Each activity is
therefore associated to a unique auxiliary power line and to a unique converter. For
each auxiliary power line, all the activities supplied by this line are constrained by

CUMULATIVE constraint [1] with capacity equal to this threshold. Similarly another a
CUMULATIVE constraint is associated to each converter, and a last one is associated to
the main power line, involving all activities of the problem.

State Resources: Each instrument can have multiple states along the schedule. Some
activities can trigger the modification of the state of an instrument, and the processing
of certain activities might be subject to some instruments being a given state. This is
modeled using predefined state resources constraints in Ilog-Scheduler.

Data Transfer and Memory Constraints: Every experiment has its own memory. Some
activities produce data, temporarily stored on the experiment’s memory. Then this data
will be transferred onto the mass-memory and subsequently to the orbiter.

The onboard CDMS controls all data transfers, from the experiments to the mass
memory, and from the mass memory to the orbiter. Within a plan, experiments are (to-
tally) ordered according to a priority function. Apart from this ordering, the CDMS
is completely autonomous. It simply transfers data from the experiment with highest
priority among those with transferable data. Moreover, it transfers data from the mass-
memory to the orbiter whenever possible, that is, when there is some visibility. How-
ever, it does not ensure that all produced data will eventually be transferred back to
Earth. When too much data is produced simultaneously and not enough can be trans-
ferred on the mass-memory, or when there is no visibility with the orbiter and therefore
the mass-memory cannot be emptied, the capacity of an experiment’s memory may be
overloaded and data is lost.

Data transfers must be taken into account accurately in order to ensure that activities
are sequenced in such a way that no data will be lost with respect to the CDMS policy.

3 A Global Constraint for Data Transfer

Except for the data transfer aspect, all the constraints above can be modeled using the
standard methods and algorithms [7] all available in Ilog-Scheduler. Hence, we focus on
data transfers and propose a global constraint to reason about this aspect of the problem.

From now on, we consider a set {E1, . . . , Em} of m experiments. An experi-
ment Ek = {tk1, . . . , tkn} is a set of data-producing tasks3, and is associated with a
memory of capacity Mk. A task tki produces data which is sent during a time period
pki at a rate πki to the experiment’s memory. The lander possesses a mass memory of
capacityM0, where data can be transferred from experiments.

The CDMS is given as input a priority ordering on experiments. For i ∈ [1, . . . ,m],
we denote by P (i) the experiment at rank i in this ordering and its dual R(k) standing
for the rank of experiment Ek in the priority ordering (P (i) = k ⇔ R(k) = i). We
shall say that experiment Ek has higher priority than experiment Ej iff R(k) < R(j).

Data can only be transferred out to the orbiter when it is in visibility, that is in
the line of sight of the lander over the horizon of the comet. Visibility is represented

3 To simplify the notations, we assume that all experiments have the same number of activities.
This is of course not the case, however it does not affect the methods we introduce.

as a set of intervals {[a1, b1], . . . , [av, bv]} in the scheduling horizon which lengths
and frequencies depend on the chosen orbit. We shall use V (t) as a Boolean function
which equals true iff time t is included in one of the visibility intervals. Moreover, data
is transferred in and out memories by block units of 256 bytes.

We consider the following decision variables: s11, . . . , smn, with domain in
[0, . . . ,H], standing for the start times of data-producing tasks {t11, . . . , tmn}, respec-
tively. Here we will assume that the priority permutation is fixed. Indeed there are often
few experiments and exploring all permutations would be easy.

The fact that data loss should be avoided can be seen as a relation (i.e., a constraint)
between the decision variables above. It is relatively easy to understand this relation
procedurally since the CDMS policy is deterministic. Given a priority ordering and a
fixed schedule of the data-producing activities, one can unroll the rules outlined above
to check whether the CDMS policy will lead to data loss or not.

In this section, we formally define the constraint DATATRANSFER([s11, . . . , smn])
ensuring that the schedule of tasks {t11, . . . , tmn}. is such that no data is lost.

First, in Section 3.1 we discuss an “exact” definition based on following the transfer
of each block of data individually. However, this formulation is not practical, so we
propose an alternative model in Section 3.2. The basic idea is to represent all the data
produced by an activity as a continuous quantity. With this viewpoint, tasks that do
not produce data as fast as it can be transferred are challenging to model. Indeed, the
CDMS actually waits for a block of data to be completed before transferring it, and
can therefore use this waiting time to transfer data from other experiments with lower
priority. We approximate this “vertical” partition of the data bus, by a “horizontal”
partition, i.e., we consider that the bandwidth can be divided over parallel transfers.
This model allows us to represent memory usage very precisely, with a computational
complexity independent on the time horizon and on the amount of data produced.

3.1 CDMS Policy

In this section we detail the policy of the CDMS, then we define what would be a con-
straint modeling exactly the relation between the start time of data-producing activities
it induces.

The CDMS transfers data by blocks of 256 bytes. Its policy is relatively simple
and can be described using a simple automated earliest transfer scheduling algorithm
(AETS). AETS runs the two following processes in parallel:

– Repeat: Scan experiments by order of priority until one with at least one block of
data on its memory is found. In that case, transfer one block from this experiment
to the mass memory unless the mass memory is full.

– Repeat: If the orbiter is visible, and there is at least one block of data on the mass
memory, then dump one block (transfer from the mass memory to the orbiter).

So we can define the DATATRANSFER constraint as the relation allowing only as-
signments of start times and priorities such that given the CDMS policy (AETS), no
block of data is produced while the memory of the experiment is full.

In order to specify this constraint as precisely as possible we would need to consider
each block of data, and its associated transfer task, individually. More precisely, we need

πkipki transfer tasks for each data-producing activity tki. The release time of the jth

block’s transfer task is ski + j(1/πki), where ski is the start time of tki. Moreover, the
start times and durations of these transfer tasks are functionally dependent on the start
times of data-producing activities and experiment priorities. This dependence relation
is a consequence of the AETS procedure.

The DATATRANSFER constraint is NP-complete to satisfy, hence NP-hard to filter.
Indeed, consider the particular case where memory capacities are all of exactly one
block of data, and the mass-memory is unlimited. In this case, each activity must trans-
fer a block to the mass-memory as soon as it is produced. In other words, we can see
a transfer task as non-interruptible. However, since there is a single transfer channel
to the mass-memory, no overlap is possible between these tasks. Since we have time
windows on the variables ski, this particular case is therefore equivalent to a disjunctive
unary resource, i.e., it is strongly NP-hard.

3.2 Approximated Definition

It is difficult to capture very precisely the behavior of the CDMS. Moreover, it is not
practical since it involves manipulating a very large number of transfer tasks. When
we consider a data-producing activity in isolation, the number of transfer tasks and
their frequency is easy to compute. However, when we consider several data-producing
activities with different priorities and unknown start times, this viewpoint becomes im-
practical. We therefore propose an alternative model that approximate very closely the
amount of transferred data with a reasonable time and space complexity.

The basic idea is straightforward. Consider a task tki that produces more data than
it can transfer τr(k,t) ≤ πki, with τr(k,t) the transfer rate at time t from an experiment
Ek to mass-memory. Suppose first that there is no task with higher priority. The transfer
can be seen as a continuous task of duration πkipki

τr(k,t)
. However there are three difficulties.

First, blocks are transferred from experiments memories to the mass memory at a
constant rate. However, when seeking which experiment to transfer from, the length of
the scanning process depends on the number of active experiments and on the priority
of the experiment eventually selected. An experiment Ek is active between the start of
its first activity and the end time of its last activity, or if the experiment memory is not
empty. The transfer rate is thus larger in practice for the higher priority experiments
as they are scanned first. To emulate this, we use variable transfer rates. The potential
transfer rate τr(k,t) depends on the number x of active experiments and on its relative
priority y among them. The actual value is read in a table which entries were measured
experimentally. The rate above applies to non-visibility periods. According to the same
principles, another table gives us the transfer rate τ ′

r(k,t) while in visibility (it is lower
due to the parallelism with memory dumps). Transfers between mass-memory and the
orbiter have a constant rate denoted τmm.

Second, transfer tasks can be interrupted, however, they are different from classic
preemptive tasks in that we do not decide when the interruption occurs. When an ex-
periment with higher priority starts producing data, it preempts any current transfer of
lower priority. This is easy to model since this is the unique context where an interrup-
tion can happen. If there is no experiment with higher priority to interrupt the transfer,

the usage of the experiment’s memory increases at rate πki−τr(k,t) during pki seconds.
Similarly, during πkipki

τr(k,t)
seconds the usage of the mass memory increases at rate τr(k,t).

The third difficulty concerns tasks producing data at a lower rate than the possible
transfer rate (i.e., τr(k,t) > πki). In this case, data is transferred one block at a time,
with a lag between each transfer to wait for the next block to be produced (see Fig. 1).

prod=

10 2

translong

prodlong

ratio

trans=

Fig. 1: Example of exact data transfer

transferts2

10 2 3

transferts1

Fig. 2: Example of two data transfer tasks
with both model

Other tasks of lower priority with non-empty memory can use these gaps to begin
the transfer of a block of data. In other words, the duration of the transfer of highest
priority is still very close to πkipki

τr(k,t)
seconds, however other transfer can be squeezed in

that same period. In order to simulate this, we consider that the data bus has a capacity
(bandwidth) normalized to 1. The demand of a task tki at time t is min(1, πki

τr(k,t)
).

Bandwidth is allocated recursively, according to priority (see Figure 2).
Let mt

k stand for the quantity of data in the memory of experiment Ek at time t
(with t ∈ R) and mt

0 be the the quantity of data in the mass-memory. Moreover, let
πtk stand for the data-producing rate on experiment Ek at time t, p(τ tk) stand for the
potential transfer rate of experiment Ek at time t if it was of highest priority and let τ tk
stand for the actual transfer rate from experiment Ek to the mass memory at time t.

Definition 1.
DATATRANSFER(s11, . . . , smn)⇔

∀t, k, πtk =

{
πki if ∃i s.t. ski ≤ t ≤ ski + pki
0 otherwise

(1)

∀t, k, p(τ tk) =

0 if mt
0 =M0 ∨ (mt

k = πtk = 0)
τr(k,t) if mt

0 < M0 ∧ mt
k > 0

min(πtk, τr(k,t)) otherwise
(2)

∀t, k, τ tk = min(p(τ tk), τr(k,t)(1−
∑R(k)−1
i=1

τtP (i)

τr(P (i),t)
)) (3)

∀t, k, mt
k =

∫ t
0
(πtk − τ tk)dt (4)

∀t, mt
0 =

∫ t
0
(
∑m
k=1 τ

t
k − V (t)τmm)dt (5)

Equation 1 simply states that if a data-producing activity tki is running at time t,
then the data-producing rate πtk of an experiment k at that time is equal to the data-
producing rate of tki, and it is null otherwise.

Equation 2 defines the expected transfer rate p(τ tk) of experiment Ek at time t if it
is not trumped by other experiments of higher priority. If there is no data on the memory
and no data being produced, or if the mass memory is full, this rate is null. Otherwise,
if there is some data on memory, it can be transferred at the maximum available rate
(τr(k,t)). If the memory is empty, but data is being produced, we assume that it cannot
be transferred at a higher rate than it is produced.

Equation 3 gives the real transfer rate, i.e., taking into account experiments with
higher priorities. The experiment with highest priority uses the bandwidth proportion-
ally to the ratio between its expected transfer rate p(τ tk) and the maximum transfer rate
τr(k,t). Then the residual bandwidth is attributed using recursively the same rule.

Finally, equations 4 and 5 link the usage of the different memories to the sum of the
in and out transfer rates (πk and τk are used here as functions of t).

In Figure 3 we show the difference between the two models.

transfer (t1)

transfer (t2)

transfer (t1)

transfer (t2)

production (t1)

production (t2)

Fig. 3: Comparison of the two representations: two data-producing activities t1 and
t2 (bottom); The “exact” view of the corresponding transfers, sharing the transfer bus
because of gaps due to the low data-producing rate (middle); The alternative reformu-
lation, where this is modeled as sharing the bandwidth (top).

4 Checking and Filtering Algorithms

In this section we introduce a filtering procedure for the DATATRANSFER constraint.
We first introduce an efficient O(nm log(nm)) procedure for computing transfers and
memory usage of a given schedule. This procedure execute a sweep of the horizon
similar to that described in [3]. Besides checking whether the constraint is violated we
shall also use this algorithm to compute lower bounds in order to filter the domains.

4.1 Data Transfer Verification

Given a complete schedule of the data-producing activities, and a priority ordering,
we now describe an algorithm that computes the effective transfer rate (in the sense

of Definition 1) and the memory usage for each experiment over the whole horizon in
time O(nm log(nm)). Notice that both are step functions, moreover we will see that
there are at most O(nm) breaking points, so they can be stored on O(nm) bits. This
algorithm can be used to verify whether an assignment is consistent by simply checking
that the usage of all experiments remains within the memory’s capacity. We shall also
use it to compute bounds on the memory usage of extreme scenarios (e.g., all tasks
set to their earliest start time). It sweeps the time horizon chronologically, computing
variations of various parameters only when certain events occur.

First, we build the list of events. Each event is time tagged and there are six types
(for O(nm) events in total): Start/end of visibility; Start/end of a data-producing ac-
tivity; Start/end of experiments. Then, we sort them in chronological order and explore
them in that order. For each time point t where at least an event occurs, we go through
all events occurring at t and update the following arrays accordingly:

– visibility stands for whether there is a visibility line at time t. It is flipped whenever
encountering a “Start of visibility” or “End of visibility” event;

– production(k) stands for the data-producing rate of experiment Ek at time t. It
is increased (resp. decreased) by the data-producing rate of the activity whenever
encountering a “Start of production” (resp. “End of production”) event;

– active stands for the number of active experiments at time t. It is increased (resp.
decreased) by one whenever encountering a “Start of experiment” (resp. “End of
experiment”) event.

At each step of the loop, we therefore know the complete state (data-producing rate
on each experiment, whether we are in visibility or not, and how many experiments
are active). Moreover, we also keep track of the memory usage with another array:
memory. We then compute what are the current transfers, and partition the bandwidth
between them. For each experiment Ek (visited by order of priority), if it has data
on memory, or if it is currently producing data, and if the bandwidth is not null, we
create a transfer. We first compute its potential transfer rate τr(k,t) according to the rules
described above. If it has some data on memory, all of the bandwidth is attributed to this
transfer. Otherwise, its actual transfer rate is equal to the minimum between the nominal
transfer rate and the current data-producing rate: τ = min(production(k), τr(k,t)). The
ratio τ/τr(k,t) of the bandwidth is allocated to this transfer.

Then, for each experiment currently in transfer, we compute a theoretical deadline,
i.e., the date at which it will be emptied at this rate of transfer if nothing changes. Notice
that it can be never. Similarly, we compute a theoretical deadline for filling the mass-
memory. If the earliest of all these deadlines happens earlier than the next scheduled
event, we add it to the list of events. This type of events will do nothing on its own,
however, it will allow the algorithm to recompute the transfers according to the new
situation (the mass-memory being filled, or an experiment’s memory being empty).

Finally, the usage of each memory at time t is updated according to the transfers.
This algorithm has a worst case time complexity of O(nm log(nm)). The list of

events has initially O(nm) elements. There are two for each data-producing task, two
for each visibility window, and two for each experiment (we assume that the num-
ber of visibility windows is less than nm). Sorting them can therefore be done in
O(nm log nm) time. In the main loop, events are processed only once, and this takes

at most O(m) time. Moreover, in some cases, “deadline” events can be added during
the exploration of the event list. However, at most one such event can be added for each
event initially in the list. Indeed, consider a deadline event. It is added to the list only
if no other event yet to process has an earlier date. In other words, transfer and data-
producing rates as well as visibility do not change. The experiment memory that was
emptied will therefore stay empty at least until the next standard event. The same is true
for deadline event triggered by filled mass-memory: it will stay full at least until the
next visibility event. Therefore, the worst case time complexity of the main loop of this
algorithm is O(nm).

4.2 Filtering Rules

In this section introduce two propagation rules for the DATATRANSFER constraint.

Minimal transfer span: The first rule tries to guess a lower bound on the total span of
a subset of activities of the same experimentEk. The intuition is that if data is produced
at a higher rate than it can be transferred out, the capacity of a memory could be reached
and data will be lost. In other words, given a set Ω ⊆ Ek of data-producing activities
of an experiment Ek, the total amount of data produced by these activities, minus what
can be stored on the memory of Ek, need to be transferred out. The duration of this
transfer is a lower bound on the span of this set of activities, i.e., the duration between
the minimum start time and maximum end time of any activity in this set.

The total amount of data produced by activities in Ω is equal to
∑
tki∈Ω πkipki.

At most Mk can be stored on the experiment’s own memory, hence at least∑
tki∈Ω πkipki−Mk has to be transferred out before the end of the last data-producing

activity. Let τ be the highest possible transfer rate for data out of the experiment’s own
memory. We can use this rate to derive a lower bound on the total duration of Ω:

(max
tki∈Ω

(eki)− min
tki∈Ω

(ski)) ≥
∑
tki∈Ω πkipki −Mk

τ
(6)

In real scenarios, data-producing activities of a given experiment cannot overlap, and in
many cases the order is known a priori. Assuming that the activities in Ω are ordered,
with tkf being the first task and tkl being the last task in Ω, we can often induce the

simpler constraint: ekl − skf ≥
∑
tki∈Ω

πkipki−Mk

τ .

Example 1. Figure 4 depicts the application of this rule. We have two activities t1, t2,
the former producing π1 = 5 blocks/sec and the latter π2 = 4 blocks/sec, both for 70
seconds. Therefore, π1p1 + π2p2 = 630 blocks are produced. Assume that the memory
of this experiment has a capacity of 250 blocks. Consequently, 380 blocks need to
be transferred out in order to avoid data loss. Since the maximum transfer rate is 2
blocks/seconds, this transfer will take at least 190 seconds. We can conclude that the
end of t2 is at least 190 seconds after the start of t1. The grey scale gives the evolution
of the memory for t2 finishing exactly 190 seconds after the start of t1.

Time

Memory used

0

100

200

300
Mk

π1 = 5 π2 = 4∑n
i=1 πkipki−Mk

τ
ens1

Fig. 4: Example of minimal span constraint.

Moreover, we can take into account the data produced by activities of experiments
of higher priority, since their data transfers will preempt those of lower priority.

Consider an interval of time [a, b]. Any data produced by experiments of higher
priority during this period must be transferred out before Ek can be allowed to transfer.

Let min(|tki∩ [a, b]|) be the minimum size of a common interval between [a, b] and
[ski, ski+pki] for any value of ski. If |[a, b]∩[c, d]| stands for the size of the intersection
of intervals [a, b] and [c, d], then :

min(|tki ∩ [a, b]|) =
min(|[a, b] ∩ [min(ski),min(ski) + pki]|, |[a, b] ∩ [max(ski),max(ski) + pki]|)

We can compute a lower bound Tk(a, b) on the time required to transfer the data
produced by experiments of higher priority than k on the interval [a, b] as a lower bound
on the data produced, divided by the maximum transfer rate:

Tk(a, b) = (

j<R(k)∑
j=1

n∑
i=1

|tP (j)i ∩ [a, b]| ∗ πP (j)i)/τ

Given a subset Ω ⊆ Ek of experiment Ek, consider the time interval [a, b] between
the latest start time of any task in Ω (a = maxtki∈Ω(min(ski))) and the earliest end
time of any task in Ω (b = mintki∈Ω(max(ski) + pki)). The lower bound on the span
given above assumes continuity of the transfer, and by definition this duration must
include the interval [a, b]. Therefore, any interruption of the transfer during this period
induces the same delay on the minimal span of Ω. In other words, any time taken to
transfer data of experiments with higher priority during [a, b] (Tk(a, b)) can be simply
added to the lower bound above.

Hence we can tighten the constraint 6 as follows (with a = maxtki∈Ω(min(ski))
and b = mintki∈Ω(max(ski) + pki)):

(max
tki∈Ω

(eki)− min
tki∈Ω

(ski)) ≥
∑
tki∈Ω πkipki −Mk

τ
+ Tk(a, b) (7)

We apply this rule for every set of consecutive activities (with respect to their earliest
start times) of every experiment. There are n2m such sets, and computing the lower

bound takes at most O(nm) time. The whole procedure hence has a worst case time
complexity of O(n3m2).

Mass memory saturation: Since transfers from the lander to the orbiter are possible
only during visibility, the data can only accumulate on the mass-memory while not in
visibility. As a consequence, the period that precedes a visibility window is critical since
the mass memory can be saturated hence blocking all transfers. When this happens,
data produced by an experiment remains on its memory at least until the next visibility
window, and it is possible to lose data when the experiment’s memory itself is saturated.

We use this observation to deduce that data-producing activities that would generate
too much data to hold on the mass memory and on their own memory should be either
advanced or postponed. Suppose that we know that at time t, the mass-memory will
necessarily be filled. It will remain so until the next visibility. Now, if an activity tki
produces more data in the interval between t and the next visibility window than its
own memory can hold, it will be lost. Indeed, no data can be transferred onto the mass-
memory as long as it is full, and it will start to be emptied only when the visibility
allows it. We can thus deduce that the activity tki must start either early enough to
produce before t or late enough so that the data in excess will be produced during the
visibility period (in order to have a chance to be transferred).

First, we show how to compute an upper bound t on the time when the mass-
memory will reach its maximum before a given visibility window. We consider a single
visibility cycle V = (a, v, b), where a < v < b denote, respectively, the end of the
previous cycle, the start of a visibility window, and the end of that visibility window.
Let Ω(V) be the set of data-producing activities that are necessarily scheduled within
the interval [a, b].

Proposition 1. Scheduling all data-producing activities in Ω(V) to their latest start
time minimizes the memory usage of the mass-memory (mt

0) for all t ∈ [a, b].

Proof (sketch). Clearly if we consider a data-producing activity tki in isolation, setting
its start time to the latest possible time point (max(ski)) delays the transfer onto the
mass memory hence its memory usage for any time point in [a, b].

When multiple data-producing activities can run in parallel, experiments of high
priority can preempt transfer intervals of experiment of lower priority. Therefore, one
could advance a data-producing activity tjl in time in order to use the resource and
therefore delay the transfer of some of the data produced by tki. However, since the
transfer rate increases with the priority, for any time interval where the transfer of the
data produced by tjl preempts that produced by tki, data is being transferred to the
mass memory at a higher rate. Thus, advancing a data-producing activity tji of higher
priority never helps minimizing the mass memory usage. ut

Given a visibility cycle V = (a, v, b), we can therefore get a lower bound on mt
0 on

the usage of the mass memory for any t in the interval [a, b] using the sweep algorithm.
For every task inΩ(V), we tentatively fix it to its latest start time and execute the sweep
algorithm. Hence, we can easily compute t, the smallest value of t for whichmt

0 = mv
0 .

Given an experiment Ek. We can bound the amount of data that can be produced
by any task of this experiment in the period [t, v] and stored without loss. There are mt

0

blocks of data already on the mass-memory, soM0−mt
0 is free. Moreover, up toMk can

be stored on the experiment’s own memory, for a total of δk =M0 +Mk −mt
0 blocks.

Above this threshold, data produced by activities of experimentEk between t and v will
be lost. If |tki ∩ [t, v]| stands for the length of the overlap between an activity tki and
the interval [t, v], an activity tki produces |tki∩ [t, v]| ∗πki blocks of data in the interval
[t, v]. Therefore, the following relation must hold:

∑n
i=1(min(|tki ∩ [t, v]|) ∗πki) ≤ δk

from which we can deduce the following implied constraint:

|tki ∩ [t, v]| ≤ (δk −
∑

j 6=i∈[1,n]

(min(|tkj ∩ [t, v]|) ∗ πkj))/πki (8)

We run the sweep algorithm once to obtain the value of t. Then, for each experiment,
we can compute δk and in timeO(n) the values of min(|tkj∩[t, v]| for each activity tki.
Finally we compute the implied constraint also in time O(n) (it takes constant time for
each activity, once min(|tkj∩[t, v]| is known). Finally we apply it only when it collapses
to a simple lower or upper bound on the start time ski of an activity tki. The total time
complexity of this filtering rule is thus O(nm log(nm) + nm) = O(nm log(nm)).

5 Experimental Results

All the previous algorithms and filtering rules have been implemented on the latest ver-
sion of MOST. We ran experimentations on different scenarios provided by the group
SONC of CNES. Each scenario consists in one, two or three experiments which must
be scheduled on a time window between 10 hours and 1 day. For each subset of experi-
ments, several variations are tested in order to assess uncertain parameters. For instance,
the visibility cycle depends on the exact mass and shape of the comet, the orbit selected
by Rosetta, and the landing site chosen for Philae, all of which are unknown. Some
scenarios have continuous visibility, while other have different periods for the visibility
cycles. The hardware onboard the probe will have travelled in extreme temperatures for
ten years, so the exact charge and efficiency of the batteries is also uncertain. Moreover,
engineers of SONC test a range of variations on other parameters such as the memory
capacity simply to stress-test the system (MOST).

5.1 Search effort

We ran 8 scenarios and compared the results of the current version of MOST against
the ad-hoc propagator introduced in this paper. Both were run on quad-core Sun T5120
running Solaris 2.10 with 8GB of RAM. The current version of MOST (denoted
MOST+ILCRESERVOIR) models data transfers using Ilog-Scheduler ILCRESERVOIR
constraints. In our version (denoted MOST+DATATRANSFER) we use only the first fil-
tering rule described in Section 4.2.4

We report the results in Table 1. We present for each scenario the set of experiments
involved, the memory capacities, and whether the visibility is continuous or not. Then

4 The second filtering rule was not implemented when the experiments were run.

Scenario Parameters MOST+ILC-RESERVOIR MOST +DATATRANSFER
Mk M0 Visi. Fail Init. time Search time Fail Init. time Search time

Consert 500 17456 Periodic 295 4, 06 20, 07 0 0, 88 0, 08
Consert/Romap 500/250 17456 Periodic 7112 11, 13 Time out 0 1, 17 0, 1
Consert/Romap 500/250 37456 Periodic 7051 11, 03 Time out 0 1, 17 0, 1
SD2/Ptolemy 64/2000 17456 Periodic 234 26, 71 41, 72 0 3, 37 0, 09
SD2/Ptolemy 64/2000 17456 Continuous 211 32, 78 79, 48 0 3, 25 0, 08

SD2/Cosac/Civa 64/24000/4000 37456 Periodic 407 50, 20 181, 91 0 2, 75 0, 14
SD2/Cosac/Civa 64/24000/4000 17456 Periodic 413 50, 84 179, 19 0 2, 95 0, 15
SD2/Cosac/Civa 64/24000/4000 17456 Continuous 390 25, 12 91, 08 0 1, 82 0, 10

Table 1: Old vs. new version of MOST on 8 standard scenarios

we give the number of fails calculated by Ilog-Scheduler during search, the initialization
time and finally the solving time.

We observe first that using our approach, solutions can be obtained without any
fail, whereas the previous model explored a much larger search tree. The reformulation
using ILCRESERVOIR constraints was indeed very loose, and did not allow to detect
inconsistencies early. Moreover, to overcome this weakness, the scenarios produced by
the group SONC are overly constrained in order to cut possibilities and allow the solver
to converge more easily. Moreover, our propagator is relatively light and therefore more
time effective, compared to the model using a large amount of transfer tasks throughout
the horizon for each reservoir constraint.

In fact, the model was so large that the initialization time is very high. The few
seconds of initialization time in our approach correspond to the rest of the model (cu-
mulative and unary resources) which is common to both implementations.

In two cases, no solution was found by MOST+ILCRESERVOIR within the 600
seconds time cutoff. However, this is not explained (only) by performance issues. In
fact, these two scenarios do not have a valid solution under the old model, whereas they
are feasible.

5.2 A more accurate modeling

In MOST+ILCRESERVOIR, activities with very low data-producing rate are treated dif-
ferently because of rounding issues: It is assumed that the data is produced all at once
at the end of the activity. Therefore in these scenarios, transfers can be delayed by a
substantial amount compared to the real behavior of the CDMS.

Moreover, since transfer tasks have a frequency of 120 seconds, they cannot ac-
curately model situations where the CDMS frequently switches between different
transfers. The scenario Consert/Romap highlights this problem on SONC’s version
of MOST. Both experiments have small data-producing activities and small memory
capacities. Therefore, switches between transfers from these two experiments are ex-
tremely frequent. However, with MOST+ILCRESERVOIR it is not possible to switch
frequently enough, hence there is no solution.

Figure 5 is a screenshot of the MOST’s GUI showing a zoom on a plan (a solution)
of the scenario SD2/Ptolemy. The bottom bars represents the transfer of Ptolemy, and
the bars just above are data-producing activities. We can see that the transfer task does

Fig. 5: Example of MOST+ILC-RESERVOIR

not coincide with the data-producing. Indeed there is a gap, because data-producing rate
is too low to trigger a transfer task earlier.

6 Conclusion

In this paper we have presented an application of constraint programming for the inter-
national spatial mission ROSETTA/PHILAE. We have identified that the main problem
is the management of data transfers and in particular, data loss. We shown that the pre-
vious constraint programming approach was not well-adapted to this problem and we
introduced a global constraint to forbbid data-loss. In particular we proposed an effi-
cient sweep algorithm which checks and computes the feasibility of data transfers. We
also have presented two propagation rules for the data transfer constraint. Overall, our
approach greatly improves the results both for computing times, and accuracy of the
solutions.

References

1. Abderrahmane Aggoun and Nicolas Beldiceanu. Extending chip in order to solve complex
scheduling and placement problems. Mathematical and Computer Modelling, 17(7):57 – 73,
1993.

2. Grégory Beaumet, Gérard Verfaillie, and Marie-Claire Charmeau. Feasibility of autonomous
decision making on board an agile earth-observing satellite. Computational Intelligence,
27(1):123–139, 2011.

3. Nicolas Beldiceanu and Mats Carlsson. Sweep as a generic pruning technique applied to the
non-overlapping rectangles constraint. In CP 2001, pages 377–391. 2001.

4. Robert Morris Jeremy Frank, Ari Jónsson and David E. Smith. Planning and Scheduling for
Fleets of Earth Observing Satellites. In 6th i-SAIRAS, pages 18–22, 2001.

5. Philippe Laborie. Algorithms for propagating resource constraints in ai planning and schedul-
ing: existing approaches and new results. Artif. Intell., 143(2):151–188, February 2003.

6. Catherine Mancel and Pierre Lopez. Complex Optimization Problems in Space Systems. In
13th International Conference on Automated Planning & Scheduling (ICAPS’03), 2003.

7. Wim Nuijten Philippe Baptiste, Claude Le Pape. Constraint Based Scheduling. Springer,
2001.

	Scheduling Scientific Experiments on the Rosetta/Philae Mission

