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THE OUTLIERS AMONG THE SINGULAR VALUES
OF LARGE RECTANGULAR RANDOM MATRICES
WITH ADDITIVE FIXED RANK DEFORMATION

FRANCOIS CHAPON, ROMAIN COUILLET,
WALID HACHEM AND XAVIER MESTRE

ABSTRACT. Consider the matrix X,, = n*l/zXnD,lq/2 + P,, where the matrix
X, € CNX" has Gaussian standard independent elements, D, is a deter-
ministic diagonal nonnegative matrix, and P, is a deterministic matrix with
fixed rank. Under some known conditions, the spectral measures of 3,37
and n~ !X, D, X} both converge towards a compactly supported probability
measure i as N,n — oo with N/n — ¢ > 0. In this paper, it is proved that
finitely many eigenvalues of ¥, 3} may stay away from the support of p in
the large dimensional regime. The existence and locations of these outliers in
any connected component of R — supp(u) are studied. The fluctuations of the
largest outliers of ¥, 3 are also analyzed. The results find applications in the
fields of signal processing and radio communications.

1. INTRODUCTION

1.1. The model and the literature. Consider a sequence of N x n matrices Y,,,
n=1,2,..., of the form Y,, = XnD}/2 where X, is a N x n random matrix whose
coefficients X;; are independent and identically distributed (iid) complex Gaussian
random variables such that ®(X11) and &(X11) are independent, each with mean
zero and variance 1/2, and where D,, is a deterministic nonnegative diagonal n x n
matrix. Writing D,, = diag(d?)j:17,,,7n and denoting by d the Dirac measure, it is
assumed that the spectral measure v, = n~" 3", dar of D, converges weakly to a
compactly supported probability measure v when n — oo. It is also assumed that
the maximum of the distances from the diagonal elements of D, to the support
supp(v) of v goes to zero as n — oo. Assume that N/n — ¢ when n — oo, where
¢ is a positive constant. Then it is known that with probability one, the spectral
measure of the Gram matrix n=1Y,,Y,* converges weakly to a compactly supported
probability measure y (see [26], [16], [35], [36]) and, with probability one, n='Y,,Y,*
has no eigenvalues in any compact interval outside supp(u) for large n [3].

Let r be a given positive integer and consider a sequence of deterministic N x n
matrices P,, n = 1,2, ..., such that rank(P,) = r and sup,, || P,|| < oo where || - ||
is the spectral norm. Consider the matrix ¥, = n=1/2Y, + P,. Since the additive
deformation P, has a fixed rank, the spectral measure of ¥, X7 still converges to p
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(see, e.g., [2, Lemma 2.2]). However, a finite number of eigenvalues of ¥, X (often
called “outliers” in similar contexts) may stay away of the support of p. In this
paper, minimal conditions ensuring the existence and the convergence of these out-
liers towards constant values outside supp(u) are provided, and these limit values
are characterized. The fluctuations of the outliers lying at the right of supp(u) are
also studied.

The behavior of the outliers in the spectrum of large random matrices has aroused
an important research effort. In the statistics literature, one of the first contribu-
tions to deal with this subject was [23]. It raised the question of the behavior of
the extreme eigenvalues of a sample covariance matrix when the population covari-
ance matrix has all but finitely many of its eigenvalues equal to one (leading to a
mutliplicative fixed rank deformation). This problem has been studied thoroughly
in [B [6] B2]. Other contributions (see [I1]) study the outliers of a Wigner matrix
subject to an additive fixed rank deformation. The asymptotic fluctuations of the
outliers have been addressed in [5l [33] [32] [T, 1T} 12} [7].

Recently, Benaych-Georges and Nadakuditi proposed in [§, 9] a generic method
for characterizing the behavior of the outliers for a large palette of random ma-
trix models. For our model, this method shows that the limiting locations as well
as the fluctuations of the outliers are intimately related to the asymptotic be-
havior of certain bilinear forms involving the resolvents (n=1Y,Y,;* — xlx)~! and
(n=Y*Y,, — xI,) ! of the undeformed matrix for real values of . When D,, = I,
the asymptotic behavior of these bilinear forms can be simply identified (see [9])
thanks to the fact that the probability law of Y,, is invariant by left or right mul-
tiplication by deterministic unitary matrices. For general D,,, other tools need to
be used. In this paper, these bilinear forms are studied with the help of an inte-
gration by parts formula for functionals of Gaussian vectors and the Poincaré-Nash
inequality. These tools belong to the arsenal of random matrix theory, as shown
in the recent monograph [31] and in the references therein. In order to be able to
use them in our context, we make use of a regularizing function ensuring that the
moments of the bilinear forms exist for certain z € Ry = [0, 00).

The study of the spectrum outliers of large random matrices has a wide range
of applications. These include communication theory [20], fault diagnosis in com-
plex systems [I4], financial portfolio management [34], or chemometrics [29]. The
matrix model considered in this paper is widely used in the fields of multidimen-
sional signal processing and radio communications. Using the invariance of the
probability law of X,, by multiplication by a constant unitary matrix, D,, can be
straightforwardly replaced with a nonnegative Hermitian matrix R,,. In the model

XnRs/ 2 + P,, where R,ll/ 2 is any square root of R,, matrix P, often represents n
snapshots of a discrete time radio signal sent by r sources and received by an array
of N antennas, while XnR}/ Yisa temporally correlated and spatially independent
“noise” (spatially correlated and temporally independent noises can be considered
as well). In this framework, the results of this paper can be used for detecting
the signal sources, estimating their powers, or determining their directions. These

subjects are explored in the applicative paper [40].
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The remainder of the article is organized as follows. The assumptions and the
main results are provided in Section [2l The general approach as well as the basic
mathematical tools needed for the proofs are provided in SecionBl These proofs are
given in Sections Ml and Bl which concern respectively the first order (convergence)
and the second order (fluctuations) behavior of the outliers.

2. PROBLEM DESCRIPTION AND MAIN RESULTS

Given a sequence of integers N = N(n), n = 1,2,..., we consider the sequence
of N x n matrices ¥, = n~/2Y,, + P, = n_1/2XnD,1/2 + P, with the following
assumptions:

Assumption 1. The ratio ¢, = N(n)/n converges to a positive constant ¢ as
n — 0o.
Assumption 2. The matriz X,, = [Xu]fvjil is a N x n random matriz whose

coefficients X;; are iid complex random variables such that R(X11) and I(X11) are
independent, each with probability distribution N(0,1/2).

Assumption 3. The sequence of nxn deterministic diagonal nonnegative matrices
D,, = diag(d})}_, satisfies the following:
(1) The probability measure v, = n~! Z?Zl dqn converges weakly to a probabil-
ity measure v with compact support.
(2) The distances d(d},supp(v)) from d} to supp(v) satisfy
ax d(d?,s — 0.
e & () ep() T
The asymptotic behavior of the spectral measure of n=1Y,,Y,* under these as-
sumptions has been thoroughly studied in the literature. Before pursuing, we recall
the main results which describe this behavior. These results are built around the

Stieltjes Transform, defined, for a positive finite measure p over the Borel sets of
R, as

m(e) = [ =l 1)

analytic on C — supp(u). It is straightforward to check that Sm(z) > 0 when z €
Cy ={z : S(2) > 0}, and sup,~o |ym(wy)| < oo. Conversely, any analytic function
m(z) on C4 that has these two properties admits the integral representation ()
where 1 is a positive finite measure. Furthermore, for any continuous real function
o with compact support in R,

/cp(t)u(dt) = %ljfol/go(x)gm(:v + ) dx (2)

which implies that the measure p is uniquely defined by its Stieltjes Transform.
Finally, if $(zm(z)) > 0 when z € C4, then u((—o00,0)) =0 [25].

These facts can be generalized to Hermitian matrix-valued nonnegative finite mea-
sures [10, [I5]. Let m(z) be a C"*"-valued analytic function on z € C;. Letting
SX = (X — X*)/(2), assume that Sm(z) > 0 and I(zm(z)) > 0 in the or-
der of the Hermitian matrices for any z € Cy, and that sup,. [ym(wy)| < oco.
Then m(z) admits the representation (Il) where p is now a r X r matrix-valued
nonnegative finite measure such that u((—o00,0)) = 0. One can also check that
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([0, 00)) = — lim, s oc iy m(—2y).

The first part of the following theorem has been shown in [26] B6], and the second
part in [3)]:
Theorem 2.1. Under Assumptions[, [A and[3, the following hold true:
(1) For any z € C, the equation

m = <—z+/ﬁu(dt}> - (3)

admits a unique solution m € C4. The function m = m(z) so defined on
C is the Stieltjes Transform of a probability measure p whose support is a
compact set of R.

Let (A\");=1,...n be the eigenvalues of n=*Y,,Y,*, and let 0, = N~! Zfil Oxn
be the spectral measure of this matriz. Then for every bounded and contin-

uous real function f,

[twonan = [ foua. @)
(2) For any interval [x1,22] C R — supp(u),
8{i + A} € [z1,22]} = 0 with probability 1 for all large n.
We now consider the additive deformation P,,:

Assumption 4. The deterministic N x n matrices P, have a fixed rank equal to
r. Moreover, Pmax = sup,, || Pu|| < co.

In order for some of the eigenvalues of ¥,X* to converge to values outside
supp(u), an extra assumption involving in some sense the interaction between P,
and D, is needed. Let P, = USS(RS%)* be the Gram-Schmidt factorization of P,
where USS is an isometry N x r matrix and where (RSS)* is an upper triangular
matrix in row echelon form whose first nonzero coefficient of each row is positive.
The factorization so defined is then unique. Define the r x r Hermitian nonnegative
matrix-valued measure ASS as

5d7lz (dt)
AP (dt) = (R.)* RS
5,12 (dt)
Assumption Bl shows that dyax = sup,, || Dn|| < co. Moreover, it is clear that the
support of ASS is included in [0, dpax] and that ASS([0, dpmax]) < P2 L Since
the sequence ASS([0, dpay]) is bounded in norm, for every sequence of integers
increasing to infinity, there exists a subsequence nj and a nonnegative finite measure
A, such that [ f(£)AGS(dt) — [ f(t)A.(dt) for every function f € C([0, dmax]),
with C([0, dmax]) being the set of continuous functions on [0, dyax]. This fact is a
straightforward extension of its analogue for scalar measures.

Assumption 5. Any two accumulation points A1 and As of the sequences ASS
satisfy Ai(dx) = WA (dx)W™ where W is a r X r unitary matriz.

This assumption on the interaction between P, and D,, appears to be the least
restrictive assumption ensuring the convergence of the outliers to fixed values out-
side supp(u) as n — oo. If we consider some other factorization P, = U, R} of P,
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where U, is an isometry matrix with size N x r, and if we associate to the R,, the
sequence of 7 x r Hermitian nonnegative matrix-valued measures A,, defined as

5,1711 (dt)
A, (dt) = R R, (5)
San (dt)

then it is clear that A, (dt) = W, ASS(dt)W," for some r x r unitary matrix W,,.
By the compactness of the unitary group, Assumption [ is satisfied for ASS if and
only if it is satisfied for A,. The main consequence of this assumption is that for
any function f € C([0,dmax]), the eigenvalues of the matrix [ f(¢)A, (dt) arranged
in some given order will converge.

An example taken from the fields of signal processing and wireless communica-
tions might help to have a better understanding the applicability of Assumption
In these fields, the matrix P,, often represents a multidimensional radio signal re-
ceived by an array of N antennas. Frequently this matrix can be factored as
P, = n_1/2UnAnS:; where U, is a deterministic N X r isometry matrix, A4, is a
deterministic 7 x r matrix such that A, A} converges to a matrix M asn — oo (one
often assumes A, A}, = M for each n), and S,, = [S;;];'}_, is a n x r random matrix
independent of X,, with iid elements satisfying ES; 1 = 0 and E|S;1]?> =1 (in the
wireless communications terminology, U, A,, is the so called MIMO channel matrix
and S,, is the so called signal matrix, see [38]). Taking R, = n~/2S,, A% in (@) and
applying the law of large numbers, one can see that for any f € C([0, dax]), the
integral [ f(t)An(dt) converges to [ f(t)A.(dt) with A, (dt) = v(dt) x M. Clearly,
the accumulation points of the measures obtained from any other sequence of fac-
torizations of P, are of the form v(dt) x WMW™* where W is an r X r unitary matrix.

It is shown in [37] that the limiting spectral measure p has a continuous density
on R* = R—{0} (see Prop. Bdlbelow). Our first order result addresses the problem
of the presence of isolated eigenvalues of ¥, 3% in any compact interval outside the
support of this density. Of prime importance will be the r x r matrix functions

Ho(2) = / _mE)

1+ cem(2)t

where A, is an accumulation point of a sequence A,. Since |1 + em(z)t| = |z(1 +
em(2)t)|/1z] = |S(z(1 + em(2)t))|/]z] > S(2)/|2| on C4, the function H,.(z) is
analytic on Cy. It is further easy to show that $(H,(z)) > 0 and S(zH.(2)) > 0
on Cy, and sup,.q [|[yH.(1y)|| < oo. Hence H.(z) is the Stieltjes Transform of a
matrix-valued nonnegative finite measure carried by [0, 00). Note also that, under
Assumption [l the eigenvalues of H,.(z) remain unchanged if A, is replaced by
another accumulation point.

The support of pu may consist in several connected components corresponding
to as many “bulks” of eigenvalues. Our first theorem specifies the locations of the
outliers between any two bulks and on the right of the last bulk. It also shows that
there are no outliers on the left of the first bulk:

Theorem 2.2. Let Assumptions [, [ and [ hold true. Denote by (A!)i=1,.. N
the eigenvalues of £,X%. Let (a,b) be any connected component of supp(p)® =
R — supp(p). Then the following facts hold true:
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(1) Let (Py) be a sequence satisfying Assumptions[f] and[A Given an accumu-
lation point A, of a sequence A,,, let H.(z) = [ m(z)(1+cm(z)t) " A, (dt).
Then H.(z) can be analytically extended to (a,b) where its values are Her-
mitian matrices, and the extension is increasing in the order of Hermitian
matrices on (a,b). The function D(x) = det(H.(x) + I,) has at most r

zeros on (a,b). Let p1,...,pk, k <1 be these zeros counting multiplicities.
Let T be any compact interval in (a,b) such that {p1,...,pr} NOL = 0.
Then

#{i : NP e I} = #{i : p; € T} with probability 1 for all large n.

(2) Let A = inf (supp(p) — {0}). Then for any positive A’ < A (assuming it
exists) and for any sequence of matrices (Py,) satisfying Assumption [}

8{i : A" € (0, A']} = 0 with probability 1 for all large n.

Given any sequence of positive real numbers p; < --- < p, lying in a connected
component of supp(u)¢ after the first bulk, it would be interesting to see whether
there exists a sequence of matrices P, that produces outliers converging to these
pk- The following theorem answers this question positively:

Theorem 2.3. Let Assumptions[D [ and[3 hold true. Let p1 < --- < p, be a se-
quence of positive real numbers lying in a connected component (a,b) of supp(p)©,
and such that a > A. Then there exists a sequence of matrices P, satisfying As-
sumptions[f] and[d such that for any compact interval T C (a,b) with {p1,...,pr}N
0L =1,

#{i : NP e T} = #{i : p; € T} with probability 1 for all large n.

It would be interesting to complete the results of these theorems by specifying
the indices of the outliers 5\? that appear between the bulks. This demanding anal-
ysis might be done by following the ideas of [I1] or [39] relative to the so called
separation of the eigenvalues of 3, ¥%. Another approach dealing with the same
kind of problem is developed in [4].

A case of practical importance at least in the domain of signal processing is
described by the following assumption:

Assumption 6. The accumulation points A, are of the form v(dt) x WQW™* where

wil;
Q= >0, w>--->wd jit+-+ii=r
wiIj,
and where W is a unitary matriz.

Because of the specific structure of S,, in the factorization P, = n~'/?U, A, S¥,

the MIMO wireless communication model described above satisfies this assumption,
the w? often referring to the powers of the radio sources transmitting their signals
to an array of antennas.
Another case where Assumption [0l is satisfied is the case where P, is a random
matrix independent of X,,, where its probability distribution is invariant by right
multiplication with a constant unitary matrix, and where the r non zero singular
values of P,, converge almost surely towards constant values.
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When this assumption is satisfied, we obtain the following corollary of Theorem 221
which exhibits some sort of phase transition analogous to the so-called BBP phase
transition [5]:

Corollary 2.1. Assume the setting of Theorem [ZZ-[l), and let Assumption [@
hold true. Then the function g(x) = m(x) (cxm(z) — 1 + ¢) is decreasing on (a,b).
Depending on the value of wi, ¢ = 1,...,t, the equation wig(z) = 1 has either
zero or one solution in (a,b). Denote by p1,...,pk, k < r these solutions counting
multiplicities. Then the conclusion of Theorem [2Z2-) hold true for these p;.

We now turn to the second order result, which will be stated in the simple and
practical framework of Assumption [6l Actually, a stronger assumption is needed:

Assumption 7. The following facts hold true:

sup v/nlc, — ¢ < oo,
n

limsup\/ﬁ‘/ ! Up(dt) — /t !

t—x

V(dt)‘ < oo for all x € R — supp(v).

Moreover, there ezists a sequence of factorizations of P, such that the measures A,
associated with these factorizations by @) converge to v(dt) x Q and such that

limsup\/ﬁH/tLAn(dt) - /t !
n -z

v(dt) x QH < o0 for all z € R — supp(v)

Note that one could have considered the above superior limits to be zero, which
would simplify the statement of Theorem [2.4] below. However, in practice this
is usually too strong a requirement, see e.g. the wireless communications model
discussed after Assumption [3 for which the fluctuations of A, are of order n='/2.
On the opposite, slower fluctuations of A, would result in a much more intricate
result for Theorem [Z.4], which we do not consider here.

Before stating the second order result, a refinement of the results of Theorem

2T is needed:
Proposition 2.1 ([36, 22| [I8]). Assume that D,, is a n x n diagonal nonnegative

matriz. Then, for any n, the equation

-1
1 ~ _
My, = [—z (1 + = TanTn>} where T, = [—z (I, + cpmnDy)] !
n

admits a unique solution m,, € C4 for any z € C4. The function m, = m,(z)
so defined on Cy is the Stieltjes Transform of a probability measure p, whose
support is a compact set of Ry. Moreover, the n xn diagonal matriz-valued function
Tn(2) = [—2(In+cnman(2)Dy)] 7L is analytic on C4 and n= Tr T, (2) coincides with
the Stieltjes Transform of cppn + (1 — ¢,)d0.

Let Assumption[d hold true, and assume that sup,, ||Dy,|| < oo, and 0 < liminf ¢, <
limsupe, < co. Then the resolvents Qn(z) = (n™'Y, Y, — zIn)" and Qn(z) =
(=YY, — 21,) ! satisfy

T (Qu(e) ~ () 50 and LT (Galz) ~ Tu()) 20 (6)

for any z € C4.. When in addition Assumptions[l and[3 hold true, m,(z) converges
to m(z) provided in the statement of Theorem [21] uniformly on the compact subsets

Of (C+.
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The function m,(2) = (—z + [ (1 + cnmn(z)t)*ll/n(dt))_l is a finite n approx-
imation of m(z). Notice that since N~! Tr Q,,(z) is the Stieltjes Transform of the
spectral measure 6, of n=1Y,,Y,*, Convergence (@) stems from (@).

We shall also need a finite n approximation of H,(z) defined as

()= [ %Anm

With these definitions, we have the following preliminary proposition:

Proposition 2.2. Let Assumptions[d, [3[7 hold true. Let g be the function defined
in the statement of Corollary [Z1] and let B, = sup(supp(u)). Assume that the
equation wig(z) = 1 has a solution in (B,,0), and denote p1 > --- > p, the
existing solutions (with respective multiplicities ji, . .., jp) of the equations wig(z) =
1 in (By,00). Then the following facts hold true:

2
i)l ) . )
e A(p))=1- c/ (%) v(dt) is positive for every i =1,...,p.

e Denoting by Hin(2),...,Hpn(2) the first p upper left diagonal blocks of
H,(2), where H;,(z) € C/i*Ji  limsup, ||vn(Hin(pi) + 1;;)|| < oo for
everyi=1,...,p.

We recall that a GUE matrix (i.e., a matrix taken from the Gaussian Unitary
Ensemble) is a random Hermitian matrix G' such that G;; ~ N(0,1), R(G;;) ~
N(0,1/2) and S(G,5) ~ N(0,1/2) for i < j, and such that all these random
variables are independent. Our second order result is provided by the following
theorem:

Theorem 2.4. Let Assumptions[D{7 hold true. Keeping the notations of Proposi-
tion[2.3, let

A/n/
A beetgioa+1 1
M = Vvn —Pi |-
. .
)\j1+"'+ji

where jo = 0 and where the eigenvalues 5\? of £,X5 are arranged in decreasing
order. Let Gy, ...,G, be independent GUE matrices such that G; is a j; X j; matriz.
Then, for any bounded continuous f: R T+Fir 5 R,
E[f(M7,.... M) —E[f(EF,....E})] — 0
where E" € R is the random vector of the decreasingly ordered eigenvalues of the
matric
1

— (oG H; )+ 1,

W?Q(Pi)l (az i+ \/ﬁ( z,n(pl) + 7,)) )
where

2(p; 2 + 2wt Fm(p;)t ’
o M) / + 2w 2V(dt)+c(/%y(dt>>
Alpi) |J (1+cem(pi)t) (1+ cm(pi)t)
Some remarks can be useful at this stage. The first remark concerns Assump-
tion [7l which is in some sense analogous to [7, Hypothesis 3.1]. This assumption

is mainly needed to show that the \/n|H; »(p;) + I}, || are bounded, guaranteeing
the tightness of the vectors M. Assuming that A, and A/, both satisfy the third
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item of Assumption [T} denoting respectively by H; ,(p;) and H , (p;) the matrices
associated to these measures as in the statement of Theorem 2.4] it is possible to
show that v/n(o(Hin(pi) — o(H],(pi)) — 0 as n — oo. Thus the results of this
theorem do not depend on the particular measure A,, satisfying Assumption[1 Fi-
nally, we note that Assumption [ can be lightened at the expense of replacing the
limit values p; with certain finite n approximations of the outliers, as is done in the

applicative paper [40].

The second remark pertains to the Gaussian assumption on the elements of X,,.
We shall see below that the results of Theorems are intimately related
to the first and second order behaviors of bilinear forms of the type w}Qy,(x)v,,
ﬂ;‘l@n(az)fzn, and n’1/2u;§Yn@n(x)f;n where u,, v,, @, and ¥, are deterministic
vectors of bounded norm and of appropriate dimensions, and where x is a real
number lying outside the support of p. In fact, it is possible to generalize Theorems
and to the case where the elements of X,, are not necessarily Gaussian.
This can be made possible by using the technique of [21I] to analyze the first order
behavior of these bilinear forms. On the other hand, the Gaussian assumption plays
a central role in Theorem 2.4l Indeed, the proof of this theorem is based on the fact
that these bilinear forms asymptotically fluctuate like Gaussian random variables
when centered and scaled by y/n. Take u,, = e1 n and 9, = ey, where g, is the
kI canonical vector of R™. We show below (see Proposition 2] and Lemmas

and L) that the elements ¢j; of the resolvent Qn(z) are close for large n to the

elements f% of the deterministic matrix T},(z). We therefore write informally

61 NY Q 61 n Z dn 1/2QJ1X1J (dn)1/2t X11 + Z dn 1/2L]J1X1j.
j=1 j=2

It can be shown furthermore that #7, = O(1) for large n and that the sum > o
is tight. Hence, eiNYnQv(:E)eLn is tight. However, when X7; is not Gaussian, we
infer that ej. NYHQ (x)e1,, does not converge in general towards a Gaussian random
variable. In this case, if we choose P, = w?®e; yei,, (see Section[]), Theorem Z4Ino
longer holds. Yet, we conjecture that an analogue of this theorem can be recovered
when ey and e; ,, are replaced with delocalized vectors, following the terminology

of [12]. In a word, the elements of these vectors are “spread enough” so that the
Gaussian fluctuations are recovered.

A word about the notations. In the remainder of the paper, we shall often drop
the subscript or the superscript n when there is no ambiguity. A constant bound
that may change from an inequality to another but which is independent of n will
always be denoted K. Element (4, j) of matrix M is denoted M;; or [M];;. Element
i of vector x is denoted [z];. Convergences in the almost sure sense, in probability

and in distribution will be respectively denoted =55, i>, and .

3. PRELIMINARIES AND USEFUL RESULTS

We start this section by providing the main ideas of the proofs of Theorems
and
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3.1. Proof principles of the first order results. The proof of Theorem 221 (),
to begin with, is based on the idea of [8,[9]. We start with a purely algebraic result.
Let P, = U,R} be a factorization of P, where U, is a N x r isometry matrix.
Assume that x > 0 is not an eigenvalue of n=1Y,,Y,*. Then z is an eigenvalue of
$,37 if and only if det S, (z) = 0 where S, (z) is the 2r x 2r matrix

S (x) = VU, Qn(2)Un L+~ V2UEY, Qn(2) Ry
" I +n ' 2R:Q,(2)Y, U, VIR Qu(z) Ry

(for details, see the derivations in [9] or in [20, Section 3]). The idea is now the
following. Set x in supp(u)©. Using an integration by parts formula for functionals
of Gaussian vectors and the Poincaré-Nash inequality [31], we show that when n is
large,

U Qu(2)Up, = my(2)I, R:zén(x)Rn ~ R;Tn(x)Rm
and n= V2R Q (2)Y U, ~ 0

by controlling the moments of the elements of the left hand members. To be able
to do these controls, we make use of a certain regularizing function which controls
the escape of the eigenvalues of n=1Y,,Y,* out of supp(p). Thanks to these results,

Sp(x) is close for large n to
n I’I‘ I’I‘
Sp(x) = V(@) o :
I, VIR:T, (z)R,
Hence, we expect the eigenvalues of 3, X7 in the interval Z, when they exist, to be
close for large n to the zeros in Z of the function

det S, (z) = det (xmn(:v)RZTn(:v)Rn - Ir)
= (—=1)"det (mn(x) R}, (In + comn(z)Dn) " Ry + 1)
= (=1)"det (H,(z)+ I,)

which are close to the zeros of D(x) = det(H.(x) + I,). By Assumption [ these
zeros are independent of the choice of the accumulation point A..

To prove Theorems 22} [2]) and 23] we make use of the results of [37] and [27], 28]
relative to the properties of p and to those of the restriction of m(z) to R —supp(u).
The main idea is to show that

e m(z)(1+cm(z)t)! > 0 for all z € supp(u)¢ N (—oo, A) (these z lie at the
left of the first bulk) and for all ¢ € supp(v).

e For any component (a,b) C supp(u)© such that a > A (i.e., lying between
two bulks or at the right of the last bulk), there exists a Borel set E C R4
such that v(E) > 0 and

m(z)
q(z) = /E mu(dt) <0
for all = € (a,b).
Thanks to the first result, for any x lying if possible between zero and the left edge
of the first bulk, D(z) > 0, hence ¥,,X7 has asymptotically no outlier at the left of

the first bulk.
Coming to Theorem 23] let E be a set associated to (a, ) by the result above. We
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build a sequence of matrices P, of rank r, and such that the associated A,, have
an accumulation point of the form A.(dt) = 1g(t) Qv(dt) where we choose Q =
diag(—q(p1)~t,...,—q(pr)"1). Theorem 22+ shows that the function H.(z) =
q(2) associated with this A, is increasing on (a,b). As aresult, H,(x)+1I, becomes
singular precisely at the points p1,..., p,.

3.2. Sketch of the proof of the second order result. The fluctuations of the
outliers will be deduced from the fluctuations of the elements of the matrices S, (p;)
introduced above. The proof of Theorem 2.4 can be divided into two main steps.
The first step (Lemma [54) consists in establishing a Central Limit Theorem on the
3p—uple of random matrices

Ut YuQu(pi) Rin
(e

U2 (Qu(pi) — M (0i) IN) Ui s

R} (@n(p) = Talp) Rin)

where P, = U, R} is a sequence of factorization such that A,, satisfies the third
item of Assumption[ll We also write U,, = [U1,, -+ Uppn] and Ry, = [R1, -+ Rin)
where U, ,, € CVN*Ji and R;,, € C™*Ji.

This CLT is proven by using the Gaussian tools introduced in Section[3.4] namely
the integration by parts formula and the Poincaré-Nash inequality, and by relying
on the invariance properties of the probability distribution of n=!/2X,,. The fluc-
tuations of the zeros of det S, (z) outside supp(x) are then deduced from this CLT
by adapting the approach of [7] (Lemma [5.3]).

We now come to the basic mathematical tools needed for our proofs:

3.3. Differentiation formulas. Let 9/0z = (9/0x—10/dy)/2 and 8/0z = (0/dx+
10/0y)/2 for z = x 4+ 1. Given a Hermitian matrix X with a spectral decompo-
sition X' = 7, Avevy, let adj(X) = 374 (Is24 A)urvy be the classical adjoint of
X, i.e., the transpose of its cofactor matrix. Let ¢ be a continuously differentiable
real-valued function on R. Then

Ddety (YY) 1
a}—/ij = [adJ (1/) (n YY )) P (n YY ) yj]i

where y; is column j of Y, see [19, Lemma 3.9] for a proof.
We shall also need the expressions of the following derivatives of the elements of
the resolvents @ and @ (see [I8]):

Qpg _ _1 9Qpy

P 1OV, Qi 4

1~ -
= _EQM [YQ]iq-

3.4. Gaussian tools. Our analysis fundamentally relies on two mathematical tools
which are often used in the analysis of large random matrices with Gaussian ele-
ments. The first is the so called integration by parts (IP) formula for functionals of
Gaussian vectors introduced in random matrix theory in [24[30]. Let ' : R2N" — C
be a continuously differentiable function polynomially bounded together with its
partial derivatives. Then

B (v r() - d | ]

oy,
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for any i € {1,...,N} and j € {1,...,n}. The second tool is the Poincaré-Nash
inequality (see for instance [13]). In our situation, it states that the variance
Var(T'(Y)) satisfies

N n
Var(D(Y)) <> Y d;E
i=1 j=1

2

’ ar(Y)

2 ’ar(y)
+
oY,

oY,

We now recall the results of Silverstein and Choi [37] which will be needed to
prove Theorems 2.2} [@2]) and Close results can be found in [27] and in [28].

3.5. Analysis of the support of u.
Proposition 3.1 ([37], Th.1.1). For all x € R*, lim m(z) exists. The limit

z€Cp—x
that we denote m(x) is continuous on R*. Moreover, p has a continuous density f
—l

on R* given by f(z) = 7 'Sm(z).

In [37], the support of 4 is also identified. Since m(z) is the unique solution in
Cy of @) for z € C4, it has a unique inverse on C, given by
1 t
z(m) = —— —(dt
(m) m + 1+ cmt (d?)
The characterization of the support of i is based on the following idea. On any open
interval of supp(p)¢, m(z) = [(t — z)~'u(dt) is a real, continuous and increasing
function. Consequently, it has a real, continuous and increasing inverse. In [37],
it is shown that the converse is also true. More precisely, let B = {m : m #
0, —(em)~! € supp(v)¢}, and let
rx : B — R

m — x(m):—%—i-/

Then the following proposition holds:

Proposition 3.2 ([37], Th. 4.1 and 4.2). For any xo € supp(p), let my = m(zo).
Then mgy € B, xo = x(my), and 2'(mg) > 0. Conversely, let my € B such that
x'(mg) > 0. Then xo = z(myg) € supp(u)©, and m(zy) = my.

t (7)
Tpp— v(dt).

The following proposition will also be useful:

Proposition 3.3 ([37], Th. 4.4). Let [mj, ms] and [m3, my] be two disjoint in-
tervals of B satisfying Vm € (my, mg) U (m3,my), ’'(m) > 0. Then [z1,22] and
[z, x4] are disjoint where x; = x(m;).

The following result is also proven in [37]:
Proposition 3.4. Assume that v({0}) = 0. Then p({0}) = max(0,1 —c1).

We shall assume hereafter that v({0}) = 0 without loss of generality (otherwise,
it would be enough to change the value of ¢). The two following lemmas will also
be needed:

Lemma 3.1. Let T be a compact interval of supp(u)¢, and let D1 be the closed disk
having T as one of its diameters. Then there exists a constant K which depends on
T only such that

Vit esupp(v), Vz € Dz, |1 +cem(2)t| > K, and
V'n large enough, Yt € supp(vy), Vz € Dz, |1+ cpymp(2)t] > K.
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From the second inequality, we deduce that if {0} & Z, the matrix function T}, (z)
is analytic in a neighborhood of Z for n large enough, and
limsup sup [T, (2)|| < oo. (8)
n ze€Dt

Proof. When z € C4, Sm(z) > 0 and S(—(ecm(z))™!) > 0, and we have the
opposite inequalities when 3z < 0. Applying Proposition B2 for z € Z, we deduce
that |m(z)| and f(z) = d(—(em(z))~ !, supp(v)) are positive on Dz. Since these
functions are continuous on this compact set, min |m(z)| = K1 > 0 and min f(z) =
K5 > 0 on Dz. Consequently, for any z € Dz and any t € supp(v), |1 + cm(2)t| =
lem(2)(—(em(2))~ = t)| > |em(2)|f(2) > cK1K2 > 0. We now prove the second
inequality. Denote by dy (A, B) the Hausdorff distance between two sets A and B.

Let fn(2) = d(—(camn(2)) 7%, supp(vy,)). We have

-1 -1 -1

"0 (0 )+ gy wee)
fn(2) < cnmp(2)” em(z) + cm(z) Supp(vn)

< d(—717 1
— \epmp(z) em(z)

and £(2) < d(—(cuma(2))"", —(em(2)) ™) + fu(2) + di (supp(vy), Supp(v) simi-
larly. Since m,,(z) converges uniformly to m(z) and inf |m(z)| > 0 on Dz, we get
that d(—(c,mn(2))~!, —(em(2)) 1) — 0 uniformly on this disk. By Assumption [3]
du (supp(vy),supp(v)) — 0. Hence f,,(z) converges uniformly to f(z) on Dz which
proves the second inequality. 0

)+ 1(2) + dua(supp(vn), supp(v)),

Lemma 3.2. Assume the setting of Lemmal3 1], and assume that {0} ¢ Z. Then
for any sequence of vectors @, € C™ such that sup,, ||i,| < oo, the quadratic
forms a;‘lfn(z)ﬁn are the Stieltjes Transforms of positive measures =y, such that
sup,, 7n(R) < 0o and v,(Z) = 0 for n large enough.

Indeed, one can easily check the conditions that enable @} T, (2)i, to be a Stielt-
jes Transform of a positive finite measure. The last result is obtained by analyticity
in a neighborhood of Z. In fact, it can be checked that supp(y,) C supp(u,) U {0}.

3.6. A control over the support of 6,,. In this paragraph, we adapt to our case
an idea developed in [T1] to deal with Wigner matrices whose elements distribution
satisfies a Poincaré-Nash inequality.

Proposition 3.5. For any sequence of n X n deterministic diagonal nonnegative
matrices U, such that sup,, ||Uy|l < oo,

2B, () - ()| < LELERED
PRSI

<

1.~ 1~ ~
= Tx UnEQu(2) = — Tr UaTa(2) :

n

for z € C1, where P and R are polynomials with nonnegative coefficients indepen-
dent of n.

This proposition is obtained from a simple extension of the results of [I8, Th. 3
and Prop.5] from z € (—00,0) to z € C,..
The following important result, due to Haagerup and Thorbjgrnsen, is established
in the proof of [17, Th.6.2]:
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Lemma 3.3. Assume that h(z) is an analytic function on C4 that satisfies |h(z)| <
P(|z))R(|S(2)|7) where P and R are polynomials with nonnegative coefficients.
Then for any function ¢ € C°(R,R), the set of smooth real-valued functions with
compact support in R,

lim sup < 0.

y40

/R o(@)h(z + w)dz

Since N~ TrQ,(z) is the Stieltjes Transform of the spectral measure 6,,, the
inversion formula (2)) shows that

/ A1) Ou(d) = ~ lim S / () 3 T @l + 1) d

for any function ¢ € C°(R,R). Using then Proposition and Lemma B3] we
obtain the following result:

Proposition 3.6. For any function ¢ € C°(R,R),
K
[ oo — [ o< L.

4. PROOFS OF FIRST ORDER RESULTS

In all this section, Z is a compact interval of a component (a,b) of supp(u)©,
and z is a complex number such that R(z) € Z and 3(z) is arbitrary. Moreover,
Un,Up € CN and ,,7, € C" are sequences of deterministic vectors such that
sup,, max(|[w, ||, |vnll, [[@nll, [|Tal]) < oo, and U, is a sequence of n x n diagonal
deterministic matrix such that sup,, ||U,| < .

We now introduce the regularization function alluded to in the introduction. Choose
¢ > 0 small enough so that ZNS, = () where S. = {z € R, d(z, supp(n) U{0}) < e}.
Fix 0 <& <e,let ¢ : R — [0, 1] be a continuously differentiable function such that

1 ifzeS.
W”)_{ 0 ifreR—G.

and let ¢, = dety(n~1Y,,Y,*). In all the subsequent derivations, quantities such as
W Qn (2)uy, or @ Qn(2)iy, for R(z) € Z will be multiplied by ¢,, in order to control
their magnitudes when z is close to the real axis. By performing this regularization
as is done in [I9], we shall be able to define and control the moments of random
variables such as ¢, v’ Qn(z)u, or ¢, ﬁ;@n(z)ﬁn with the help of the Gaussian
tools introduced in Section B.4]

We start with a series of lemmas. The first of these lemmas relies on Proposition
and on the Poincaré-Nash inequality. Its detailed proof is a minor modification
of the proof of [19, Lemma 3] and is therefore omitted:

Lemma 4.1. Given 0 < &’ < g, let ¢ be a smooth nonnegative function equal to
zero on S and to one on R — S.. Then for any ¢ € N, there exists a constant K,
for which

Ky

E [(Tnp(n*lyny,j))é] <=

Remark 1. Notice that this lemma proves Theorem[Z1F2). The proof provided in
[B] is in fact more general, being not restricted to the Gaussian case.
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Lemma 4.2. For any { € N, the following holds true:

N,n
E{Yd

ij=1

Y4
O |
oY,

Ky
= e

Proof. Letting n=2Y = W diag(v/A1,--- , VAx)V* be a singular value decompo-
sition of n=2Y, we have

adj (w (YZ )) w’(yz* ) % — WEV* where E = diag(ﬁkw’(Ak) g 1/)()\g)) ::1

and we observe that Tr=? < KZ,, where Z, = #{k : \y € S. — S./}. Using the
first identity in Section and recalling that | Tr(AB)| < ||A|| Tr B when A is a
square matrix and B is a Hermitian nonnegative matrix, we have

¢
N,n

On | 1 o ypyr - \\‘| _K__,
=\ | S alg] ) |-t (1 (a2 i) ) | < ez
and the result follows from Lemma ] with a proper choice of (. O

Lemma 4.3. The following inequalities hold true:
E|¢n 1;,Qn(2)vn — Eldn u;,Qn(2)vn]|" <
E |¢n i5,Qn(2)0n — Elgn @5,Qn(2)0]| <
Var (¢n Tr Qn(2)) < K.

Proof. We shall only prove the first inequality. By the polarization identity, this
inequality is shown whenever we show that E |¢ u*Qu — E[¢ u*Qu]|4 < K/n?. Let
us start by showing that Var(¢u*Qu) < K/n. By the Poincaré-Nash inequality,
we have

opu* Qu
\Y <2 E d;E
ar (pu*Qu) P ’ v,
ou* Qu Iolo) 2
<4 d;E |¢p—= 4 d;E
> el > w|ra oY
4,j=1 i,j=1
Using the expression of 0Q,,/0Y;; in Section B3] we have
ou*Qu/dYi; = —n  u* Qy; [Qul;,
hence
i 8u*Qu K
2
, _ S < =
) dJE’¢ 57 E[eﬁ QX2 Quuq }_n

ij=1
since the argument of the expectation is bounded for R(z) € Z. From the first
identity in Section B3, Y, ; d;E [u*Qudg/dYi;|* < K'Y,  d;E|96/0Y;;|* which
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is bounded by K/n? by Lemma It results that Var(¢u*Qu) < K/n. Now,
writing X= X — EX,
/—/O‘xﬁl 9 /—L\ 2 9 /—L\ 2
E‘¢u*Qu‘ = (Var(pu*Qu)) +Var((¢u*@u) ) < K/n +Var((¢u*Qu) )
By the Poincaré-Nash inequality,

o o

—— 2 N —_— 2 2
Var((qSu Qu) ) < 2“2:1 d/jE}a((bu QU) / 9Yi;

N,n ° N,n °
7 —~  OutQu? : o L 09 |2
<16y djE‘m Qu o7 ’ +16 Y dj]E’¢u QuuQue| = VitV
ij=1 ‘ irj=1 ’

[e]

—N—2
By developing the derivative in V; similarly to above, V3 < Kn_lE’¢u*Qu‘ <
Kn~2. By the Cauchy-Schwarz inequality and Lemma £2]

<)

N,n °
i —
B<K Y dj]E‘¢u*Qu ;f_
S 17

i,j=1
[e]
—N—4
Writing a,, = nQE‘qﬁu*Qu , we have shown that \/a,, < K/\/a, + K/n. Assume
that a, is not bounded. Then there exists a sequence nj of integers such that

ap, — 00, which raises a contradiction. The first inequality in the statement of
this lemma is shown. The other two inequalities can be shown similarly. O

Lemma 4.4. The following holds true:

K

1-Eg¢, < —f for any € € N.
n

Proof. For 0 < g1 < ¢’ where €’ is defined in the construction of ¥, let ¢ be a

smooth nonnegative function equal to zero on S;, and to one on R — S./. Then

1—¢, < (Tr(go(n_lYY*)))g for any ¢ € N, and the result stems from Lemma
]

Lemma 4.5. The following inequalities hold true (recall that R(z) & supp(p)):

K
|E [¢n TrQn(2)] — Nmy(2)] < —, and

- 10, (Bl6u@n(2)] - Tal2))| <

n

Proof. Let € be defined in the construction of 1. Choose a small £; > ¢ in such a
way that Sc; NZ = (). Let ¢ be a C2°(R, R) nonnegative function equal to one on
Se and to zero on R — &, , so that

L
or Q=0 [ 1o,

Using this equality, and recalling that ¢ € [0, 1], we have

E(b% TrQ—E/%Hn(dt)‘ <E [(1 _(b)'/%@"(dt)ﬂ < % < %
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for any ¢ € N. Moreover, we have

o ot Lo~ [ o] <

by Proposition B3] and the first inequality is proved.

By performing a spectral factorization of n='Y*Y", one can check that n=' Tr (7@(2)
is the Stieltjes Transform of a positive measure 7, such that sup,, 7,(R) < oo and
supp(7,) C supp(6,)U{0}. By LemmaE2 n~! Tr UT(z) is the Stieltjes Transform
of a positive measure 7, such that sup, v, (R) < oo and ~v,(Z) = 0 for all large
n. With the help of the second inequality of Proposition B.5] we have a result
similar to that of Proposition 3.6} namely that |E [ pd7, — [ ¢dy,| < K /n? for any
function ¢ € C°(R,R). We can then prove the second inequality similarly to the
first one. O

Lemma 4.6. The following inequalities hold true:

El¢y, @5 Qn(2)0n] — 05T (2)n| < K/n.

In [21], it is proven in a more general setting that |Eu} Qp (2)un — |lun[[*mn(2)| <
P(|z))R(|S(2)]71)/y/n for any z € C,.. Observing that u}Q,(2)u, and ||u,]|*m.,(z)
are Stieltjes Transforms of positive measures, and mimicking the proof of the pre-
vious lemma, we can establish this lemma with the rate O(n~1/2), which is in fact
enough for our purposes. However, in order to give a flavor of the derivations that
will be carried out in the next section, we consider here another proof that uses
the IP formula and the Poincaré-Nash inequality. To that end, we introduce new
notations:

B() = Gur TrQu(2), alz) =EA(:), H(z) = B(z) — bualz), and

1
a(z) = = Tr Dy [—2(I, + a(2)D,)] .
n
Proof. We start with the first inequality. By the IP formula, we have

_ d. _
E[Qm}/ljnjd)] = —g]E[[an]pQuYeﬁles(é—l) [sz¢] J E[Q;m}/@ [ad.](d})w/yj]z]

Taking the sum over 4, we obtain
_ _ d;
E([Qy;]pYe;6] = —d;E[[Qu;]pYe; 8] + LE[Qped] + —B[Ve; [Q adi(e)¢y 1)

Writing 8 = B + oa, we get

E[[Qyj]p?@j@ E[Qped] — E[[Qy;lp ij ﬁ]

1+d

d; /
b Ty BT Qi) ) |

1+d
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Taking the sum over j, we obtain

Yy~
E

[Q b {Q

n

LZ 4 = —26E[Qped] — E

YD(I + aD)‘lY*}
pl

+ 1| [Qudi()w

n

YD(I + aD)‘lY*}
pl

We now use the identity 2Q = n~'QY Y™ — I, which results in

Yy
“ElQudl =E | [0 | 4 ~ 3(p ~ DEfg),
pl
_ dp—10) 2nd and 3rd terms of next to last equation
EQudl = S P A1+3)

Multiplying each side by [u*],[v]¢ and taking the sum over p and ¢, we finally obtain
YD(I+aD) Y™ v]
n

u*v
—z(1+a)

E[u*Qué] = E[d (14 @) E [Bu*cz

9)

Let us evaluate the three terms at the right hand side of this equality. From
Lemma 5 we have a = ¢,my, + O(n~2). Using in addition the bound (&), we
obtain & = n L Tr(D(—2(I 4 cpmnD + (a — cymy)D)™Y) = n~ ' Tr DT 4 O(n~2).
Since my, (z) = (—2(1+n "L Tr DT(2))) "}, we obtain that (—z(1+ &))" = mp(2)+
O(n~2). Using in addition Lemma[Edl we obtain that the first right hand side term
of @) is u*vmy,(z) + O(n~2). Due to the presence of ¢ in the expression of 3, the
second term is bounded by KE|3|. Moreover, f# = n ¢ TrQ — n 'E[¢ Tr Q] +
(1 —¢)n 'E[¢ Tr Q]. By LemmasEd and @3} E|3| = O(n~!). The third term can
be shown to be bounded by Kn 'ETr p(n 'YY*) = O(n~2) where ¢ is as in the
statement of Lemma [l This proves the first inequality in the statement of the
lemma.

The second result in the statement of the lemma is proven similarly. The proof
requires the second inequality of Lemma 5l 1

n

+ %[—z(l +a) 'E |:U*Q adj(y)y’ YD( +oD) V™ ’U:| )

The proof of the following lemma can be done along the same lines and will be
omitted:

Lemma 4.7. The following inequalities hold true:
(B ¥ Qu ()5, | < K/

4
< K.

E | ¢ Yy Qn (2)

We now prove Theorem 221 ().

Proof of Theorem [2.2F([I)). Our first task is to establish the properties of H,(z)
given in the statement of Theorem Z2I([). By Lemma B and the fact that
supp(A.) C supp(v), the function H,(z) can be analytically extended to (a,b).
The comments preceding Theorem [2.2] show that any H,(z) is the Stieltjes Trans-
form of a matrix-valued nonnegative measure I'. Since H,(z) is analytic on (a,b), it
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is increasing on this interval in the order of Hermitian matrices, and the properties
of this function given in the statement of Theorem 22+(I)) are established.

We now prove the convergence stated in Theorem 22-(), formalizing the ar-
gument introduced in Section Bl In the remainder, we restrict ourselves to the
probability one set where n~'Y'Y* has no eigenvalues for large n in a large enough
closed interval in (a, b). Given a compact interval Z C (a, b), let D5 be the open disk
with diameter Z. Observe that the functions S, (z) and S, (z) introduced in Section
Bl can be extended analytically to a neighborhood of Dz, and the determinants
of these functions do not cancel outside the real axis. Let L, = =#{i : )\" € DS},
L, = t{ zeros of det S, (z) in DS}, and L = #{i : p; € D3}. We need to prove
that En = L with probability one for n large. By the argument of [8 9], En is equal
to the number of zeros of det §n(z) in Z°. By the well known argument principle
for holomorphic functions,

~—

;1 [ (detS)
- fa (det Su(z))

2

D2 det S, (z)
L @S, 1 @)L
Ln = 2 ngo det Sy, (2) dz Qum ?iD% det(H,(z) + I,.) d d

7i (det(H.(2) + 1)) .
L= mw ng% det(H.(2) + I,,) a

where 0D3 is seen as a positively oriented contour.
For any 1 < k,0 < r, let hype(2) = [US(Qn(2) — mn(2)In)Up)ie. Let V be a
small neighborhood of Dz, the closure of D5. Let z,, be a sequence of complex
numbers in V having an accumulation point in V. By Lemmas [£1] and
and the Borel Cantelli lemma, Ay, i ¢(2m) B 0asn — oo for every m. Moreover,
for n large, the hy, i ¢ are uniformly bounded on any compact subset of V. By the
normal family theorem, every n-sequence of h,, 1 ¢ contains a further subsequence
which converges uniformly on the compact subsets of V' to a holomorphic function
hs. Since hy(zm) = 0 for every m, we obtain that almost surely, hy i ¢ converges
uniformly to zero on the compact subsets of V', and the same can be said about
|UX(Qn(2) — mun(2)IN)U,|. Using in addition Lemmas Bl and 7] we obtain the
same result for || R} (Qn(2) — T(2))Ry|| and n=/2||Uz Y, Qn(2) Rl

Since det X is a polynomial in the elements of matrix X, det S, (z) — det Sp,(2)
converges almost surely to zero on 9D7, and this convergence is uniform. By
analyticity, the same can be said about the derivatives of these quantities. More-
over, det S, (z) converges to (—1)"det(H.(z) + I) (which is the same for all ac-
cumulation points A,) uniformly on dD5. Similarly, (detS,(z))" converges to
(—=1)"(det(H.(z)+I,))" uniformly on 0D5. Furthermore, by construction of the in-
terval Z, we have inf.cpps | det(H.(2)+1)| > 0 which implies that lim inf,, inf,copg | det S, (2)| >
0. It follows that En = L, and L, = L for n large enough. This concludes the
proof of Theorem 2.2+(]).

Proofs of Theorems 2.2} (2]) and We start with the following lemma:

Lemma 4.8. Let A = inf(supp(p) —{0}) and let (a,b) be a component of supp(p)°.
Then the following facts hold true:

(i) Ifb < A, thenm(z)(1+cm(z)t) ™1 > 0 for all x € (a,b) and allt € supp(v).
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(ii) Alternatively, if a > A, then there exists a Borel set E C Ry such that
v(OE) =0 and

q(z) :/ ﬂu(dt} <0

g 1+ cem(x)t
for all x € (a,b).

Proof. The proof is based on the results of Section To have an illustration of
some of the proof arguments, the reader may refer to Figures[Iland @ which provide
typical plots of zz(m) for ¢ < 1 and ¢ > 1 respectively.

We start by fixing a point g in (a,b), we write my = m(zo) and we choose in the
remainder of the proof E = [0, —(cmg) ] with the convention E = () when mg > 0.
We already assumed that v({0}) = 0 in Section Since —(cmg) ™! € supp(v)©
by Proposition B2 v({—(ecmg)~'}) = 0. Hence v(0E) = 0. To prove the lemma,
we shall show that

v(E)>0<a> A (10)

To see why (I0) proves the lemma, consider first a > A. Then my < 0 since
v(E) > 0. Moreover 14+cmgt > 0 for any ¢ € E. It results that ¢(zo) < 0. Consider
now another point z; € (a,b), and let m; = m(x1) and E; = [0, —(cm;)™']. By
the same argument as for a0, we get that [, m(z)(1 + cm(x)t)~ v(dt) < 0. But
Proposition B2 shows that the closed interval between mg and m; belongs to the
set B. It results that v(E A Fy) = 0 where E A Ej is the symmetric difference
between E and Ej. Hence ¢(x1) < 0 and (4) is true.

Assume now that b < A. If mg > 0, then for all z; € (a,b), m;y = m(z1) > 0
since the segment between mg and m; belongs to B, and (i) is true. Assume
that mg < 0. Then since v(E) = 0, for any ¢t € supp(v), t > —(cmg)~!, hence
mo(1 + empt)™! > 0. If we take another point z; € (a,b), then the associated
set By will also satisfy v(F;) = 0 since v(F A E;) = 0. Hence we also have
m; (1 + cmyt)~! > 0 for any ¢t € supp(v), which proves (i).

We now prove ([I0)) in the < direction, showing that xy > A = v(E) > 0. Since
m(z) is the Stieltjes Transform of a probability measure supported by R, the
function m(x) decreases to zero as x — —oo. Furthermore, (0,00) belongs to B.
Hence, by Proposition B2, o > A = mg < 0. Assume that v(E) = 0. Then
(—o00,mp] C B. Since t > —(cmg) ! in the integral in (@), z(m) — 0 as m — —o0
by the dominated convergence theorem. By Propositions B.1] and B3 x(m)
should be increasing from 0 to z¢ on (—oo, mg]. This contradicts xo > A.

We now prove ([I0) in the = direction. To that end, we consider in turn the cases
c<l,c>1and c=1.

Assume ¢ < 1. Since m(z) is the Stieltjes Transform of a probability measure
supported by R, the function m(z) decreases to zero as x — —oo. Hence z(m) —
—oo as m — 07, From (7)) we notice that ma(m) — (1 —¢)/c > 0 as m — oo,
hence z(m) reaches a positive maximum on (0, cc). By PropositionsB2land B3] this
maximum is A, and we have x < A = m(z) > 0. Therefore, zp < A = v(E) = 0.
Consider now the case ¢ > 1. We shall also show that o < A = v(E) = 0. By
Proposition (4] the measure u has a Dirac at zero with weight 1 — ¢~!. Hence,
either zp < 0, or A > 0 and 0 < 9 < A. Since m(z) is the Stieltjes Transform of
a probability measure supported by Ry, it holds that © < 0 = m(x) > 0. Hence,
v(E) = 0 when xy < 0. We now consider the second case. Since (0, zg] C supp(u)©,
the image of this interval by m belongs to B. By Proposition B4 lim,_,q+ m(z) =
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z(m)

-20 -15 -10 -5 0 5 10 1

FIGURE 1. Plot of z(m) for ¢ = 0.1 and v = 0.5(d1 + d3). The
thick segment represents supp(u).

x(m)

| ) |

-1 -0.5 0 0.5 1

FIGURE 2. Plot of z(m) for ¢ = 5 and v = 0.5(8; /2 + 85/2). The
thick segments represent supp(u).

—o0. Hence this image is (—oo, mg|. This implies that v(F) = 0.

We finally consider the case ¢ = 1. We show here that A = 0, which will result in
x0 < A= my > 0= v(E)=0 as above. Assume A > 0 and let z; € (0, 4). By
Proposition 34 p({0}) = 0 hence m(z1) = [(¢t — 1) 'u(dt) > 0. But from (), we
easily show that z(m) increases from —oo to 0 as m increases from 0 to oo, which
raises a contradiction. This concludes the proof of Lemma 4.8 0

This lemma shows that for any = < inf(supp(p) — {0}), H.(xz) > 0, hence
D(z) > 0 for those x. This proves Theorem 2.2+ (2]).
Turning to Theorem 23] let E be a Borel set associated to (a,b) by Lemma L8 (i)
and let ¢(x) be the function defined in the statement of that lemma. The argument
preceding Theorem shows that the extension of g(x) to C; is the Stieltjes
Transform of a positive measure. It results that g(x) is negative and increasing
on (a,b). Let Q = diag(w},...,w?) where w} = —1/q(px). Then it is clear that
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the function D(z) = det(q(x)2 + I,) has r roots in (a,b) which coincide with the
pr. Theorem will be proven if we find a sequence of matrices P, for which
H.(2) = q(2)9, i.e., Au(dt) = 1g(t) Qu(dt).

Rearrange the elements of D;, in such a way that all the d} which belong to E are in
the top left corner of this matrix. Let M, = [M}] be a random |nv(E)] X r matrix
with iid elements such that /nM{} has mean zero and variance one. Let Z,, be the
n X r matrix obtained by adding n— |nv(E)| rows of zeros below M,,. Then the law
of large numbers shows in conjunction with a normal family theorem argument that
there is a set of probability one over which zmy,(2)Z: T, (2)Z, converges to q(z)I,
uniformly on the compact subsets of (a,b). Consequently, there exists a sequence
of deterministic matrices B,, such that zmn(z)Bj‘lTn(z)Bn — ¢(2)I, uniformly on
0L/2

these compact subsets. Matrix P, = A, B} with A, = [
O(Nfr)xr

} satisfies the
required property. Theorem is proven.

Proof of Corollary 2.1l Observe from Proposition2Ilthat [(14+cm(z)t) " v (dt) =
—2zlim(n~ ! TrT,,(2)) = —czm(z) + 1 — ¢. Consequently, in this particular case,
H,(z) is unitarily equivalent to —m(z) (czm(z) — 14 ¢) Q on (a,b).

5. PROOF OF THE SECOND ORDER RESULT
We start by briefly showing Proposition

Proof of Proposition For any i = 1,...,p, it is clear that m(p;)? > 0 and
m’(p;) > 0. An immediate calculus then gives m’(p;)A(p;) = m?(p;) which shows
that A(pl) > 0.

To prove the second fact, we shall establish more generally that lim sup /n|| H,(p;)+
9(pi)Q2|| < oco. Invoking Equation ([B) and its analogue m,(z) = (—z + [#(1 +
cnmp(2)t) "Ly, (dt)) ™1, taking the difference and doing some straightforward deriva-
tions, we get that (m,(p;) —m(p;))(A(p;)+e1) = €2 where &1 — 0 and where |e3] <
K/+/n thanks to the first two items of Assumption [l Hence |m.,(p;) — m(p;)| <
K/\/n. Now we have

_ mn (pi) m(p;)
Hnlpi) +9(p)S2 = / <1 + camn(pi)t 1+ cm(pi)t) An(dt)

m(p;) m(p;)

———— A\, (dt) - | ———F———v(dt) x Q.
+/1+cm(pi)t () /1+cm(pi)ty( )%

which shows thanks to Assumption [7] that lim sup v/n||H,(pi) + g(p:) Q|| < .

Proof of Theorem [2.4l In all the remainder of this section, we shall work on
a sequence of factorizations P, = U,R;, such that A, satisfies the third item of
Assumption [l We also write U,, = [Uy, -+ U] and R,, = [Ry14, -+ Ry ] where
Ui,n e CN*Ji and Ri,n € Cnxdi,

We now enter the core of the proof Theorem 2.4l The following preliminary
lemmas are proven in the appendix:

Lemma 5.1. Let s be a fized integer, and let Zny = [Z;;] be a N x s complex
matriz with iid elements with independent N (0,1/2) real and imaginary parts. Let
Tn =[Yi;] be a deterministic Hermitian N x N matriz such that Tr Y n =0, and
let Fy = [Fy;] be a complex deterministic N x s matriz. Assume that F Fn — 21,
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that limsupy || T n|| < 0o, and that N~ Tr Y% — 0% as N — oo. Let M be a s x s
complex matriz with iid elements with independent N'(0,1/2) real and imaginary
parts, and let G be a s X s GUE matriz independent of M. Then

(N*l/QZ;*VTNZN, Z}(,FN) —L s (0G,sM).
—00
Lemma 5.2. For x € supp(u)©,

22 my (2)%a@ Dy T2(2) i,

E [gbnﬂfl@n T nilYﬁ‘Yn @n T ﬁn} =c, — +0O(n!
(=) )@n(@) 1 — cpa?my, (z)22 Tr D2T2(x) ()
and
~% N 1 * ~ - K
n
Lemma 5.3. Fori=1,...,p, let A; be a deterministic Hermitian j; X j; matriz

independent of n, where p and the j; are as in the statement of Theorem [2.]] For
i=1,...,p, let M;, an X j; matric such that sup,, | M; | < co. Then for any
teR,

E[exp(z\/ﬁtzpjTrAiM;jn(@n(pi)_fn(pi))Mi,n)} = exp(—252 /2)+O(n~1/?)

i=1

where
p

= > cupipkmn(pi)mn(pr)
k=

T A T (pi) DT (o) M n A M, T (i) D T (i) i

Replacing the M, ,, with the blocks R; ,, of R, in the statement of Lemma [5.3]
and observing that

t
/ pipk(L + cnmn(pi)t)(1 + cnmy(pr)t)

we obtain from the third item of Assumption [T that 62 — >°F_, &7 Tr A? where

~ cw? m(p;)
7t = i (] 15 o @) -

Invoking the Cramer-Wold device, this means that the p-uple of random matrices

Ry To(pi) DT (pr) Rn = An(dt),

P

Vi (B (@nlps) = Talpi) Rin)_

i
converges in distribution towards (&iéi)le where él, cee ép are independent GUE

matrices with éi € CIixds,

Lemmas (.1H5.3] lead to the following result which plays a central role in the
proof of Theorem 2.4



24 CHAPON, COUILLET, HACHEM AND MESTRE

Lemma 5.4. Consider the 3p-uple of random matrices

— V/nx

(Uif"y"?}é””&’?U;n@n(m)—mn<pi>zN>Ui,n, Onlp) —T, (m))fzm)

p

i=1
Define the following quantities

2 _ wi2 m2(Pi)t v
i A(pi)/(1+cm(pi)t)2 ()
9 1

o; = (

B m*(p;)t?
Al / T+ cm(peE @)

5= pchw(?pi) </ (1 +Irclf£z>pi)t)2y(dt))2'

Let My, ..., M, be random matrices such that M; € C/**Ji and has mdependent ele-
ments wzth independent N (0, 1/2) real and imaginary parts. Let Gy, Gl, .., G, G
be GUE matrices such that GZ,G € CI%Ji, Assume in addition that My, G, él,
M,, Gy, ép are independent. Then
D o~ \P
L, — (CiMiao'iGiaa'iGi)

n—00 i=1

Proof. Let a,(p) = N71 Tr Q,(p). By LemmasE3and L /1 (v (i) —1mn (pi)) A
0. Therefore, we can replace the my,(p;) in the expression of L, by ay(p;), as we
shall do in the rest of the proof.

Write s = j; +--- + jp and let Z,, be a N X s complex matrix with iid elements
with independent A/(0,1/2) real and imaginary parts. Assume that Z, and X,
are independent. Write Z,, = [Zl,n e Zp,n] where the block Z;, is N x j;. Let
n-Y2X, = WnAnW; be a singular value decomposition of n~'/2X,,. By assump-
tion @ the square matrices W, and Wn are Haar distributed over their respective
unitary groups, and moreover, W,,; A,, and ﬁ//n are independent. Let

* A . . . . p
i [ GXn@uledBin 1y (0) = 0 (0)In)Unns REn(@n(pi) — To(pi)) Rim
\/ﬁ 7=1
We have

Lo (VN (Z32,)7 P2 P NV (232,) 2300 2 22,7

\/_Rl n(Q’ﬂ(pl) - (pz))Rz n)jzl

where Fy, = cn/2AnWE DA 2Qu(pi)Ri and Yin = cn /(AW Dy WoA,
pi)~" — an(pi)Iy). We shall now show that the term VN(Z*Z,)~ 1/2Zan,n can
be replaced with Z} F;,,. By the law of large numbers, we have N_lZ,’;Zn = I..
By the independence of Z,, and (A,,, Wn), we have E[Tr ZnFinF} 2, | (AHWH)] =
sc, 1t Tr Rfﬁn@n(pi)(n*}ﬁf Yn)@n(pi)Riyn whose limit superior is bounded with prob-
ability one. Hence Z; F; ,, is tight, proving that the replacement can be done.

By deriving the variances of the elements of N_1/2Z:;TMZ" with respect to the
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law of Z,,, and by recalling that limsup,, ||Y; || is bounded with probability one,
we obtain that these elements are also tight. It results that we can replace L,, with
Z:n Ti,nZi,n P

VN

Fori=1,...,p, let A; and B; be deterministic Hermitian j; x j; matrices and let
C; be deterministic complex j; X j; matrices, all independent of n. The lemma will
be established if we prove that

L - (ZF R (Gn0) ’fn(pi))Ri,n)

i=1

E {eXP (Z\/ﬁt Z Tr AR}, (Qu(pi) — Tn(ﬂi))Rz‘,n)

i=1

E [exp (ztzp: N=V2Ty B ZE i Zin + R(Tr cizgjnm,n)) } (A, Wn)] }
i=1

P
1
—— [ exp(—#*(&7 T A7 + 07 Tr B} + §<$ Tr C;CF)/2). (11)
n—oo

=1

In addition to the boundedness of ||Y; || w.p. one, we have Tr T, ,, = 0, and

N
1 s 1 N 2
N TI‘ Ti,n - CnN ; (()\e p’L) an(pl))
—— ¢ (m(p;) —m(p;)*) = ¢ 'm(p:)* (A(p)) ' — 1) = o7

Moreover, using Lemma [5.2] in conjunction with Assumption [6] we obtain
* —1 % A 1 * A P 2
Fi,nﬂ,n =Cp Ri,n Qn(pl)_yn YnQn(pl) Riﬂl — S I]l
n n—00

From any sequence of integers increasing to infinity, there exists a subsequence
along which this convergence holds in the almost sure sense. Applying Lemma [5.1]
we get that the inner expectation at the left hand side of (Il converges almost
surely along this subsequence towards [[7_, exp(—t?(o? Tr B? + 1¢2 Tr C;C}) /2).
Using in addition Lemma along with the dominated convergence theorem, we
obtain that Convergence ([I]) holds true along this subsequence. Since the original
sequence is arbitrary, we obtain the required result. O

The remainder of the proof of Theorem [Z4] is an adaptation of the approach of

.

Lemma 5.5. For a given z € R and a given i € {1,...,p}, let y = p; + n= %z,
and let

§ (y) — \/gUanﬁy)Un IT + nil/zqziyn@n (y)Rn
" L +n V2R Qu(y) Y, Un VIR:Qn(y) Ry
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Let

O (z) = n# [det Su(y) = I [wha(p:) - 1"

ki
« det (ﬁ“‘f" (@ "(p;)a (‘pg“(pi”“ Yint 4 pem(o)/RRE (@ (01) — To(pi)) Rim
— 2R [Uf:nyn@n(m)Ri,n] —Vn(Hin(pi) + 1;,) — xH{,n(Pz‘))] (12)

where R(M) = (M + M*)/2 for a square matriz M. Then

(1), - XP () —2— 0

n
n—roo

for every finite sequence {x1,...,2p}.

Proof. We show the result for i = 1, the same procedure being valid for the other
values of . The notation X,, = op(1) means that the random variable X,, converges
to zero in probability, while X,, = Op(n~’) means that nX, is tight. Write
U = [Ul,Ul] and R = [Rl,Rl] where Ul = [UQ,...,Ut] and Rl = [RQ,...,Rt].
Writing

A= [VIUIQWU: \/27U1*Q(y)gl] _ [Au A]

_\/27U1*Q(y)U1 \/27U1*Q(y) N Ay Az

P A LU P PR [
n~Y2UFY Q(y) Ry L—j, +n~Y2U0;YQ(y)Ry |~ [Ba1 Baz)’
o |[VIRIQWR: HRIQ(y)R:| _ [Cu 012]
_\/yRTQ(y)Rl VIRIQ(y) Ry Cly O]’
we have
Ay B A2 Bia
B¥, C Bi, C
~ A B o 21 i My, Mia
det S = det {B* C]_det = det {M{Q M22]

Ay Bo1 Asy By
Biy, Ciy B3 Cxn

after a row and column permutation. Hence n91/2 det S = det Moo xnit/? det(My1—
M My,' Myy). Write Q = diag(w?l}, , ). From the first order analysis we get that

I._; I._;
M a.s. \/p_lm(pl) =71 r ]L :|
2 oo [ I—j Voi(em(pr) = prt (1 — )

which is invertible since det Mz %3 [T, -, (wig(p1) — 1) # 0. Moreover, ||Myz|| =
Op(n=1/?). To see this, consider for instance the term /nCia = /agRi(Q —

TRy + ,/nyR’{Tle. The first term is tight by Lemma [£.4] while the second is
bounded by Assumption [l The other terms are treated similarly. It results that
| M2 Moy My || = Op(1/n). ‘ ‘

In addition, det(y~/2C11) % [wi(cm(p1) — pr (1 = ) = (prm(p1))~* by the
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definition of p;. From these observations we get that

nd/2 det S = <H(wﬁg(p1) — 1) + OP(1)> ((mm(p1)) ™7 +op(1))

k>1
% det (\/@A11 — /ryB1CLL B, + op(nfl/Q)) .
Now we make the expansion
VA — /nyBuCr' By, (13)
= yvnU7 (Q(y) — ma(y)In)Ur +yvnma(y) 1,

LA (Iﬁ L YOl R1> (RiG()Ry) (R} Q) — T(y) )R T () Ra)

n
(@)
_va (Iﬁ Loy Y%y) R1> (RIT(y)Ry)~ (Iﬁ R Q%Y* U1> | (14)

To go further, remark that
yvVima(9)L;, = Va(RiT(y)Ry) ™!
= (RiT(y)R2) ™" [V (ymn (W) RIT () Ry = prma(p1) RiT(p1) )
Vi (prma(p) RiT (o) R — 1, ) |
= pim(p1) [—zHi(p1) — Vn(Hi(pr) + 1;,)] + o(1)
where we recall that y = p; +xn~"2 — p; and that R}‘T(Q)R1~—> (pm(p1)) "1,

Recall from Lemma 54 that /nU;(Q — m,I)Ur, vVRR;(Q — T)R1, and Uy Y QR
are tight. Keeping the non negligible terms, we can write (I3)) under the form

VnyAin — /nyBii Cry' B,
= p1v/nU; (Q(p1) — mn(p1)In)Ur + (p1m(p1))?ViR; (Q(p1) — T(p1)1n) Ra
—2p1m(p1)R | U Y Q(p1) R | — pim(pr) (wH] (p1) + Vn(Hi(p1) + 11,)) + op(1).

Plugging this expression at the right hand side of the expression of ni'/2 det § and
observing that H{ , (p1) = —wig(p1)';, concludes the proof. O

For i = 1,...,p, take 1(7) > y1(2) > x2(i) > y2(i) > ... > y;, (1) fixed se-
quences of real numbers. Call J,, = (\/ﬁ(AZ(i)+z —pi), i=1,....p, £=1,...,5:),

with k(i) = E:iljm. Let also C be the rectangle C = [z1(1),y1(1)] x ... X
Tp(J ip)]. Then, for all large n, we have
[2p(Jp)s Yp (Jp)] ) gen,

P(J,eC)=P ({det S, (m + “—\}3) det S, (pi + yf—\/(%)) < o})

since det S,,(t) changes sign around ¢ = ;\Z( and only there (with probability

D40
one, for all large n).
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From Lemma [5.5] we see that, for growing n, the probability for the product of
the determinants above to be negative for all ¢ and ¢ approaches the probability

P ({det Ay, ;) det Ay, ;) <0, i=1,...,p, £=1,...,5})
where A, is the matrix
_ \/ﬁU::n (Qnpi) —mn(pi)IN) Uin Pi\/ﬁR;n(én(Pi) - Tn(pl))Rln
m(p;) w; (e +cpim(p;) — 1)
= 2R (U7, Qulpi) Rin | = Vi Hin(p) + 15,) = 2], (p0).

Az

This last probability is equal to P(J,, € C), where .J,, is the vector obtained by
stacking the p vectors of decreasingly ordered eigenvalues of the matrices

(p')]_l <\/5Uifn (Qn(pi) = mn(pi)In) Ui

m(p;)

+pm/ﬁR2‘,n(@n(m) —Tu(p))R;,
w (e + cpim(p;) — 1)

= = 2R U7, Y Qu(pi)Rin| — Va(Hin(pi) +Iz;)> :

From Lemma 5.4} {Bi, ..., B;} asymptotically behave as scaled non-zero mean
GUE matrices. Precisely, denoting B; = HJ,,(pi)Bi + /n(Hin(pi) + 1;,), from
Lemma 5.4 and for all a, b,

E[|(B)al’]
‘712 0125'12 2
T m)? T et opmip) —1E TS
o2
= m(pz)g +pzm(p1)2&l2 + 2§2
~m?(p;) 2u(dt) ot m(p;)tv(dt) \° w2t (dt)
~aiet | e < @ emin) </ <1+cm<pz->t>2]'

This concludes the proof of Theorem 241

APPENDIX A. PROOFS OF LEMMAS [5.1] TO

A.1. Proof of Lemma [l Given a s X s deterministic Hermitian matrix A
and a s x s deterministic complex matrix B, let 'y = N~1/2 Tr AZZYNZN +
R(Tr BZ} Fy) where R(M) = (M + M*)/2 for any square matrix M. We shall
show that for any t € R,

2Tr A2 2Tr BB*/2 t2v?
on(t) := Elexp(utTy)] = exp(—tQU rAT e / ) ‘= ex ( hd )
— 00

2 2
The result will follow by invoking the Cramér-Wold device. To establish this
convergence, we show that the derivative ¢y (t) satisfies @y (t) = —tv2pn(t) +

en(t) where en(t) — 0 as N — oo uniformly on any compact interval of R.
That being true, the function ¥y (t) = on(t)exp(t?v?/2) satisfies ¥ (t) = 1 +
fot en(u) exp(u?v?/2)du — 1 which proves the lemma.
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By the IP formula, we get

Az] Z]WTICZZ&

¢'(t) = 1E[T exp(ztI‘)]
> X Bi; Z Fri + Fy Zii By
—E + 1< kg ki k) —ij

[(zgzl klzl z;z::1 ; 2 )

X exp(ztl")}

|: Z AZJTM 0 Zh exp(ztf))
0Zy;

0 exp(uT) « . Oexp(ul)
+ 5 ZBUsz 971, + Fy; Bjj o7y, }

i,7,k,

i,5,k
We obtain after a small calculation

0 exp(utT) _ zt( [AZ*Y]
0Zy; VN
0 exp(uT) _ zt( [YZ A,
oz, VN

1
5 [B*F*]jk) exp(utl),

+ %[FB];W») exp(uT)

which leads to

@' (t) = —tE[N "' Tr A2Z*Y%Z exp(utT')] — (t/2) Te(BB*F*F) ¢(t)
+ N2 Tr ATe Y o(t)
—tE[N~Y2Tr AB*F*Y Z exp(utT')] — (t/2)E[N~Y2 Tr Z*YFBA exp(utl)].

Let us consider the first term at the right hand side of this equation. We have
E[N"1Tr A2Z*Y2Z] = N-'Tr A2 Tr Y2. Applying the Poincaré-Nash inequality,
we obtain after some calculations that Var(N ! Tr A2Z*Y2Z) <2N 2Tr A*Tr T* =
O(N™1) since ||T]| is bounded. It results that E[N~!Tr A2Z*Y2Z exp(utl')] =
N='Tr A2 Tr Y2 ¢(t) + O(N~'/?) by Cauchy-Schwarz inequality. The third term
is zero by hypothesis. Finally, N"'E|Tr Z*YFBA|? = N"' Tt Y2FBA?B*F* <
N7Y |2 Tr FBA?B*F* = O(N~!). Hence, the last two terms are O(N~'/2) by
Cauchy-Schwarz inequality, which proves Lemma [5.11

A.2. An intermediate result. The following lemma will be needed in the proof
of Lemma

Lemma A.1. For z,y € supp(u)°,

o ) ~ _
E|¢,—TrQn(x)DQn(y)D| = T T O™
|:¢ ~ Tr Qn () DQn (y) ] 1= cpmn (z)yma (y): Tr DT, (2) DT, (y) +0(n™)

E (6,00 (2)DOu(w)5n] =

—_
I
o
3
8
3
3
—
8
~
<
3
3
—~
<
~—
3=
>
=
5
~—
-l
-
—~
<
~—
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Proof. We denote here C,jz = @(x) and drop all unnecessary indices. Using the IP
formula, we obtain

dp dj
n

E [¢3§Zﬁj@m7jpdp@y7pq} = (5 (a—Jj)E [¢@z,jp@y7pq}
B [000s IV Galip ViG] — B [0V B GoaalY Dol
+E [%[adj(iﬂ)WY]iniZ@m,jp@y,pq}) :
Making the sum over i, p, and j, this is
%E [qﬁ[y*yémD@y]aq} — %E [[Y* adj(w)d/YD@zD@y]aq} ¥ endoE [(b[@mpéy]aq}

- %E [qﬁ% Tr DQ, [Y*Y@mD@y]aq} - %IE [«;% TréwDéyD[Y*Y@y]aq] .

Using the relation %Y*Y@m = x@m + I, and appropriately gathering the terms
on each side gives

B 010, DQ (i = en do + 22 T D)
= -E [¢>[Dé§y]aq<1 e TrD@w)] ~E [eﬁ% Tr Q2 DQyD(6(a = 4) +y[Qylag)
| IV a0V D3 D0, L | (15)
Introducing the term f, = ¢ Tr DQ, and B, = fx — SE[3,], we have
E [$(Q2DQyas | (& = cn du +E[5))
— B [6DQ ] (1 + E[5,) ~ E |02 Tr3.DQ,D | (510 ~ )+ yE[G, L)
£ [[DQ ] - E [0 D@ st ~ & |02 T 0D, D10y ~ B )
B |V a0V DG DO, (16)

At this point, we can prove both results for the trace and for the quadratic form.
We start by dividing each side by z — ¢, d, + 2E[3,]. We begin with the trace
result. Multiplying the resulting left- and right-hand sides by d,, summing over
a = ¢ and normalizing by 1/n, we obtain

E {a;% ﬁ@mD@mD] = —(1+E[]E [qs% ﬂD@yDAm]

-E [qﬁ% Tr @zD@yD] <yE[¢% Tr DA.Q,] + % Tr DAI> +éen
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where we denoted A, = (x(1 + E[3,])I,, — ¢, D)~* and where

o= [0 MY g pa,pa] -5 [L1rpa,0a.5.]

~E|o 100,00 (3 G0, - BT G,0A) | (7

From Lemma @3 E[3,] = d, + O(n~2), where we denoted &, = L Tr DT,. Also, it
is easily observed that

- -1 1 ~
(In(l 4 o) — an) - T (18)
1+ 0,
with T, = T(x). Therefore, along with Lemma L5, we now have
1~  ~
E [(b— Tr QIDQzD:|
n
| 1.~ =~ LTy DT, T, + L Tt DT,
= —Tr DT, DT, +E [¢— Tr QxDQID} Y vt +e, +0(Mn72).
n n 146,
Using now the fact that yfy + 1, = an_LSDTy, we conclude
Y
1 - - LTy DT, DT, 9
E|op—TrQ.DQ.D| = — — ———— +¢£,+0(n"%).
n 1—cp(1+6,)"(146,) 'L Tr DT, DT,

It therefore remains to prove that €, = O(n~!). Due to the presence of ¢ in the

expression of Bz, and using Lemma[£.3] and Cauchy-Schwarz inequality, one can see
that the last three terms in the expression of &,, are O(n~1). As for the first term,
it is treated in a similar manner as in the proof of Lemma L6, and is O(n~2).

In order to prove the result on the quadratic form, we start again from (I).
Dividing each side again by z — ¢,, d, + E[f,], introducing [i],, [0]4, and summing
over the indices, we obtain

E [0 Q.DQ,1]
— _E [qsﬁ*AID@yﬁ} _E {aﬁ% Tr@mD@yD} (Q*Am(yIE[qSva] + In)ﬁ) el (19)

where €/, is very similar to &, and is shown to be O(n™!) with the same line of
arguments. Using Lemma 3] ([I8), and the previous result on E[d)% Tr Q. DQ,D],
we finally obtain

E [d)ﬂ*@zD@yﬁ}

from which
o~ @*T,DT,o
E [0 Q.DQ,1] = .

1—cp(1+6,)"1(1+6,)"12 Tt DT, DT,

+ 0.
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We conclude with the remark zm,, () = —(1 + d,) L. O

A.3. Proof of Lemmal5.2l The line of proof closely follows the proof of Lemmal[A_Tl
We provide here its main steps. By the IP formula, we have

E[¢@pkyﬁcnm@m4 = _%Ewépkyﬁg@mm [Y@]h] + 6(k - m)de[(vapk@mr]
BV, Gy Y Q]

n %E[@pkmém [adj (1) 'Y o]

Taking the sum over m, we obtain

BloQu Y Q] = i) = 5 BYAIOD QY Ol
1 1 .~ _ . N
1 £ ~ElQpk Yo [adj(¥)0"Y DQler] = B[SQuY i [Y Qler]

where 5(z) = ¢1 Tr DQ(z) and 5(:10) = ((z)—¢E[B(x)] as in the proof of Lemma[Al
Taking the sum over £ then over k, we obtain

_Y*Y ~ 1 . 1 1YY ~
BOIQ— Q] = en i ElOIQD ] = 1 EloQD Ty T
1 1 =Y*adj@)'y < 2 SYRY o
+ O DGl - BG—=

Observing that (1 + E[3(z)])~" = —2zm,(z) + O(n~?) and making the usual ap-
proximations, we get

~Y*Y ~ Yy

Blon* G -Qi) = (wmy (a) - Tr(E[o

0)) - cnxmn(x))E[(bﬁ*@D@ﬂ] +OMmY

n
Observing that n ! Tr(E[¢p(n~'Y*Y)Q(z)] = Nn~tam,(z) + Nn~* + O(n~2) and
invoking Lemma [A.T], we obtain the desired result.

A.4. Proof of Lemma As in the previous proofs, we discard unnecessary
indices. We also denote Q; = Q(p;). For readability, we also write M, = M; A,
and use the shortcut notation I' = \/n> Y, TrMi*@i]\;[i. We focus first on the
term in p;. The line of proof closely follows that of Lemma [5.0] with the exception
that we need to introduce the regularization function ¢ to ensure the existence of
all the quantities under study. That is, with ¢y (t) = E[exp(¢t¢I')], we only need
to show that ¢/y(t) = —td2on(t) + O(1/y/n). Using |on(t)| < 1 and Lemma 4],
|Elexp(stT)] — pn ()] <1 —E[p] — 0 as N — oo, from which the result unfolds.
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Using the IP formula, we first obtain

E|o {Y* Q1:| eztdﬂ“}
Pq
=c,E {Qb[D@l]pqezwp} -E ¢% Tr D@l [Y;Yél] €lt¢F]
Pq
1 T~ ~1 [Y*Y ~
—E |ate'®T ¢? NG ZZ [ QjDQlL [TQ](M])G] + En,pq
j=1la=1 P
where
Enpqg = E % [wl)@l] ettel +E (bn {MDQI} ZtFethbF]
Pq Pq

and where we denoted X, the column a of matrix X, X} being the row vector
(Xa)" o i
With §; = ¢1 Tr DQ;, B; = B; — ¢E [ﬁj}, and with the relation n~1Y*Y Q; =
I, + plél, we obtain
(pr(1L+EIR)) = e dy ) B [6[Qu]pge" " | = ~6(p = )(1 + E[B1])E [T

p T

—E zt61t¢r¢2 1nzz {(M])ZéjDél} |:Y* QJ( ) :| +‘€;1,pq
4 p

_]:1 a=1

where

2 Y*Y ~
sgwq =énpg— E lﬂl [ - Ql] emﬁr} .
Prq

Dividing each side by p1 (1 + E[31]) — ¢ dp, then multiplying by (M), and (M),,
and summing over p, q gives

B[ Tr(M; Q1 My)e' ] = — (1 + E[B1]) Elge™] Tx (MfAli)
— R | ettt — ZTer o Q]M M;Q;DQ:| +¢,

with A,, = (pi(1 + E[3;]) I, — ¢, D)~ ", and

=Tr M;jA, E'M,
with (E')pq = &, From (I8), the identity nilY*Y@j = In—|—ij~2j, and Lemma [4.5]
we finally obtain

E [ (1 QuMy)e*"] — Bfge*"] T B T3

ik T cnD ] *
Tr My 1+% 155, MM TDT1M1

1—c,(1+01)"1(1 +8;)~1L Tv DT, DT;

= 1tE[pe"?T] +el +0(n?)

:‘H
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with T; = T(p;), from which

E {qs Te(M; O M, )e“ﬂ  E[¢e™T) Tr My Ty M,

 UE[¢et®T] &n enprmn(p1)pjmn(p;) Tr My Ty DT M; M T; DTy M,

- Vn Z 1 — cupima(p1)pimn(p;) = Tr DT\ DT;

It remains to show that &/, = O(n~1). We have explicitly

Y*adj(y)y'Y
n

+¢el, +0(n™?).

j=1

e =E F Tr (M;‘A,,l D@1M1> (1+ qsztr)e“ﬂ
n

_E [qsél Tr (Ml*Apl Lind Y@Ml) emi’F] .

n

Using the fact that |e®?T| = 1 and the relation n~Y*YQr = p1Q1 + I, the
second term is easily shown to be O(n~!) from the Cauchy-Scwharz inequality and
Lemma [£3] If it were not for the factor T', the convergence of the first term would
unfold from similar arguments as in the proof of Lemma We only need to
show here that E[|¢I'|?] = O(1). But this follows immediately from Lemma 3] and
Lemma N

The generalization to 3, E[¢ Tr(M; Q;M;)e*?T] is then immediate and we have the
expected result.
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