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ON THE ISOLATED EIGENVALUES OF LARGE GRAM

RANDOM MATRICES WITH A FIXED RANK DEFORMATION

FRANÇOIS CHAPON, ROMAIN COUILLET,
WALID HACHEM AND XAVIER MESTRE

Abstract. Consider the matrix Σn = n−1/2XnD
1/2
n + Pn where the matrix

Xn ∈ CN×n has Gaussian standard independent elements, Dn is a deter-
ministic diagonal nonnegative matrix, and Pn is a deterministic matrix with
fixed rank. Under some known conditions, the spectral measures of ΣnΣ∗

n and
n−1XnDnX

∗

n both converge towards a compactly supported probability mea-
sure µ as N and n converge to infinity at the same rate. In this paper, we prove
that finitely many eigenvalues of ΣnΣ∗

n may stay outside the support of µ in

the large dimensional regime. The existence and locations of these eigenvalues
in any compact interval outside the support of µ are studied. The fluctuations
of the extreme isolated eigenvalues of ΣnΣ∗

n are also analyzed. The results
find applications in the fields of signal processing and radio communications.

1. Introduction

1.1. The model and the literature. Consider a sequence of N ×n matrices Yn,

n = 1, 2, . . ., of the form Yn = XnD
1/2
n where Xn is a N × n random matrix whose

coefficients Xij are independent and identically distributed (iid) complex Gaussian
random variables such that ℜ(X11) and ℑ(X11) are independent, each with mean
zero and variance 1/2, and where Dn is a deterministic nonnegative diagonal n×n
matrix. Writing Dn = diag(dnj )j=1,...,n and denoting by δ the Dirac measure, it is

assumed that the spectral measure νn = n−1
∑n

j=1 δdn
j
of Dn converges weakly to a

compactly supported probability measure ν when n → ∞. It is also assumed that
the maximum of the distances from the diagonal elements of Dn to the support
supp(ν) of ν goes to zero as n → ∞. Assume that N/n → c when n → ∞, where
c is a positive constant. Then it is known that with probability one, the spectral
measure of the Gram matrix n−1YnY

∗
n converges weakly to a compactly supported

probability measure µ (see [26], [16], [35], [36]) and, with probability one, n−1YnY
∗
n

has no eigenvalues in any compact interval outside supp(µ) for large n [3].
Let r be a given positive integer and consider a sequence of deterministic N×n ma-
trices Pn, n = 1, 2, . . ., such that rank(Pn) = r and supn ‖Pn‖ <∞ where ‖·‖ is the
spectral norm. Consider the matrix Σn = n−1/2Yn + Pn. Since the additive defor-
mation Pn has a fixed rank, the spectral measure of ΣnΣ

∗
n still converges to µ (see,

e.g., [2, Lemma 2.2]). However, a finite number of “isolated” eigenvalues of ΣnΣ
∗
n
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might stay outside the support of µ. The purpose of this paper is to character-
ize the conditions under which this phenomenon occurs, to determine the locations
of the isolated eigenvalues, and to study the fluctuations of the largest among them.

The study of the isolated eigenvalues of large random matrices has a wide range
of applications. These include detection and estimation of wireless communication
signals [20], fault diagnosis in complex systems [14], financial portfolio management
[34], or chemometrics [29]. In the statistics literature, one of the first contributions
to deal with this subject was [23]. It raised the question of the behavior of the
extreme eigenvalues of a sample covariance matrix when the population covariance
matrix has all but finitely many of its eigenvalues equal to one (leading to a mut-
liplicative fixed rank deformation). This problem has been studied thoroughly in
[5, 6, 32]. Other contributions (see [11]) study the isolated eigenvalues of a Wigner
matrix subject to a fixed rank additive deformation. The asymptotic fluctuations
of the isolated eigenvalues have been addressed in [5, 33, 32, 1, 11, 12, 7].

Recently, Benaych-Georges and Nadakuditi proposed in [8, 9] a generic method
for characterizing the behavior of the isolated eigenvalues for a large palette of
random matrix models. For our model, this method shows that the limiting lo-
cations as well as the fluctuations of the isolated eigenvalues are intimately re-
lated to the asymptotic behavior of certain bilinear forms involving the resolvents
(n−1YnY

∗
n −xIN )−1 and (n−1Y ∗

n Yn−xIn)
−1 of the undeformed matrix at real val-

ues of x. When Dn = In, the asymptotic behavior of these bilinear forms can be
simply identified (see [9]) thanks to the fact that the probability law of Yn is invari-
ant by left or right multiplication by unitary deterministic matrices. For general
Dn, other tools need to be used. In this paper, these bilinear forms are studied with
the help of an integration by parts formula for functionals of Gaussian vectors and
the Poincaré-Nash inequality. These tools belong to the arsenal of random matrix
theory, as shown in the recent monograph [31] and in the references therein. In
order to be able to use them in our context, we make use of a regularizing function
ensuring that the moments of the bilinear forms exist for certain x ∈ R+ = [0,∞).

Before entering the subject, we remark that the results of the paper can be
straightforwardly generalized to the case where Dn is replaced by a nonnega-
tive Hermitian matrix Rn, which is a more practical model in many applica-

tions. Indeed, write Rn = VnDnV
∗
n where Vn is a unitary matrix, and let R

1/2
n =

VnD
1/2
n V ∗

n . Then the singular values of Σn = n−1/2XnD
1/2
n + Pn coincide with

those of n−1/2(XnV
∗
n )R

1/2
n +PnV

∗
n . Since Xn and XnV

∗
n are equal in law, the vec-

tor of singular values of Σn and the vector of singular values of n−1/2XnR
1/2
n + P ′

n

where P ′
n = PnV

∗
n are also equal in law.

The paper is organized as follows. The assumptions and the main results are
provided in Section 2. Section 3 is devoted to the basic mathematical tools needed
for the proofs. These proofs are provided in Sections 4 and 5, which concern respec-
tively the first order (convergence) and the second order (fluctuations) behavior of
the isolated eigenvalues.
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2. Problem description and main results

Given a sequence of integers N = N(n), n = 1, 2, . . ., we consider the sequence

of N × n matrices Σn = n−1/2Yn + Pn = n−1/2XnD
1/2
n + Pn with the following

assumptions:

Assumption 1. The ratio cn = N(n)/n converges to a positive constant c as
n→ ∞.

Assumption 2. The matrix Xn = [Xij ]
N,n
i,j=1 is a N × n random matrix whose

coefficients Xij are iid complex random variables such that ℜ(X11) and ℑ(X11) are
independent, each with probability distribution N (0, 1/2).

Assumption 3. The sequence of n×n deterministic diagonal nonnegative matrices
Dn = diag(dnj )

n
j=1 satisfies the following:

(1) The probability measure νn = n−1
∑n

j=1 δdn
j
converges weakly to a probabil-

ity measure ν with compact support.
(2) The distances d(dnj , supp(ν)) from dnj to supp(ν) satisfy

max
j∈{1,...,n}

d
(
dnj , supp(ν)

)
−−−−→
n→∞

0.

This assumption implies that dmax = supn ‖Dn‖ <∞.
As is usual in random matrix theory, a central role will be played here by the so

called Stieltjes Transform. The Stieltjes Transform of a positive finite measure µ
over the Borel sets of R is the function

m(z) =

∫

R

1

t− z
µ(dt) (1)

analytic on C− supp(µ). It is straightforward to check that ℑm(z) ≥ 0 when z ∈
C+ = {z : ℑ(z) > 0}, and supy>0 |ym(ıy)| <∞. Conversely, any analytic function
m(z) on C+ that has these two properties admits the integral representation (1)
where µ is a positive finite measure. Furthermore, for any continuous real function
ϕ with compact support in R,

∫
ϕ(t)µ(dt) =

1

π
lim
y↓0

∫
ϕ(x)ℑm(x + ıy) dx (2)

which implies that the measure µ is uniquely defined by its Stieltjes Transform.
Finally, if ℑ(zm(z)) ≥ 0 when z ∈ C+, then µ((−∞, 0)) = 0 [25].
These facts can be generalized to Hermitian matrix-valued nonnegative finite mea-
sures [10, 15]. Let m(z) be a Cr×r-valued analytic function on z ∈ C+. Letting
ℑX = (X − X∗)/(2ı), assume that ℑm(z) ≥ 0 and ℑ(zm(z)) ≥ 0 in the or-
der of the Hermitian matrices for any z ∈ C+, and that supy>0 ‖ym(ıy)‖ < ∞.
Then m(z) admits the representation (1) where µ is now a r × r matrix-valued
nonnegative finite measure such that µ((−∞, 0)) = 0. One can also check that
µ([0,∞)) = − limy→∞ ıy m(−ıy).

The following theorem characterizes the asymptotic behavior of the eigenvalues
of n−1YnY

∗
n :

Theorem 2.1. Under Assumptions 1, 2 and 3, the following hold true:
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(1) For any z ∈ C+, the equation

m =

(
−z +

∫
t

1 + cmt
ν(dt)

)−1

(3)

admits a unique solution m ∈ C+. The function m = m(z) so defined on
C+ is the Stieltjes Transform of a probability measure µ whose support is a
compact set of R+.

Let (λni )i=1,...,N be the eigenvalues of n−1YnY
∗
n , and let θn = N−1

∑N
i=1 δλn

i

be the spectral measure of this matrix. Then for every bounded and contin-
uous real function f ,

∫
f(t)θn(dt)

a.s.−−−−→
n→∞

∫
f(t)µ(dt). (4)

(2) For any interval [x1, x2] ⊂ R− supp(µ),

♯{i : λni ∈ [x1, x2]} = 0 with probability 1 for all large n.

The first part of this theorem has been shown in [26, 36], and the second part in
[3].

Let Qn(z) = (n−1YnY
∗
n −zIN)−1 and Q̃n(z) = (n−1Y ∗

n Yn−zIn)−1 be the resolvents
of n−1YnY

∗
n and n−1Y ∗

n Yn respectively. The first part of Theorem 2.1 can also be
deduced from the following result that will be used in our subsequent derivations:

Proposition 2.1 ([36, 22, 18]). Assume that Dn is a n× n diagonal nonnegative
matrix. Then, for any n, the equation

mn =

[
−z
(
1 +

1

n
TrDnT̃n

)]−1

where T̃n = [−z (In + cnmnDn)]
−1

admits a unique solution mn ∈ C+ for any z ∈ C+. The function mn = mn(z)
so defined on C+ is the Stieltjes Transform of a probability measure µn whose
support is a compact set of R+. Moreover, the n×n diagonal matrix-valued function

T̃n(z) = [−z(In+cnmn(z)Dn)]
−1 is analytic on C+ and n−1 Tr T̃n(z) coincides with

the Stieltjes Transform of cnµn + (1 − cn)δ0.
Let Assumption 2 hold true, and assume that supn ‖Dn‖ <∞, and 0 < lim inf cn ≤
lim sup cn <∞. Then

1

N
Tr (Qn(z)−mn(z)IN )

a.s.−−−−→
n→∞

0 and
1

n
Tr
(
Q̃n(z)− T̃n(z)

)
a.s.−−−−→

n→∞
0 (5)

for any z ∈ C+. When Assumptions 1 and 3 hold true, mn(z) converges to m(z)
provided in the statement of Theorem 2.1 uniformly on the compact subsets of C+.

The function mn(z) =
(
−z +

∫
t(1 + cnmn(z)t)

−1νn(dt)
)−1

is a “finite horizon”

analogue of m(z). Since N−1 TrQn(z) is the Stieltjes Transform of the spectral
measure θn, Convergence (4) stems from the first convergence in (5). Note that

n−1Tr Q̃n(z) is the Stieltjes Transform of cnθn + (1 − cn)δ0. Hence Convergence
(4) can also be deduced from the second convergence in (5).

We now consider the additive deformation Pn:

Assumption 4. The deterministic N × n matrices Pn have a fixed rank equal to
r. Moreover, pmax = supn ‖Pn‖ <∞.
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In order for some of the eigenvalues of ΣnΣ
∗
n to converge to values outside

supp(µ), an extra assumption involving in some sense the interaction between Pn

and Dn is needed.
Let Pn = UnR

∗
n be a factorization of Pn where Un is an isometry matrix of size

N × r, e.g., a QR factorization. Define the r × r Hermitian nonnegative matrix-
valued measure Λn as

Λn = R∗
n



δdn

1

. . .

δdn
n


Rn. (6)

It is clear that the support of Λn is included in [0,dmax] and that Λn([0,dmax]) ≤
p2
maxIr . Since the sequence Λn([0,dmax]) is bounded in norm, for every sequence

of integers increasing to infinity, there is a subsequence nk and a nonnegative finite
measure Λ∗ such that

∫
fdΛnk

→
∫
fdΛ∗ for every function f ∈ C([0,dmax]), with

C([0,dmax]) the set of continuous functions on [0,dmax]. This fact is a straightfor-
ward extension of its analogue for scalar measures.

Assumption 5. Any two accumulation points Λ1 and Λ2 of the sequences Λn

satisfy Λ1(dx) = UΛ2(dx)U
∗ where U is a unitary matrix.

An equivalent statement of this assumption, perhaps more easily verifiable in
some applications, is the following: there exists a sequence of factorizations Pn =
UnR

∗
n such that for every function f ∈ C([0,dmax]), the sequence of measures Λn

associated to these factorizations by (6) satisfies
∫
fdΛn →

∫
fdΛ∗ where Λ∗ is a

matrix-valued nonnegative finite measure.

It is shown in [37] that the limiting spectral measure µ has a continuous density
on R∗ = R−{0} (see Prop. 3.1 below). Our first order result addresses the problem
of the presence of isolated eigenvalues of ΣnΣ

∗
n in any compact interval outside the

support of this density. Of prime importance will be the r × r matrix functions

H∗(z) =

∫
m(z)

1 + cm(z)t
Λ∗(dt)

where Λ∗ is an accumulation point of a sequence Λn. Since |1 + cm(z)t| = |z(1 +
cm(z)t)|/|z| ≥ |ℑ(z(1 + cm(z)t))|/|z| ≥ ℑ(z)/|z| on C+, the function H∗(z) is
analytic on C+. It is further easy to show that ℑ(H∗(z)) ≥ 0 and ℑ(zH∗(z)) ≥ 0
on C+, and supy>0 ‖yH∗(ıy)‖ < ∞. Hence H∗(z) is the Stieltjes Transform of a
matrix-valued nonnegative finite measure carried by [0,∞). Note also that, under
Assumption 5, the eigenvalues of H∗(z) remain unchanged if Λ∗ is replaced by
another accumulation point.

Theorem 2.2. Let Assumptions 1, 2 and 3 hold true. Denote by (λ̂ni )i=1,...,N the
eigenvalues of ΣnΣ

∗
n. Let (a, b) be an interval in supp(µ)c = R− supp(µ) such that

a belongs to the boundary ∂ supp(µ) or a = 0, and b ∈ ∂ supp(µ) or b = ∞. Then
the following facts hold true:

(1) Let (Pn) be a sequence satisfying Assumptions 4 and 5. Given an accumu-
lation point Λ∗ of a sequence Λn, let H∗(z) =

∫
m(z)(1+ cm(z)t)−1Λ∗(dt).

Then H∗(z) can be analytically extended to (a, b) where its values are Her-
mitian matrices, and the extension is increasing in the order of Hermitian
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matrices on (a, b). The function D(x) = det(H∗(x) + Ir) has at most r
zeros on (a, b). Let ρ1, . . . , ρk, k ≤ r be these zeros counting multiplicities.
If k ≥ 1, let [a′, b′] ⊂ (a, b) be such that [ρ1, ρk] ⊂ (a′, b′). If k = 0, let

[a′, b′] be any closed interval in (a, b). Define the functions C(x) and Ĉn(x)
on [a′, b′] as

C(x) = ♯{i : ρi ≤ x} and Ĉn(x) = ♯{i : λ̂ni ∈ [a′, b′] and λ̂ni ≤ x}.
Then ∫ b′

a′

∣∣∣Ĉn(x)− C(x)
∣∣∣ dx a.s.−−−−→

n→∞
0.

(2) If b = inf (supp(µ)− {0}), then for any positive b′ < b and for any sequence
of matrices (Pn) satisfying Assumption 4,

♯{i : λ̂ni ∈ (0, b′]} = 0 with probability 1 for large n.

(3) Assume a > inf (supp(µ)− {0}). Then for any ρ1 ≤ . . . ≤ ρr in (a, b), there
exists a sequence of matrices Pn satisfying Assumptions 4 and 5 for which∫ b′

a′
|Ĉn(x) − C(x)| dx as→ 0, where [a′, b′] ⊂ (a, b) and [ρ1, ρr] ⊂ (a′, b′), and

where C(x) and Ĉn(x) are defined as above.

Hence, for n large, ΣnΣ
∗
n cannot have isolated eigenvalues before the first “bulk”

of eigenvalues, i.e., the first interval of the support of µ. Alternatively, between any
two bulks or after the last bulk of this support, the number of isolated eigenvalues
of ΣnΣ

∗
n can reach the rank of the additive deformation.

It would be useful to complete the results of this theorem by specifying the in-
dices of the isolated eigenvalues that appear between the bulks. This study (not
done in this paper) may be done by following the ideas of [11] or [38] relative to the
so called separation of the eigenvalues of ΣnΣ

∗
n. Another approach dealing with

the same kind of problem is developed in [4].

In a few words, the proof of Theorem 2.2 consists in showing that the isolated
eigenvalues of ΣnΣ

∗
n in (a, b) are close for large n to the zeros of det(Gn(x) + IN )

in this interval, where Gn(x) is the analytic extension of Gn(z) = mn(z)Pn(I +
cnmn(z)Dn)

−1P ∗
n to (a, b). Performing a factorization Pn = UnR

∗
n where Un is

an isometry matrix of size N × r, we observe that Gn(z) can be represented in an

orthonormal basis of CN whose first vectors are the columns of Un as

[
Hn(z) 0

0 0

]

where Hn(z) = mn(z)R
∗
n(I+ cnmn(z)Dn)

−1Rn. These functions can be written as

Hn(z) =

∫
mn(z)

1 + cnmn(z)t
Λn(dt), (7)

and we shall show that they admit the H∗(z) as uniform limits on the compact
subsets of C− supp(µ). In practice, the isolated eigenvalues for a given large n can
be approximated by the zeros of det(mn(x)R

∗
n(I+cnmn(x)Dn)

−1Rn+Ir) in (a, b).

A scenario of practical importance at least in the fields of signal processing and
wireless communications is provided by the following assumption. Recall that ν is
the probability measure given by Assumption 3:
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Assumption 6. The accumulation points Λ∗ are of the form ν(dt)×UΩU∗ where

Ω =



ω2
1Ij1

. . .

ω2
t Ijt


 > 0, ω2

1 > · · · > ω2
t , j1 + · · ·+ jt = r

and where U is a unitary matrix.

In wireless communications, the ω2
i typically represent the powers of radio sources

transmitting signals to an antenna array.

Observe from Proposition 2.1 that
∫
(1+ cm(z)t)−1ν(dt) = −z lim(n−1 Tr T̃n(z)) =

−czm(z) + 1 − c. Consequently, in this particular case, H∗(x) is unitarily equiva-
lent to −m(x) (cxm(x)− 1 + c)Ω on (a, b). This brings the following corollary of
Theorem 2.2:

Corollary 2.1. Assume the setting of Theorem 2.2-(1), and let Assumption 6 hold
true. Then the function g(x) = m(x) (cxm(x) − 1 + c) is decreasing on (a, b). De-
pending on the value of ω2

ℓ , ℓ = 1, . . . , t, the equation ω2
ℓ g(x) = 1 has either zero or

one solution in (a, b). Denoting by ρ1, . . . , ρs these solutions counting multiplicities,∫ b′

a′
|Ĉn(x)−C(x)| dx as→ 0, where a′, b′, Ĉn(x) and C(x) are built as in the statement

of Theorem 2.2-(1).

We now turn to the second order result. This result will be stated in the sim-
ple and practical framework of Assumption 6. Actually, a stronger assumption is
needed:

Assumption 7. The following facts hold true:

sup
n

√
n|cn − c| <∞,

lim sup
n

√
n
∣∣∣
∫

1

t− x
νn(dt) −

∫
1

t− x
ν(dt)

∣∣∣ <∞ for all x ∈ R− supp(ν).

Moreover, there exists a sequence of factorizations of Pn such that the measures Λn

associated with these factorizations by (6) converge to ν(dt) ×Ω and such that

lim sup
n

√
n
∥∥∥
∫

1

t− x
Λn(dt) −

∫
1

t− x
ν(dt) ×Ω

∥∥∥ <∞ for all x ∈ R− supp(ν)

We recall that a GUE matrix (i.e., a matrix taken from the Gaussian Unitary
Ensemble) is a random Hermitian matrix G such that Gii ∼ N (0, 1), ℜ(Gij) ∼
N (0, 1/2) and ℑ(Gij) ∼ N (0, 1/2) for i < j, and such that all these random
variables are independent.

Theorem 2.3. Let Assumptions 1-7 hold true. Let g be the function defined in the
statement of Corollary 2.1 and let Bµ = sup(supp(µ)). Assume that the equations
ω2
ℓ g(x) = 1 with x ∈ (Bµ,∞), have a solution for each ℓ ∈ {1, . . . , p}, p ≤ 1,

denoted ρ1 > · · · > ρp (with multiplicities j1, . . . , jp), respectively. Let Λn be any
sequence of measures satisfying the third item of Assumption 7, and let Hn(z) be the
matrix function associated with Λn by (7). Denote by H1,n(z), . . . , Hp,n(z) the first
p upper left diagonal blocks of Hn(z), where Hi,n(z) ∈ Cji×ji . Then the following
facts hold true:

• ∆(ρi) = 1− c

∫ (
m(ρi)t

1 + cm(ρi)t

)2

ν(dt) is positive for every i = 1, . . . , p.
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• lim supn ‖√n(Hi,n(ρi) + Iji )‖ <∞ for every i = 1, . . . , p.

For i = 1, . . . , p, let

Mn
i =

√
n






λ̂nj1+···+ji−1+1

...

λ̂nj1+···+ji


− ρi



1
...
1







where j0 = 0 and where the eigenvalues λ̂ni of ΣnΣ
∗
n are arranged in decreasing

order. Let G1, . . . , Gp be independent GUE matrices such that Gi is a ji×ji matrix.
Then, for any bounded continuous f : Rj1+...+jp → R,

E
[
f
(
Mn

1 , . . . ,M
n
p

)]
− E

[
f
(
Ξn
1 , . . . ,Ξ

n
p

)]
−→
n→∞

0

where Ξn
i ∈ Rji is the random vector of the decreasingly ordered eigenvalues of the

matrix

1

ω2
i g(ρi)

′

(
αiGi +

√
n (Hi,n(ρi) + Iji)

)
,

where

α2
i =

m2(ρi)

∆(ρi)

[∫
t2 + 2ω2

i t

(1 + cm(ρi)t)2
ν(dt) + c

(∫
ρiω

2
im(ρi)t

(1 + cm(ρi)t)2
ν(dt)

)2
]
.

Before turning to the proofs, some comments can be useful. We shall see that
the results of Theorems 2.2 and 2.3 are intimately related to the first and sec-

ond order behaviors of bilinear forms of the type u∗nQn(x)vn, ũ
∗
nQ̃n(x)ṽn, and

n−1/2u∗nYnQ̃n(x)ṽn where un, vn, ũn and ṽn are deterministic vectors of bounded
norm and of appropriate dimensions, and where x is a real number lying outside the
support of µ. In fact, it is possible to generalize Theorem 2.2 to the case where the
elements of Xn are not necessarily Gaussian. This can be made possible by using
the technique of [21] to analyze the first order behavior of these bilinear forms.
On the other hand, the Gaussian assumption plays a central role in Theorem 2.3.
Indeed, the proof of this theorem is based on the fact that these bilinear forms
asymptotically fluctuate like Gaussian random variables when centered and scaled
by

√
n. Take un = e1,N and ṽn = e1,n where ek,m is the kth canonical vector of

Rm. Denoting by q̃nij and by t̃nij the (i, j) elements of Q̃n(x) and T̃n(x) respectively,
we can informally write

e∗1,NYnQ̃(x)e1,n =

n∑

j=1

(dnj )
1/2q̃nj1X1j ≈ (dn1 )

1/2 t̃n11X11 +

n∑

j=2

(dnj )
1/2q̃nj1X1j

following [21]. It can be shown furthermore that t̃n11 = O(1) for large n and that

the sum
∑n

j=2 is tight. Hence, e∗1,NYnQ̃(x)e1,n is tight. However, when X11 is

not Gaussian, we infer that e∗1,NYnQ̃(x)e1,n does not converge in general towards

a Gaussian random variable. In this case, when Pn = ω2e1,Ne
∗
1,n (see Section 5),

Theorem 2.3 no longer holds. Yet, we conjecture that the results of this Theorem
can be recovered when e1,N and e1,n are replaced with vectors whose elements are
“spread enough”, see [12] which deals with a similar problem.
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A word about the notations. In the remainder of the paper, we shall often drop
the subscript or the superscript n when there is no ambiguity. A constant bound
that might change from an inequality to another but which is independent of n will
always be denoted K. Element (i, j) of matrixM is denotedMij or [M ]ij . Element
i of vector x is denoted [x]i. As usual, A

∗ means the adjoint of a matrix or a vector
A, and for a complex number z, we will use either z̄ or z∗ to denote the complex

conjugate of z. Convergence in probability will be denoted
P−→, and convergence

in distribution
D−→.

3. Mathematical tools and useful results

We start this section with some basic mathematical tools.

3.1. Differentiation formulas. Let ∂/∂z = (∂/∂x−ı∂/∂y)/2 and ∂/∂z̄ = (∂/∂x+
ı∂/∂y)/2 for z = x + ıy. Given a Hermitian matrix X with a spectral decompo-
sition X =

∑
ℓ λℓvℓv

∗
ℓ , let adj(X) =

∑
k(
∏

ℓ 6=k λℓ)vkv
∗
k be the classical adjoint of

X , i.e., the transpose of its cofactor matrix. Let ψ be a continuously differentiable
real-valued function on R. Then

∂ detψ
(
n−1Y Y ∗

)

∂Ȳij
=

1

n

[
adj
(
ψ
(
n−1Y Y ∗

))
ψ′
(
n−1Y Y ∗

)
yj
]
i

where yj is column j of Y , see [19, Lemma 3.9] for a proof.
We shall also need the expressions of the following derivatives of the elements of

the resolvents Q and Q̃ (see [18]):

∂Qpq

∂Ȳij
= − 1

n
[QY ]pjQiq,

∂Q̃pq

∂Ȳij
= − 1

n
Q̃pj[Y Q̃]iq.

3.2. Gaussian tools. Our analysis fundamentally relies on two mathematical tools
which are often used in the analysis of large random matrices with Gaussian ele-
ments. The first is the so called Integration by Parts (IP) formula for functionals of
Gaussian vectors introduced in random matrix theory in [24, 30]. Let Γ : R2Nn → C

be a continuously differentiable function polynomially bounded together with its
partial derivatives. Then

E (YijΓ(Y )) = djE

[
∂Γ(Y )

∂Ȳij

]

for any i ∈ {1, . . . , N} and j ∈ {1, . . . , n}. The second tool is the Poincaré-Nash
inequality (see for instance [13]). In our situation, it states that the variance
Var(Γ(Y )) satisfies

Var(Γ(Y )) ≤
N∑

i=1

n∑

j=1

djE

[∣∣∣∣
∂Γ(Y )

∂Yij

∣∣∣∣
2

+

∣∣∣∣
∂Γ(Y )

∂Ȳij

∣∣∣∣
2
]
.

The results of Silverstein and Choi [37] relative to the support of µ will be needed
in the proof and recalled in the following paragraph for completeness. Close results
can be found in [27] and in [28].
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3.3. Analysis of the support of µ.

Proposition 3.1 ([37], Th.1.1). For all x ∈ R∗, lim
z∈C+→x

m(z) exists. The limit

that we denote m(x) is continuous on R∗. Moreover, µ has a continuous density f
on R∗ given by f(x) = π−1ℑm(x).

In [37], the support of µ is also identified. Since m(z) is the unique solution in
C+ of (3) for z ∈ C+, it has a unique inverse on C+ given by

z(m) = − 1

m
+

∫
t

1 + cmt
ν(dt)

The characterization of the support of µ is based on the following idea. On any open
interval of supp(µ)c, m(x) =

∫
(t − x)−1µ(dt) is a real, continuous and increasing

function. Consequently, it has a real, continuous and increasing inverse. In [37],
it is shown that the converse is also true. More precisely, let B = {m : m 6=
0, −(cm)−1 ∈ supp(ν)c}, and let

x : B −→ R

m 7−→ x(m) = − 1

m
+

∫
t

1 + cmt
ν(dt).

(8)

Then the following proposition holds:

Proposition 3.2 ([37], Th. 4.1 and 4.2). For any x0 ∈ supp(µ)c, let m0 = m(x0).
Then m0 ∈ B, x0 = x(m0), and x

′(m0) > 0. Conversely, let m0 ∈ B such that
x′(m0) > 0. Then x0 = x(m0) ∈ supp(µ)c, and m(x0) = m0.

The following proposition will also be useful:

Proposition 3.3 ([37], Th. 4.4). Let [m1,m2] and [m3,m4] be two disjoint in-
tervals of B satisfying ∀m ∈ (m1,m2) ∪ (m3,m4), x

′(m) > 0. Then [x1, x2] and
[x3, x4] are disjoint where xi = x(mi).

The following result is also proven in [37]:

Proposition 3.4. Assume that ν({0}) = 0. Then µ({0}) = max(0, 1− c−1).

We shall assume hereafter that ν({0}) = 0 without loss of generality (otherwise,
it would be enough to change the value of c). The two following lemmas will also
be needed:

Lemma 3.1. Let [x1, x2] ∈ supp(µ)c with x1 > 0, and let Dx1,x2
be the closed

disk having [x1, x2] as one of its diameters. Then there exists a constant K which
depends on x1 and x2 only such that

∀ t ∈ supp(ν), ∀ z ∈ Dx1,x2
, |1 + cm(z)t| ≥ K, and

∀n large enough, ∀ t ∈ supp(νn), ∀ z ∈ Dx1,x2
, |1 + cnmn(z)t| ≥ K.

From the second inequality, we deduce that T̃n(z) is analytic in a neighborhood
of [x1, x2] for n large enough, and

lim sup
n

sup
z∈Dx1,x2

‖T̃n(z)‖ <∞. (9)
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Proof. When z ∈ C+, ℑm(z) > 0 and ℑ(−(cm(z))−1) > 0, and we have the
opposite inequalities when ℑz < 0. Applying Proposition 3.2 for z ∈ [x1, x2], we
deduce that |m(z)| and f(z) = d(−(cm(z))−1, supp(ν)) are positive on Dx1,x2

.
Since these functions are continuous on this compact set, min |m(z)| = K1 > 0
and min f(z) = K2 > 0 on Dx1,x2

. Consequently, for any z ∈ Dx1,x2
and any

t ∈ supp(ν), |1 + cm(z)t| = |cm(z)(−(cm(z))−1 − t)| ≥ |cm(z)|f(z) ≥ cK1K2 > 0.
We now prove the second inequality. Denote by dH(A,B) the Hausdorff distance
between two sets A and B. Let fn(z) = d(−(cnmn(z))

−1, supp(νn)). We have

fn(z) ≤ d

( −1

cnmn(z)
,

−1

cm(z)

)
+ d

( −1

cm(z)
, supp(νn)

)

≤ d

( −1

cnmn(z)
,

−1

cm(z)

)
+ f(z) + dH(supp(νn), supp(ν)),

and f(z) ≤ d(−(cnmn(z))
−1,−(cm(z))−1) + fn(z) + dH(supp(νn), supp(ν)) sim-

ilarly. Since mn(z) converges uniformly to m(z) and inf |m(z)| > 0 on Dx1,x2
,

d(−(cnmn(z))
−1,−(cm(z))−1) → 0 uniformly on this disk. By Assumption 3,

dH(supp(νn), supp(ν)) → 0. Hence fn(z) converges uniformly to f(z) on Dx1,x2

which proves the second inequality. �

Lemma 3.2. In the setting of Lemma 3.1, for any sequence of vectors ũn ∈ Cn such

that supn ‖ũn‖ < ∞, the quadratic forms ũ∗nT̃n(z)ũn are the Stieltjes Transforms
of positive measures γn such that supn γn(R) <∞ and γn([x1, x2]) = 0 for n large
enough.

Indeed, one can easily check the conditions that enable ũ∗nT̃n(z)ũn to be a Stielt-
jes Transform of a positive finite measure. The last result is obtained by analyt-
icity in a neighborhood of [x1, x2]. In fact, it can be checked that supp(γn) ⊂
supp(µn) ∪ {0}.

3.4. A Control over the support of θn. In this paragraph, we adapt to our case
an idea developed in [11] to deal with Wigner matrices whose elements distribution
satisfies a Poincaré-Nash inequality.

Proposition 3.5. For any sequence of n × n deterministic diagonal nonnegative

matrices Ũn such that supn ‖Ũn‖ <∞,
∣∣∣∣
1

n
TrEQn(z)−mn(z)

∣∣∣∣ ≤
P (|z|)R(|ℑ(z)|−1)

n2
, and

∣∣∣∣
1

n
Tr ŨnEQ̃n(z)−

1

n
Tr ŨnT̃n(z)

∣∣∣∣ ≤
P (|z|)R(|ℑ(z)|−1)

n2

for z ∈ C+, where P and R are polynomials with nonnegative coefficients indepen-
dent of n.

This proposition is obtained from a simple extension of the results of [18, Th. 3
and Prop.5] from z ∈ (−∞, 0) to z ∈ C+.
The following important result, due to Haagerup and Thorbjørnsen, is established
in the proof of [17, Th.6.2]:

Lemma 3.3. Assume that h(z) is an analytic function on C+ that satisfies |h(z)| ≤
P (|z|)R(|ℑ(z)|−1) where P and R are polynomials with nonnegative coefficients.
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Then for any function ϕ ∈ C∞
c (R,R), the set of smooth real-valued functions with

compact support in R,

lim sup
y↓0

∣∣∣∣
∫

R

ϕ(x)h(x + ıy)dx

∣∣∣∣ <∞.

Since N−1 TrQn(z) is the Stieltjes Transform of the spectral measure θn, the
inversion formula (2) shows that

∫
ϕ(t) θn(dt) =

1

π
lim
y↓0

ℑ
∫
ϕ(x)

1

N
TrQn(x+ ıy) dx

for any function ϕ ∈ C∞
c (R,R). Using then Proposition 3.5 and Lemma 3.3, we

obtain the following result:

Proposition 3.6. For any function ϕ ∈ C∞
c (R,R),

∣∣∣∣E
∫
ϕ(t) θn(dt) −

∫
ϕ(t)µn(dt)

∣∣∣∣ ≤
K

n2
.

4. First Order Analysis: Proof of Theorem 2.2

In all this section, [x1, x2] is an interval in (a, b) where a and b are given in the
statement of Theorem 2.2, and z is a complex number such that ℜ(z) ∈ [x1, x2]
and ℑ(z) is arbitrary. Moreover, un, vn ∈ CN and ũn, ṽn ∈ Cn are sequences of

deterministic vectors such that supn max(‖un‖, ‖vn‖, ‖ũn‖, ‖ṽn‖) <∞, and Ũn is a

sequence of n× n diagonal deterministic matrix such that supn ‖Ũn‖ <∞.
We now introduce the regularization function alluded to in the introduction. Choose
ε > 0 small enough so that [x1, x2] ∩ Sε = ∅ where Sε = {x ∈ R,d(x, supp(µ) ∪
{0}) ≤ ε}. Fix 0 < ε′ < ε, let ψ : R → [0, 1] be a continuously differentiable
function such that

ψ(x) =

{
1 if x ∈ Sε′

0 if x ∈ R− Sε

and let φn = detψ(n−1YnY
∗
n ). In all the subsequent derivations, quantities such

as u∗nQn(z)un or ũ∗nQ̃n(z)ũn for ℜ(z) ∈ [x1, x2] will be multiplied by φn in order
to control their magnitudes when z is close to the real axis. By performing this
regularization as is done in [19], we shall be able to define and control the moments

of random variables such as φn u
∗
nQn(z)un or φn ũ

∗
nQ̃n(z)ũn with the help of the

Gaussian tools introduced in Section 3.2.

We start with a series of lemmas. The first of these lemmas relies on Proposition
3.6 and on the Poincaré-Nash inequality. Its detailed proof is a minor modification
of the proof of [19, Lemma 3] and is therefore omitted:

Lemma 4.1. Given 0 < ε′ < ε, let ϕ be a smooth nonnegative function equal to
zero on Sε′ and to one on R− Sε. Then for any ℓ ∈ N, there exists a constant Kℓ

for which

E

[(
Trϕ(n−1YnY

∗
n )
)ℓ] ≤ Kℓ

nℓ
.

Remark 1. Notice that this lemma proves Theorem 2.1-(2). The proof provided in
[3] is in fact more general, being not restricted to the Gaussian case.
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Lemma 4.2. For any ℓ ∈ N, the following holds true:

E







N,n∑

i,j=1

dj

∣∣∣∣
∂φn
∂Ȳij

∣∣∣∣
2



ℓ

 ≤ Kℓ

n2ℓ
.

Proof. Letting n−1/2Y = W diag(
√
λ1, · · · ,

√
λN )V ∗ be a singular value decompo-

sition of n−1/2Y , we have

adj

(
ψ
(Y Y ∗

n

))
ψ′
(Y Y ∗

n

) Y√
n
=WΞV ∗ where Ξ = diag

(√
λkψ

′(λk)
∏

ℓ 6=k

ψ(λℓ)
)N
k=1

and we observe that TrΞ2 ≤ KZn where Zn = ♯{k : λk ∈ Sε − Sε′}. Using the
first identity in Section 3.1 and recalling that |Tr(AB)| ≤ ‖A‖TrB when A is a
square matrix and B is a Hermitian nonnegative matrix, we have

E







N,n∑

i,j=1

dj

∣∣∣∣
∂φn

∂Ȳij

∣∣∣∣
2



ℓ

 =

1

nℓ
E

[(
Tr

(
adj(ψ)ψ′ Y DY

∗

n
adj(ψ)ψ′

))ℓ
]
≤ K

nℓ
EZℓ

n

and the result follows from Lemma 4.1 with a proper choice of ϕ. �

Lemma 4.3. The following inequalities hold true:

E |φn u∗nQn(z)vn − E[φn u
∗
nQn(z)vn]|4 ≤ K

n2
,

E

∣∣∣φn ũ∗nQ̃n(z)ṽn − E[φn ũ
∗
nQ̃n(z)ṽn]

∣∣∣
4

≤ K

n2
,

Var (φn TrQn(z)) ≤ K.

Proof. We shall only prove the first inequality. By the polarization identity, this
inequality is shown whenever we show that E |φu∗Qu− E[φu∗Qu]|4 ≤ K/n2. Let
us start by showing that Var(φu∗Qu) ≤ K/n. By the Poincaré-Nash inequality,
we have

Var (φu∗Qu) ≤ 2

N,n∑

i,j=1

djE

∣∣∣∣
∂φu∗Qu

∂Ȳij

∣∣∣∣
2

≤ 4

N,n∑

i,j=1

djE

∣∣∣∣φ
∂u∗Qu

∂Ȳij

∣∣∣∣
2

+ 4

N,n∑

i,j=1

djE

∣∣∣∣u
∗Qu

∂φ

∂Ȳij

∣∣∣∣
2

.

Using the expression of ∂Qpq/∂Ȳij in Section 3.1, we have

∂u∗Qu/∂Ȳij = −n−1u∗Qyj [Qu]i,

hence
N,n∑

i,j=1

djE

∣∣∣∣φ
∂u∗Qu

∂Ȳij

∣∣∣∣
2

=
1

n
E

[
φ2 u∗Q

YDY ∗

n
Quu∗Q2u

]
≤ K

n

since the argument of the expectation is bounded for ℜ(z) ∈ [x1, x2]. From the first

identity in Section 3.1,
∑

i,j djE
∣∣u∗Qu∂φ/∂Ȳij

∣∣2 ≤ K
∑

i,j djE
∣∣∂φ/∂Ȳij

∣∣2 which
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is bounded by K/n2 by Lemma 4.2. It results that Var(φu∗Qu) ≤ K/n. Now,

writing
◦

X= X − EX ,

E

∣∣∣
◦︷ ︸︸ ︷

φu∗Qu
∣∣∣
4

= (Var(φu∗Qu))
2
+ Var

(( ◦︷ ︸︸ ︷
φu∗Qu

)2)
≤ K/n2 + Var

(( ◦︷ ︸︸ ︷
φu∗Qu

)2)
.

By the Poincaré-Nash inequality,

Var
(( ◦︷ ︸︸ ︷
φu∗Qu

)2)
≤ 2

N,n∑

i,j=1

djE
∣∣∣∂
( ◦︷ ︸︸ ︷
φu∗Qu

)2
/ ∂Ȳij

∣∣∣
2

≤ 16

N,n∑

i,j=1

djE
∣∣∣

◦︷ ︸︸ ︷
φu∗Qu φ

∂u∗Qu

∂Ȳij

∣∣∣
2

+16

N,n∑

i,j=1

djE
∣∣∣

◦︷ ︸︸ ︷
φu∗Qu u∗Qu

∂φ

∂Ȳij

∣∣∣
2

:= V1+V2.

By developing the derivative in V1 similarly to above, V1 ≤ Kn−1E

∣∣∣
◦︷ ︸︸ ︷

φu∗Qu
∣∣∣
2

≤
Kn−2. By the Cauchy-Schwarz inequality and Lemma 4.2,

V2 ≤ K

N,n∑

i,j=1

djE
∣∣∣

◦︷ ︸︸ ︷
φu∗Qu

∂φ

∂Ȳij

∣∣∣
2

≤ K

n2

(
E

∣∣∣
◦︷ ︸︸ ︷

φu∗Qu
∣∣∣
4)1/2

.

Writing an = n2E

∣∣∣
◦︷ ︸︸ ︷

φu∗Qu
∣∣∣
4

, we have shown that
√
an ≤ K/

√
an +K/n. Assume

that an is not bounded. Then there exists a sequence nk of integers such that
ank

→ ∞, which raises a contradiction. The first inequality in the statement of
this lemma is shown. The other two inequalities can be shown similarly. �

Lemma 4.4. The following holds true:

1− Eφn ≤ Kℓ

nℓ
for any ℓ ∈ N.

Proof. For 0 < ε1 < ε′ where ε′ is defined in the construction of ψ, let ϕ be a
smooth nonnegative function equal to zero on Sε1 and to one on R − Sε′ . Then

1 − φn ≤
(
Tr(ϕ(n−1Y Y ∗))

)ℓ
for any ℓ ∈ N, and the result stems from Lemma

4.1. �

Lemma 4.5. The following inequalities hold true (recall that ℜ(z) 6∈ supp(µ)):

|E [φn TrQn(z)]−Nmn(z)| ≤
K

n
, and

∣∣∣Tr Ũn

(
E[φnQ̃n(z)]− T̃n(z)

)∣∣∣ ≤ K

n
.

Proof. Let ε be defined in the construction of ψ. Choose a small ε1 > ε in such a
way that Sε1 ∩ [x1, x2] = ∅. Let ζ be a C∞

c (R,R) nonnegative function equal to one
on Sε and to zero on R− Sε1 , so that

φ
1

n
TrQ = φ

∫
ζ(t)

t− z
θn(dt) .

Using this equality, and recalling that φ ∈ [0, 1], we have
∣∣∣∣Eφ

1

n
TrQ− E

∫
ζ(t)

t− z
θn(dt)

∣∣∣∣ ≤ E

[
(1 − φ)

∣∣∣∣
∫

ζ(t)

t− z
θn(dt)

∣∣∣∣
]
≤ 1− Eφ

d(z,Sε1)
≤ Kℓ

nℓ
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for any ℓ ∈ N. Moreover, we have

∣∣∣∣E
∫

ζ(t)

t− z
θn(dt)−mn(z)

∣∣∣∣ =
∣∣∣∣E
∫

ζ(t)

t− z
θn(dt)−

∫
ζ(t)

t− z
µn(dt)

∣∣∣∣ ≤
K

n2

by Proposition 3.3, and the first inequality is proved.

By performing a spectral factorization of n−1Y ∗Y , one can check that n−1 Tr Ũ Q̃(z)
is the Stieltjes Transform of a positive measure τn such that supn τn(R) < ∞ and

supp(τn) ⊂ supp(θn)∪{0}. By Lemma 3.2, n−1 Tr Ũ T̃ (z) is the Stieltjes Transform
of a positive measure γn such that supn γn(R) < ∞ and γn([x1, x2]) = 0 for all
large n. With the help of the second inequality of Proposition 3.5, we have a result
similar to that of Proposition 3.6, namely that |E

∫
ϕdτn−

∫
ϕdγn| ≤ K/n2 for any

function ϕ ∈ C∞
c (R,R). We can then prove the second inequality similarly to the

first one. �

Lemma 4.6. The following inequalities hold true:

|E[φn u∗nQn(z)vn]− u∗nvnmn(z)| ≤ K/n,
∣∣∣E[φn ũ∗nQ̃n(z)ṽn]− ũ∗nT̃n(z)ṽn

∣∣∣ ≤ K/n.

In [21], it is proven in a more general setting that
∣∣Eu∗nQn(z)un − ‖un‖2mn(z)

∣∣ ≤
P (|z|)R(|ℑ(z)|−1)/

√
n for any z ∈ C+. Observing that u∗nQn(z)un and ‖un‖2mn(z)

are Stieltjes Transforms of positive measures, and mimicking the proof of the pre-
vious lemma, we can establish this lemma with the rate O(n−1/2), which is in fact
enough for our purposes. However, in order to give a flavor of the derivations that
will be carried out in the next section, we consider here another proof that uses
the IP formula and the Poincaré-Nash inequality. To that end, we introduce new
notations:

β(z) = φn
1

n
TrQn(z), α(z) = Eβ(z), β̂(z) = β(z)− φnα(z), and

α̃(z) =
1

n
TrDn[−z(In + α(z)Dn)]

−1.

Proof. We start with the first inequality. By the IP formula, we have

E[QpiYij Ȳℓjφ] = −dj
n
E[[Qyj ]pQiiȲℓjφ]+δ(ℓ−i)djE[Qpiφ]+

dj
n
E[QpiȲℓj [adj(ψ)ψ

′yj]i].

Taking the sum over i, we obtain

E[[Qyj]pȲℓjφ] = −djE[[Qyj ]pȲℓjβ] + djE[Qpℓφ] +
dj
n
E[Ȳℓj [Q adj(ψ)ψ′yj ]p].

Writing β = β̂ + φα, we get

E[[Qyj ]pȲℓjφ] =
dj

1 + αdj
E[Qpℓφ]−

dj
1 + αdj

E[[Qyj ]pȲℓj β̂]

+
dj

n(1 + αdj)
E[Ȳℓj [Q adj(ψ)ψ′yj ]p].
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Taking the sum over j, we obtain

E

[[
Q
Y Y ∗

n

]

pℓ

φ

]
= −zα̃E[Qpℓφ]− E

[
β̂

[
Q
Y D(I + αD)−1Y ∗

n

]

pℓ

]

+
1

n
E

[[
Q adj(ψ)ψ′ Y D(I + αD)−1Y ∗

n

]

pℓ

]
.

We now use the identity zQ = n−1QY Y ∗ − I, which results in

zE[Qpℓφ] = E

[[
Q
Y Y ∗

n

]

pℓ

φ

]
− δ(p− ℓ)E[φ],

E[Qpℓφ] =
δ(p− ℓ)

−z(1 + α̃)
E[φ] +

2nd and 3rd terms of next to last equation

z(1 + α̃)
.

Multiplying each side by [u∗]p[v]ℓ and taking the sum over p and ℓ, we finally obtain

E[u∗Qvφ] = E[φ]
u∗v

−z(1 + α̃)
− [−z(1 + α̃)]−1

E

[
β̂u∗Q

YD(I + αD)−1Y ∗

n
v

]

+
1

n
[−z(1 + α̃)]−1

E

[
u∗Q adj(ψ)ψ′ Y D(I + αD)−1Y ∗

n
v

]
. (10)

Let us evaluate the three terms at the right hand side of this equality. From
Lemma 4.5, we have α = cnmn + O(n−2). Using in addition the bound (9), we

obtain α̃ = n−1 Tr(D(−z(I + cnmnD + (α− cnmn)D)−1) = n−1 TrDT̃ +O(n−2).

Sincemn(z) = (−z(1+n−1TrDT̃ (z)))−1, we obtain that (−z(1 + α̃))
−1

= mn(z)+
O(n−2). Using in addition Lemma 4.4, we obtain that the first right hand side term

of (10) is u∗vmn(z) + O(n−2). Due to the presence of φ in the expression of β̂,

the second term is bounded by KE|β̂|. Moreover, β̂ = n−1φTrQ− n−1E[φTrQ] +

(1− φ)n−1E[φTrQ]. By Lemmas 4.4 and 4.3, E|β̂| = O(n−1). The third term can
be shown to be bounded by Kn−1ETrϕ(n−1Y Y ∗) = O(n−2) where ϕ is as in the
statement of Lemma 4.1. This proves the first inequality in the statement of the
lemma.
The second result in the statement of the lemma is proven similarly. The proof
requires the second inequality of Lemma 4.5. �

The proof of the following lemma can be done along the same lines and will be
omitted:

Lemma 4.7. The following inequalities hold true:
∣∣∣Eφnu∗nYnQ̃n(z)ṽn

∣∣∣ ≤ K/
√
n

E

∣∣∣φnu∗nYnQ̃n(z)ṽn

∣∣∣
4

≤ K.

We now prove Theorem 2.2.

Proof of Theorem 2.2-(1). To prove this result, we follow the idea of [8, 9]. We
start with a purely algebraic result. By Assumption 4, there exists a N × r matrix
An and a n × r matrix Bn, both with rank r and bounded spectral norms, such
that Pn = AnB

∗
n (at this step, An need not be an isometry matrix as was done

before Equation (6)). Assume that x > 0 is not an eigenvalue of n−1YnY
∗
n . Then
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x is an eigenvalue of ΣnΣ
∗
n if and only if det Ŝn(x) = 0 where Ŝn(x) is the 2r × 2r

matrix

Ŝn(x) =

[ √
xA∗

nQn(x)An Ir + n−1/2A∗
nYnQ̃n(x)Bn

Ir + n−1/2B∗
nQ̃n(x)Y

∗
nAn

√
xB∗

nQ̃n(x)Bn

]

(for details, see the derivations in [9] or in [20, Section 3]). The intuitive idea is the

following. Fix the value of x. By the results shown above, Ŝn(x) is close for large
n to

Sn(x) =

[√
xmn(x)A

∗
nAn Ir

Ir
√
xB∗

nT̃n(x)Bn

]
.

Hence, we expect the eigenvalues of ΣnΣ
∗
n in (a, b), when they exist, to be close for

large n to the zeros in (a, b) of

detSn(x) = det
(
xmn(x)A

∗
nAnB

∗
nT̃n(x)Bn − Ir

)

= (−1)r det
(
IN − xmn(x)PnT̃n(x)P

∗
n

)
.

For any x ∈ (a, b), detSn(x) = (−1)r det(Hn(x) + Ir) ≃ (−1)r det(H∗(x) + Ir)
where Hn is given by Equation (7) and H∗ is provided in the statement of the
theorem. Hence the zeros of D(x) in (a, b) are the limits of the isolated eigenvalues
of ΣnΣ

∗
n.

We now formalize this argument. Our first task is to establish the properties of
H∗(x) given in the statement of Theorem 2.2-(1). We start by defining the function
detSn(z) on C+ by writing

detSn(z) = (−1)r det
(
IN − zmn(z)PnT̃n(z)P

∗
n

)
= (−1)r det (Hn(z) + Ir) .

Let V be a small enough neighborhood of [x1, x2] in C, where we recall that [x1, x2]
is an arbitrary interval in (a, b). By the construction of Λn, Proposition 2.1 and
Lemma 3.1, the functions Hn(z) are analytic on V for n large enough, the functions
H∗(z) are analytic on V , and from every sequence of integers increasing to infinity,
one can extract a subsequence ϕ(n) along which Hϕ(n)(z) converges to one of the
H∗(z) uniformly on the compact subsets of V . The comments preceding Theorem
2.2 show that any H∗(z) is the Stieltjes Transform of a matrix-valued nonnegative
measure Γ. Since H∗(z) is analytic on V , the interval [x1, x2] lies outside the
support of Γ. Hence, the extension of H∗(z) to [x1, x2] is increasing on this interval
in the order of Hermitian matrices, and the properties of this function given in the
statement of Theorem 2.2-(1) are established.

In order to prove the convergence stated in Theorem 2.2-(1), it will be enough
to show that for large n and with probability one, ΣΣ∗ has no eigenvalues in any
compact interval lying in (a, ρ1), (ρ1, ρ2), . . . , or in (ρk, b) if k ≥ 1, or in (a, b)
if k = 0, and the number of its eigenvalues in any small neighborhood of any
of the ρi is equal to the multiplicity of this zero. Let D◦

x1,x2
be the open disk

with diameter [x1, x2] where x1 and x2 are chosen such that [x1, x2] ⊂ (a, b) and
{ρ1, . . . , ρk} ∩ {x1, x2} = ∅. Let us restrict ourselves to the probability one set
where n−1Y Y ∗ has no eigenvalues for large n in a large enough closed interval in

(a, b). We need to prove that on this set, the number of zeros of det Ŝn(z) in D
◦
x1,x2

converges almost surely to the number of zeros of det(H∗(z) + Ir) in that same

disk. Let L̂n = ♯{i : λ̂ni ∈ D◦
x1,x2

}, Ln = ♯{ zeros of detSn(z) in D
◦
x1,x2

}, and
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L = ♯{i : ρi ∈ D◦
x1,x2

with multiplicities}. By the well known argument principle
for holomorphic functions,

L̂n =
1

2ıπ

∮

∂D◦

x1,x2

(det Ŝn(z))
′

det Ŝn(z)
dz,

Ln =
1

2ıπ

∮

∂D◦

x1,x2

(detSn(z))
′

detSn(z)
dz =

1

2ıπ

∮

∂D◦

x1,x2

(det(Hn(z) + Ir))
′

det(Hn(z) + Ir)
dz and

L =
1

2ıπ

∮

∂D◦

x1,x2

(det(H∗(z) + Ir))
′

det(H∗(z) + Ir)
dz

where ∂D◦
x1,x2

is seen as a positively oriented contour.
For any 1 ≤ k, ℓ ≤ r, let hn,k,ℓ(z) = [A∗

n(Qn(z) − mn(z)IN )An]k,ℓ. Let V
be a small neighborhood of Dx1,x2

, the closure of D◦
x1,x2

. Let zm be a sequence of
complex numbers in V having an accumulation point in V . By Lemmas 4.1, 4.3 and

4.6 and the Borel Cantelli lemma, hn,k,ℓ(zm)
as→ 0 as n→ ∞ for everym. Moreover,

for n large, the hn,k,ℓ are uniformly bounded on any compact subset of V . By the
normal family theorem, every n-sequence of hn,k,ℓ contains a further subsequence
which converges uniformly on the compact subsets of V to a holomorphic function
h∗. Since h∗(zm) = 0 for every m, we obtain that almost surely, hn,k,ℓ converges
uniformly to zero on the compact subsets of V , and the same can be said about
‖A∗

n(Qn(z)−mn(z)IN )An‖. Using in addition Lemmas 3.1 and 4.7 we obtain the

same result for ‖B∗
n(Q̃n(z)− T̃n(z))Bn‖ and n−1/2‖A∗

nYnQ̃n(z)Bn‖.
Since detX is a polynomial in the elements of matrix X , det Ŝn(z)− detSn(z)

converges almost surely to zero on ∂D◦
x1,x2

, and this convergence is uniform. By
analyticity, the same can be said about the derivatives of these quantities. More-
over, detSn(z) converges to (−1)r det(H∗(z) + Ir) (which is the same for all ac-
cumulation points Λ∗) uniformly on ∂D◦

x1,x2
. Similarly, (detSn(z))

′ converges to
(−1)r(det(H∗(z) + Ir))

′ uniformly on ∂D◦
x1,x2

. Furthermore, by construction of
the interval [x1, x2], we have infz∈∂D◦

x1,x2
| det(H∗(z) + Ir)| > 0 which implies that

lim infn infz∈∂D◦

x1,x2
| detSn(z)| > 0. It follows that L̂n − Ln

as→ 0 and Ln → L as

n→ ∞. This concludes the proof of Theorem 2.2-(1).

Proof of Theorem 2.2-(2) and (3). We start with the following lemma:

Lemma 4.8. Let A = inf(supp(µ) − {0}). Let I = [x1, x2] ⊂ supp(µ)c. Then the
following hold true:

(i) If x2 < A, then m(x)(1 + cm(x)t)−1 > 0 for all x ∈ I and all t ∈ supp(ν).
(ii) Alternatively, if x1 > A, then there exists a measurable set E ⊂ R+ such

that ν(∂E) = 0, ν(E) > 0 and m(x)(1 + cm(x)t)−1 < 0 for all x ∈ I and
all t ∈ E.

Proof. To have an illustration of some of the proof arguments, the reader might
refer to Figures 1 and 2 which provide typical plots of x(m) for c < 1 and c > 1
respectively. We start with a preliminary result:
Since m(z) is the Stieltjes Transform of a probability measure supported by R+, the
function m(x) decreases to zero as x → −∞. From Proposition 3.2, x(m) → −∞
as m → 0+, and

m > 0 ⇒ x(m) < A.
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From Proposition 3.2, J = m(I) is an interval [m1,m2] ⊂ B. LetE = [0,−(cm1)
−1]

with the convention E = ∅ when m1 > 0. We already assumed that ν({0}) = 0.
Since −(cm1)

−1 ∈ supp(ν)c by Proposition 3.2, ν({−(cm1)
−1}) = 0. The main

part of the proof consists in showing that

ν(E) > 0 ⇔ x1 > A. (11)

To see why (11) proves the lemma, consider first x1 > A. Then m1 < 0 andm2 < 0.
For any t ∈ E and any m ∈ J , 1 + cmt ≥ 1 − cm(cm1)

−1 > 0. As m < 0, (ii) is
true. Assume now that x2 < A. In the case J ⊂ (0,∞), (i) is immediate. Assume
J ⊂ B ∩ (−∞, 0). Then, since ν(E) = 0, we get that ∀t ∈ supp(ν), t ≥ −(cm1)

−1,
therefore t ≥ −(cm2)

−1. Consequently, for any t ∈ supp(ν) and any m ∈ J ,
1 + cmt ≤ 1− cm(cm2)

−1 = 1−m/m2 < 0, and (i) is true.
Let us first prove (11) in the ⇐ direction. When x1 > A, we have seen that
m1 < 0. Assume that ν(E) = 0. Then (−∞,m1] ⊂ B. Since t ≥ −(cm1)

−1 in the
integral in (8), x(m) → 0 as m → −∞ by the dominated convergence theorem. By
Propositions 3.1, 3.2 and 3.3, x(m) should be increasing from 0 to x1 on (−∞,m1].
This contradicts x1 > A.
We now prove (11) in the ⇒ direction. To that end, we consider in turn the cases
c < 1, c > 1 and c = 1.
Assume c < 1. We have seen that x(m) → −∞ as m → 0+. From (8) we
notice that mx(m) → (1 − c)/c > 0 as m → ∞, hence x(m) reaches a positive
maximum on (0,∞). By Propositions 3.2 and 3.3, this maximum is A, and we have
x < A⇒ m(x) > 0. Therefore, x1 < A⇒ ν(E) = 0.
Consider now the case c > 1. We shall also show that x1 < A ⇒ ν(E) = 0. By
Proposition 3.4, the measure µ has a Dirac at zero with weight 1−c−1. Hence, either
x1 ≤ x2 < 0, or A > 0 and 0 < x1 ≤ x2 < A. Since m(z) is the Stieltjes Transform
of a probability measure supported by R+, it holds that x < 0 ⇒ m(x) > 0. Hence,
ν(E) = 0 when x1 < 0. We now consider the second case. Since (0, x1] ⊂ supp(µ)c,
the image of this interval by m belongs to B. By Proposition 3.4, limx→0+ m(x) =
−∞. Hence this image is (−∞, x1]. This implies that ν(E) = 0.
We finally consider the case c = 1. We show here that A = 0, which will result in
x < A ⇒ m(x) > 0 ⇒ ν(E) = 0 as above. Assume A > 0 and let x0 ∈ (0, A). By
Proposition 3.4, µ({0}) = 0 hence m(x0) =

∫
(t − x0)

−1µ(dt) > 0. But from (8),
we observe that x(m) increases from −∞ to 0 as m increases from 0 to ∞, which
raises a contradiction. This concludes the proof of Lemma 4.8. �

This lemma shows that for any x < inf(supp(µ) − {0}), H∗(x) ≥ 0, hence
D(x) > 0 for those x. This proves Theorem 2.2-(2).
Turning to Theorem 2.2-(3), choose an interval [x1, x2] ⊂ (a, b) such that [ρ1, ρr] ⊂
(x1, x2). Let E be the set associated with [x1, x2] by Lemma 4.8-(ii). By Lemma
4.8-(ii) and the properties of a Stieltjes Transform, the function

q(x) =

∫
m(x)

1 + cm(x)t
1E(t)ν(dt)

is negative and increasing on [x1, x2]. Let Ω = diag(ω2
1 , . . . , ω

2
r) where ω2

k =
−1/q(ρk). Then it is clear that function D(x) = det(q(x)Ω + Ir) has r roots
in [x1, x2] which coincide with the ρk. Theorem 2.2-(3) will be proved if we find
a sequence of matrices Pn such that one of the Hn(z) associated to Pn as in (7)
converges to q(z)Ω uniformly in the compact subsets of a neighborhood of [x1, x2].
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Figure 1. Plot of x(m) for c = 0.1 and ν = 0.5(δ1 + δ3). The
thick segment represents supp(µ).
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Figure 2. Plot of x(m) for c = 5 and ν = 0.5(δ1/2 + δ5/2). The
thick segments represent supp(µ).

Rearrange the elements of Dn in such a way that all the dnj which belong to E are in

the top left corner of this matrix. Let Mn = [Mn
ij ] be a random ⌊nν(E)⌋× r matrix

with iid elements such that
√
nMn

11 has mean zero and variance one. Let Zn be the
n×r matrix obtained by adding n−⌊nν(E)⌋ rows of zeros belowMn. Then the law
of large numbers shows in conjunction with a normal family theorem argument that

there is a set of probability one over which zmn(z)Z
∗
nT̃n(z)Zn converges to q(z)Ir

uniformly on the compact subsets of a neighborhood of [x1, x2]. Consequently, there

exists a sequence of deterministic matrices Bn such that zmn(z)B
∗
nT̃n(z)Bn →

q(z)Ir uniformly on these compact subsets. Matrix Pn = AnB
∗
n with An =[

Ω1/2

0(N−r)×r

]
satisfies the required property. Theorem 2.2-(3) is proved.
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5. Second Order Analysis

In all this section we shall work on a sequence of factorizations Pn = UnR
∗
n such

that Λn satisfies the third item of Assumption 7. We also write Un = [U1,n · · · Ut,n]
and Rn = [R1,n · · · Rt,n] where Ui,n ∈ CN×ji and Ri,n ∈ Cn×ji .

We start by briefly showing the first two facts stated by Theorem 2.3. For any
i = 1, . . . , p, it is clear that m(ρi)

2 > 0 and m′(ρi) > 0. An immediate calculus
then gives m′(ρi)∆(ρi) = m2(ρi) which shows that ∆(ρi) > 0.
To prove the second fact, we shall establish more generally that lim sup

√
n‖Hn(ρi)+

g(ρi)Ω‖ < ∞. Invoking Equation (3) and its analogue mn(z) = (−z +
∫
t(1 +

cnmn(z)t)
−1νn(dt))

−1, taking the difference and doing some straightforward deriva-
tions, we get that (mn(ρi)−m(ρi))(∆(ρi)+ε1) = ε2 where ε1 → 0 and where |ε2| ≤
K/

√
n thanks to the first two items of Assumption 7. Hence |mn(ρi) − m(ρi)| ≤

K/
√
n. Now we have

Hn(ρi) + g(ρi)Ω =

∫ (
mn(ρi)

1 + cnmn(ρi)t
− m(ρi)

1 + cm(ρi)t

)
Λn(dt)

+

∫
m(ρi)

1 + cm(ρi)t
Λn(dt)−

∫
m(ρi)

1 + cm(ρi)t
ν(dt) ×Ω.

which shows thanks to Assumption 7 that lim sup
√
n‖Hn(ρi) + g(ρi)Ω‖ <∞.

We now enter the core of the proof Theorem 2.3. The following preliminary
lemmas are proven in the appendix:

Lemma 5.1. Let s be a fixed integer, and let ZN = [Zij ] be a N × s complex
matrix with iid elements with independent N (0, 1/2) real and imaginary parts. Let
ΥN = [Υij ] be a deterministic Hermitian N ×N matrix such that TrΥN = 0, and
let FN = [Fij ] be a complex deterministic N×s matrix. Assume that F ∗

NFN → ς2Is,
that lim supN ‖ΥN‖ <∞, and that N−1 TrΥ2

N → σ2 as N → ∞. Let M be a s× s
complex matrix with iid elements with independent N (0, 1/2) real and imaginary
parts, and let G be a s× s GUE matrix independent of M . Then

(
N−1/2Z∗

NΥNZN , Z
∗
NFN

)
D−−−−→

N→∞
(σG, ςM) .

Lemma 5.2. For x ∈ supp(µ)c,

E

[
φnũ

∗
nQ̃n(x)(n

−1Y ∗
n Yn)Q̃n(x)ũn

]
= cn

x2mn(x)
2ũ∗nDnT̃

2
n(x)ũn

1− cnx2mn(x)2
1
n TrD2

nT̃
2
n(x)

+O(n−1)

and

Var
(
φnũ

∗
nQ̃n(x)(n

−1Y ∗
n Yn)Q̃n(x)ũn

)
≤ K

n
.

Lemma 5.3. For i = 1, . . . , p, let Ai be a deterministic Hermitian ji × ji matrix
independent of n, where p and the ji are as in the statement of Theorem 2.3. For
i = 1, . . . , p, let Mi,n a n × ji matrix such that supn ‖Mi,n‖ < ∞. Then for any
t ∈ R,

E

[
exp
(
ı
√
nt

p∑

i=1

TrAiM
∗
i,n(Q̃n(ρi)−T̃n(ρi))Mi,n

)]
= exp(−t2σ̃2

n/2)+O(n−1/2)
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where

σ̃2
n =

p∑

i,k=1

cnρiρkmn(ρi)mn(ρk)

×
TrAiM

∗
i,nT̃n(ρi)DnT̃n(ρk)Mk,nAkM

∗
k,nT̃n(ρk)DnT̃n(ρi)Mi,n

1− cnρiρkmn(ρi)mn(ρk)
1
n TrDnT̃n(ρi)DnT̃n(ρk)

.

Replacing the Mi,n with the blocks Ri,n of Rn in the statement of Lemma 5.3
and observing that

R∗
nT̃n(ρi)DnT̃n(ρk)Rn =

∫
t

ρiρk(1 + cnmn(ρi)t)(1 + cnmn(ρk)t)
Λn(dt),

we obtain from the third item of Assumption 7 that σ̃2
n →∑p

i=1 σ̃
2
i TrA

2
i where

σ̃
2
i =

cω4
i

∆(ρi)

(∫ m(ρi)t

(1 + cm(ρi)t)2
ν(dt)

)2
.

Invoking the Cramer-Wold device, this means that the p-uple of random matrices

√
n
(
R∗

i,n(Q̃n(ρi)− T̃n(ρi))Ri,n

)p
i=1

converges in distribution towards (σ̃iG̃i)
p
i=1 where G̃1, . . . , G̃p are independent GUE

matrices with G̃i ∈ Cji×ji .

Lemmas 5.1–5.3 lead to the following result which plays a central role in the
proof of Theorem 2.3:

Lemma 5.4. Consider the 3p-uple of random matrices

Ln =
√
n×

(
U∗
i,nYnQ̃n(ρi)Ri,n√

n
, U∗

i,n(Qn(ρi)−mn(ρi)IN )Ui,n, R
∗
i,n(Q̃n(ρi)− T̃n(ρi))Ri,n

)p

i=1

.

Define the following quantities

ς2i =
ω2
i

∆(ρi)

∫
m2(ρi)t

(1 + cm(ρi)t)2
ν(dt)

σ2
i =

1

∆(ρi)

∫
m4(ρi)t

2

(1 + cm(ρi)t)2
ν(dt)

σ̃
2
i =

cω4
i

∆(ρi)

(∫
m(ρi)t

(1 + cm(ρi)t)2
ν(dt)

)2

.

LetM1, . . . ,Mp be random matrices such that Mi ∈ C
ji×ji and has independent ele-

ments with independent N (0, 1/2) real and imaginary parts. Let G1, G̃1, . . . , Gp, G̃p

be GUE matrices such that Gi, G̃i ∈ C
ji×ji . Assume in addition that M1, G1, G̃1,

. . ., Mp, Gp, G̃p are independent. Then

Ln
D−→

n→∞

(
ςiMi,σiGi, σ̃iG̃i

)p
i=1

.
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Proof. Let αn(ρ) = N−1TrQn(ρ). By Lemmas 4.3 and 4.5,
√
n(αn(ρi)−mn(ρi))

P→
0. Therefore, we can replace the mn(ρi) in the expression of Ln by αn(ρi), as we
shall do in the rest of the proof.
Write s = j1 + · · · + jp and let Zn be a N × s complex matrix with iid elements
with independent N (0, 1/2) real and imaginary parts. Assume that Zn and Xn

are independent. Write Zn =
[
Z1,n · · ·Zp,n

]
where the block Zi,n is N × ji. Let

n−1/2Xn = Wn∆nW̃
∗
n be a singular value decomposition of n−1/2Xn. By assump-

tion 2, the square matrices Wn and W̃n are Haar distributed over their respective

unitary groups, and moreover, Wn, ∆n and W̃n are independent. Let

Ln =

√
n

(
U∗
nYnQ̃n(ρi)Ri,n√

n
, U∗

n(Qn(ρi)− αn(ρi)IN )Un, R
∗
i,n(Q̃n(ρi)− T̃n(ρi))Ri,n

)p

i=1

.

We have

Ln
L
=
(√

N(Z∗
nZn)

−1/2Z∗
nFi,n, N

1/2(Z∗
nZn)

−1/2Z∗
nΥi,nZn(Z

∗
nZn)

−1/2,

√
nR∗

i,n(Q̃n(ρi)− T̃n(ρi))Ri,n

)p
i=1

where Fi,n = c
−1/2
n ∆nW̃

∗
nD

1/2
n Q̃n(ρi)Ri,n and Υi,n = c

−1/2
n ((∆nW̃

∗
nDnW̃n∆n −

ρi)
−1 − αn(ρi)IN ). We shall now show that the term

√
N(Z∗

nZn)
−1/2Z∗

nFi,n can

be replaced with Z∗
nFi,n. By the law of large numbers, we have N−1Z∗

nZn
as→ Is.

By the independence of Zn and (∆n, W̃n), we have E[TrZ
∗
nFi,nF

∗
i,nZn | (∆nW̃n)] =

sc−1
n TrR∗

i,nQ̃n(ρi)(n
−1Y ∗

n Yn)Q̃n(ρi)Ri,n whose limit superior is bounded with prob-
ability one. Hence Z∗

nFi,n is tight, proving that the replacement can be done.

By deriving the variances of the elements of N−1/2Z∗
nΥi,nZn with respect to the

law of Zn, and by recalling that lim supn ‖Υi,n‖ is bounded with probability one,
we obtain that these elements are also tight. It results that we can replace Ln with

Ln =

(
Z∗
i,nFi,n,

Z∗
i,nΥi,nZi,n√

N
,
√
nR∗

i,n(Q̃n(ρi)− T̃n(ρi))Ri,n

)p

i=1

.

For i = 1, . . . , p, let Ai and Bi be deterministic Hermitian ji × ji matrices and let
Ci be deterministic complex ji × ji matrices, all independent of n. The lemma will
be established if we prove that

E

{
exp
(
ı
√
nt

p∑

i=1

TrAiR
∗
i,n(Q̃n(ρi)− T̃n(ρi))Ri,n

)

×E

[
exp
(
ıt

p∑

i=1

N−1/2 TrBiZ
∗
i,nΥi,nZi,n + ℜ(TrCiZ

∗
i,nFi,n)

) ∣∣∣ (∆n, W̃n)
]}

−−−−→
n→∞

p∏

i=1

exp(−t2(σ̃2
i TrA

2
i + σ2

i TrB
2
i +

1

2
ς2i TrCiC

∗
i )/2). (12)
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In addition to the boundedness of ‖Υi,n‖ w.p. one, we have TrΥi,n = 0, and

1

N
TrΥ2

i,n =
1

cnN

N∑

ℓ=1

(
(λnℓ − ρi)

−1 − αn(ρi)
)2

a.s.−−−−→
n→∞

c−1(m′(ρi)−m(ρi)
2) = c−1m(ρi)

2
(
∆(ρi)

−1 − 1
)
= σ2

i .

Moreover, using Lemma 5.2 in conjunction with Assumption 6, we obtain

F ∗
i,nFi,n = c−1

n R∗
i,n

(
Q̃n(ρi)

1

n
Y ∗
n YnQ̃n(ρi)

)
Ri,n

P−−−−→
n→∞

ς2i Iji .

From any sequence of integers increasing to infinity, there exists a subsequence
along which this convergence in probability holds in the almost sure sense. Ap-
plying Lemma 5.1, we get that the inner expectation at the left hand side of (12)
converges almost surely along this subsequence towards

∏p
i=1 exp(−t2(σ2

i TrB
2
i +

1
2ς

2
i TrCiC

∗
i )/2). Using in addition Lemma 5.3 along with the dominated conver-

gence theorem, we obtain that Convergence (12) holds true along this subsequence.
Since the original sequence is arbitrary, we obtain the required result. �

The remainder of the proof of Theorem 2.3 is an adaptation of the approach of
[7].

Lemma 5.5. For a given x ∈ R and a given i ∈ {1, . . . , p}, let y = ρi + n−1/2x,
and let

Ŝn(y) =

[ √
yU∗

nQn(y)Un Ir + n−1/2U∗
nYnQ̃n(y)Rn

Ir + n−1/2R∗
nQ̃n(y)Y

∗
nUn

√
yR∗

nQ̃n(y)Rn

]

Let

χ(i)
n (x) = n

ji
2

[
det Ŝn(y)−

t∏

k 6=i

[
ω2
kg(ρi)− 1

]jk

× det

(√
nU∗

i,n (Qn(ρi)−mn(ρi)IN )Ui,n

m(ρi)
+ ρim(ρi)

√
nR∗

i,n(Q̃n(ρi)− T̃n(ρi))Ri,n

− 2ℜ
[
U∗
i,nYnQ̃n(ρi)Ri,n

]
−√

n(Hi,n(ρi) + Iji )− xH ′
i,n(ρi)

)]
(13)

where ℜ(M) = (M +M∗)/2 for a square matrix M . Then

(χ(i)
n (x1), . . . , χ

(i)
n (xp))

P−−−−→
n→∞

0

for every finite sequence {x1, . . . , xp}.

Proof. We show the result for i = 1, the same procedure being valid for the other
values of i. The notationXn = oP (1) means that the random variableXn converges
to zero in probability, while Xn = OP (n

−ℓ) means that nℓXn is tight. Write
U = [U1, Ū1] and R = [R1, R̄1] where Ū1 = [U2, . . . , Ut] and R̄1 = [R2, . . . , Rt].
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Writing

A =

[√
yU∗

1Q(y)U1
√
yU∗

1Q(y)Ū1√
yŪ∗

1Q(y)U1
√
yŪ∗

1Q(y)Ū1

]
:=

[
A11 A12

A∗
12 A22

]
,

B =

[
Ij1 + n−1/2U∗

1Y Q̃(y)R1 n−1/2U∗
1Y Q̃(y)R̄1

n−1/2Ū∗
1Y Q̃(y)R1 Ir−j1 + n−1/2Ū∗

1Y Q̃(y)R̄1

]
:=

[
B11 B12

B21 B22

]
, and

C =

[√
yR∗

1Q̃(y)R1
√
yR∗

1Q̃(y)R̄1√
yR̄∗

1Q̃(y)R1
√
yR̄∗

1Q̃(y)R̄1

]
:=

[
C11 C12

C∗
12 C22

]
,

we have

det Ŝ = det

[
A B
B∗ C

]
= det




A11 B11 A12 B12

B∗
11 C11 B∗

21 C12

A∗
12 B21 A22 B22

B∗
12 C∗

12 B∗
22 C22



:= det

[
M11 M12

M∗
12 M22

]

after a row and column permutation. Hence nj1/2 det Ŝ = detM22×nj1/2 det(M11−
M12M

−1
22 M

∗
12).WriteΩ = diag(ω2

1Ij1 ,Ω2). From the first order analysis we get that

M22
a.s.−−−−→

n→∞

[√
ρ1m(ρ1)Ir−j1 Ir−j1

Ir−j1
√
ρ1(cm(ρ1)− ρ−1

1 (1− c))Ω2

]

which is invertible since detM22
as→ ∏

k>1(ω
2
kg(ρ1)− 1)jk 6= 0. Moreover, ‖M12‖ =

OP (n
−1/2). To see this, consider for instance the term

√
nC12 =

√
nyR∗

1(Q̃ −
T̃ )R̄1 +

√
nyR∗

1T̃ R̄1. The first term is tight by Lemma 5.4 while the second is
bounded by Assumption 7. The other terms are treated similarly. It results that
‖M12M

−1
22 M

∗
12‖ = OP (1/n).

In addition, det(y−1/2C11)
as→ [ω2

1(cm(ρ1) − ρ−1
1 (1 − c))]j1 = (ρ1m(ρ1))

−j1 by the
definition of ρ1. From these observations we get that

nj1/2 det Ŝ =

(
∏

k>1

(ω2
kg(ρ1)− 1)jk + oP (1)

)
(
(ρ1m(ρ1))

−j1 + oP (1)
)

× det
(√

nyA11 −
√
nyB11C

−1
11 B

∗
11 +OP (n

−1/2)
)
.

Now we make the expansion

√
nyA11 −

√
nyB11C

−1
11 B

∗
11 (14)

= y
√
nU∗

1 (Q(y)−mn(y)IN )U1 + y
√
nmn(y)Ij1

+
√
n

(
Ij1 + U∗

1

Y Q̃(y)√
n

R1

)
(R∗

1Q̃(y)R1)
−1(R∗

1(Q̃(y)− T̃ (y))R1)(R
∗
1T̃ (y)R1)

−1

×
(
Ij1 +R∗

1

Q̃(y)Y ∗

√
n

U1

)

−√
n

(
Ij1 + U∗

1

Y Q̃(y)√
n

R1

)
(R∗

1T̃ (y)R1)
−1

(
Ij1 +R∗

1

Q̃(y)Y ∗

√
n

U1

)
. (15)
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To go further, remark that

y
√
nmn(y)Ij1 −

√
n(R∗

1T̃ (y)R1)
−1

= (R∗
1T̃ (y)R1)

−1
[√

n
(
ymn(y)R

∗
1T̃ (y)R1 − ρ1mn(ρ1)R

∗
1T̃ (ρ1)R1

)

+
√
n
(
ρ1mn(ρ1)R

∗
1T̃ (ρ1)R1 − Ij1

)]

= ρ1m(ρ1)
[
−xH ′

1(ρ1)−
√
n(H1(ρ1) + Ij1 )

]
+ o(1)

where we recall that y = ρ1 + xn− 1
2 → ρ1 and that R∗

1T̃ (y)R1 → (ρ1m(ρ1))
−1Ij1 .

Recall from Lemma 5.4 that
√
nU∗

1 (Q −mnI)U1,
√
nR∗

1(Q̃ − T̃ )R1, and U
∗
1Y Q̃R1

are tight. Keeping the non negligible terms, we can write (14) under the form

√
nyA11 −

√
nyB11C

−1
11 B

∗
11

= ρ1
√
nU∗

1 (Q(ρ1)−mn(ρ1)IN )U1 + (ρ1m(ρ1))
2
√
nR∗

1(Q̃(ρ1)− T̃ (ρ1)In)R1

− 2ρ1m(ρ1)ℜ
[
U∗
1Y Q̃(ρ1)R1

]
− ρ1m(ρ1)

(
xH ′

1(ρ1) +
√
n(H1(ρ1) + Ij1)

)
+ oP (1).

Plugging this expression at the right hand side of the expression of nj1/2 det Ŝ and
observing that H ′

1,n(ρ1) → −ω2
1g(ρ1)

′Ij1 concludes the proof. �

For i = 1, . . . , p, take x1(i) > y1(i) > x2(i) > y2(i) > . . . > yji(i) fixed se-

quences of real numbers. Call Jn = (
√
n(λ̂nk(i)+ℓ − ρi), i = 1, . . . , p, ℓ = 1, . . . , ji),

with k(i) =
∑i−1

m=1 jm. Let also C be the rectangle C = [x1(1), y1(1)] × . . . ×
[xp(jp), yp(jp)]. Then, for all large n, with probability one

P (Jn ∈ C) = P

({
det Ŝn

(
ρi +

xℓ(i)√
n

)
det Ŝn

(
ρi +

yℓ(i)√
n

)
< 0

})

since det Ŝn(t) changes sign around t = λ̂nk(i)+ℓ, and only there (with probability

one, for all large n).
From Lemma 5.5, we see that, for growing n, the probability for the product of

the determinants above to be negative for all i and ℓ approaches the probability

P
({

detAxℓ(i) detAyℓ(i) < 0, i = 1, . . . , p, ℓ = 1, . . . , ji
})

where Ax is the matrix

Ax =

√
nU∗

i,n (Qn(ρi)−mn(ρi)IN )Ui,n

m(ρi)
+
ρi
√
nR∗

i,n(Q̃n(ρi)− T̃n(ρi))Ri,n

ω2
i (c+ cρim(ρi)− 1)

− 2ℜ
[
U∗
i,nY Q̃n(ρi)Ri,n

]
−√

n(Hi,n(ρi) + Iji)− xH ′
i,n(ρi).

This last probability is equal to P(J̄n ∈ C), where J̄n are the decreasingly ordered
eigenvalues of the matrix

Bi = [H ′
i,n(ρi)]

−1

(√
nU∗

i,n (Qn(ρi)−mn(ρi)IN )Ui,n

m(ρi)

+
ρi
√
nR∗

i,n(Q̃n(ρi)− T̃n(ρi))Ri,n

ω2
i (c+ cρim(ρi)− 1)

− 2ℜ
[
U∗
i,nY Q̃n(ρi)Ri,n

]
−√

n(Hi,n(ρi) + Iji )

)
.
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From Lemma 5.4, {B1, . . . , Bt} asymptotically behave as scaled non-zero mean
GUE matrices. Precisely, denoting B̄i = H ′

i,n(ρi)Bi +
√
n(Hi,n(ρi) + Iji), from

Lemma 5.4 and for all a, b,

E
[
|(B̄i)ab|2

]

→ σ2
i

m(ρi)2
+

ρ2i σ̃
2
i

ω4
i (c+ cρim(ρi)− 1)2

+ 2ς2

=
σ2

i

m(ρi)2
+ ρ2im(ρi)

2σ̃
2
i + 2ς2

=
m2(ρi)

∆(ρi)

[∫
t2ν(dt)

(1 + cm(ρi)t)2
+ cρ2iω

4
i

(∫
m(ρi)tν(dt)

(1 + cm(ρi)t)2

)2

+

∫
2ω2

i tν(dt)

(1 + cm(ρi)t)2

]
.

This concludes the proof of Theorem 2.3.

Appendix A. Proofs of Lemmas 5.1 to 5.3

A.1. Proof of Lemma 5.1. Given a s × s deterministic Hermitian matrix A
and a s × s deterministic complex matrix B, let ΓN = N−1/2 TrAZ∗

NΥNZN +
ℜ(TrBZ∗

NFN ) where ℜ(M) = (M +M∗)/2 for any square matrix M . We shall
show that for any t ∈ R,

ϕN (t) := E[exp(ıtΓN )] −−−−→
N→∞

exp
(
−t2σ

2 TrA2 + ς2 TrBB∗/2

2

)
:= exp

(
− t

2v2

2

)
.

The result will follow by invoking the Cramér-Wold device. To establish this
convergence, we show that the derivative ϕ′

N (t) satisfies ϕ′
N (t) = −tv2ϕN (t) +

εN(t) where εN (t) → 0 as N → ∞ uniformly on any compact interval of R.
That being true, the function ψN (t) = ϕN (t) exp(t2v2/2) satisfies ψN (t) = 1 +∫ t

0 εN (u) exp(u2v2/2)du→ 1 which proves the lemma.
By the IP formula, we get

ϕ′(t) = ıE[Γ exp(ıtΓ)]

= ıE
[( s∑

i,j=1

N∑

k,ℓ=1

AijZ
∗
kjΥkℓZℓi√
N

+

s∑

i,j=1

N∑

k=1

BijZ
∗
kjFki + F ∗

kiZkjB
∗
ij

2

)

× exp(ıtΓ)
]

= ıE
[ ∑

i,j,k,ℓ

AijΥkℓ√
N

∂(Zℓi exp(ıtΓ))

∂Zkj

+
1

2

∑

i,j,k

BijFki
∂ exp(ıtΓ)

∂Zkj
+ F ∗

kiB
∗
ij

∂ exp(ıtΓ)

∂Z∗
kj

]
.

We obtain after a small calculation

∂ exp(ıtΓ)

∂Zkj
= ıt

( [AZ∗Υ]jk√
N

+
1

2
[B∗F ∗]jk

)
exp(ıtΓ),

∂ exp(ıtΓ)

∂Z∗
kj

= ıt
( [ΥZA]kj√

N
+

1

2
[FB]kj

)
exp(ıtΓ)



28 CHAPON, COUILLET, HACHEM AND MESTRE

which leads to

ϕ′(t) = −tE[N−1TrA2Z∗Υ2Z exp(ıtΓ)]− (t/2)Tr(BB∗F ∗F )ϕ(t)

+ ıN−1/2TrATrΥϕ(t)

− tE[N−1/2 TrAB∗F ∗ΥZ exp(ıtΓ)]− (t/2)E[N−1/2TrZ∗ΥFBA exp(ıtΓ)].

Let us consider the first term at the right hand side of this equation. We have
E[N−1 TrA2Z∗Υ2Z] = N−1 TrA2 TrΥ2. Applying the Poincaré-Nash inequality,
we obtain after some calculations thatVar(N−1 TrA2Z∗Υ2Z) ≤ 2N−2 TrA4 TrΥ4 =
O(N−1) since ‖Υ‖ is bounded. It results that E[N−1 TrA2Z∗Υ2Z exp(ıtΓ)] =
N−1TrA2 TrΥ2 ϕ(t) + O(N−1/2) by Cauchy-Schwarz inequality. The third term
is zero by hypothesis. Finally, N−1E|TrZ∗ΥFBA|2 = N−1 TrΥ2FBA2B∗F ∗ ≤
N−1‖Υ‖2TrFBA2B∗F ∗ = O(N−1). Hence, the last two terms are O(N−1/2) by
Cauchy-Schwarz inequality, which proves Lemma 5.1.

A.2. An intermediate result. The following lemma will be needed in the proof
of Lemma 5.2:

Lemma A.1. For x, y ∈ supp(µ)c,

E

[
φn

1

n
Tr Q̃n(x)DQ̃n(y)D

]
=

1
n TrDT̃n(x)DT̃n(y)

1− cnxmn(x)ymn(y)
1
n TrDT̃n(x)DT̃n(y)

+O(n−1)

E

[
φnũ

∗
nQ̃n(x)DQ̃n(y)ṽn

]
=

ũ∗nT̃n(x)DT̃n(y)ṽn

1− cnxmn(x)ymn(y)
1
n TrDT̃n(x)DT̃n(y)

+O(n−1).

Proof. We denote here Q̃x = Q̃(x) and drop all unnecessary indices. Using the
integration by parts formula, we obtain

1

n
E

[
φY ∗

iaYijQ̃x,jpdpQ̃y,pq

]
=
dpdj
n

(
δ(a− j)E

[
φQ̃x,jpQ̃y,pq

]

− 1

n
E

[
φQ̃x,jj [Y Q̃x]ipY

∗
iaQ̃y,pq

]
− 1

n
E

[
φY ∗

iaQ̃x,jpQ̃y,pj[Y Q̃y]iq

]

+E

[
1

n
[adj(ψ)ψ′Y ]ijY

∗
iaQ̃x,jpQ̃y,pq

])
.

Summing over i, p, and j, this is

1

n
E

[
φ[Y ∗Y Q̃xDQ̃y]aq

]
=

1

n2
E

[
[Y ∗ adj(ψ)ψ′Y DQ̃xDQ̃y]aq

]
+ cndaE

[
φ[Q̃xDQ̃y]aq

]

− 1

n
E

[
φ
1

n
TrDQ̃x[Y

∗Y Q̃xDQ̃y]aq

]
− 1

n
E

[
φ
1

n
Tr Q̃xDQ̃yD[Y ∗Y Q̃y]aq

]
.

Using the relation 1
nY

∗Y Q̃x = xQ̃x + In and appropriately gathering the terms
on each side gives

E

[
φ[Q̃xDQ̃y]aq(x − cn da + x

1

n
TrDQ̃x)

]

= −E

[
φ[DQ̃y]aq(1 +

1

n
TrDQ̃x)

]
− E

[
φ
1

n
Tr Q̃xDQ̃yD(δ(a− q) + y[Q̃y]aq)

]

+ E

[
1

n2
[Y ∗ adj(ψ)ψ′Y DQ̃xDQ̃y]aq

]
. (16)
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Introducing the term β̃x = φ 1
n TrDQ̃x and ˆ̃βx = β̃x − φE[β̃x], we have

E

[
φ[Q̃xDQ̃y]aq

]
(x − cn da + xE[β̃x])

= −E

[
φ[DQ̃y]aq

]
(1 + E[βx])− E

[
φ
1

n
Tr Q̃xDQ̃yD

]
(δ(a− q) + yE[[Q̃y]aq])

− E

[
[DQ̃y]aq

ˆ̃
βx

]
− E

[
[Q̃xDQ̃y]aqx

ˆ̃
βx

]
− E

[
φ
1

n
Tr Q̃xDQ̃yDy([Q̃y]aq − E[Q̃y]aq])

]

+ E

[
1

n2
[Y ∗ adj(ψ)ψ′Y DQ̃xDQ̃y]aq

]
. (17)

At this point, we can prove both results for the trace and for the quadratic form.
We start by dividing each side by x − cn da + xE[β̃x]. We begin with the trace
result. Multiplying the resulting left- and right-hand sides by da, summing over
a = q and normalizing by 1/n, we obtain

E

[
φ
1

n
Tr Q̃xDQ̃xD

]
= −(1 + E[β̃x])E

[
φ
1

n
TrDQ̃yDAx

]

− E

[
φ
1

n
Tr Q̃xDQ̃yD

](
yE[φ

1

n
TrDAxQ̃y] +

1

n
TrDAx

)
+ εn

where we denoted Ax = (x(1 + E[β̃x])In − cnD)−1 and where

εn = E

[
Tr

Y ∗ adj(ψ)ψ′Y

n3
DQ̃xDQ̃yDAx

]
− E

[
1

n
TrDQ̃yDAx

ˆ̃βx

]

− E

[
1

n
Tr Q̃xDQ̃yDAx

ˆ̃
βx

]

− E

[
φ
1

n
Tr Q̃xDQ̃yDy

(
1

n
Tr Q̃yDAx − E(

1

n
Tr Q̃yDAx)

)]
. (18)

From Lemma 4.5, E[β̃x] = δ̃x +O(n−2), where we denoted δ̃x = 1
n TrDT̃x. Also, it

is easily observed that
(
In(1 + δ̃x)x− cnD

)−1

= − 1

1 + δ̃x
T̃x (19)

with T̃x = T̃ (x). Therefore, along with Lemma 4.5, we now have

E

[
φ
1

n
Tr Q̃xDQ̃xD

]

=
1

n
TrDT̃xDT̃y + E

[
φ
1

n
Tr Q̃xDQ̃xD

]
y 1
n TrDT̃xT̃y +

1
n TrDT̃x

1 + δ̃x
+ εn +O(n−2).

Using now the fact that yT̃y + In = cn
1

1+δ̃y
DT̃y, we conclude

E

[
φ
1

n
Tr Q̃xDQ̃xD

]
=

1
n TrDT̃xDT̃y

1− cn(1 + δ̃x)−1(1 + δ̃y)−1 1
n TrDT̃xDT̃y

+ εn +O(n−2).

It therefore remains to prove that εn = O(n−1). Due to the presence of φ in the

expression of ˆ̃βx, and using Lemma 4.3 and Cauchy-Schwarz inequality, one can see
that the last three terms in the expression of εn are O(n−1). As for the first term,
it is treated in a similar manner as in the proof of Lemma 4.6, and is O(n−2).
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In order to prove the result on the quadratic form, we start again from (17).

Dividing each side again by x− cn da+xE[β̃x], introducing [ũ]a, [ṽ]q, and summing
over the indices, we obtain

E

[
φũ∗Q̃xDQ̃yṽ

]

= −E

[
φũ∗AxDQ̃yṽ

]
− E

[
φ
1

n
Tr Q̃xDQ̃yD

](
ũ∗Ax(yE[φQ̃y] + In)ṽ

)
+ ε′n (20)

where ε′n is very similar to εn and is shown to be O(n−1) with the same line of

arguments. Using Lemma 4.3, (19), and the previous result on E[φ 1
n Tr Q̃xDQ̃yD],

we finally obtain

E

[
φũ∗Q̃xDQ̃y ṽ

]

= ũ∗T̃xDT̃yṽ

(
1 +

cn(1 + δ̃x)
−1(1 + δ̃y)

−1 1
n TrDT̃xDT̃y

1− cn(1 + δ̃x)−1(1 + δ̃y)−1 1
n TrDT̃xDT̃y

)
+O(n−1).

from which

E

[
φũ∗Q̃xDQ̃y ṽ

]
=

ũ∗T̃xDT̃yṽ

1− cn(1 + δ̃x)−1(1 + δ̃y)−1 1
n TrDT̃xDT̃y

+O(n−1).

We conclude with the remark xmn(x) = −(1 + δ̃x)
−1. �

A.3. Proof of Lemma 5.2. The line of proof closely follows the proof of Lemma A.1.
We provide here its main steps. By the integration by parts formula, we have

E[φQ̃pkY
∗
ℓkYℓmQ̃mr] = −dm

n
E[φQ̃pkY

∗
ℓkQ̃mm[Y Q̃]ℓr] + δ(k −m)dmE[φQ̃pkQ̃mr]

− dm
n

E[φY ∗
ℓkQ̃mrQ̃pm[Y Q̃]ℓk]

+
dm
n

E[Q̃pkY
∗
ℓkQ̃mr[adj(ψ)ψ

′Y ]ℓm]

Taking the sum over m, we obtain

E[φQ̃pkY
∗
ℓk[Y Q̃]ℓr] =

dk

1 + E[β̃]
E[φQ̃pkQ̃kr]−

1

1 + Eβ̃

1

n
E[φY ∗

ℓk[Q̃DQ̃]pr[Y Q̃]ℓk]

+
1

1 + E[β̃]

1

n
E[Q̃pkY

∗
ℓk[adj(ψ)ψ

′Y DQ̃]ℓr]− E[
ˆ̃
βQ̃pkY

∗
ℓk[Y Q̃]ℓr]

where β̃(x) = φ 1
n TrDQ̃(x) and ˆ̃β(x) = β̃(x)−φE[β̃(x)] as in the proof of Lemma A.1.

Taking the sum over ℓ then over k, we obtain

E[φ[Q̃
Y ∗Y

n
Q̃]pr] = cn

1

1 + E[β̃]
E[φ[Q̃DQ̃]pr]−

1

1 + E[β̃]
E[φ[Q̃DQ̃]pr

1

n
Tr(

Y ∗Y

n
Q̃)]

+
1

1 + E[β̃]

1

n
E[[Q̃

Y ∗ adj(ψ)ψ′Y

n
DQ̃]pr]− E[

ˆ̃
β[Q̃

Y ∗Y

n
Q̃]pr]

Observing that (1 + E[β̃(x)])−1 = −xmn(x) + O(n−2) and making the usual ap-
proximations, we get

E[φũ∗Q̃
Y ∗Y

n
Q̃ũ] =

(
xmn(x)

1

n
Tr(E[φ

Y ∗Y

n
Q̃])− cnxmn(x)

)
E[φũ∗Q̃DQ̃ũ] +O(n−1)
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Observing that n−1 Tr(E[φ(n−1Y ∗Y )Q̃(x)] = Nn−1xmn(x) +Nn−1 +O(n−2) and
invoking Lemma A.1, we obtain the desired result.

A.4. Proof of Lemma 5.3. As in the previous proofs, we discard unnecessary

indices. We also denote Q̃i = Q̃(ρi). For readability, we also write M̃i = Mi,nAi

and use the shortcut notation Γ =
√
n
∑p

i=1 TrM
∗
i Q̃iM̃i. We focus first on the

term in ρ1. The line of proof closely follows that of Lemma 5.1 with the exception
that we need to introduce the regularization function φ to ensure the existence of
all the quantities under study. That is, with ϕN (t) = E[exp(ıtφΓ)], we only need
to show that ϕ′

N (t) = −tσ̃2
nϕN (t) +O(1/

√
n). Using |ϕN (t)| ≤ 1 and Lemma 4.4,

|E[exp(ıtΓ)]− ϕN (t)| ≤ 1− E[φ] → 0 as N → ∞, from which the result unfolds.
Using the integration by parts formula, we first obtain

E

[
φ

[
Y ∗Y

n
Q̃1

]

pq

eıtφΓ

]

= cnE
[
φ[DQ̃1]pqe

ıtφΓ
]
− E

[
φ
1

n
TrDQ̃1

[
Y ∗Y

n
Q̃1

]

pq

eıtφΓ

]

− E


ıteıtφΓφ2 1√

n

p∑

j=1

r∑

a=1

[
(M̃j)

∗
aQ̃jDQ̃1

]
q

[
Y ∗Y

n
Q̃j(Mj)a

]

p


+ εn,pq

where

εn,pq = E

[
1

n

[
Y ∗ adj(ψ)ψ′Y

n
DQ̃1

]

pq

eıtφΓ

]
+ E

[
φ
1

n

[
Y ∗ adj(ψ)ψ′Y

n
DQ̃1

]

pq

ıtΓeıtφΓ

]

and where we denoted Xa the column a of matrix X , X∗
a being the row vector

(Xa)
∗.

With β̃j = φ 1
n TrDQ̃j ,

ˆ̃
βj = β̃j − φE

[
β̃j

]
, and with the relation n−1Y ∗Y Q̃1 =

In + ρ1Q̃1, we obtain
(
ρ1(1 + E[β̃1])− cn dp

)
E

[
φ[Q̃1]pqe

ıtφΓ
]
= −δ(p− q)(1 + E[β̃1])E

[
φeıtφΓ

]

− E


ıteıtφΓφ2 1√

n

p∑

j=1

r∑

a=1

[
(M̃j)

∗
aQ̃jDQ̃1

]
q

[
Y ∗Y

n
Q̃j(Mj)a

]

p


+ ε′n,pq

where

ε′n,pq = εn,pq − E

[
ˆ̃β1

[
Y ∗Y

n
Q̃1

]

pq

eıtφΓ

]
.

Dividing each side by ρ1(1 +E[β̃1])− cn dp, then multiplying by (M̃1)p and (M1)q,
and summing over p, q gives

E[φTr(M̃∗
1 Q̃1M1)e

ıtφΓ] = −(1 + E[β̃1])E[φe
ıtΓ] Tr

(
M̃∗

1Aρ1
M1

)

− ıtE


φ2eıtφΓ 1√

n

p∑

j=1

Tr M̃∗
1Aρ1

Y ∗Y

n
Q̃jMjM̃

∗
j Q̃jDQ̃1


+ ε′n
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with Aρi
= (ρi(1 + E[β̃i])In − cnD)−1, and

ε′n = Tr M̃∗
1Aρ1

E′M1

with (E′)pq = ε′pq. From (19), the identity n−1Y ∗Y Q̃j = In+ρjQ̃j, and Lemma 4.5,
we finally obtain

E

[
φTr(M̃∗

1 Q̃1M1)e
ıtφΓ

]
− E[φeıtφΓ] Tr M̃1T̃1M1

= ıtE[φeıtφΓ]
1√
n

p∑

j=1

Tr M̃∗
1

T̃1

1+δ̃1

cnDT̃j

1+δ̃j
MjM̃

∗
j T̃jDT̃1M1

1− cn(1 + δ̃1)−1(1 + δ̃j)−1 1
n TrDT̃1DT̃j

+ ε′n +O(n−2)

with T̃i = T̃ (ρi), from which

E

[
φTr(M̃∗

1 Q̃1M1)e
ıtφΓ

]
− E[φeıtφΓ] Tr M̃1T̃1M1

=
ıtE[φeıtφΓ]√

n

p∑

j=1

cnρ1mn(ρ1)ρjmn(ρj)Tr M̃
∗
1 T̃1DT̃jMjM̃

∗
j T̃jDT̃1M1

1− cnρ1mn(ρ1)ρjmn(ρj)
1
n TrDT̃1DT̃j

+ ε′n +O(n−2).

It remains to show that ε′n = O(n−1). We have explicitly

ε′n = E

[
1

n
Tr

(
M̃∗

1Aρ1

Y ∗ adj(ψ)ψ′Y

n
DQ̃1M1

)
(1 + φıtΓ)eıtφΓ

]

− E

[
φ ˆ̃β1 Tr

(
M̃∗

1Aρ1

Y ∗Y

n
Q̃1M1

)
eıtφΓ

]
.

Using the fact that |eıtφΓ| = 1 and the relation n−1Y ∗Y Q̃1 = ρ1Q̃1 + In, the
second term is easily shown to be O(n−1) from the Cauchy-Scwharz inequality and
Lemma 4.3. If it were not for the factor Γ, the convergence of the first term would
unfold from similar arguments as in the proof of Lemma 4.6. We only need to
show here that E[|φΓ|2] = O(1). But this follows immediately from Lemma 4.3 and
Lemma 4.5.
The generalization to

∑
i E[φTr(M̃

∗
i Q̃iMi)e

ıtφΓ] is then immediate and we have the
expected result.
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