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THE OUTLIERS AMONG THE SINGULAR VALUES

OF LARGE RECTANGULAR RANDOM MATRICES

WITH ADDITIVE FIXED RANK DEFORMATION

FRANÇOIS CHAPON, ROMAIN COUILLET,
WALID HACHEM AND XAVIER MESTRE

Abstract. Consider the matrix Σn = n−1/2XnD
1/2
n + Pn where the matrix

Xn ∈ CN×n has Gaussian standard independent elements, Dn is a deter-
ministic diagonal nonnegative matrix, and Pn is a deterministic matrix with
fixed rank. Under some known conditions, the spectral measures of ΣnΣ∗

n

and n−1XnDnX∗

n both converge towards a compactly supported probability
measure µ as N, n → ∞ with N/n → c > 0. In this paper, it is proved that
finitely many eigenvalues of ΣnΣ∗

n may stay away from the support of µ in
the large dimensional regime. The existence and locations of these outliers in
any connected component of R− supp(µ) are studied. The fluctuations of the
largest outliers of ΣnΣ∗

n are also analyzed. The results find applications in the
fields of signal processing and radio communications.

1. Introduction

1.1. The model and the literature. Consider a sequence of N ×n matrices Yn,

n = 1, 2, . . ., of the form Yn = XnD
1/2
n where Xn is a N × n random matrix whose

coefficients Xij are independent and identically distributed (iid) complex Gaussian
random variables such that ℜ(X11) and ℑ(X11) are independent, each with mean
zero and variance 1/2, and where Dn is a deterministic nonnegative diagonal n×n
matrix. Writing Dn = diag(dnj )j=1,...,n and denoting by δ the Dirac measure, it is

assumed that the spectral measure νn = n−1
∑n

j=1 δdn
j
of Dn converges weakly to a

compactly supported probability measure ν when n → ∞. It is also assumed that
the maximum of the distances from the diagonal elements of Dn to the support
supp(ν) of ν goes to zero as n → ∞. Assume that N/n → c when n → ∞, where
c is a positive constant. Then it is known that with probability one, the spectral
measure of the Gram matrix n−1YnY

∗
n converges weakly to a compactly supported

probability measure µ (see [26], [16], [35], [36]) and, with probability one, n−1YnY
∗
n

has no eigenvalues in any compact interval outside supp(µ) for large n [3].
Let r be a given positive integer and consider a sequence of deterministic N × n
matrices Pn, n = 1, 2, . . ., such that rank(Pn) = r and supn ‖Pn‖ < ∞ where ‖ · ‖
is the spectral norm. Consider the matrix Σn = n−1/2Yn + Pn. Since the additive
deformation Pn has a fixed rank, the spectral measure of ΣnΣ

∗
n still converges to µ
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(see, e.g., [2, Lemma 2.2]). However, a finite number of eigenvalues of ΣnΣ
∗
n (often

called “outliers” in similar contexts) may stay away of the support of µ. In this
paper, minimal conditions ensuring the existence and the convergence of these out-
liers towards constant values outside supp(µ) are provided, and these limit values
are characterized. The fluctuations of the outliers lying at the right of supp(µ) are
also studied.

The behavior of the outliers in the spectrum of large randommatrices has aroused
an important research effort. In the statistics literature, one of the first contribu-
tions to deal with this subject was [23]. It raised the question of the behavior of
the extreme eigenvalues of a sample covariance matrix when the population covari-
ance matrix has all but finitely many of its eigenvalues equal to one (leading to a
mutliplicative fixed rank deformation). This problem has been studied thoroughly
in [5, 6, 32]. Other contributions (see [11]) study the outliers of a Wigner matrix
subject to an additive fixed rank deformation. The asymptotic fluctuations of the
outliers have been addressed in [5, 33, 32, 1, 11, 12, 7].

Recently, Benaych-Georges and Nadakuditi proposed in [8, 9] a generic method
for characterizing the behavior of the outliers for a large palette of random ma-
trix models. For our model, this method shows that the limiting locations as well
as the fluctuations of the outliers are intimately related to the asymptotic be-
havior of certain bilinear forms involving the resolvents (n−1YnY

∗
n − xIN )−1 and

(n−1Y ∗
n Yn − xIn)

−1 of the undeformed matrix for real values of x. When Dn = In,
the asymptotic behavior of these bilinear forms can be simply identified (see [9])
thanks to the fact that the probability law of Yn is invariant by left or right mul-
tiplication by deterministic unitary matrices. For general Dn, other tools need to
be used. In this paper, these bilinear forms are studied with the help of an inte-
gration by parts formula for functionals of Gaussian vectors and the Poincaré-Nash
inequality. These tools belong to the arsenal of random matrix theory, as shown
in the recent monograph [31] and in the references therein. In order to be able to
use them in our context, we make use of a regularizing function ensuring that the
moments of the bilinear forms exist for certain x ∈ R+ = [0,∞).

The study of the spectrum outliers of large random matrices has a wide range
of applications. These include communication theory [20], fault diagnosis in com-
plex systems [14], financial portfolio management [34], or chemometrics [29]. The
matrix model considered in this paper is widely used in the fields of multidimen-
sional signal processing and radio communications. Using the invariance of the
probability law of Xn by multiplication by a constant unitary matrix, Dn can be
straightforwardly replaced with a nonnegative Hermitian matrix Rn. In the model

XnR
1/2
n + Pn where R

1/2
n is any square root of Rn, matrix Pn often represents n

snapshots of a discrete time radio signal sent by r sources and received by an array

of N antennas, while XnR
1/2
n is a temporally correlated and spatially independent

“noise” (spatially correlated and temporally independent noises can be considered
as well). In this framework, the results of this paper can be used for detecting
the signal sources, estimating their powers, or determining their directions. These
subjects are explored in the applicative paper [40].
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The remainder of the article is organized as follows. The assumptions and the
main results are provided in Section 2. The general approach as well as the basic
mathematical tools needed for the proofs are provided in Secion 3. These proofs are
given in Sections 4 and 5, which concern respectively the first order (convergence)
and the second order (fluctuations) behavior of the outliers.

2. Problem description and main results

Given a sequence of integers N = N(n), n = 1, 2, . . ., we consider the sequence

of N × n matrices Σn = n−1/2Yn + Pn = n−1/2XnD
1/2
n + Pn with the following

assumptions:

Assumption 1. The ratio cn = N(n)/n converges to a positive constant c as
n→ ∞.

Assumption 2. The matrix Xn = [Xij ]
N,n
i,j=1 is a N × n random matrix whose

coefficients Xij are iid complex random variables such that ℜ(X11) and ℑ(X11) are
independent, each with probability distribution N (0, 1/2).

Assumption 3. The sequence of n×n deterministic diagonal nonnegative matrices
Dn = diag(dnj )

n
j=1 satisfies the following:

(1) The probability measure νn = n−1
∑n

j=1 δdn
j
converges weakly to a probabil-

ity measure ν with compact support.
(2) The distances d(dnj , supp(ν)) from dnj to supp(ν) satisfy

max
j∈{1,...,n}

d
(
dnj , supp(ν)

)
−−−−→
n→∞

0.

The asymptotic behavior of the spectral measure of n−1YnY
∗
n under these as-

sumptions has been thoroughly studied in the literature. Before pursuing, we recall
the main results which describe this behavior. These results are built around the
Stieltjes Transform, defined, for a positive finite measure µ over the Borel sets of
R, as

m(z) =

∫

R

1

t− z
µ(dt) (1)

analytic on C− supp(µ). It is straightforward to check that ℑm(z) ≥ 0 when z ∈
C+ = {z : ℑ(z) > 0}, and supy>0 |ym(ıy)| <∞. Conversely, any analytic function
m(z) on C+ that has these two properties admits the integral representation (1)
where µ is a positive finite measure. Furthermore, for any continuous real function
ϕ with compact support in R,

∫
ϕ(t)µ(dt) =

1

π
lim
y↓0

∫
ϕ(x)ℑm(x + ıy) dx (2)

which implies that the measure µ is uniquely defined by its Stieltjes Transform.
Finally, if ℑ(zm(z)) ≥ 0 when z ∈ C+, then µ((−∞, 0)) = 0 [25].
These facts can be generalized to Hermitian matrix-valued nonnegative finite mea-
sures [10, 15]. Let m(z) be a C

r×r-valued analytic function on z ∈ C+. Letting
ℑX = (X − X∗)/(2ı), assume that ℑm(z) ≥ 0 and ℑ(zm(z)) ≥ 0 in the or-
der of the Hermitian matrices for any z ∈ C+, and that supy>0 ‖ym(ıy)‖ < ∞.
Then m(z) admits the representation (1) where µ is now a r × r matrix-valued
nonnegative finite measure such that µ((−∞, 0)) = 0. One can also check that
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µ([0,∞)) = − limy→∞ ıy m(−ıy).

The first part of the following theorem has been shown in [26, 36], and the second
part in [3]:

Theorem 2.1. Under Assumptions 1, 2 and 3, the following hold true:

(1) For any z ∈ C+, the equation

m =

(
−z +

∫
t

1 + cmt
ν(dt)

)−1

(3)

admits a unique solution m ∈ C+. The function m = m(z) so defined on
C+ is the Stieltjes Transform of a probability measure µ whose support is a
compact set of R+.

Let (λni )i=1,...,N be the eigenvalues of n−1YnY
∗
n , and let θn = N−1

∑N
i=1 δλn

i

be the spectral measure of this matrix. Then for every bounded and contin-
uous real function f ,∫

f(t)θn(dt)
a.s.−−−−→

n→∞

∫
f(t)µ(dt). (4)

(2) For any interval [x1, x2] ⊂ R− supp(µ),

♯{i : λni ∈ [x1, x2]} = 0 with probability 1 for all large n.

We now consider the additive deformation Pn:

Assumption 4. The deterministic N × n matrices Pn have a fixed rank equal to
r. Moreover, pmax = supn ‖Pn‖ <∞.

In order for some of the eigenvalues of ΣnΣ
∗
n to converge to values outside

supp(µ), an extra assumption involving in some sense the interaction between Pn

and Dn is needed. Let Pn = UGS
n (RGS

n )∗ be the Gram-Schmidt factorization of Pn

where UGS
n is an isometry N × r matrix and where (RGS

n )∗ is an upper triangular
matrix in row echelon form whose first nonzero coefficient of each row is positive.
The factorization so defined is then unique. Define the r×r Hermitian nonnegative
matrix-valued measure ΛGS

n as

ΛGS
n (dt) = (RGS

n )∗



δdn

1
(dt)

. . .

δdn
n
(dt)


RGS

n .

Assumption 3 shows that dmax = supn ‖Dn‖ < ∞. Moreover, it is clear that the
support of ΛGS

n is included in [0,dmax] and that ΛGS
n ([0,dmax]) ≤ p2

maxIr. Since
the sequence ΛGS

n ([0,dmax]) is bounded in norm, for every sequence of integers
increasing to infinity, there exists a subsequence nk and a nonnegative finite measure
Λ∗ such that

∫
f(t)ΛGS

nk
(dt) →

∫
f(t)Λ∗(dt) for every function f ∈ C([0,dmax]),

with C([0,dmax]) being the set of continuous functions on [0,dmax]. This fact is a
straightforward extension of its analogue for scalar measures.

Assumption 5. Any two accumulation points Λ1 and Λ2 of the sequences ΛGS
n

satisfy Λ1(dx) =WΛ2(dx)W
∗ where W is a r × r unitary matrix.

This assumption on the interaction between Pn and Dn appears to be the least
restrictive assumption ensuring the convergence of the outliers to fixed values out-
side supp(µ) as n→ ∞. If we consider some other factorization Pn = UnR

∗
n of Pn
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where Un is an isometry matrix with size N × r, and if we associate to the Rn the
sequence of r × r Hermitian nonnegative matrix-valued measures Λn defined as

Λn(dt) = R∗
n



δdn

1
(dt)

. . .

δdn
n
(dt)


Rn (5)

then it is clear that Λn(dt) = WnΛ
GS
n (dt)W ∗

n for some r × r unitary matrix Wn.
By the compactness of the unitary group, Assumption 5 is satisfied for ΛGS

n if and
only if it is satisfied for Λn. The main consequence of this assumption is that for
any function f ∈ C([0,dmax]), the eigenvalues of the matrix

∫
f(t)Λn(dt) arranged

in some given order will converge.

An example taken from the fields of signal processing and wireless communica-
tions might help to have a better understanding the applicability of Assumption 5.
In these fields, the matrix Pn often represents a multidimensional radio signal re-
ceived by an array of N antennas. Frequently this matrix can be factored as
Pn = n−1/2UnAnS

∗
n where Un is a deterministic N × r isometry matrix, An is a

deterministic r×r matrix such that AnA
∗
n converges to a matrixM as n→ ∞ (one

often assumes AnA
∗
n =M for each n), and Sn = [Sij ]

n,r
i,j=1 is a n× r random matrix

independent of Xn with iid elements satisfying ES1,1 = 0 and E|S1,1|2 = 1 (in the
wireless communications terminology, UnAn is the so called MIMO channel matrix
and Sn is the so called signal matrix, see [38]). Taking Rn = n−1/2SnA

∗
n in (5) and

applying the law of large numbers, one can see that for any f ∈ C([0,dmax]), the
integral

∫
f(t)Λn(dt) converges to

∫
f(t)Λ∗(dt) with Λ∗(dt) = ν(dt) ×M . Clearly,

the accumulation points of the measures obtained from any other sequence of fac-
torizations of Pn are of the form ν(dt)×WMW ∗ whereW is an r×r unitary matrix.

It is shown in [37] that the limiting spectral measure µ has a continuous density
on R∗ = R−{0} (see Prop. 3.1 below). Our first order result addresses the problem
of the presence of isolated eigenvalues of ΣnΣ

∗
n in any compact interval outside the

support of this density. Of prime importance will be the r × r matrix functions

H∗(z) =

∫
m(z)

1 + cm(z)t
Λ∗(dt)

where Λ∗ is an accumulation point of a sequence Λn. Since |1 + cm(z)t| = |z(1 +
cm(z)t)|/|z| ≥ |ℑ(z(1 + cm(z)t))|/|z| ≥ ℑ(z)/|z| on C+, the function H∗(z) is
analytic on C+. It is further easy to show that ℑ(H∗(z)) ≥ 0 and ℑ(zH∗(z)) ≥ 0
on C+, and supy>0 ‖yH∗(ıy)‖ < ∞. Hence H∗(z) is the Stieltjes Transform of a
matrix-valued nonnegative finite measure carried by [0,∞). Note also that, under
Assumption 5, the eigenvalues of H∗(z) remain unchanged if Λ∗ is replaced by
another accumulation point.

The support of µ may consist in several connected components corresponding
to as many “bulks” of eigenvalues. Our first theorem specifies the locations of the
outliers between any two bulks and on the right of the last bulk. It also shows that
there are no outliers on the left of the first bulk:

Theorem 2.2. Let Assumptions 1, 2 and 3 hold true. Denote by (λ̂ni )i=1,...,N

the eigenvalues of ΣnΣ
∗
n. Let (a, b) be any connected component of supp(µ)c =

R− supp(µ). Then the following facts hold true:
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(1) Let (Pn) be a sequence satisfying Assumptions 4 and 5. Given an accumu-
lation point Λ∗ of a sequence Λn, let H∗(z) =

∫
m(z)(1+ cm(z)t)−1Λ∗(dt).

Then H∗(z) can be analytically extended to (a, b) where its values are Her-
mitian matrices, and the extension is increasing in the order of Hermitian
matrices on (a, b). The function D(x) = det(H∗(x) + Ir) has at most r
zeros on (a, b). Let ρ1, . . . , ρk, k ≤ r be these zeros counting multiplicities.
Let I be any compact interval in (a, b) such that {ρ1, . . . , ρk} ∩ ∂I = ∅.
Then

♯{i : λ̂ni ∈ I} = ♯{i : ρi ∈ I} with probability 1 for all large n.

(2) Let A = inf (supp(µ)− {0}). Then for any positive A′ < A (assuming it
exists) and for any sequence of matrices (Pn) satisfying Assumption 4,

♯{i : λ̂ni ∈ (0, A′]} = 0 with probability 1 for all large n.

Given any sequence of positive real numbers ρ1 ≤ · · · ≤ ρr lying in a connected
component of supp(µ)c after the first bulk, it would be interesting to see whether
there exists a sequence of matrices Pn that produces outliers converging to these
ρk. The following theorem answers this question positively:

Theorem 2.3. Let Assumptions 1, 2 and 3 hold true. Let ρ1 ≤ · · · ≤ ρr be a se-
quence of positive real numbers lying in a connected component (a, b) of supp(µ)c,
and such that a > A. Then there exists a sequence of matrices Pn satisfying As-
sumptions 4 and 5 such that for any compact interval I ⊂ (a, b) with {ρ1, . . . , ρr}∩
∂I = ∅,

♯{i : λ̂ni ∈ I} = ♯{i : ρi ∈ I} with probability 1 for all large n.

It would be interesting to complete the results of these theorems by specifying

the indices of the outliers λ̂ni that appear between the bulks. This demanding anal-
ysis might be done by following the ideas of [11] or [39] relative to the so called
separation of the eigenvalues of ΣnΣ

∗
n. Another approach dealing with the same

kind of problem is developed in [4].

A case of practical importance at least in the domain of signal processing is
described by the following assumption:

Assumption 6. The accumulation points Λ∗ are of the form ν(dt)×WΩW ∗ where

Ω =



ω2
1Ij1

. . .

ω2
t Ijt


 > 0, ω2

1 > · · · > ω2
t , j1 + · · ·+ jt = r

and where W is a unitary matrix.

Because of the specific structure of Sn in the factorization Pn = n−1/2UnAnS
∗
n,

the MIMO wireless communication model described above satisfies this assumption,
the ω2

i often referring to the powers of the radio sources transmitting their signals
to an array of antennas.
Another case where Assumption 6 is satisfied is the case where Pn is a random
matrix independent of Xn, where its probability distribution is invariant by right
multiplication with a constant unitary matrix, and where the r non zero singular
values of Pn converge almost surely towards constant values.
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When this assumption is satisfied, we obtain the following corollary of Theorem 2.2
which exhibits some sort of phase transition analogous to the so-called BBP phase
transition [5]:

Corollary 2.1. Assume the setting of Theorem 2.2-(1), and let Assumption 6
hold true. Then the function g(x) = m(x) (cxm(x)− 1 + c) is decreasing on (a, b).
Depending on the value of ω2

ℓ , ℓ = 1, . . . , t, the equation ω2
ℓ g(x) = 1 has either

zero or one solution in (a, b). Denote by ρ1, . . . , ρk, k ≤ r these solutions counting
multiplicities. Then the conclusion of Theorem 2.2-(1) hold true for these ρi.

We now turn to the second order result, which will be stated in the simple and
practical framework of Assumption 6. Actually, a stronger assumption is needed:

Assumption 7. The following facts hold true:

sup
n

√
n|cn − c| <∞,

lim sup
n

√
n
∣∣∣
∫

1

t− x
νn(dt) −

∫
1

t− x
ν(dt)

∣∣∣ <∞ for all x ∈ R− supp(ν).

Moreover, there exists a sequence of factorizations of Pn such that the measures Λn

associated with these factorizations by (5) converge to ν(dt) ×Ω and such that

lim sup
n

√
n
∥∥∥
∫

1

t− x
Λn(dt) −

∫
1

t− x
ν(dt) ×Ω

∥∥∥ <∞ for all x ∈ R− supp(ν)

Note that one could have considered the above superior limits to be zero, which
would simplify the statement of Theorem 2.4 below. However, in practice this
is usually too strong a requirement, see e.g. the wireless communications model
discussed after Assumption 5 for which the fluctuations of Λn are of order n−1/2.
On the opposite, slower fluctuations of Λn would result in a much more intricate
result for Theorem 2.4, which we do not consider here.

Before stating the second order result, a refinement of the results of Theorem
2.1–(1) is needed:

Proposition 2.1 ([36, 22, 18]). Assume that Dn is a n× n diagonal nonnegative
matrix. Then, for any n, the equation

mn =

[
−z
(
1 +

1

n
TrDnT̃n

)]−1

where T̃n = [−z (In + cnmnDn)]
−1

admits a unique solution mn ∈ C+ for any z ∈ C+. The function mn = mn(z)
so defined on C+ is the Stieltjes Transform of a probability measure µn whose
support is a compact set of R+. Moreover, the n×n diagonal matrix-valued function

T̃n(z) = [−z(In+cnmn(z)Dn)]
−1 is analytic on C+ and n−1 Tr T̃n(z) coincides with

the Stieltjes Transform of cnµn + (1 − cn)δ0.
Let Assumption 2 hold true, and assume that supn ‖Dn‖ <∞, and 0 < lim inf cn ≤
lim sup cn < ∞. Then the resolvents Qn(z) = (n−1YnY

∗
n − zIN )−1 and Q̃n(z) =

(n−1Y ∗
n Yn − zIn)

−1 satisfy

1

N
Tr (Qn(z)−mn(z)IN )

a.s.−−−−→
n→∞

0 and
1

n
Tr
(
Q̃n(z)− T̃n(z)

)
a.s.−−−−→

n→∞
0 (6)

for any z ∈ C+. When in addition Assumptions 1 and 3 hold true, mn(z) converges
to m(z) provided in the statement of Theorem 2.1 uniformly on the compact subsets
of C+.
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The function mn(z) =
(
−z +

∫
t(1 + cnmn(z)t)

−1νn(dt)
)−1

is a finite n approx-

imation of m(z). Notice that since N−1 TrQn(z) is the Stieltjes Transform of the
spectral measure θn of n−1YnY

∗
n , Convergence (4) stems from (6).

We shall also need a finite n approximation of H∗(z) defined as

Hn(z) =

∫
mn(z)

1 + cnmn(z)t
Λn(dt).

With these definitions, we have the following preliminary proposition:

Proposition 2.2. Let Assumptions 1, 3-7 hold true. Let g be the function defined
in the statement of Corollary 2.1 and let Bµ = sup(supp(µ)). Assume that the
equation ω2

1g(x) = 1 has a solution in (Bµ,∞), and denote ρ1 > · · · > ρp the
existing solutions (with respective multiplicities j1, . . . , jp) of the equations ω

2
ℓ g(x) =

1 in (Bµ,∞). Then the following facts hold true:

• ∆(ρi) = 1− c

∫ (
m(ρi)t

1 + cm(ρi)t

)2

ν(dt) is positive for every i = 1, . . . , p.

• Denoting by H1,n(z), . . . , Hp,n(z) the first p upper left diagonal blocks of
Hn(z), where Hi,n(z) ∈ Cji×ji , lim supn ‖

√
n(Hi,n(ρi) + Iji )‖ < ∞ for

every i = 1, . . . , p.

We recall that a GUE matrix (i.e., a matrix taken from the Gaussian Unitary
Ensemble) is a random Hermitian matrix G such that Gii ∼ N (0, 1), ℜ(Gij) ∼
N (0, 1/2) and ℑ(Gij) ∼ N (0, 1/2) for i < j, and such that all these random
variables are independent. Our second order result is provided by the following
theorem:

Theorem 2.4. Let Assumptions 1-7 hold true. Keeping the notations of Proposi-
tion 2.2, let

Mn
i =

√
n






λ̂nj1+···+ji−1+1

...

λ̂nj1+···+ji


− ρi



1
...
1







where j0 = 0 and where the eigenvalues λ̂ni of ΣnΣ
∗
n are arranged in decreasing

order. Let G1, . . . , Gp be independent GUE matrices such that Gi is a ji×ji matrix.
Then, for any bounded continuous f : Rj1+...+jp → R,

E
[
f
(
Mn

1 , . . . ,M
n
p

)]
− E

[
f
(
Ξn
1 , . . . ,Ξ

n
p

)]
−→
n→∞

0

where Ξn
i ∈ Rji is the random vector of the decreasingly ordered eigenvalues of the

matrix
1

ω2
i g(ρi)

′

(
αiGi +

√
n (Hi,n(ρi) + Iji)

)
,

where

α2
i =

m2(ρi)

∆(ρi)

[∫
t2 + 2ω2

i t

(1 + cm(ρi)t)2
ν(dt) + c

(∫
ω2
im(ρi)t

(1 + cm(ρi)t)2
ν(dt)

)2
]
.

Some remarks can be useful at this stage. The first remark concerns Assump-
tion 7, which is in some sense analogous to [7, Hypothesis 3.1]. This assumption
is mainly needed to show that the

√
n‖Hi,n(ρi) + Iji‖ are bounded, guaranteeing

the tightness of the vectors Mn
i . Assuming that Λn and Λ′

n both satisfy the third
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item of Assumption 7, denoting respectively by Hi,n(ρi) and H
′
i,n(ρi) the matrices

associated to these measures as in the statement of Theorem 2.4, it is possible to
show that

√
n(σ(Hi,n(ρi) − σ(H ′

i,n(ρi)) → 0 as n → ∞. Thus the results of this
theorem do not depend on the particular measure Λn satisfying Assumption 7. Fi-
nally, we note that Assumption 7 can be lightened at the expense of replacing the
limit values ρi with certain finite n approximations of the outliers, as is done in the
applicative paper [40].

The second remark pertains to the Gaussian assumption on the elements of Xn.
We shall see below that the results of Theorems 2.2–2.4 are intimately related
to the first and second order behaviors of bilinear forms of the type u∗nQn(x)vn,

ũ∗nQ̃n(x)ṽn, and n−1/2u∗nYnQ̃n(x)ṽn where un, vn, ũn and ṽn are deterministic
vectors of bounded norm and of appropriate dimensions, and where x is a real
number lying outside the support of µ. In fact, it is possible to generalize Theorems
2.2 and 2.3 to the case where the elements of Xn are not necessarily Gaussian.
This can be made possible by using the technique of [21] to analyze the first order
behavior of these bilinear forms. On the other hand, the Gaussian assumption plays
a central role in Theorem 2.4. Indeed, the proof of this theorem is based on the fact
that these bilinear forms asymptotically fluctuate like Gaussian random variables
when centered and scaled by

√
n. Take un = e1,N and ṽn = e1,n where ek,m is the

kth canonical vector of Rm. We show below (see Proposition 2.1 and Lemmas 4.3

and 4.6) that the elements q̃nij of the resolvent Q̃n(x) are close for large n to the

elements t̃nij of the deterministic matrix T̃n(x). We therefore write informally

e∗1,NYnQ̃(x)e1,n =

n∑

j=1

(dnj )
1/2q̃nj1X1j ≈ (dn1 )

1/2t̃n11X11 +

n∑

j=2

(dnj )
1/2q̃nj1X1j .

It can be shown furthermore that t̃n11 = O(1) for large n and that the sum
∑n

j=2

is tight. Hence, e∗1,NYnQ̃(x)e1,n is tight. However, when X11 is not Gaussian, we

infer that e∗1,NYnQ̃(x)e1,n does not converge in general towards a Gaussian random

variable. In this case, if we choose Pn = ω2e1,Ne
∗
1,n (see Section 5), Theorem 2.4 no

longer holds. Yet, we conjecture that an analogue of this theorem can be recovered
when e1,N and e1,n are replaced with delocalized vectors, following the terminology
of [12]. In a word, the elements of these vectors are “spread enough” so that the
Gaussian fluctuations are recovered.

A word about the notations. In the remainder of the paper, we shall often drop
the subscript or the superscript n when there is no ambiguity. A constant bound
that may change from an inequality to another but which is independent of n will
always be denoted K. Element (i, j) of matrixM is denotedMij or [M ]ij . Element
i of vector x is denoted [x]i. Convergences in the almost sure sense, in probability

and in distribution will be respectively denoted
a.s.−→,

P−→, and
D−→.

3. Preliminaries and useful results

We start this section by providing the main ideas of the proofs of Theorems 2.2
and 2.3.



10 CHAPON, COUILLET, HACHEM AND MESTRE

3.1. Proof principles of the first order results. The proof of Theorem 2.2-(1),
to begin with, is based on the idea of [8, 9]. We start with a purely algebraic result.
Let Pn = UnR

∗
n be a factorization of Pn where Un is a N × r isometry matrix.

Assume that x > 0 is not an eigenvalue of n−1YnY
∗
n . Then x is an eigenvalue of

ΣnΣ
∗
n if and only if det Ŝn(x) = 0 where Ŝn(x) is the 2r × 2r matrix

Ŝn(x) =

[ √
xU∗

nQn(x)Un Ir + n−1/2U∗
nYnQ̃n(x)Rn

Ir + n−1/2R∗
nQ̃n(x)Y

∗
nUn

√
xR∗

nQ̃n(x)Rn

]

(for details, see the derivations in [9] or in [20, Section 3]). The idea is now the
following. Set x in supp(µ)c. Using an integration by parts formula for functionals
of Gaussian vectors and the Poincaré-Nash inequality [31], we show that when n is
large,

U∗
nQn(x)Un ≈ mn(x)Ir , R

∗
nQ̃n(x)Rn ≈ R∗

nT̃n(x)Rn,

and n−1/2R∗
nQ̃n(x)Y

∗
nUn ≈ 0

by controlling the moments of the elements of the left hand members. To be able
to do these controls, we make use of a certain regularizing function which controls
the escape of the eigenvalues of n−1YnY

∗
n out of supp(µ). Thanks to these results,

Ŝn(x) is close for large n to

Sn(x) =

[√
xmn(x)Ir Ir
Ir

√
xR∗

nT̃n(x)Rn

]
.

Hence, we expect the eigenvalues of ΣnΣ
∗
n in the interval I, when they exist, to be

close for large n to the zeros in I of the function

detSn(x) = det
(
xmn(x)R

∗
nT̃n(x)Rn − Ir

)

= (−1)r det
(
mn(x)R

∗
n(In + cnmn(x)Dn)

−1R∗
n + Ir

)

= (−1)r det (Hn(x) + Ir)

which are close to the zeros of D(x) = det(H∗(x) + Ir). By Assumption 5, these
zeros are independent of the choice of the accumulation point Λ∗.

To prove Theorems 2.2-(2) and 2.3, we make use of the results of [37] and [27, 28]
relative to the properties of µ and to those of the restriction of m(z) to R−supp(µ).
The main idea is to show that

• m(x)(1 + cm(x)t)−1 > 0 for all x ∈ supp(µ)c ∩ (−∞, A) (these x lie at the
left of the first bulk) and for all t ∈ supp(ν).

• For any component (a, b) ⊂ supp(µ)c such that a > A (i.e., lying between
two bulks or at the right of the last bulk), there exists a Borel set E ⊂ R+

such that ν(E) > 0 and

q(x) =

∫

E

m(x)

1 + cm(x)t
ν(dt) < 0

for all x ∈ (a, b).

Thanks to the first result, for any x lying if possible between zero and the left edge
of the first bulk, D(x) > 0, hence ΣnΣ

∗
n has asymptotically no outlier at the left of

the first bulk.
Coming to Theorem 2.3, let E be a set associated to (a, b) by the result above. We
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build a sequence of matrices Pn of rank r, and such that the associated Λn have
an accumulation point of the form Λ∗(dt) = 1E(t)Ω ν(dt) where we choose Ω =
diag(−q(ρ1)−1, . . . ,−q(ρr)−1). Theorem 2.2-(1) shows that the function H∗(x) =
q(x)Ω associated with this Λ∗ is increasing on (a, b). As a result, H∗(x)+Ir becomes
singular precisely at the points ρ1, . . . , ρr.

3.2. Sketch of the proof of the second order result. The fluctuations of the

outliers will be deduced from the fluctuations of the elements of the matrices Ŝn(ρi)
introduced above. The proof of Theorem 2.4 can be divided into two main steps.
The first step (Lemma 5.4) consists in establishing a Central Limit Theorem on the
3p–uple of random matrices

√
n

(
U∗
i,nYnQ̃n(ρi)Ri,n√

n
, U∗

i,n(Qn(ρi)−mn(ρi)IN )Ui,n,

R∗
i,n(Q̃n(ρi)− T̃n(ρi))Ri,n

)p
i=1

,

where Pn = UnR
∗
n is a sequence of factorization such that Λn satisfies the third

item of Assumption 7. We also write Un = [U1,n · · · Ut,n] and Rn = [R1,n · · · Rt,n]
where Ui,n ∈ CN×ji and Ri,n ∈ Cn×ji .

This CLT is proven by using the Gaussian tools introduced in Section 3.4, namely
the integration by parts formula and the Poincaré-Nash inequality, and by relying
on the invariance properties of the probability distribution of n−1/2Xn. The fluc-

tuations of the zeros of det Ŝn(x) outside supp(µ) are then deduced from this CLT
by adapting the approach of [7] (Lemma 5.5).

We now come to the basic mathematical tools needed for our proofs:

3.3. Differentiation formulas. Let ∂/∂z = (∂/∂x−ı∂/∂y)/2 and ∂/∂z̄ = (∂/∂x+
ı∂/∂y)/2 for z = x + ıy. Given a Hermitian matrix X with a spectral decompo-
sition X =

∑
ℓ λℓvℓv

∗
ℓ , let adj(X) =

∑
k(
∏

ℓ 6=k λℓ)vkv
∗
k be the classical adjoint of

X , i.e., the transpose of its cofactor matrix. Let ψ be a continuously differentiable
real-valued function on R. Then

∂ detψ
(
n−1Y Y ∗

)

∂Ȳij
=

1

n

[
adj
(
ψ
(
n−1Y Y ∗

))
ψ′
(
n−1Y Y ∗

)
yj
]
i

where yj is column j of Y , see [19, Lemma 3.9] for a proof.
We shall also need the expressions of the following derivatives of the elements of

the resolvents Q and Q̃ (see [18]):

∂Qpq

∂Ȳij
= − 1

n
[QY ]pjQiq,

∂Q̃pq

∂Ȳij
= − 1

n
Q̃pj[Y Q̃]iq.

3.4. Gaussian tools. Our analysis fundamentally relies on two mathematical tools
which are often used in the analysis of large random matrices with Gaussian ele-
ments. The first is the so called integration by parts (IP) formula for functionals of
Gaussian vectors introduced in random matrix theory in [24, 30]. Let Γ : R2Nn → C

be a continuously differentiable function polynomially bounded together with its
partial derivatives. Then

E (YijΓ(Y )) = djE

[
∂Γ(Y )

∂Ȳij

]
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for any i ∈ {1, . . . , N} and j ∈ {1, . . . , n}. The second tool is the Poincaré-Nash
inequality (see for instance [13]). In our situation, it states that the variance
Var(Γ(Y )) satisfies

Var(Γ(Y )) ≤
N∑

i=1

n∑

j=1

djE

[∣∣∣∣
∂Γ(Y )

∂Yij

∣∣∣∣
2

+

∣∣∣∣
∂Γ(Y )

∂Ȳij

∣∣∣∣
2
]
.

We now recall the results of Silverstein and Choi [37] which will be needed to
prove Theorems 2.2-(2) and 2.3. Close results can be found in [27] and in [28].

3.5. Analysis of the support of µ.

Proposition 3.1 ([37], Th.1.1). For all x ∈ R∗, lim
z∈C+→x

m(z) exists. The limit

that we denote m(x) is continuous on R∗. Moreover, µ has a continuous density f
on R∗ given by f(x) = π−1ℑm(x).

In [37], the support of µ is also identified. Since m(z) is the unique solution in
C+ of (3) for z ∈ C+, it has a unique inverse on C+ given by

z(m) = − 1

m
+

∫
t

1 + cmt
ν(dt)

The characterization of the support of µ is based on the following idea. On any open
interval of supp(µ)c, m(x) =

∫
(t − x)−1µ(dt) is a real, continuous and increasing

function. Consequently, it has a real, continuous and increasing inverse. In [37],
it is shown that the converse is also true. More precisely, let B = {m : m 6=
0, −(cm)−1 ∈ supp(ν)c}, and let

x : B −→ R

m 7−→ x(m) = − 1

m
+

∫
t

1 + cmt
ν(dt).

(7)

Then the following proposition holds:

Proposition 3.2 ([37], Th. 4.1 and 4.2). For any x0 ∈ supp(µ)c, let m0 = m(x0).
Then m0 ∈ B, x0 = x(m0), and x

′(m0) > 0. Conversely, let m0 ∈ B such that
x′(m0) > 0. Then x0 = x(m0) ∈ supp(µ)c, and m(x0) = m0.

The following proposition will also be useful:

Proposition 3.3 ([37], Th. 4.4). Let [m1,m2] and [m3,m4] be two disjoint in-
tervals of B satisfying ∀m ∈ (m1,m2) ∪ (m3,m4), x

′(m) > 0. Then [x1, x2] and
[x3, x4] are disjoint where xi = x(mi).

The following result is also proven in [37]:

Proposition 3.4. Assume that ν({0}) = 0. Then µ({0}) = max(0, 1− c−1).

We shall assume hereafter that ν({0}) = 0 without loss of generality (otherwise,
it would be enough to change the value of c). The two following lemmas will also
be needed:

Lemma 3.1. Let I be a compact interval of supp(µ)c, and let DI be the closed disk
having I as one of its diameters. Then there exists a constant K which depends on
I only such that

∀ t ∈ supp(ν), ∀ z ∈ DI , |1 + cm(z)t| ≥ K, and

∀n large enough, ∀ t ∈ supp(νn), ∀ z ∈ DI , |1 + cnmn(z)t| ≥ K.
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From the second inequality, we deduce that if {0} 6∈ I, the matrix function T̃n(z)
is analytic in a neighborhood of I for n large enough, and

lim sup
n

sup
z∈DI

‖T̃n(z)‖ <∞. (8)

Proof. When z ∈ C+, ℑm(z) > 0 and ℑ(−(cm(z))−1) > 0, and we have the
opposite inequalities when ℑz < 0. Applying Proposition 3.2 for z ∈ I, we deduce
that |m(z)| and f(z) = d(−(cm(z))−1, supp(ν)) are positive on DI . Since these
functions are continuous on this compact set, min |m(z)| = K1 > 0 and min f(z) =
K2 > 0 on DI . Consequently, for any z ∈ DI and any t ∈ supp(ν), |1 + cm(z)t| =
|cm(z)(−(cm(z))−1 − t)| ≥ |cm(z)|f(z) ≥ cK1K2 > 0. We now prove the second
inequality. Denote by dH(A,B) the Hausdorff distance between two sets A and B.
Let fn(z) = d(−(cnmn(z))

−1, supp(νn)). We have

fn(z) ≤ d

( −1

cnmn(z)
,

−1

cm(z)

)
+ d

( −1

cm(z)
, supp(νn)

)

≤ d

( −1

cnmn(z)
,

−1

cm(z)

)
+ f(z) + dH(supp(νn), supp(ν)),

and f(z) ≤ d(−(cnmn(z))
−1,−(cm(z))−1) + fn(z) + dH(supp(νn), supp(ν)) simi-

larly. Since mn(z) converges uniformly to m(z) and inf |m(z)| > 0 on DI , we get
that d(−(cnmn(z))

−1,−(cm(z))−1) → 0 uniformly on this disk. By Assumption 3,
dH(supp(νn), supp(ν)) → 0. Hence fn(z) converges uniformly to f(z) on DI which
proves the second inequality. �

Lemma 3.2. Assume the setting of Lemma 3.1, and assume that {0} 6∈ I. Then
for any sequence of vectors ũn ∈ Cn such that supn ‖ũn‖ < ∞, the quadratic

forms ũ∗nT̃n(z)ũn are the Stieltjes Transforms of positive measures γn such that
supn γn(R) <∞ and γn(I) = 0 for n large enough.

Indeed, one can easily check the conditions that enable ũ∗nT̃n(z)ũn to be a Stielt-
jes Transform of a positive finite measure. The last result is obtained by analyticity
in a neighborhood of I. In fact, it can be checked that supp(γn) ⊂ supp(µn)∪ {0}.
3.6. A control over the support of θn. In this paragraph, we adapt to our case
an idea developed in [11] to deal with Wigner matrices whose elements distribution
satisfies a Poincaré-Nash inequality.

Proposition 3.5. For any sequence of n × n deterministic diagonal nonnegative

matrices Ũn such that supn ‖Ũn‖ <∞,
∣∣∣∣
1

n
TrEQn(z)−mn(z)

∣∣∣∣ ≤
P (|z|)R(|ℑ(z)|−1)

n2
, and

∣∣∣∣
1

n
Tr ŨnEQ̃n(z)−

1

n
Tr ŨnT̃n(z)

∣∣∣∣ ≤
P (|z|)R(|ℑ(z)|−1)

n2

for z ∈ C+, where P and R are polynomials with nonnegative coefficients indepen-
dent of n.

This proposition is obtained from a simple extension of the results of [18, Th. 3
and Prop.5] from z ∈ (−∞, 0) to z ∈ C+.
The following important result, due to Haagerup and Thorbjørnsen, is established
in the proof of [17, Th.6.2]:
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Lemma 3.3. Assume that h(z) is an analytic function on C+ that satisfies |h(z)| ≤
P (|z|)R(|ℑ(z)|−1) where P and R are polynomials with nonnegative coefficients.
Then for any function ϕ ∈ C∞

c (R,R), the set of smooth real-valued functions with
compact support in R,

lim sup
y↓0

∣∣∣∣
∫

R

ϕ(x)h(x + ıy)dx

∣∣∣∣ <∞.

Since N−1 TrQn(z) is the Stieltjes Transform of the spectral measure θn, the
inversion formula (2) shows that

∫
ϕ(t) θn(dt) =

1

π
lim
y↓0

ℑ
∫
ϕ(x)

1

N
TrQn(x+ ıy) dx

for any function ϕ ∈ C∞
c (R,R). Using then Proposition 3.5 and Lemma 3.3, we

obtain the following result:

Proposition 3.6. For any function ϕ ∈ C∞
c (R,R),

∣∣∣∣E
∫
ϕ(t) θn(dt) −

∫
ϕ(t)µn(dt)

∣∣∣∣ ≤
K

n2
.

4. Proofs of first order results

In all this section, I is a compact interval of a component (a, b) of supp(µ)c,
and z is a complex number such that ℜ(z) ∈ I and ℑ(z) is arbitrary. Moreover,
un, vn ∈ CN and ũn, ṽn ∈ Cn are sequences of deterministic vectors such that

supn max(‖un‖, ‖vn‖, ‖ũn‖, ‖ṽn‖) < ∞, and Ũn is a sequence of n × n diagonal

deterministic matrix such that supn ‖Ũn‖ <∞.
We now introduce the regularization function alluded to in the introduction. Choose
ε > 0 small enough so that I ∩Sε = ∅ where Sε = {x ∈ R,d(x, supp(µ)∪{0}) ≤ ε}.
Fix 0 < ε′ < ε, let ψ : R → [0, 1] be a continuously differentiable function such that

ψ(x) =

{
1 if x ∈ Sε′

0 if x ∈ R− Sε

and let φn = detψ(n−1YnY
∗
n ). In all the subsequent derivations, quantities such as

u∗nQn(z)un or ũ∗nQ̃n(z)ũn for ℜ(z) ∈ I will be multiplied by φn in order to control
their magnitudes when z is close to the real axis. By performing this regularization
as is done in [19], we shall be able to define and control the moments of random

variables such as φn u
∗
nQn(z)un or φn ũ

∗
nQ̃n(z)ũn with the help of the Gaussian

tools introduced in Section 3.4.

We start with a series of lemmas. The first of these lemmas relies on Proposition
3.6 and on the Poincaré-Nash inequality. Its detailed proof is a minor modification
of the proof of [19, Lemma 3] and is therefore omitted:

Lemma 4.1. Given 0 < ε′ < ε, let ϕ be a smooth nonnegative function equal to
zero on Sε′ and to one on R− Sε. Then for any ℓ ∈ N, there exists a constant Kℓ

for which

E

[(
Trϕ(n−1YnY

∗
n )
)ℓ] ≤ Kℓ

nℓ
.

Remark 1. Notice that this lemma proves Theorem 2.1-(2). The proof provided in
[3] is in fact more general, being not restricted to the Gaussian case.
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Lemma 4.2. For any ℓ ∈ N, the following holds true:

E







N,n∑

i,j=1

dj

∣∣∣∣
∂φn
∂Ȳij

∣∣∣∣
2



ℓ

 ≤ Kℓ

n2ℓ
.

Proof. Letting n−1/2Y = W diag(
√
λ1, · · · ,

√
λN )V ∗ be a singular value decompo-

sition of n−1/2Y , we have

adj

(
ψ
(Y Y ∗

n

))
ψ′
(Y Y ∗

n

) Y√
n
=WΞV ∗ where Ξ = diag

(√
λkψ

′(λk)
∏

ℓ 6=k

ψ(λℓ)
)N
k=1

and we observe that TrΞ2 ≤ KZn where Zn = ♯{k : λk ∈ Sε − Sε′}. Using the
first identity in Section 3.3 and recalling that |Tr(AB)| ≤ ‖A‖TrB when A is a
square matrix and B is a Hermitian nonnegative matrix, we have

E







N,n∑

i,j=1

dj

∣∣∣∣
∂φn

∂Ȳij

∣∣∣∣
2



ℓ

 =

1

nℓ
E

[(
Tr

(
adj(ψ)ψ′ Y DY

∗

n
adj(ψ)ψ′

))ℓ
]
≤ K

nℓ
EZℓ

n

and the result follows from Lemma 4.1 with a proper choice of ϕ. �

Lemma 4.3. The following inequalities hold true:

E |φn u∗nQn(z)vn − E[φn u
∗
nQn(z)vn]|4 ≤ K

n2
,

E

∣∣∣φn ũ∗nQ̃n(z)ṽn − E[φn ũ
∗
nQ̃n(z)ṽn]

∣∣∣
4

≤ K

n2
,

Var (φn TrQn(z)) ≤ K.

Proof. We shall only prove the first inequality. By the polarization identity, this
inequality is shown whenever we show that E |φu∗Qu− E[φu∗Qu]|4 ≤ K/n2. Let
us start by showing that Var(φu∗Qu) ≤ K/n. By the Poincaré-Nash inequality,
we have

Var (φu∗Qu) ≤ 2

N,n∑

i,j=1

djE

∣∣∣∣
∂φu∗Qu

∂Ȳij

∣∣∣∣
2

≤ 4

N,n∑

i,j=1

djE

∣∣∣∣φ
∂u∗Qu

∂Ȳij

∣∣∣∣
2

+ 4

N,n∑

i,j=1

djE

∣∣∣∣u
∗Qu

∂φ

∂Ȳij

∣∣∣∣
2

.

Using the expression of ∂Qpq/∂Ȳij in Section 3.3, we have

∂u∗Qu/∂Ȳij = −n−1u∗Qyj [Qu]i,

hence
N,n∑

i,j=1

djE

∣∣∣∣φ
∂u∗Qu

∂Ȳij

∣∣∣∣
2

=
1

n
E

[
φ2 u∗Q

YDY ∗

n
Quu∗Q2u

]
≤ K

n

since the argument of the expectation is bounded for ℜ(z) ∈ I. From the first

identity in Section 3.3,
∑

i,j djE
∣∣u∗Qu∂φ/∂Ȳij

∣∣2 ≤ K
∑

i,j djE
∣∣∂φ/∂Ȳij

∣∣2 which
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is bounded by K/n2 by Lemma 4.2. It results that Var(φu∗Qu) ≤ K/n. Now,

writing
◦

X= X − EX ,

E

∣∣∣
◦︷ ︸︸ ︷

φu∗Qu
∣∣∣
4

= (Var(φu∗Qu))
2
+ Var

(( ◦︷ ︸︸ ︷
φu∗Qu

)2)
≤ K/n2 + Var

(( ◦︷ ︸︸ ︷
φu∗Qu

)2)
.

By the Poincaré-Nash inequality,

Var
(( ◦︷ ︸︸ ︷
φu∗Qu

)2)
≤ 2

N,n∑

i,j=1

djE
∣∣∣∂
( ◦︷ ︸︸ ︷
φu∗Qu

)2
/ ∂Ȳij

∣∣∣
2

≤ 16

N,n∑

i,j=1

djE
∣∣∣

◦︷ ︸︸ ︷
φu∗Qu φ

∂u∗Qu

∂Ȳij

∣∣∣
2

+16

N,n∑

i,j=1

djE
∣∣∣

◦︷ ︸︸ ︷
φu∗Qu u∗Qu

∂φ

∂Ȳij

∣∣∣
2

:= V1+V2.

By developing the derivative in V1 similarly to above, V1 ≤ Kn−1E

∣∣∣
◦︷ ︸︸ ︷

φu∗Qu
∣∣∣
2

≤
Kn−2. By the Cauchy-Schwarz inequality and Lemma 4.2,

V2 ≤ K

N,n∑

i,j=1

djE
∣∣∣

◦︷ ︸︸ ︷
φu∗Qu

∂φ

∂Ȳij

∣∣∣
2

≤ K

n2

(
E

∣∣∣
◦︷ ︸︸ ︷

φu∗Qu
∣∣∣
4)1/2

.

Writing an = n2E

∣∣∣
◦︷ ︸︸ ︷

φu∗Qu
∣∣∣
4

, we have shown that
√
an ≤ K/

√
an +K/n. Assume

that an is not bounded. Then there exists a sequence nk of integers such that
ank

→ ∞, which raises a contradiction. The first inequality in the statement of
this lemma is shown. The other two inequalities can be shown similarly. �

Lemma 4.4. The following holds true:

1− Eφn ≤ Kℓ

nℓ
for any ℓ ∈ N.

Proof. For 0 < ε1 < ε′ where ε′ is defined in the construction of ψ, let ϕ be a
smooth nonnegative function equal to zero on Sε1 and to one on R − Sε′ . Then

1 − φn ≤
(
Tr(ϕ(n−1Y Y ∗))

)ℓ
for any ℓ ∈ N, and the result stems from Lemma

4.1. �

Lemma 4.5. The following inequalities hold true (recall that ℜ(z) 6∈ supp(µ)):

|E [φn TrQn(z)]−Nmn(z)| ≤
K

n
, and

∣∣∣Tr Ũn

(
E[φnQ̃n(z)]− T̃n(z)

)∣∣∣ ≤ K

n
.

Proof. Let ε be defined in the construction of ψ. Choose a small ε1 > ε in such a
way that Sε1 ∩ I = ∅. Let ζ be a C∞

c (R,R) nonnegative function equal to one on
Sε and to zero on R− Sε1 , so that

φ
1

n
TrQ = φ

∫
ζ(t)

t− z
θn(dt) .

Using this equality, and recalling that φ ∈ [0, 1], we have
∣∣∣∣Eφ

1

n
TrQ− E

∫
ζ(t)

t− z
θn(dt)

∣∣∣∣ ≤ E

[
(1 − φ)

∣∣∣∣
∫

ζ(t)

t− z
θn(dt)

∣∣∣∣
]
≤ 1− Eφ

d(z,Sε1)
≤ Kℓ

nℓ
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for any ℓ ∈ N. Moreover, we have

∣∣∣∣E
∫

ζ(t)

t− z
θn(dt)−mn(z)

∣∣∣∣ =
∣∣∣∣E
∫

ζ(t)

t− z
θn(dt)−

∫
ζ(t)

t− z
µn(dt)

∣∣∣∣ ≤
K

n2

by Proposition 3.3, and the first inequality is proved.

By performing a spectral factorization of n−1Y ∗Y , one can check that n−1 Tr Ũ Q̃(z)
is the Stieltjes Transform of a positive measure τn such that supn τn(R) < ∞ and

supp(τn) ⊂ supp(θn)∪{0}. By Lemma 3.2, n−1 Tr Ũ T̃ (z) is the Stieltjes Transform
of a positive measure γn such that supn γn(R) < ∞ and γn(I) = 0 for all large
n. With the help of the second inequality of Proposition 3.5, we have a result
similar to that of Proposition 3.6, namely that |E

∫
ϕdτn−

∫
ϕdγn| ≤ K/n2 for any

function ϕ ∈ C∞
c (R,R). We can then prove the second inequality similarly to the

first one. �

Lemma 4.6. The following inequalities hold true:

|E[φn u∗nQn(z)vn]− u∗nvnmn(z)| ≤ K/n,
∣∣∣E[φn ũ∗nQ̃n(z)ṽn]− ũ∗nT̃n(z)ṽn

∣∣∣ ≤ K/n.

In [21], it is proven in a more general setting that
∣∣Eu∗nQn(z)un − ‖un‖2mn(z)

∣∣ ≤
P (|z|)R(|ℑ(z)|−1)/

√
n for any z ∈ C+. Observing that u∗nQn(z)un and ‖un‖2mn(z)

are Stieltjes Transforms of positive measures, and mimicking the proof of the pre-
vious lemma, we can establish this lemma with the rate O(n−1/2), which is in fact
enough for our purposes. However, in order to give a flavor of the derivations that
will be carried out in the next section, we consider here another proof that uses
the IP formula and the Poincaré-Nash inequality. To that end, we introduce new
notations:

β(z) = φn
1

n
TrQn(z), α(z) = Eβ(z), β̂(z) = β(z)− φnα(z), and

α̃(z) =
1

n
TrDn[−z(In + α(z)Dn)]

−1.

Proof. We start with the first inequality. By the IP formula, we have

E[QpiYij Ȳℓjφ] = −dj
n
E[[Qyj ]pQiiȲℓjφ]+δ(ℓ−i)djE[Qpiφ]+

dj
n
E[QpiȲℓj [adj(ψ)ψ

′yj]i].

Taking the sum over i, we obtain

E[[Qyj]pȲℓjφ] = −djE[[Qyj ]pȲℓjβ] + djE[Qpℓφ] +
dj
n
E[Ȳℓj [Q adj(ψ)ψ′yj ]p].

Writing β = β̂ + φα, we get

E[[Qyj ]pȲℓjφ] =
dj

1 + αdj
E[Qpℓφ]−

dj
1 + αdj

E[[Qyj ]pȲℓj β̂]

+
dj

n(1 + αdj)
E[Ȳℓj [Q adj(ψ)ψ′yj ]p].
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Taking the sum over j, we obtain

E

[[
Q
Y Y ∗

n

]

pℓ

φ

]
= −zα̃E[Qpℓφ]− E

[
β̂

[
Q
Y D(I + αD)−1Y ∗

n

]

pℓ

]

+
1

n
E

[[
Q adj(ψ)ψ′ Y D(I + αD)−1Y ∗

n

]

pℓ

]
.

We now use the identity zQ = n−1QY Y ∗ − I, which results in

zE[Qpℓφ] = E

[[
Q
Y Y ∗

n

]

pℓ

φ

]
− δ(p− ℓ)E[φ],

E[Qpℓφ] =
δ(p− ℓ)

−z(1 + α̃)
E[φ] +

2nd and 3rd terms of next to last equation

z(1 + α̃)
.

Multiplying each side by [u∗]p[v]ℓ and taking the sum over p and ℓ, we finally obtain

E[u∗Qvφ] = E[φ]
u∗v

−z(1 + α̃)
− [−z(1 + α̃)]−1

E

[
β̂u∗Q

YD(I + αD)−1Y ∗

n
v

]

+
1

n
[−z(1 + α̃)]−1

E

[
u∗Q adj(ψ)ψ′ Y D(I + αD)−1Y ∗

n
v

]
. (9)

Let us evaluate the three terms at the right hand side of this equality. From
Lemma 4.5, we have α = cnmn + O(n−2). Using in addition the bound (8), we

obtain α̃ = n−1 Tr(D(−z(I + cnmnD + (α− cnmn)D)−1) = n−1 TrDT̃ +O(n−2).

Sincemn(z) = (−z(1+n−1TrDT̃ (z)))−1, we obtain that (−z(1 + α̃))−1 = mn(z)+
O(n−2). Using in addition Lemma 4.4, we obtain that the first right hand side term

of (9) is u∗vmn(z) +O(n−2). Due to the presence of φ in the expression of β̂, the

second term is bounded by KE|β̂|. Moreover, β̂ = n−1φTrQ − n−1E[φTrQ] +

(1− φ)n−1E[φTrQ]. By Lemmas 4.4 and 4.3, E|β̂| = O(n−1). The third term can
be shown to be bounded by Kn−1

ETrϕ(n−1Y Y ∗) = O(n−2) where ϕ is as in the
statement of Lemma 4.1. This proves the first inequality in the statement of the
lemma.
The second result in the statement of the lemma is proven similarly. The proof
requires the second inequality of Lemma 4.5. �

The proof of the following lemma can be done along the same lines and will be
omitted:

Lemma 4.7. The following inequalities hold true:
∣∣∣Eφnu∗nYnQ̃n(z)ṽn

∣∣∣ ≤ K/
√
n

E

∣∣∣φnu∗nYnQ̃n(z)ṽn

∣∣∣
4

≤ K.

We now prove Theorem 2.2-(1).

Proof of Theorem 2.2-(1). Our first task is to establish the properties of H∗(z)
given in the statement of Theorem 2.2-(1). By Lemma 3.1 and the fact that
supp(Λ∗) ⊂ supp(ν), the function H∗(z) can be analytically extended to (a, b).
The comments preceding Theorem 2.2 show that any H∗(z) is the Stieltjes Trans-
form of a matrix-valued nonnegative measure Γ. Since H∗(z) is analytic on (a, b), it
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is increasing on this interval in the order of Hermitian matrices, and the properties
of this function given in the statement of Theorem 2.2-(1) are established.

We now prove the convergence stated in Theorem 2.2-(1), formalizing the ar-
gument introduced in Section 3.1. In the remainder, we restrict ourselves to the
probability one set where n−1Y Y ∗ has no eigenvalues for large n in a large enough
closed interval in (a, b). Given a compact interval I ⊂ (a, b), let D◦

I be the open disk

with diameter I. Observe that the functions Ŝn(x) and Sn(x) introduced in Section
3.1 can be extended analytically to a neighborhood of DI , and the determinants

of these functions do not cancel outside the real axis. Let L̂n = ♯{i : λ̂ni ∈ D◦
I},

Ln = ♯{ zeros of detSn(z) in D
◦
I}, and L = ♯{i : ρi ∈ D◦

I}. We need to prove

that L̂n = L with probability one for n large. By the argument of [8, 9], L̂n is equal

to the number of zeros of det Ŝn(z) in I◦. By the well known argument principle
for holomorphic functions,

L̂n =
1

2ıπ

∮

∂D◦

I

(det Ŝn(z))
′

det Ŝn(z)
dz,

Ln =
1

2ıπ

∮

∂D◦

I

(detSn(z))
′

detSn(z)
dz =

1

2ıπ

∮

∂D◦

I

(det(Hn(z) + Ir))
′

det(Hn(z) + Ir)
dz and

L =
1

2ıπ

∮

∂D◦

I

(det(H∗(z) + Ir))
′

det(H∗(z) + Ir)
dz

where ∂D◦
I is seen as a positively oriented contour.

For any 1 ≤ k, ℓ ≤ r, let hn,k,ℓ(z) = [U∗
n(Qn(z) − mn(z)IN )Un]k,ℓ. Let V be a

small neighborhood of DI , the closure of D◦
I . Let zm be a sequence of complex

numbers in V having an accumulation point in V . By Lemmas 4.1, 4.3 and 4.6

and the Borel Cantelli lemma, hn,k,ℓ(zm)
as→ 0 as n → ∞ for every m. Moreover,

for n large, the hn,k,ℓ are uniformly bounded on any compact subset of V . By the
normal family theorem, every n-sequence of hn,k,ℓ contains a further subsequence
which converges uniformly on the compact subsets of V to a holomorphic function
h∗. Since h∗(zm) = 0 for every m, we obtain that almost surely, hn,k,ℓ converges
uniformly to zero on the compact subsets of V , and the same can be said about
‖U∗

n(Qn(z)−mn(z)IN )Un‖. Using in addition Lemmas 3.1 and 4.7 we obtain the

same result for ‖R∗
n(Q̃n(z)− T̃n(z))Rn‖ and n−1/2‖U∗

nYnQ̃n(z)Rn‖.
Since detX is a polynomial in the elements of matrix X , det Ŝn(z)− detSn(z)

converges almost surely to zero on ∂D◦
I , and this convergence is uniform. By

analyticity, the same can be said about the derivatives of these quantities. More-
over, detSn(z) converges to (−1)r det(H∗(z) + Ir) (which is the same for all ac-
cumulation points Λ∗) uniformly on ∂D◦

I . Similarly, (detSn(z))
′ converges to

(−1)r(det(H∗(z)+Ir))
′ uniformly on ∂D◦

I . Furthermore, by construction of the in-
terval I, we have infz∈∂D◦

I
| det(H∗(z)+Ir)| > 0 which implies that lim infn infz∈∂D◦

I
| detSn(z)| >

0. It follows that L̂n = Ln and Ln = L for n large enough. This concludes the
proof of Theorem 2.2-(1).

Proofs of Theorems 2.2-(2) and 2.3. We start with the following lemma:

Lemma 4.8. Let A = inf(supp(µ)−{0}) and let (a, b) be a component of supp(µ)c.
Then the following facts hold true:

(i) If b ≤ A, then m(x)(1+cm(x)t)−1 > 0 for all x ∈ (a, b) and all t ∈ supp(ν).
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(ii) Alternatively, if a > A, then there exists a Borel set E ⊂ R+ such that
ν(∂E) = 0 and

q(x) =

∫

E

m(x)

1 + cm(x)t
ν(dt) < 0

for all x ∈ (a, b).

Proof. The proof is based on the results of Section 3.5. To have an illustration of
some of the proof arguments, the reader may refer to Figures 1 and 2 which provide
typical plots of x(m) for c < 1 and c > 1 respectively.
We start by fixing a point x0 in (a, b), we write m0 = m(x0) and we choose in the
remainder of the proof E = [0,−(cm0)

−1] with the convention E = ∅ when m0 > 0.
We already assumed that ν({0}) = 0 in Section 3.5. Since −(cm0)

−1 ∈ supp(ν)c

by Proposition 3.2, ν({−(cm0)
−1}) = 0. Hence ν(∂E) = 0. To prove the lemma,

we shall show that

ν(E) > 0 ⇔ a > A. (10)

To see why (10) proves the lemma, consider first a > A. Then m0 < 0 since
ν(E) > 0. Moreover 1+cm0t ≥ 0 for any t ∈ E. It results that q(x0) < 0. Consider
now another point x1 ∈ (a, b), and let m1 = m(x1) and E1 = [0,−(cm1)

−1]. By
the same argument as for x0, we get that

∫
E1

m(x)(1 + cm(x)t)−1ν(dt) < 0. But

Proposition 3.2 shows that the closed interval between m0 and m1 belongs to the
set B. It results that ν(E △ E1) = 0 where E △ E1 is the symmetric difference
between E and E1. Hence q(x1) < 0 and (ii) is true.
Assume now that b ≤ A. If m0 > 0, then for all x1 ∈ (a, b), m1 = m(x1) > 0
since the segment between m0 and m1 belongs to B, and (i) is true. Assume
that m0 < 0. Then since ν(E) = 0, for any t ∈ supp(ν), t > −(cm0)

−1, hence
m0(1 + cm0t)

−1 > 0. If we take another point x1 ∈ (a, b), then the associated
set E1 will also satisfy ν(E1) = 0 since ν(E △ E1) = 0. Hence we also have
m1(1 + cm1t)

−1 > 0 for any t ∈ supp(ν), which proves (i).
We now prove (10) in the ⇐ direction, showing that x0 > A ⇒ ν(E) > 0. Since
m(z) is the Stieltjes Transform of a probability measure supported by R+, the
function m(x) decreases to zero as x → −∞. Furthermore, (0,∞) belongs to B.
Hence, by Proposition 3.2, x0 > A ⇒ m0 < 0. Assume that ν(E) = 0. Then
(−∞,m0] ⊂ B. Since t > −(cm0)

−1 in the integral in (7), x(m) → 0 as m → −∞
by the dominated convergence theorem. By Propositions 3.1, 3.2 and 3.3, x(m)
should be increasing from 0 to x0 on (−∞,m0]. This contradicts x0 > A.
We now prove (10) in the ⇒ direction. To that end, we consider in turn the cases
c < 1, c > 1 and c = 1.
Assume c < 1. Since m(z) is the Stieltjes Transform of a probability measure
supported by R+, the function m(x) decreases to zero as x→ −∞. Hence x(m) →
−∞ as m → 0+. From (7) we notice that mx(m) → (1 − c)/c > 0 as m → ∞,
hence x(m) reaches a positive maximum on (0,∞). By Propositions 3.2 and 3.3, this
maximum is A, and we have x < A⇒ m(x) > 0. Therefore, x0 < A⇒ ν(E) = 0.
Consider now the case c > 1. We shall also show that x0 < A ⇒ ν(E) = 0. By
Proposition 3.4, the measure µ has a Dirac at zero with weight 1 − c−1. Hence,
either x0 < 0, or A > 0 and 0 < x0 < A. Since m(z) is the Stieltjes Transform of
a probability measure supported by R+, it holds that x < 0 ⇒ m(x) > 0. Hence,
ν(E) = 0 when x0 < 0. We now consider the second case. Since (0, x0] ⊂ supp(µ)c,
the image of this interval by m belongs to B. By Proposition 3.4, limx→0+ m(x) =
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Figure 1. Plot of x(m) for c = 0.1 and ν = 0.5(δ1 + δ3). The
thick segment represents supp(µ).
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Figure 2. Plot of x(m) for c = 5 and ν = 0.5(δ1/2 + δ5/2). The
thick segments represent supp(µ).

−∞. Hence this image is (−∞,m0]. This implies that ν(E) = 0.
We finally consider the case c = 1. We show here that A = 0, which will result in
x0 < A ⇒ m0 > 0 ⇒ ν(E) = 0 as above. Assume A > 0 and let x1 ∈ (0, A). By
Proposition 3.4, µ({0}) = 0 hence m(x1) =

∫
(t−x1)−1µ(dt) > 0. But from (7), we

easily show that x(m) increases from −∞ to 0 as m increases from 0 to ∞, which
raises a contradiction. This concludes the proof of Lemma 4.8. �

This lemma shows that for any x < inf(supp(µ) − {0}), H∗(x) ≥ 0, hence
D(x) > 0 for those x. This proves Theorem 2.2-(2).
Turning to Theorem 2.3, let E be a Borel set associated to (a, b) by Lemma 4.8-(ii)
and let q(x) be the function defined in the statement of that lemma. The argument
preceding Theorem 2.2 shows that the extension of q(x) to C+ is the Stieltjes
Transform of a positive measure. It results that q(x) is negative and increasing
on (a, b). Let Ω = diag(ω2

1 , . . . , ω
2
r) where ω2

k = −1/q(ρk). Then it is clear that
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the function D(x) = det(q(x)Ω + Ir) has r roots in (a, b) which coincide with the
ρk. Theorem 2.3 will be proven if we find a sequence of matrices Pn for which
H∗(z) = q(z)Ω, i.e., Λ∗(dt) = 1E(t)Ω ν(dt).
Rearrange the elements of Dn in such a way that all the dnj which belong to E are in
the top left corner of this matrix. Let Mn = [Mn

ij ] be a random ⌊nν(E)⌋× r matrix

with iid elements such that
√
nMn

11 has mean zero and variance one. Let Zn be the
n×r matrix obtained by adding n−⌊nν(E)⌋ rows of zeros belowMn. Then the law
of large numbers shows in conjunction with a normal family theorem argument that

there is a set of probability one over which zmn(z)Z
∗
nT̃n(z)Zn converges to q(z)Ir

uniformly on the compact subsets of (a, b). Consequently, there exists a sequence

of deterministic matrices Bn such that zmn(z)B
∗
nT̃n(z)Bn → q(z)Ir uniformly on

these compact subsets. Matrix Pn = AnB
∗
n with An =

[
Ω1/2

0(N−r)×r

]
satisfies the

required property. Theorem 2.3 is proven.

Proof of Corollary 2.1. Observe from Proposition 2.1 that
∫
(1+cm(z)t)−1ν(dt) =

−z lim(n−1 Tr T̃n(z)) = −czm(z) + 1 − c. Consequently, in this particular case,
H∗(x) is unitarily equivalent to −m(x) (cxm(x) − 1 + c)Ω on (a, b).

5. Proof of the second order result

We start by briefly showing Proposition 2.2.

Proof of Proposition 2.2. For any i = 1, . . . , p, it is clear that m(ρi)
2 > 0 and

m′(ρi) > 0. An immediate calculus then gives m′(ρi)∆(ρi) = m2(ρi) which shows
that ∆(ρi) > 0.
To prove the second fact, we shall establish more generally that lim sup

√
n‖Hn(ρi)+

g(ρi)Ω‖ < ∞. Invoking Equation (3) and its analogue mn(z) = (−z +
∫
t(1 +

cnmn(z)t)
−1νn(dt))

−1, taking the difference and doing some straightforward deriva-
tions, we get that (mn(ρi)−m(ρi))(∆(ρi)+ε1) = ε2 where ε1 → 0 and where |ε2| ≤
K/

√
n thanks to the first two items of Assumption 7. Hence |mn(ρi) − m(ρi)| ≤

K/
√
n. Now we have

Hn(ρi) + g(ρi)Ω =

∫ (
mn(ρi)

1 + cnmn(ρi)t
− m(ρi)

1 + cm(ρi)t

)
Λn(dt)

+

∫
m(ρi)

1 + cm(ρi)t
Λn(dt)−

∫
m(ρi)

1 + cm(ρi)t
ν(dt) ×Ω.

which shows thanks to Assumption 7 that lim sup
√
n‖Hn(ρi) + g(ρi)Ω‖ <∞.

Proof of Theorem 2.4. In all the remainder of this section, we shall work on
a sequence of factorizations Pn = UnR

∗
n such that Λn satisfies the third item of

Assumption 7. We also write Un = [U1,n · · · Ut,n] and Rn = [R1,n · · · Rt,n] where
Ui,n ∈ CN×ji and Ri,n ∈ Cn×ji .

We now enter the core of the proof Theorem 2.4. The following preliminary
lemmas are proven in the appendix:

Lemma 5.1. Let s be a fixed integer, and let ZN = [Zij ] be a N × s complex
matrix with iid elements with independent N (0, 1/2) real and imaginary parts. Let
ΥN = [Υij ] be a deterministic Hermitian N ×N matrix such that TrΥN = 0, and
let FN = [Fij ] be a complex deterministic N×s matrix. Assume that F ∗

NFN → ς2Is,
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that lim supN ‖ΥN‖ <∞, and that N−1 TrΥ2
N → σ2 as N → ∞. Let M be a s× s

complex matrix with iid elements with independent N (0, 1/2) real and imaginary
parts, and let G be a s× s GUE matrix independent of M . Then

(
N−1/2Z∗

NΥNZN , Z
∗
NFN

)
D−−−−→

N→∞
(σG, ςM) .

Lemma 5.2. For x ∈ supp(µ)c,

E

[
φnũ

∗
nQ̃n(x)(n

−1Y ∗
n Yn)Q̃n(x)ũn

]
= cn

x2mn(x)
2ũ∗nDnT̃

2
n(x)ũn

1− cnx2mn(x)2
1
n TrD2

nT̃
2
n(x)

+O(n−1)

and

Var
(
φnũ

∗
nQ̃n(x)(n

−1Y ∗
n Yn)Q̃n(x)ũn

)
≤ K

n
.

Lemma 5.3. For i = 1, . . . , p, let Ai be a deterministic Hermitian ji × ji matrix
independent of n, where p and the ji are as in the statement of Theorem 2.4. For
i = 1, . . . , p, let Mi,n a n × ji matrix such that supn ‖Mi,n‖ < ∞. Then for any
t ∈ R,

E

[
exp
(
ı
√
nt

p∑

i=1

TrAiM
∗
i,n(Q̃n(ρi)−T̃n(ρi))Mi,n

)]
= exp(−t2σ̃2

n/2)+O(n−1/2)

where

σ̃2
n =

p∑

i,k=1

cnρiρkmn(ρi)mn(ρk)

×
TrAiM

∗
i,nT̃n(ρi)DnT̃n(ρk)Mk,nAkM

∗
k,nT̃n(ρk)DnT̃n(ρi)Mi,n

1− cnρiρkmn(ρi)mn(ρk)
1
n TrDnT̃n(ρi)DnT̃n(ρk)

.

Replacing the Mi,n with the blocks Ri,n of Rn in the statement of Lemma 5.3
and observing that

R∗
nT̃n(ρi)DnT̃n(ρk)Rn =

∫
t

ρiρk(1 + cnmn(ρi)t)(1 + cnmn(ρk)t)
Λn(dt),

we obtain from the third item of Assumption 7 that σ̃2
n →∑p

i=1 σ̃
2
i TrA

2
i where

σ̃
2
i =

cω4
i

ρ2i∆(ρi)

(∫ m(ρi)t

(1 + cm(ρi)t)2
ν(dt)

)2
.

Invoking the Cramer-Wold device, this means that the p-uple of random matrices

√
n
(
R∗

i,n(Q̃n(ρi)− T̃n(ρi))Ri,n

)p
i=1

converges in distribution towards (σ̃iG̃i)
p
i=1 where G̃1, . . . , G̃p are independent GUE

matrices with G̃i ∈ Cji×ji .

Lemmas 5.1–5.3 lead to the following result which plays a central role in the
proof of Theorem 2.4:
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Lemma 5.4. Consider the 3p-uple of random matrices

Ln =
√
n×

(
U∗
i,nYnQ̃n(ρi)Ri,n√

n
, U∗

i,n(Qn(ρi)−mn(ρi)IN )Ui,n, R
∗
i,n(Q̃n(ρi)− T̃n(ρi))Ri,n

)p

i=1

.

Define the following quantities

ς2i =
ω2
i

∆(ρi)

∫
m2(ρi)t

(1 + cm(ρi)t)2
ν(dt)

σ2
i =

1

∆(ρi)

∫
m4(ρi)t

2

(1 + cm(ρi)t)2
ν(dt)

σ̃
2
i =

cω4
i

ρ2i∆(ρi)

(∫
m(ρi)t

(1 + cm(ρi)t)2
ν(dt)

)2

.

LetM1, . . . ,Mp be random matrices such that Mi ∈ Cji×ji and has independent ele-

ments with independent N (0, 1/2) real and imaginary parts. Let G1, G̃1, . . . , Gp, G̃p

be GUE matrices such that Gi, G̃i ∈ Cji×ji . Assume in addition that M1, G1, G̃1,

. . ., Mp, Gp, G̃p are independent. Then

Ln
D−→

n→∞

(
ςiMi,σiGi, σ̃iG̃i

)p
i=1

.

Proof. Let αn(ρ) = N−1TrQn(ρ). By Lemmas 4.3 and 4.5,
√
n(αn(ρi)−mn(ρi))

P→
0. Therefore, we can replace the mn(ρi) in the expression of Ln by αn(ρi), as we
shall do in the rest of the proof.
Write s = j1 + · · · + jp and let Zn be a N × s complex matrix with iid elements
with independent N (0, 1/2) real and imaginary parts. Assume that Zn and Xn

are independent. Write Zn =
[
Z1,n · · ·Zp,n

]
where the block Zi,n is N × ji. Let

n−1/2Xn = Wn∆nW̃
∗
n be a singular value decomposition of n−1/2Xn. By assump-

tion 2, the square matrices Wn and W̃n are Haar distributed over their respective

unitary groups, and moreover, Wn, ∆n and W̃n are independent. Let

Ln =

√
n

(
U∗
nYnQ̃n(ρi)Ri,n√

n
, U∗

n(Qn(ρi)− αn(ρi)IN )Un, R
∗
i,n(Q̃n(ρi)− T̃n(ρi))Ri,n

)p

i=1

.

We have

Ln
L
=
(√

N(Z∗
nZn)

−1/2Z∗
nFi,n, N

1/2(Z∗
nZn)

−1/2Z∗
nΥi,nZn(Z

∗
nZn)

−1/2,

√
nR∗

i,n(Q̃n(ρi)− T̃n(ρi))Ri,n

)p
i=1

where Fi,n = c
−1/2
n ∆nW̃

∗
nD

1/2
n Q̃n(ρi)Ri,n and Υi,n = c

−1/2
n ((∆nW̃

∗
nDnW̃n∆n −

ρi)
−1 − αn(ρi)IN ). We shall now show that the term

√
N(Z∗

nZn)
−1/2Z∗

nFi,n can

be replaced with Z∗
nFi,n. By the law of large numbers, we have N−1Z∗

nZn
as→ Is.

By the independence of Zn and (∆n, W̃n), we have E[TrZ
∗
nFi,nF

∗
i,nZn | (∆nW̃n)] =

sc−1
n TrR∗

i,nQ̃n(ρi)(n
−1Y ∗

n Yn)Q̃n(ρi)Ri,n whose limit superior is bounded with prob-
ability one. Hence Z∗

nFi,n is tight, proving that the replacement can be done.

By deriving the variances of the elements of N−1/2Z∗
nΥi,nZn with respect to the
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law of Zn, and by recalling that lim supn ‖Υi,n‖ is bounded with probability one,
we obtain that these elements are also tight. It results that we can replace Ln with

Ln =

(
Z∗
i,nFi,n,

Z∗
i,nΥi,nZi,n√

N
,
√
nR∗

i,n(Q̃n(ρi)− T̃n(ρi))Ri,n

)p

i=1

.

For i = 1, . . . , p, let Ai and Bi be deterministic Hermitian ji × ji matrices and let
Ci be deterministic complex ji × ji matrices, all independent of n. The lemma will
be established if we prove that

E

{
exp
(
ı
√
nt

p∑

i=1

TrAiR
∗
i,n(Q̃n(ρi)− T̃n(ρi))Ri,n

)

×E

[
exp
(
ıt

p∑

i=1

N−1/2 TrBiZ
∗
i,nΥi,nZi,n + ℜ(TrCiZ

∗
i,nFi,n)

) ∣∣∣ (∆n, W̃n)
]}

−−−−→
n→∞

p∏

i=1

exp(−t2(σ̃2
i TrA

2
i + σ2

i TrB
2
i +

1

2
ς2i TrCiC

∗
i )/2). (11)

In addition to the boundedness of ‖Υi,n‖ w.p. one, we have TrΥi,n = 0, and

1

N
TrΥ2

i,n =
1

cnN

N∑

ℓ=1

(
(λnℓ − ρi)

−1 − αn(ρi)
)2

a.s.−−−−→
n→∞

c−1(m′(ρi)−m(ρi)
2) = c−1m(ρi)

2
(
∆(ρi)

−1 − 1
)
= σ2

i .

Moreover, using Lemma 5.2 in conjunction with Assumption 6, we obtain

F ∗
i,nFi,n = c−1

n R∗
i,n

(
Q̃n(ρi)

1

n
Y ∗
n YnQ̃n(ρi)

)
Ri,n

P−−−−→
n→∞

ς
2
i Iji .

From any sequence of integers increasing to infinity, there exists a subsequence
along which this convergence holds in the almost sure sense. Applying Lemma 5.1,
we get that the inner expectation at the left hand side of (11) converges almost
surely along this subsequence towards

∏p
i=1 exp(−t2(σ2

i TrB
2
i + 1

2ς
2
i TrCiC

∗
i )/2).

Using in addition Lemma 5.3 along with the dominated convergence theorem, we
obtain that Convergence (11) holds true along this subsequence. Since the original
sequence is arbitrary, we obtain the required result. �

The remainder of the proof of Theorem 2.4 is an adaptation of the approach of
[7].

Lemma 5.5. For a given x ∈ R and a given i ∈ {1, . . . , p}, let y = ρi + n−1/2x,
and let

Ŝn(y) =

[ √
yU∗

nQn(y)Un Ir + n−1/2U∗
nYnQ̃n(y)Rn

Ir + n−1/2R∗
nQ̃n(y)Y

∗
nUn

√
yR∗

nQ̃n(y)Rn

]
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Let

χ(i)
n (x) = n

ji
2

[
det Ŝn(y)−

t∏

k 6=i

[
ω2
kg(ρi)− 1

]jk

× det

(√
nU∗

i,n (Qn(ρi)−mn(ρi)IN )Ui,n

m(ρi)
+ ρim(ρi)

√
nR∗

i,n(Q̃n(ρi)− T̃n(ρi))Ri,n

− 2ℜ
[
U∗
i,nYnQ̃n(ρi)Ri,n

]
−√

n(Hi,n(ρi) + Iji )− xH ′
i,n(ρi)

)]
(12)

where ℜ(M) = (M +M∗)/2 for a square matrix M . Then

(χ(i)
n (x1), . . . , χ

(i)
n (xp))

P−−−−→
n→∞

0

for every finite sequence {x1, . . . , xp}.

Proof. We show the result for i = 1, the same procedure being valid for the other
values of i. The notationXn = oP (1) means that the random variableXn converges
to zero in probability, while Xn = OP (n

−ℓ) means that nℓXn is tight. Write
U = [U1, Ū1] and R = [R1, R̄1] where Ū1 = [U2, . . . , Ut] and R̄1 = [R2, . . . , Rt].
Writing

A =

[√
yU∗

1Q(y)U1
√
yU∗

1Q(y)Ū1√
yŪ∗

1Q(y)U1
√
yŪ∗

1Q(y)Ū1

]
:=

[
A11 A12

A∗
12 A22

]
,

B =

[
Ij1 + n−1/2U∗

1Y Q̃(y)R1 n−1/2U∗
1Y Q̃(y)R̄1

n−1/2Ū∗
1Y Q̃(y)R1 Ir−j1 + n−1/2Ū∗

1Y Q̃(y)R̄1

]
:=

[
B11 B12

B21 B22

]
, and

C =

[√
yR∗

1Q̃(y)R1
√
yR∗

1Q̃(y)R̄1√
yR̄∗

1Q̃(y)R1
√
yR̄∗

1Q̃(y)R̄1

]
:=

[
C11 C12

C∗
12 C22

]
,

we have

det Ŝ = det

[
A B
B∗ C

]
= det




A11 B11 A12 B12

B∗
11 C11 B∗

21 C12

A∗
12 B21 A22 B22

B∗
12 C∗

12 B∗
22 C22



:= det

[
M11 M12

M∗
12 M22

]

after a row and column permutation. Hence nj1/2 det Ŝ = detM22×nj1/2 det(M11−
M12M

−1
22 M

∗
12).WriteΩ = diag(ω2

1Ij1 ,Ω2). From the first order analysis we get that

M22
a.s.−−−−→

n→∞

[√
ρ1m(ρ1)Ir−j1 Ir−j1

Ir−j1
√
ρ1(cm(ρ1)− ρ−1

1 (1− c))Ω2

]

which is invertible since detM22
as→ ∏

k>1(ω
2
kg(ρ1)− 1)jk 6= 0. Moreover, ‖M12‖ =

OP (n
−1/2). To see this, consider for instance the term

√
nC12 =

√
nyR∗

1(Q̃ −
T̃ )R̄1 +

√
nyR∗

1T̃ R̄1. The first term is tight by Lemma 5.4 while the second is
bounded by Assumption 7. The other terms are treated similarly. It results that
‖M12M

−1
22 M

∗
12‖ = OP (1/n).

In addition, det(y−1/2C11)
as→ [ω2

1(cm(ρ1) − ρ−1
1 (1 − c))]j1 = (ρ1m(ρ1))

−j1 by the
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definition of ρ1. From these observations we get that

nj1/2 det Ŝ =

(
∏

k>1

(ω2
kg(ρ1)− 1)jk + oP (1)

)
(
(ρ1m(ρ1))

−j1 + oP (1)
)

× det
(√

nyA11 −
√
nyB11C

−1
11 B

∗
11 +OP (n

−1/2)
)
.

Now we make the expansion
√
nyA11 −

√
nyB11C

−1
11 B

∗
11 (13)

= y
√
nU∗

1 (Q(y)−mn(y)IN )U1 + y
√
nmn(y)Ij1

+
√
n

(
Ij1 + U∗

1

Y Q̃(y)√
n

R1

)
(R∗

1Q̃(y)R1)
−1(R∗

1(Q̃(y)− T̃ (y))R1)(R
∗
1T̃ (y)R1)

−1

×
(
Ij1 +R∗

1

Q̃(y)Y ∗

√
n

U1

)

−√
n

(
Ij1 + U∗

1

Y Q̃(y)√
n

R1

)
(R∗

1T̃ (y)R1)
−1

(
Ij1 +R∗

1

Q̃(y)Y ∗

√
n

U1

)
. (14)

To go further, remark that

y
√
nmn(y)Ij1 −

√
n(R∗

1T̃ (y)R1)
−1

= (R∗
1T̃ (y)R1)

−1
[√

n
(
ymn(y)R

∗
1T̃ (y)R1 − ρ1mn(ρ1)R

∗
1T̃ (ρ1)R1

)

+
√
n
(
ρ1mn(ρ1)R

∗
1T̃ (ρ1)R1 − Ij1

)]

= ρ1m(ρ1)
[
−xH ′

1(ρ1)−
√
n(H1(ρ1) + Ij1 )

]
+ o(1)

where we recall that y = ρ1 + xn− 1
2 → ρ1 and that R∗

1T̃ (y)R1 → (ρ1m(ρ1))
−1Ij1 .

Recall from Lemma 5.4 that
√
nU∗

1 (Q −mnI)U1,
√
nR∗

1(Q̃ − T̃ )R1, and U
∗
1Y Q̃R1

are tight. Keeping the non negligible terms, we can write (13) under the form
√
nyA11 −

√
nyB11C

−1
11 B

∗
11

= ρ1
√
nU∗

1 (Q(ρ1)−mn(ρ1)IN )U1 + (ρ1m(ρ1))
2
√
nR∗

1(Q̃(ρ1)− T̃ (ρ1)In)R1

− 2ρ1m(ρ1)ℜ
[
U∗
1Y Q̃(ρ1)R1

]
− ρ1m(ρ1)

(
xH ′

1(ρ1) +
√
n(H1(ρ1) + Ij1)

)
+ oP (1).

Plugging this expression at the right hand side of the expression of nj1/2 det Ŝ and
observing that H ′

1,n(ρ1) → −ω2
1g(ρ1)

′Ij1 concludes the proof. �

For i = 1, . . . , p, take x1(i) > y1(i) > x2(i) > y2(i) > . . . > yji(i) fixed se-

quences of real numbers. Call Jn = (
√
n(λ̂nk(i)+ℓ − ρi), i = 1, . . . , p, ℓ = 1, . . . , ji),

with k(i) =
∑i−1

m=1 jm. Let also C be the rectangle C = [x1(1), y1(1)] × . . . ×
[xp(jp), yp(jp)]. Then, for all large n, we have

P (Jn ∈ C) = P

({
det Ŝn

(
ρi +

xℓ(i)√
n

)
det Ŝn

(
ρi +

yℓ(i)√
n

)
< 0

})

since det Ŝn(t) changes sign around t = λ̂nk(i)+ℓ, and only there (with probability

one, for all large n).
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From Lemma 5.5, we see that, for growing n, the probability for the product of
the determinants above to be negative for all i and ℓ approaches the probability

P
({

detAxℓ(i) detAyℓ(i) < 0, i = 1, . . . , p, ℓ = 1, . . . , ji
})

where Ax is the matrix

Ax =

√
nU∗

i,n (Qn(ρi)−mn(ρi)IN )Ui,n

m(ρi)
+
ρi
√
nR∗

i,n(Q̃n(ρi)− T̃n(ρi))Ri,n

ω2
i (c+ cρim(ρi)− 1)

− 2ℜ
[
U∗
i,nY Q̃n(ρi)Ri,n

]
−√

n(Hi,n(ρi) + Iji)− xH ′
i,n(ρi).

This last probability is equal to P(J̄n ∈ C), where J̄n is the vector obtained by
stacking the p vectors of decreasingly ordered eigenvalues of the matrices

Bi = [H ′
i,n(ρi)]

−1

(√
nU∗

i,n (Qn(ρi)−mn(ρi)IN )Ui,n

m(ρi)

+
ρi
√
nR∗

i,n(Q̃n(ρi)− T̃n(ρi))Ri,n

ω2
i (c+ cρim(ρi)− 1)

− 2ℜ
[
U∗
i,nY Q̃n(ρi)Ri,n

]
−√

n(Hi,n(ρi) + Iji )

)
.

From Lemma 5.4, {B1, . . . , Bt} asymptotically behave as scaled non-zero mean
GUE matrices. Precisely, denoting B̄i = H ′

i,n(ρi)Bi +
√
n(Hi,n(ρi) + Iji), from

Lemma 5.4 and for all a, b,

E
[
|(B̄i)ab|2

]

→ σ2
i

m(ρi)2
+

ρ2i σ̃
2
i

ω4
i (c+ cρim(ρi)− 1)2

+ 2ς2

=
σ2

i

m(ρi)2
+ ρ2im(ρi)

2
σ̃

2
i + 2ς2

=
m2(ρi)

∆(ρi)

[∫
t2ν(dt)

(1 + cm(ρi)t)2
+ cω4

i

(∫
m(ρi)tν(dt)

(1 + cm(ρi)t)2

)2

+

∫
2ω2

i tν(dt)

(1 + cm(ρi)t)2

]
.

This concludes the proof of Theorem 2.4.

Appendix A. Proofs of Lemmas 5.1 to 5.3

A.1. Proof of Lemma 5.1. Given a s × s deterministic Hermitian matrix A
and a s × s deterministic complex matrix B, let ΓN = N−1/2 TrAZ∗

NΥNZN +
ℜ(TrBZ∗

NFN ) where ℜ(M) = (M +M∗)/2 for any square matrix M . We shall
show that for any t ∈ R,

ϕN (t) := E[exp(ıtΓN )] −−−−→
N→∞

exp
(
−t2σ

2 TrA2 + ς2 TrBB∗/2

2

)
:= exp

(
− t

2v2

2

)
.

The result will follow by invoking the Cramér-Wold device. To establish this
convergence, we show that the derivative ϕ′

N (t) satisfies ϕ′
N (t) = −tv2ϕN (t) +

εN(t) where εN (t) → 0 as N → ∞ uniformly on any compact interval of R.
That being true, the function ψN (t) = ϕN (t) exp(t2v2/2) satisfies ψN (t) = 1 +∫ t

0 εN (u) exp(u2v2/2)du→ 1 which proves the lemma.
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By the IP formula, we get

ϕ′(t) = ıE[Γ exp(ıtΓ)]

= ıE
[( s∑

i,j=1

N∑

k,ℓ=1

AijZ
∗
kjΥkℓZℓi√
N

+
s∑

i,j=1

N∑

k=1

BijZ
∗
kjFki + F ∗

kiZkjB
∗
ij

2

)

× exp(ıtΓ)
]

= ıE
[ ∑

i,j,k,ℓ

AijΥkℓ√
N

∂(Zℓi exp(ıtΓ))

∂Zkj

+
1

2

∑

i,j,k

BijFki
∂ exp(ıtΓ)

∂Zkj
+ F ∗

kiB
∗
ij

∂ exp(ıtΓ)

∂Z∗
kj

]
.

We obtain after a small calculation

∂ exp(ıtΓ)

∂Zkj
= ıt

( [AZ∗Υ]jk√
N

+
1

2
[B∗F ∗]jk

)
exp(ıtΓ),

∂ exp(ıtΓ)

∂Z∗
kj

= ıt
( [ΥZA]kj√

N
+

1

2
[FB]kj

)
exp(ıtΓ)

which leads to

ϕ′(t) = −tE[N−1TrA2Z∗Υ2Z exp(ıtΓ)]− (t/2)Tr(BB∗F ∗F )ϕ(t)

+ ıN−1/2TrATrΥϕ(t)

− tE[N−1/2 TrAB∗F ∗ΥZ exp(ıtΓ)]− (t/2)E[N−1/2TrZ∗ΥFBA exp(ıtΓ)].

Let us consider the first term at the right hand side of this equation. We have
E[N−1 TrA2Z∗Υ2Z] = N−1 TrA2 TrΥ2. Applying the Poincaré-Nash inequality,
we obtain after some calculations thatVar(N−1 TrA2Z∗Υ2Z) ≤ 2N−2 TrA4 TrΥ4 =
O(N−1) since ‖Υ‖ is bounded. It results that E[N−1 TrA2Z∗Υ2Z exp(ıtΓ)] =
N−1TrA2 TrΥ2 ϕ(t) + O(N−1/2) by Cauchy-Schwarz inequality. The third term
is zero by hypothesis. Finally, N−1E|TrZ∗ΥFBA|2 = N−1 TrΥ2FBA2B∗F ∗ ≤
N−1‖Υ‖2TrFBA2B∗F ∗ = O(N−1). Hence, the last two terms are O(N−1/2) by
Cauchy-Schwarz inequality, which proves Lemma 5.1.

A.2. An intermediate result. The following lemma will be needed in the proof
of Lemma 5.2:

Lemma A.1. For x, y ∈ supp(µ)c,

E

[
φn

1

n
Tr Q̃n(x)DQ̃n(y)D

]
=

1
n TrDT̃n(x)DT̃n(y)

1− cnxmn(x)ymn(y)
1
n TrDT̃n(x)DT̃n(y)

+O(n−1)

E

[
φnũ

∗
nQ̃n(x)DQ̃n(y)ṽn

]
=

ũ∗nT̃n(x)DT̃n(y)ṽn

1− cnxmn(x)ymn(y)
1
n TrDT̃n(x)DT̃n(y)

+O(n−1).
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Proof. We denote here Q̃x = Q̃(x) and drop all unnecessary indices. Using the IP
formula, we obtain

E

[
φY ∗

iaYijQ̃x,jpdpQ̃y,pq

]
=
dpdj
n

(
δ(a− j)E

[
φQ̃x,jpQ̃y,pq

]

− 1

n
E

[
φQ̃x,jj [Y Q̃x]ipY

∗
iaQ̃y,pq

]
− 1

n
E

[
φY ∗

iaQ̃x,jpQ̃y,pj[Y Q̃y]iq

]

+E

[
1

n
[adj(ψ)ψ′Y ]ijY

∗
iaQ̃x,jpQ̃y,pq

])
.

Making the sum over i, p, and j, this is

1

n
E

[
φ[Y ∗Y Q̃xDQ̃y]aq

]
=

1

n2
E

[
[Y ∗ adj(ψ)ψ′Y DQ̃xDQ̃y]aq

]
+ cndaE

[
φ[Q̃xDQ̃y]aq

]

− 1

n
E

[
φ
1

n
TrDQ̃x[Y

∗Y Q̃xDQ̃y]aq

]
− 1

n
E

[
φ
1

n
Tr Q̃xDQ̃yD[Y ∗Y Q̃y]aq

]
.

Using the relation 1
nY

∗Y Q̃x = xQ̃x + In and appropriately gathering the terms
on each side gives

E

[
φ[Q̃xDQ̃y]aq(x − cn da + x

1

n
TrDQ̃x)

]

= −E

[
φ[DQ̃y]aq(1 +

1

n
TrDQ̃x)

]
− E

[
φ
1

n
Tr Q̃xDQ̃yD(δ(a− q) + y[Q̃y]aq)

]

+ E

[
1

n2
[Y ∗ adj(ψ)ψ′Y DQ̃xDQ̃y]aq

]
. (15)

Introducing the term β̃x = φ 1
n TrDQ̃x and

ˆ̃
βx = β̃x − φE[β̃x], we have

E

[
φ[Q̃xDQ̃y]aq

]
(x − cn da + xE[β̃x])

= −E

[
φ[DQ̃y]aq

]
(1 + E[βx])− E

[
φ
1

n
Tr Q̃xDQ̃yD

]
(δ(a− q) + yE[[Q̃y]aq])

− E

[
[DQ̃y]aq

ˆ̃
βx

]
− E

[
[Q̃xDQ̃y]aqx

ˆ̃
βx

]
− E

[
φ
1

n
Tr Q̃xDQ̃yDy([Q̃y]aq − E[Q̃y]aq])

]

+ E

[
1

n2
[Y ∗ adj(ψ)ψ′Y DQ̃xDQ̃y]aq

]
. (16)

At this point, we can prove both results for the trace and for the quadratic form.
We start by dividing each side by x − cn da + xE[β̃x]. We begin with the trace
result. Multiplying the resulting left- and right-hand sides by da, summing over
a = q and normalizing by 1/n, we obtain

E

[
φ
1

n
Tr Q̃xDQ̃xD

]
= −(1 + E[β̃x])E

[
φ
1

n
TrDQ̃yDAx

]

− E

[
φ
1

n
Tr Q̃xDQ̃yD

](
yE[φ

1

n
TrDAxQ̃y] +

1

n
TrDAx

)
+ εn
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where we denoted Ax = (x(1 + E[β̃x])In − cnD)−1 and where

εn = E

[
Tr

Y ∗ adj(ψ)ψ′Y

n3
DQ̃xDQ̃yDAx

]
− E

[
1

n
TrDQ̃yDAx

ˆ̃βx

]

− E

[
1

n
Tr Q̃xDQ̃yDAx

ˆ̃
βx

]

− E

[
φ
1

n
Tr Q̃xDQ̃yDy

(
1

n
Tr Q̃yDAx − E(

1

n
Tr Q̃yDAx)

)]
. (17)

From Lemma 4.5, E[β̃x] = δ̃x +O(n−2), where we denoted δ̃x = 1
n TrDT̃x. Also, it

is easily observed that
(
In(1 + δ̃x)x− cnD

)−1

= − 1

1 + δ̃x
T̃x (18)

with T̃x = T̃ (x). Therefore, along with Lemma 4.5, we now have

E

[
φ
1

n
Tr Q̃xDQ̃xD

]

=
1

n
TrDT̃xDT̃y + E

[
φ
1

n
Tr Q̃xDQ̃xD

]
y 1
n TrDT̃xT̃y +

1
n TrDT̃x

1 + δ̃x
+ εn +O(n−2).

Using now the fact that yT̃y + In = cn
1

1+δ̃y
DT̃y, we conclude

E

[
φ
1

n
Tr Q̃xDQ̃xD

]
=

1
n TrDT̃xDT̃y

1− cn(1 + δ̃x)−1(1 + δ̃y)−1 1
n TrDT̃xDT̃y

+ εn +O(n−2).

It therefore remains to prove that εn = O(n−1). Due to the presence of φ in the

expression of
ˆ̃
βx, and using Lemma 4.3 and Cauchy-Schwarz inequality, one can see

that the last three terms in the expression of εn are O(n−1). As for the first term,
it is treated in a similar manner as in the proof of Lemma 4.6, and is O(n−2).

In order to prove the result on the quadratic form, we start again from (16).

Dividing each side again by x− cn da+xE[β̃x], introducing [ũ]a, [ṽ]q, and summing
over the indices, we obtain

E

[
φũ∗Q̃xDQ̃yṽ

]

= −E

[
φũ∗AxDQ̃yṽ

]
− E

[
φ
1

n
Tr Q̃xDQ̃yD

](
ũ∗Ax(yE[φQ̃y] + In)ṽ

)
+ ε′n (19)

where ε′n is very similar to εn and is shown to be O(n−1) with the same line of

arguments. Using Lemma 4.3, (18), and the previous result on E[φ 1
n Tr Q̃xDQ̃yD],

we finally obtain

E

[
φũ∗Q̃xDQ̃y ṽ

]

= ũ∗T̃xDT̃yṽ

(
1 +

cn(1 + δ̃x)
−1(1 + δ̃y)

−1 1
n TrDT̃xDT̃y

1− cn(1 + δ̃x)−1(1 + δ̃y)−1 1
n TrDT̃xDT̃y

)
+O(n−1).

from which

E

[
φũ∗Q̃xDQ̃y ṽ

]
=

ũ∗T̃xDT̃yṽ

1− cn(1 + δ̃x)−1(1 + δ̃y)−1 1
n TrDT̃xDT̃y

+O(n−1).
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We conclude with the remark xmn(x) = −(1 + δ̃x)
−1. �

A.3. Proof of Lemma 5.2. The line of proof closely follows the proof of Lemma A.1.
We provide here its main steps. By the IP formula, we have

E[φQ̃pkY
∗
ℓkYℓmQ̃mr] = −dm

n
E[φQ̃pkY

∗
ℓkQ̃mm[Y Q̃]ℓr] + δ(k −m)dmE[φQ̃pkQ̃mr]

− dm
n

E[φY ∗
ℓkQ̃mrQ̃pm[Y Q̃]ℓk]

+
dm
n

E[Q̃pkY
∗
ℓkQ̃mr[adj(ψ)ψ

′Y ]ℓm]

Taking the sum over m, we obtain

E[φQ̃pkY
∗
ℓk[Y Q̃]ℓr] =

dk

1 + E[β̃]
E[φQ̃pkQ̃kr]−

1

1 + Eβ̃

1

n
E[φY ∗

ℓk[Q̃DQ̃]pr[Y Q̃]ℓk]

+
1

1 + E[β̃]

1

n
E[Q̃pkY

∗
ℓk[adj(ψ)ψ

′Y DQ̃]ℓr]− E[ ˆ̃βQ̃pkY
∗
ℓk[Y Q̃]ℓr]

where β̃(x) = φ 1
n TrDQ̃(x) and ˆ̃β(x) = β̃(x)−φE[β̃(x)] as in the proof of Lemma A.1.

Taking the sum over ℓ then over k, we obtain

E[φ[Q̃
Y ∗Y

n
Q̃]pr] = cn

1

1 + E[β̃]
E[φ[Q̃DQ̃]pr]−

1

1 + E[β̃]
E[φ[Q̃DQ̃]pr

1

n
Tr(

Y ∗Y

n
Q̃)]

+
1

1 + E[β̃]

1

n
E[[Q̃

Y ∗ adj(ψ)ψ′Y

n
DQ̃]pr]− E[

ˆ̃
β[Q̃

Y ∗Y

n
Q̃]pr]

Observing that (1 + E[β̃(x)])−1 = −xmn(x) + O(n−2) and making the usual ap-
proximations, we get

E[φũ∗Q̃
Y ∗Y

n
Q̃ũ] =

(
xmn(x)

1

n
Tr(E[φ

Y ∗Y

n
Q̃])− cnxmn(x)

)
E[φũ∗Q̃DQ̃ũ] +O(n−1)

Observing that n−1 Tr(E[φ(n−1Y ∗Y )Q̃(x)] = Nn−1xmn(x) +Nn−1 +O(n−2) and
invoking Lemma A.1, we obtain the desired result.

A.4. Proof of Lemma 5.3. As in the previous proofs, we discard unnecessary

indices. We also denote Q̃i = Q̃(ρi). For readability, we also write M̃i = Mi,nAi

and use the shortcut notation Γ =
√
n
∑p

i=1 TrM
∗
i Q̃iM̃i. We focus first on the

term in ρ1. The line of proof closely follows that of Lemma 5.1 with the exception
that we need to introduce the regularization function φ to ensure the existence of
all the quantities under study. That is, with ϕN (t) = E[exp(ıtφΓ)], we only need
to show that ϕ′

N (t) = −tσ̃2
nϕN (t) +O(1/

√
n). Using |ϕN (t)| ≤ 1 and Lemma 4.4,

|E[exp(ıtΓ)]− ϕN (t)| ≤ 1− E[φ] → 0 as N → ∞, from which the result unfolds.
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Using the IP formula, we first obtain

E

[
φ

[
Y ∗Y

n
Q̃1

]

pq

eıtφΓ

]

= cnE
[
φ[DQ̃1]pqe

ıtφΓ
]
− E

[
φ
1

n
TrDQ̃1

[
Y ∗Y

n
Q̃1

]

pq

eıtφΓ

]

− E


ıteıtφΓφ2 1√

n

p∑

j=1

r∑

a=1

[
(M̃j)

∗
aQ̃jDQ̃1

]
q

[
Y ∗Y

n
Q̃j(Mj)a

]

p


+ εn,pq

where

εn,pq = E

[
1

n

[
Y ∗ adj(ψ)ψ′Y

n
DQ̃1

]

pq

eıtφΓ

]
+ E

[
φ
1

n

[
Y ∗ adj(ψ)ψ′Y

n
DQ̃1

]

pq

ıtΓeıtφΓ

]

and where we denoted Xa the column a of matrix X , X∗
a being the row vector

(Xa)
∗.

With β̃j = φ 1
n TrDQ̃j ,

ˆ̃
βj = β̃j − φE

[
β̃j

]
, and with the relation n−1Y ∗Y Q̃1 =

In + ρ1Q̃1, we obtain
(
ρ1(1 + E[β̃1])− cn dp

)
E

[
φ[Q̃1]pqe

ıtφΓ
]
= −δ(p− q)(1 + E[β̃1])E

[
φeıtφΓ

]

− E


ıteıtφΓφ2 1√

n

p∑

j=1

r∑

a=1

[
(M̃j)

∗
aQ̃jDQ̃1

]
q

[
Y ∗Y

n
Q̃j(Mj)a

]

p


+ ε′n,pq

where

ε′n,pq = εn,pq − E

[
ˆ̃
β1

[
Y ∗Y

n
Q̃1

]

pq

eıtφΓ

]
.

Dividing each side by ρ1(1 +E[β̃1])− cn dp, then multiplying by (M̃1)p and (M1)q,
and summing over p, q gives

E[φTr(M̃∗
1 Q̃1M1)e

ıtφΓ] = −(1 + E[β̃1])E[φe
ıtΓ] Tr

(
M̃∗

1Aρ1
M1

)

− ıtE


φ2eıtφΓ 1√

n

p∑

j=1

Tr M̃∗
1Aρ1

Y ∗Y

n
Q̃jMjM̃

∗
j Q̃jDQ̃1


+ ε′n

with Aρi
= (ρi(1 + E[β̃i])In − cnD)−1, and

ε′n = Tr M̃∗
1Aρ1

E′M1

with (E′)pq = ε′pq. From (18), the identity n−1Y ∗Y Q̃j = In+ρjQ̃j, and Lemma 4.5,
we finally obtain

E

[
φTr(M̃∗

1 Q̃1M1)e
ıtφΓ

]
− E[φeıtφΓ] Tr M̃1T̃1M1

= ıtE[φeıtφΓ]
1√
n

p∑

j=1

Tr M̃∗
1

T̃1

1+δ̃1

cnDT̃j

1+δ̃j
MjM̃

∗
j T̃jDT̃1M1

1− cn(1 + δ̃1)−1(1 + δ̃j)−1 1
n TrDT̃1DT̃j

+ ε′n +O(n−2)
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with T̃i = T̃ (ρi), from which

E

[
φTr(M̃∗

1 Q̃1M1)e
ıtφΓ

]
− E[φeıtφΓ] Tr M̃1T̃1M1

=
ıtE[φeıtφΓ]√

n

p∑

j=1

cnρ1mn(ρ1)ρjmn(ρj)Tr M̃
∗
1 T̃1DT̃jMjM̃

∗
j T̃jDT̃1M1

1− cnρ1mn(ρ1)ρjmn(ρj)
1
n TrDT̃1DT̃j

+ ε′n +O(n−2).

It remains to show that ε′n = O(n−1). We have explicitly

ε′n = E

[
1

n
Tr

(
M̃∗

1Aρ1

Y ∗ adj(ψ)ψ′Y

n
DQ̃1M1

)
(1 + φıtΓ)eıtφΓ

]

− E

[
φ ˆ̃β1 Tr

(
M̃∗

1Aρ1

Y ∗Y

n
Q̃1M1

)
eıtφΓ

]
.

Using the fact that |eıtφΓ| = 1 and the relation n−1Y ∗Y Q̃1 = ρ1Q̃1 + In, the
second term is easily shown to be O(n−1) from the Cauchy-Scwharz inequality and
Lemma 4.3. If it were not for the factor Γ, the convergence of the first term would
unfold from similar arguments as in the proof of Lemma 4.6. We only need to
show here that E[|φΓ|2] = O(1). But this follows immediately from Lemma 4.3 and
Lemma 4.5.
The generalization to

∑
i E[φTr(M̃

∗
i Q̃iMi)e

ıtφΓ] is then immediate and we have the
expected result.
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