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ON THE ISOLATED EIGENVALUES OF LARGE GRAM
RANDOM MATRICES WITH A FIXED RANK DEFORMATION

FRANCOIS CHAPON, ROMAIN COUILLET,
WALID HACHEM AND XAVIER MESTRE

ABSTRACT. Consider the matrix X, = n*l/zXnD,lq/2 + P, where the matrix
X, € CNXn has Gaussian standard independent elements, D, is a deter-
ministic diagonal nonnegative matrix, and P, is a deterministic matrix with
fixed rank. Under some known conditions, the spectral measures of ¥, and
n~ 1 X, D, X% both converge towards a compactly supported probability mea-
sure p as N and n converge to infinity at the same rate. In this paper, we prove
that finitely many eigenvalues of ¥, %} may stay outside the support of x in
the large dimensional regime. The existence and locations of these eigenvalues
in any compact interval outside the support of p are studied. The fluctuations
of the extreme isolated eigenvalues of ¥,X7 are also analyzed. The results
find applications in the fields of signal processing and radio communications.

1. INTRODUCTION

1.1. The model and the literature. Consider a sequence of N X n matrices Y,,,

n=1,2,..., of the form Y,, = XnD,ll/2 where X, is a N x n random matrix whose
coefficients X;; are independent and identically distributed (iid) complex Gaussian
random variables such that ®(X11) and &(X11) are independent, each with mean
zero and variance 1/2, and where D,, is a deterministic nonnegative diagonal n x n
matrix. Writing D,, = diag(d}‘)j:lwm and denoting by d the Dirac measure, it is
assumed that the spectral measure v, = n~! Z?:l éd}a of D,, converges weakly to a
compactly supported probability measure v when n — oo. It is also assumed that
the maximum of the distances from the diagonal elements of D, to the support
supp(v) of v goes to zero as n — oco. Assume that N/n — ¢ when n — oo, where
c is a positive constant. Then it is known that with probability one, the spectral
measure of the Gram matrix n=1Y,Y,* converges weakly to a compactly supported
probability measure p (see [26], [16], [35], [36]) and, with probability one, n=1Y,,Y,*
has no eigenvalues in any compact interval outside supp(u) for large n [3].

Let r be a given positive integer and consider a sequence of deterministic NV X n ma-
trices P,,, n = 1,2, ..., such that rank(P,) = r and sup,, | P, || < co where ||-|| is the
spectral norm. Consider the matrix ¥,, = n~Y2Y, + P,. Since the additive defor-
mation P, has a fixed rank, the spectral measure of ,,%% still converges to 1 (see,
e.g., [2 Lemma 2.2]). However, a finite number of “isolated” eigenvalues of ¥, 3%
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might stay outside the support of p. The purpose of this paper is to character-
ize the conditions under which this phenomenon occurs, to determine the locations
of the isolated eigenvalues, and to study the fluctuations of the largest among them.

The study of the isolated eigenvalues of large random matrices has a wide range
of applications. These include detection and estimation of wireless communication
signals [20], fault diagnosis in complex systems [14], financial portfolio management
[34], or chemometrics [29]. In the statistics literature, one of the first contributions
to deal with this subject was [23]. It raised the question of the behavior of the
extreme eigenvalues of a sample covariance matrix when the population covariance
matrix has all but finitely many of its eigenvalues equal to one (leading to a mut-
liplicative fixed rank deformation). This problem has been studied thoroughly in
[5, 6 32]. Other contributions (see [11]) study the isolated eigenvalues of a Wigner
matrix subject to a fixed rank additive deformation. The asymptotic fluctuations
of the isolated eigenvalues have been addressed in [5] [33] [32] [1, [T, 12 [7].

Recently, Benaych-Georges and Nadakuditi proposed in [§, 9] a generic method
for characterizing the behavior of the isolated eigenvalues for a large palette of
random matrix models. For our model, this method shows that the limiting lo-
cations as well as the fluctuations of the isolated eigenvalues are intimately re-
lated to the asymptotic behavior of certain bilinear forms involving the resolvents
(n= Y, Y,  —2ly)~ ! and (n=1Y,*Y, —xI,) "' of the undeformed matrix at real val-
ues of x. When D,, = I,,, the asymptotic behavior of these bilinear forms can be
simply identified (see [9]) thanks to the fact that the probability law of Y, is invari-
ant by left or right multiplication by unitary deterministic matrices. For general
D,,, other tools need to be used. In this paper, these bilinear forms are studied with
the help of an integration by parts formula for functionals of Gaussian vectors and
the Poincaré-Nash inequality. These tools belong to the arsenal of random matrix
theory, as shown in the recent monograph [3I] and in the references therein. In
order to be able to use them in our context, we make use of a regularizing function
ensuring that the moments of the bilinear forms exist for certain z € Ry = [0, 00).

Before entering the subject, we remark that the results of the paper can be
straightforwardly generalized to the case where D, is replaced by a nonnega-
tive Hermitian matrix R,,, which is a more practical model in many applica-

tions. Indeed, write R,, = V,,D, V" where V,, is a unitary matrix, and let R,ll/ -

VnD}l/2V;. Then the singular values of X, = n=12X,DY? + P, coincide with
those of n~Y/2(X,, V.¥) 12 P,V*. Since X,, and X,,V,* are equal in law, the vec-
tor of singular values of ¥,, and the vector of singular values of n=!/ 2x, RY? ¢ P!
where P/ = P,V* are also equal in law.

The paper is organized as follows. The assumptions and the main results are
provided in Section 2l Section [3]is devoted to the basic mathematical tools needed
for the proofs. These proofs are provided in Sections @ and Bl which concern respec-
tively the first order (convergence) and the second order (fluctuations) behavior of
the isolated eigenvalues.
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2. PROBLEM DESCRIPTION AND MAIN RESULTS

Given a sequence of integers N = N(n), n = 1,2,..., we consider the sequence
of N x n matrices ¥, = n~/2Y,, + P, = n_1/2XnD,1/2 + P, with the following
assumptions:

Assumption 1. The ratio ¢, = N(n)/n converges to a positive constant ¢ as
n — 0.

Assumption 2. The matriz X,, = [ij]fvdzl is a N x n random matriz whose
coefficients X;; are iid complex random variables such that ®(X11) and I(X11) are
independent, each with probability distribution N(0,1/2).

Assumption 3. The sequence of nxn deterministic diagonal nonnegative matrices
D,, = diag(d})}_, satisfies the following:
(1) The probability measure v, = n~! E?Zl dqn converges weakly to a probabil-

ity measure v with compact support.
(2) The distances d(d},supp(v)) from d} to supp(v) satisfy

mn
maxn} d (d} ,supp(v)) — 0.
This assumption implies that dmax = sup,, || Dl < o0.
As is usual in random matrix theory, a central role will be played here by the so

called Stieltjes Transform. The Stieltjes Transform of a positive finite measure u
over the Borel sets of R is the function

m(e) = [ =l (1)

analytic on C — supp(u). It is straightforward to check that Sm(z) > 0 when z €
Cy = {2z : S(2) > 0}, and sup,~ ¢ [ym(1y)| < co. Conversely, any analytic function
m(z) on C4 that has these two properties admits the integral representation ()
where p is a positive finite measure. Furthermore, for any continuous real function
¢ with compact support in R,

/<p(t) u(dt) = 1 lim [ p(z)Sm(z +wy) dx (2)
™ yl0

which implies that the measure p is uniquely defined by its Stieltjes Transform.
Finally, if $(zm(z)) > 0 when z € C4, then u((—o00,0)) =0 [25].

These facts can be generalized to Hermitian matrix-valued nonnegative finite mea-
sures [I0, [I5]. Let m(z) be a C"*"-valued analytic function on z € C4. Letting
SX = (X — X*)/(2), assume that Sm(z) > 0 and I(zm(z)) > 0 in the or-
der of the Hermitian matrices for any z € Cy, and that sup,. [ym(wy)| < oco.
Then m(z) admits the representation (Il) where p is now a r X r matrix-valued
nonnegative finite measure such that u((—o0,0)) = 0. One can also check that

w1([0,00)) = — limy—, oo 1y m(—12y).

The following theorem characterizes the asymptotic behavior of the eigenvalues
of n=Y, Y

Theorem 2.1. Under Assumptions[d, [2 and[3, the following hold true:
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(1) For any z € C, the equation

m — (—z—i—/ﬁu(dt)) - 3)

admits a unique solution m € C4. The function m = m(z) so defined on
Cy is the Stieltjes Transform of a probability measure p whose support is a
compact set of R.

Let (A\?);=1,...n be the eigenvalues of n=*Y,Y,*, and let 0, = N~! sz\il Oxr

be the spectral measure of this matriz. Then for every bounded and contin-
uous real function f,

/ FO0 () 22 / F(tyu(de). (4)

n—r00

.....

(2) For any interval [x1,x2] C R — supp(p),
#{i : A\l € [z1, 22]} = 0 with probability 1 for all large n.
The first part of this theorem has been shown in [26] B6], and the second part in

3.

Let Qn(2) = (n7 Y, Y,  —zIn) "t and Q,(2) = (n~1Y;*Y,,—2I,)~! be the resolvents
of n71Y, ¥ and n=1Y,'Y,, respectively. The first part of Theorem 2] can also be
deduced from the following result that will be used in our subsequent derivations:

Proposition 2.1 ([36, 22| 18]). Assume that D,, is a n x n diagonal nonnegative
matriz. Then, for any n, the equation

1 ~\1" ~ _
My, = {—z <1 + —Tr DnTn>} where T, = [~z (I, + ¢cnmpDy)] !
n

admits a unique solution m,, € C4 for any z € C4. The function m, = m,(z)
so defined on Cy is the Stieltjes Transform of a probability measure p, whose
support is a compact set of Ry. Moreover, the n xn diagonal matriz-valued function
Tn(2) = [—2(In+cnma(2)Dy)] 7L is analytic on C and n= Tr T, (2) coincides with
the Stieltjes Transform of cppn + (1 — ¢,)d0.

Let Assumption[d hold true, and assume that sup,, ||Dy,|| < oo, and 0 < liminf ¢, <
limsupc, < co. Then

L TQu(2) ~ma(2)I) 0 and T (Gulz) ~ Tu(2) 20 (5)

n—oo

for any z € Cy. When Assumptions [l and[3 hold true, m.,,(z) converges to m(z)
provided in the statement of Theorem 21l uniformly on the compact subsets of Cy.

The function m,(z) = (—z + [ (1 + cnmn(z)t)’lz/n(dt))71 is a “finite horizon”
analogue of m(z). Since N=!Tr@,(z) is the Stieltjes Transform of the spectral
measure 6, Convergence ([@l) stems from the first convergence in (B). Note that

n-! Tr@n(z) is the Stieltjes Transform of ¢,0,, + (1 — ¢,)d0. Hence Convergence
@) can also be deduced from the second convergence in ().

We now consider the additive deformation P,,:

Assumption 4. The deterministic N x n matrices P, have a fixed rank equal to
r. Moreover, Pmax = sup,, || Pu|| < co.
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In order for some of the eigenvalues of ¥,X* to converge to values outside
supp(u), an extra assumption involving in some sense the interaction between P,
and D,, is needed.

Let P, = U, R}, be a factorization of P, where U, is an isometry matrix of size
N x r, e.g., a QR factorization. Define the r x r Hermitian nonnegative matrix-
valued measure A,, as

Sa
A =R} Ry. (6)

(sdn

It is clear that the support of A, is included in [0, dpmax| and that Ay, ([0, dmax]) <
p2.. I Since the sequence A, ([0, dmax]) is bounded in norm, for every sequence
of integers increasing to infinity, there is a subsequence n; and a nonnegative finite
measure A, such that [ fdA,, — [ fdA, for every function f € C([0, dmax)), with
C([0,dmax]) the set of continuous functions on [0, dyax]. This fact is a straightfor-
ward extension of its analogue for scalar measures.

Assumption 5. Any two accumulation points A1 and Ao of the sequences A,
satisfy A1 (dx) = UA2(dx)U* where U is a unitary matriz.

An equivalent statement of this assumption, perhaps more easily verifiable in
some applications, is the following: there exists a sequence of factorizations P, =
U, R such that for every function f € C([0,dmax]), the sequence of measures A,
associated to these factorizations by (@) satisfies [ fdA,, — [ fdA, where A, is a
matrix-valued nonnegative finite measure.

It is shown in [37] that the limiting spectral measure p has a continuous density
on R* = R—{0} (see Prop. Bdlbelow). Our first order result addresses the problem
of the presence of isolated eigenvalues of 3,37 in any compact interval outside the
support of this density. Of prime importance will be the r x r matrix functions

H,(z) = / H“c‘ifzzz)tm(dt)

where A, is an accumulation point of a sequence A,. Since |1 + em(z)t| = |z(1 +
em(2)t)|/]1z] = |S(z(1 + em(2)t))|/]z] > S(2)/|z| on C4, the function H,(z) is
analytic on C;. It is further easy to show that S(H.(z)) > 0 and S(z2H.(z)) > 0
on Cy, and sup,. [|[yH.(1y)|| < oo. Hence H.(z) is the Stieltjes Transform of a
matrix-valued nonnegative finite measure carried by [0, 00). Note also that, under
Assumption Bl the eigenvalues of H.(z) remain unchanged if A, is replaced by
another accumulation point.

Theorem 2.2. Let Assumptions[D, [4 and[3 hold true. Denote by (5\?)1:1 _____

eigenvalues of ¥,3% . Let (a,b) be an interval in supp(u)® = R —supp(p) such that

a belongs to the boundary dsupp(p) or a =0, and b € dsupp(u) or b = oo. Then
the following facts hold true:

(1) Let (P,) be a sequence satisfying Assumptions[f] and[A Given an accumu-

lation point A, of a sequence A,,, let H.(z) = [ m(z)(1+cm(z)t) " A, (dt).

Then H,.(z) can be analytically extended to (a,b) where its values are Her-

mitian matrices, and the extension is increasing in the order of Hermitian
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matrices on (a,b). The function D(x) = det(H.(x) + I,) has at most r
zeros on (a,b). Let p1,...,pr, k <1 be these zeros counting multiplicities.
If k > 1, let [@/,b] C (a,b) be such that [p1,pr] C (a’,b). If k =0, let
[a', V'] be any closed interval in (a,b). Define the functions C(z) and Cp(z)
on [a',b'] as

Clz)=t{i: pi <z} and Ch(x)=1t{i : \! € [d/,V] and A} < z}.
Then

b/
/ Cp(z) — C(z)| dv 22 0.

/

(2) Ifb = inf (supp(p) — {0}), then for any positive b’ < b and for any sequence
of matrices (P,) satisfying Assumption[4),

#{i : A" € (0,0']} = 0 with probability 1 for large n.

(3) Assume a > inf (supp(p) — {0}). Then for any p1 < ... < p, in(a,b), there
exists a sequence of matrices P, satisfying Assumptions[]] and[3 for which

2 1Cu) = Cla)| de %30, where [a',b) C (a,b) and [p1, p,] C (a',V), and
where C(z) and Cy,(z) are defined as above.

Hence, for n large, ¥,,37 cannot have isolated eigenvalues before the first “bulk”
of eigenvalues, i.e., the first interval of the support of . Alternatively, between any
two bulks or after the last bulk of this support, the number of isolated eigenvalues
of ¥,%7 can reach the rank of the additive deformation.

It would be useful to complete the results of this theorem by specifying the in-
dices of the isolated eigenvalues that appear between the bulks. This study (not
done in this paper) may be done by following the ideas of [I1] or [38] relative to the
so called separation of the eigenvalues of ¥, %" . Another approach dealing with
the same kind of problem is developed in [4].

In a few words, the proof of Theorem consists in showing that the isolated
eigenvalues of X, %% in (a,b) are close for large n to the zeros of det(G,,(x) + In)
in this interval, where G, (z) is the analytic extension of G, (z) = m,(z)P,(I +
Cnmn(2)Dy) " P? to (a,b). Performing a factorization P, = U,R} where U, is
an isometry matrix of size N X r, we observe that G, (z) can be represented in an
H,(z) 0

0 O}
where H,,(z) = my,(2) R} (I + coymy(2)Dy) ' R,,. These functions can be written as

orthonormal basis of CV whose first vectors are the columns of U,, as [

H,(z)= | ——————A,(dt), 7
()= [ T, 7
and we shall show that they admit the H,.(z) as uniform limits on the compact
subsets of C —supp(u). In practice, the isolated eigenvalues for a given large n can
be approximated by the zeros of det(m,, (z) R} (I + cpmn(x)Dy,) " Ry, + 1,.) in (a, b).

A scenario of practical importance at least in the fields of signal processing and
wireless communications is provided by the following assumption. Recall that v is
the probability measure given by Assumption
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Assumption 6. The accumulation points A, are of the form v(dt) x UQU™* where
wil;
Q= >0, wi>-->w;, J+-+g=r
wiIj,
and where U is a unitary matriz.

In wireless communications, the w? typically represent the powers of radio sources
transmitting signals to an antenna array. B
Observe from Proposition 2] that [(1+ cm(z)t) " tv(dt) = —zlim(n ' Tr T, (z)) =
—czm(z) + 1 — ¢. Consequently, in this particular case, H,(z) is unitarily equiva-
lent to —m(z) (cxm(x) — 1+ ¢) Q on (a,b). This brings the following corollary of
Theorem

Corollary 2.1. Assume the setting of Theorem[Z2-[), and let Assumption[d hold
true. Then the function g(x) = m(z) (cxm(x) — 1+ ¢) is decreasing on (a,b). De-
pending on the value of w?, £ =1,...,t, the equation w?g(x) =1 has either zero or
one solution in (a,b). Denoting by p1,. .., ps these solutions counting multiplicities,
f;,/ |Cp(2)—C(x)|dz 5 0, where a’, b/, Cp(z) and C(z) are built as in the statement
of Theorem [2.2-(T).

We now turn to the second order result. This result will be stated in the sim-
ple and practical framework of Assumption [6l Actually, a stronger assumption is
needed:

Assumption 7. The following facts hold true:

sup v/nle, — ¢| < oo,
n

limnsup\/ﬁ}/ ! vn(dt) — /t !

t—=x -

V(dt)‘ < 00 for all x € R — supp(v).

Moreover, there exists a sequence of factorizations of P, such that the measures A,
associated with these factorizations by [@) converge to v(dt) x Q and such that

lim sup v/n H/ ﬁ/\n(dt) - / t—lxy(dt) X QH < oo for all x € R — supp(v)

We recall that a GUE matrix (i.e., a matrix taken from the Gaussian Unitary
Ensemble) is a random Hermitian matrix G' such that G;; ~ N(0,1), R(G;;) ~
N(0,1/2) and I(Gyj) ~ N(0,1/2) for i < j, and such that all these random
variables are independent.

Theorem 2.3. Let Assumptions[D{7 hold true. Let g be the function defined in the
statement of Corollary [21] and let B,, = sup(supp(p)). Assume that the equations
wig(z) = 1 with x € (B,,00), have a solution for each £ € {1,...,p}, p < 1,
denoted p1 > --- > p, (with multiplicities ji,...,Jp), respectively. Let A, be any
sequence of measures satisfying the third item of Assumption[7, and let H,(z) be the
matriz function associated with A,, by (). Denote by Hy n(2),...,Hpn(z) the first
p upper left diagonal blocks of Hy(z), where H; ,(z) € Cii*Ji. Then the following
facts hold true:

2
i)t . L .
e Ap;))=1- c/ <1+Inc(7rf:l()pz)t> v(dt) is positive for everyi=1,...,p.
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o limsup,, |[[v/n(H;n(pi) + 1;;)
Fori=1,...,p, let

| < oo foreveryi=1,...,p.

A/n/
Afittiio+1 1
M= +/n : —pi |-
. .
At

where jo = 0 and where the eigenvalues 5\:‘ of £,X7 are arranged in decreasing
order. Let G1,...,G, be independent GUE matrices such that G; is a j; X j; matriz.
Then, for any bounded continuous f: R T-Tir 5 R,

E[f(M7,.... M) —E[f(EF,....E})] — O

’ _‘p n—oo
where Z' € Rt is the random vector of the decreasingly ordered eigenvalues of the
matric
1
—— (oG H; )+ 1
W?Q(Pi)/ (az i+ \/ﬁ( z,n(pl) + 7,)) )
where

o m*(p;) 2 + 2w2t , . MV 2
o Alpi) [/ (1 +cm(p;)t)? 0 (/ (14 cm(p;)t)? (dt)> ]

Before turning to the proofs, some comments can be useful. We shall see that
the results of Theorems and are intimately related to the first and sec-
ond order behaviors of bilinear forms of the type u’ @y (z)v,, @5Qn(z)0,, and

nil/Qulen@n(:r)ﬁn where u,,, vy, i, and 7, are deterministic vectors of bounded
norm and of appropriate dimensions, and where x is a real number lying outside the
support of u. In fact, it is possible to generalize Theorem 2.2 to the case where the
elements of X,, are not necessarily Gaussian. This can be made possible by using
the technique of [2I] to analyze the first order behavior of these bilinear forms.
On the other hand, the Gaussian assumption plays a central role in Theorem 2.3
Indeed, the proof of this theorem is based on the fact that these bilinear forms
asymptotically fluctuate like Gaussian random variables when centered and scaled
by /n. Take u, = e1 n and 0,, = e1, where ey ., is the k™™ canonical vector of
R™. Denoting by ¢;; and by f% the (7, 7) elements of @n(:zz) and Tn(a:) respectively,
we can informally write

(A2 Xy, ~ (d)Y 21 Xy + Z(d}l)l/z)f?}ﬁle

1 j=2

n
el NYnQ(x)ern =

j=
following [21]. It can be shown furthermore that #}, = O(1) for large n and that
the sum Z?:z is tight. Hence, eiNYnQ(ZC)el,n is tight. However, when Xi; is
not Gaussian, we infer that ej NYn@(x)el,n does not converge in general towards
a Gaussian random variable. In this case, when P, = o.)Qel,NeT)n (see Section [),
Theorem no longer holds. Yet, we conjecture that the results of this Theorem
can be recovered when e; y and e; , are replaced with vectors whose elements are
“spread enough”, see [12] which deals with a similar problem.
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A word about the notations. In the remainder of the paper, we shall often drop
the subscript or the superscript n when there is no ambiguity. A constant bound
that might change from an inequality to another but which is independent of n will
always be denoted K. Element (4, j) of matrix M is denoted M;; or [M];;. Element
i of vector x is denoted [x];. As usual, A* means the adjoint of a matrix or a vector
A, and for a complex number z, we will use either zZ or z* to denote the complex
conjugate of z. Convergence in probability will be denoted i), and convergence

e e e D
in distribution —.

3. MATHEMATICAL TOOLS AND USEFUL RESULTS

We start this section with some basic mathematical tools.

3.1. Differentiation formulas. Let 9/0z = (9/0x—10/dy)/2 and 8/0z = (0/dx+
10/0y)/2 for z = x 4+ 1y. Given a Hermitian matrix X with a spectral decompo-
sition X' = 7, Avevy, let adj(X) = 374 ([pz4 Ae)vrvy be the classical adjoint of
X, i.e., the transpose of its cofactor matrix. Let ¢ be a continuously differentiable
real-valued function on R. Then

Bdetw(nleY*) 1 ) . . P .
a}—/ij = [adJ (1/) (n YY )) 0 (n YY ) yj]i

where y; is column j of Y, see [19, Lemma 3.9] for a proof.
We shall also need the expressions of the following derivatives of the elements of
the resolvents @ and @ (see [I8]):

W _ Loy 0. - LG 1,
o = Qi G == QY Qi

3.2. Gaussian tools. Our analysis fundamentally relies on two mathematical tools
which are often used in the analysis of large random matrices with Gaussian ele-
ments. The first is the so called Integration by Parts (IP) formula for functionals of
Gaussian vectors introduced in random matrix theory in [2430]. Let ' : R2N" — C
be a continuously differentiable function polynomially bounded together with its
partial derivatives. Then

E(rn) - o | 5

v,
for any i € {1,...,N} and j € {1,...,n}. The second tool is the Poincaré-Nash

inequality (see for instance [13]). In our situation, it states that the variance
Var(T'(Y)) satisfies

2

> ar(y)
oYy

N n
Var(T(Y)) <Y Y dE

ar(Y)
aY;,

The results of Silverstein and Choi [37] relative to the support of 1 will be needed
in the proof and recalled in the following paragraph for completeness. Close results
can be found in [27] and in [28].
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3.3. Analysis of the support of u.
Proposition 3.1 ([37], Th.1.1). For all x € R*, gm m(z) exists. The limit
zeCqp—zx
that we denote m(x) is continuous on R*. Moreover, p has a continuous density f
on R* given by f(x) = 7~ 1Sm(z).
In [37], the support of 4 is also identified. Since m(z) is the unique solution in
C; of @) for z € C4, it has a unique inverse on C;. given by

1 t (dt)

2(m) = m+ 1—|—cmtV
The characterization of the support of y is based on the following idea. On any open
interval of supp(p)¢, m(z) = [(t — z)~'u(dt) is a real, continuous and increasing
function. Consequently, it has a real, continuous and increasing inverse. In [37],
it is shown that the converse is also true. More precisely, let B = {m : m #
0, —(cm)~! € supp(v)©}, and let

x : B — R
1 t ()
— .
m z(m) m + 1+ cmt v(d?)
Then the following proposition holds:
Proposition 3.2 ([37], Th. 4.1 and 4.2). For any xo € supp(p)¢, let my = m(zo).
Then my € B, xo = x(my), and 2'(mg) > 0. Conversely, let my € B such that
' (mg) > 0. Then xzo = z(mg) € supp(p)®, and m(zp) = my.

The following proposition will also be useful:

Proposition 3.3 ([37], Th. 4.4). Let [mj, ms] and [ms, my] be two disjoint in-
tervals of B satisfying Vm € (my, my) U (m3,my), z'(m) > 0. Then [z1,x2] and
[x3, 24] are disjoint where x; = x(m;).

The following result is also proven in [37]:
Proposition 3.4. Assume that v({0}) = 0. Then u({0}) = max(0,1 —c71).

We shall assume hereafter that v({0}) = 0 without loss of generality (otherwise,
it would be enough to change the value of ¢). The two following lemmas will also
be needed:

Lemma 3.1. Let [x1, 23] € supp(p)® with x1 > 0, and let Dy, 4, be the closed
disk having [x1,x2] as one of its diameters. Then there exists a constant K which
depends on x1 and xo only such that
Vtesupp(v), V2 € Dyyozy, |1 +cem(2)t] > K, and
Vn large enough, Yt € supp(vy), V2 € Dyy zys |1+ comn(2)t] > K.

From the second inequality, we deduce that Tn(z) is analytic in a neighborhood
of [z1, z2] for n large enough, and

limsup sup ||T,(2)] < oo. 9)

n 2€Dg, 24
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Proof. When z € Cy, Sm(z) > 0 and S(—(em(z))™!) > 0, and we have the
opposite inequalities when ¥z < 0. Applying Proposition for z € [x1, 22, we
deduce that |m(z)| and f(z) = d(—(em(z))~!,supp(v)) are positive on Dy, 4.
Since these functions are continuous on this compact set, min [m(z)] = Ky > 0
and min f(z) = Ko > 0 on D, ,,. Consequently, for any z € Dy, ,, and any
t € supp(v), |1+ em(2)t] = [em(2)(—(cm(2)) ™t —t)| > |em(2)|f(2) > cK1 K3 > 0.
We now prove the second inequality. Denote by dy(A, B) the Hausdorff distance
between two sets A and B. Let f,(z) = d(—(c,mn(2))~t, supp(vy,)). We have

fn(z) < d(_il _—1) —i—d(ﬁ(lz),supp(un))

cnmp(2)” em(z)

< d(;l _—1) + f(2) + du(supp(va), supp(v))

= cnmn(z)’cm(z) H(SUPP(Vr ), SUPD )
and f(2) < d(—(enma(2))", —(em(2)) ™) + fu(2) + du(5upp(v), supp(v)) sim-
ilarly. Since my(z) converges uniformly to m(z) and inf |m(z)| > 0 on Dy, 4.,
d(—(cpmn(2))7t, —(em(2))™!) — 0 uniformly on this disk. By Assumption [
du (supp(vy),supp(v)) — 0. Hence f,(z) converges uniformly to f(z) on Dy, 4,
which proves the second inequality. 0

Lemma 3.2. In the setting of Lemmal3 ], for any sequence of vectors i, € C™ such
that sup,, ||U,|| < oo, the quadratic forms @} T, (z)l, are the Stieltjes Transforms
of positive measures v, such that sup,, 7n(R) < oo and v, ([x1,22]) = 0 for n large
enough.

Indeed, one can easily check the conditions that enable ﬂflfn(z)ﬁn to be a Stielt-
jes Transform of a positive finite measure. The last result is obtained by analyt-
icity in a neighborhood of [x1,z3]. In fact, it can be checked that supp(y,) C

supp(ptn) U {0}

3.4. A Control over the support of 6,,. In this paragraph, we adapt to our case
an idea developed in [I1] to deal with Wigner matrices whose elements distribution
satisfies a Poincaré-Nash inequality.

Proposition 3.5. For any sequence of n X n deterministic diagonal nonnegative
matrices U, such that sup,, ||Uy|l < oo,

2By (2) — oo (o) < ZELREL), g
PRSI

<

}l T U, EQ,(2) — ! Tr U, T (2)
n n

n2

for z € C1, where P and R are polynomials with nonnegative coefficients indepen-
dent of n.

This proposition is obtained from a simple extension of the results of [18, Th. 3
and Prop.5] from z € (—0,0) to z € C;.
The following important result, due to Haagerup and Thorbjgrnsen, is established
in the proof of [I7, Th.6.2]:

Lemma 3.3. Assume that h(z) is an analytic function on C4 that satisfies |h(z)| <
P(]2])R(IS(2)| ™) where P and R are polynomials with nonnegative coefficients.
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Then for any function ¢ € C°(R,R), the set of smooth real-valued functions with
compact support in R,

lim sup < 00.

yd40

/ @)z + w)dz
R

Since N=!Tr @, (z) is the Stieltjes Transform of the spectral measure 6,,, the
inversion formula (2)) shows that

1 1
/<p(t) O, (dt) = — lim%/gp(az)— Tr Qn(z + ) dz
™ yl0 N
for any function ¢ € C°(R,R). Using then Proposition and Lemma B3] we

obtain the following result:

Proposition 3.6. For any function ¢ € C°(R,R),
K
E [ o(t)0n(dt) — [ o(t) pn(dt)] < —5.

4. FIRST ORDER ANALYSIS: PROOF OF THEOREM

In all this section, [x1,z2] is an interval in (a,b) where a and b are given in the

statement of Theorem [22] and z is a complex number such that R(z) € [z, z2]
and 3(z) is arbitrary. Moreover, u,,v, € CV and iy, 7, € C" are sequences of
deterministic vectors such that sup,, max(|[w,|, |[vn ], [|@n]], [|7n]]) < oo, and U,, is a
sequence of n x n diagonal deterministic matrix such that sup,, ||(7n|| < 00.
We now introduce the regularization function alluded to in the introduction. Choose
e > 0 small enough so that [z1,22] N S: = 0 where S. = {x € R, d(x,supp(u) U
{0}) <e}. Fix0 < e <eg letyp: R — [0,1] be a continuously differentiable
function such that

1 ifzeS.
W”)_{ 0 ifreR—G.

and let ¢, = dety)(n~1Y,Y,*). In all the subsequent derivations, quantities such
as 1 Qp(2)tn or @5Qn(2)iy, for R(2) € [z1, 2] will be multiplied by ¢, in order
to control their magnitudes when z is close to the real axis. By performing this
regularization as is done in [I9], we shall be able to define and control the moments
of random variables such as ¢, uQn,(2)u, or ¢, ﬂ;@n(z)&n with the help of the
Gaussian tools introduced in Section 32

We start with a series of lemmas. The first of these lemmas relies on Proposition
3.6l and on the Poincaré-Nash inequality. Its detailed proof is a minor modification
of the proof of [19, Lemma 3] and is therefore omitted:

Lemma 4.1. Given 0 < &’ < ¢, let ¢ be a smooth nonnegative function equal to
zero on S and to one on R — S.. Then for any ¢ € N, there exists a constant K,
for which

K,y

E {(Mp(nflyny,j))q <=

Remark 1. Notice that this lemma proves Theorem[Z1F2). The proof provided in
[B] is in fact more general, being not restricted to the Gaussian case.
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Lemma 4.2. For any { € N, the following holds true:

N,n
E{>d

i,j=1

l
O |
oY,

Ky
= e

Proof. Letting n=2Y = W diag(v/A1,--- , VAx)V* be a singular value decompo-
sition of n=/2Y, we have

dj ! — = WEV* where E = di ! II
o (1/)( n )) v ( n ) vn ere 1ag(\/xk1/) ()\k)#kd}()\e)) k=1
and we observe that Tr=? < KZ,, where Z, = #{k : \y € S. — S./}. Using the

first identity in Section Bl and recalling that | Tr(AB)| < ||A|| Tr B when A is a
square matrix and B is a Hermitian nonnegative matrix, we have

¢
N,n

Obn | 1 o ypyr - \\'| _K__,
=\ | S alg] ) |-t (1 (a2 i) ) | < ez
and the result follows from Lemma [l with a proper choice of (. O

Lemma 4.3. The following inequalities hold true:
E|¢n 15, Qn(2)vn — Eldn u;,Qn(2)vn]|" <
E |¢n i5Qn(2)0n — Elgn @5,Qn(2)0]| <
Var (¢n Tr Qn(2)) < K.

Proof. We shall only prove the first inequality. By the polarization identity, this
inequality is shown whenever we show that E |¢ u*Qu — E[¢ u*Qu]|4 < K/n?. Let
us start by showing that Var(¢u*Qu) < K/n. By the Poincaré-Nash inequality,
we have

opu* Qu
A\ <2 E d;E
ar (pu*Qu) P ’ v,
ou* Qu Iolo} 2
<4 d;E |p—= 4 d;E
> el > w|ras oY
i,j=1 i,j=1
Using the expression of 0Q,,/0Y;; in Section B} we have
ou*Qu/dYi; = —n  u* Qy; [Qul;,
hence
i 8u*Qu K
. — — 2 -
> ae 0% 2| = e [¢we P quirgh < &

ij=1
since the argument of the expectation is bounded for R(z) € [z1, x2]. From the first
identity in Section BT, 3, ; d;E [u*Qudg/dYi;|* < K'Y,  djE|96/8Y;;|* which
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is bounded by K/n? by Lemma It results that Var(¢u*Qu) < K/n. Now,
writing X= X — EX,
/—/O‘xﬁl 9 /—L\ 2 9 /—L\ 2
E‘¢u*Qu‘ = (Var(pu*Qu)) +Var((¢u*@u) ) < K/n +Var((¢u*Qu) )
By the Poincaré-Nash inequality,

o o

—— 2 N —_— 2 2
Var((qSu Qu) ) < 2“2:1 dj]E}a(QW QU) / 9Yi;

N,n ° N,n °
. ~—  0u*Qu|? . —_— ¢ |2
<16y djE‘m Qu o7 ’ +16 Y dj]E’¢u QuuQue| = VitV
ij=1 ‘ irj=1 ’

[e]

—N—2
By developing the derivative in V; similarly to above, V3 < Kn_lE’¢u*Qu‘ <
Kn~2. By the Cauchy-Schwarz inequality and Lemma £2]

T

N,n °
i —
<K Y dj]E‘¢u*Qu ;f_
S 17

i,j=1
[e]
—N—4
Writing a,, = nQE‘qﬁu*Qu , we have shown that \/a,, < K/\/a, + K/n. Assume
that a, is not bounded. Then there exists a sequence nj of integers such that

ap, — 00, which raises a contradiction. The first inequality in the statement of
this lemma is shown. The other two inequalities can be shown similarly. O

Lemma 4.4. The following holds true:

K

1-E¢, < —f for any ¢ € N.
n

Proof. For 0 < g1 < ¢’ where €’ is defined in the construction of ¥, let ¢ be a

smooth nonnegative function equal to zero on S;, and to one on R — S.. Then

1—¢, < (Tr(go(n_lYY*)))g for any ¢ € N, and the result stems from Lemma
]

Lemma 4.5. The following inequalities hold true (recall that R(z) & supp(p)):

K
|E [¢n TrQn(2)] — Nmy(2)] £ —, and

) 10, (Bl6u@n(2)] - Tal2))| <

n

Proof. Let € be defined in the construction of 1. Choose a small £; > € in such a
way that S, N[z1,x2] = (. Let ¢ be a C°(R, R) nonnegative function equal to one
on S; and to zero on R — S, , so that

L
or Q=0 [ 1o,

Using this equality, and recalling that ¢ € [0, 1], we have

E(b% TrQ—E/%Hn(dt)‘ <E [(1 _(b)'/%@"(dt)ﬂ < % < %




ISOLATED EIGENVALUES OF GRAM MATRICES 15

for any ¢ € N. Moreover, we have

] -t L - [ L] < &

by Proposition B3] and the first inequality is proved.

By performing a spectral factorization of n='Y*Y", one can check that n=' Tr (7@(2)
is the Stieltjes Transform of a positive measure 7, such that sup,, 7,(R) < oo and
supp(7,) C supp(6,)U{0}. By Lemma2 n~! Tr UT(z) is the Stieltjes Transform
of a positive measure 7, such that sup,, 7, (R) < oo and 7, ([z1,z2]) = 0 for all
large n. With the help of the second inequality of Proposition[3.5, we have a result
similar to that of Proposition 3.6} namely that |E [ pd7, — [ ¢dy,| < K /n? for any
function ¢ € C°(R,R). We can then prove the second inequality similarly to the
first one. O

Lemma 4.6. The following inequalities hold true:

B¢y, @5 Qn(2)0n] — 05T (2)n| < K/n.

In [21], it is proven in a more general setting that |Eu}Qp (2)un — |lun[*mn(2)| <
P(|z))R(|S(2)]71)/y/n for any z € C,.. Observing that u}Q,(2)u, and ||u,]|*m.,(z)
are Stieltjes Transforms of positive measures, and mimicking the proof of the pre-
vious lemma, we can establish this lemma with the rate O(n~1/2), which is in fact
enough for our purposes. However, in order to give a flavor of the derivations that
will be carried out in the next section, we consider here another proof that uses
the IP formula and the Poincaré-Nash inequality. To that end, we introduce new
notations:

B() = dur TrQu(2), alz) =EB(2), H(z) = B(z) — dualz), and

1
a(z) = = Tr Dy [—2(I, + a(2)D,)] .
n
Proof. We start with the first inequality. By the IP formula, we have

_ d. _
E[Qm}/ljnjd)] = —g]E[[an]pQuYeﬁles(é—l) [sz¢] J E[Q;m}/@ [ad.](d})w/yj]z]

Taking the sum over 4, we obtain
_ _ d;  _
E([Qy;]pYe;6] = —d;El[Qu;]pYe; 8] + LE[Qped] + —B[Ve; [Q adi(e)¢y; 1)

Writing 8 = B + oo, we get

E[[Qyj]p?@j@ E[Qped] — E[[Qy;lp ij ﬁ]

1+d

d; /
b oy BT Qadi ) ) |

1+d
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Taking the sum over j, we obtain

Yy*
E

e ile

n

LZ 4 = —26E[Qped] — E

YD(I + aD)‘lY*}
pl

+1lg [Q adj ()
n

n

YD(I + aD)_lY*}
pl

We now use the identity 2Q = n~'QY Y™ — I, which results in

Q] ~E || | 4 ~ 5(p ~ OElg),
pl
_ dp—10) 2nd and 3rd terms of next to last equation
ElQudl = S P A1+3)

Multiplying each side by [u*],[v]¢ and taking the sum over p and ¢, we finally obtain
YD(I+aD) Y™ v]

n

u*v
—z(1+a)

E[u*Qué] = [ (14 @) E [Bu*cz

(10)

n n

—1y*

+ it a)E {U*Q adj(y)y Y2U+ D)V U} ,
Let us evaluate the three terms at the right hand side of this equality. From
Lemma 5 we have a = ¢,m, + O(n~2). Using in addition the bound (@), we
obtain & = n L Te(D(—z(I + cpmnD + (o — cymy)D)™1) = n~ 1 Tr DT + O(n2).
Since mp(2) = (—2(1+n~'Tr DT(2))) "}, we obtain that (—z(1 + &))" = ma(2)+
O(n~2). Using in addition Lemma[Ed] we obtain that the first right hand side term
of M) is u*vmy,(z) + O(n~2). Due to the presence of ¢ in the expression of 3,
the second term is bounded by KE|3]. Moreover, 3 = n~'¢TrQ — n 'E[¢ Tr Q] +
(1 —¢)n 'E[¢ Tr Q]. By LemmasEd and @3} E|3| = O(n~!). The third term can
be shown to be bounded by Kn 'ETr p(n 1YY *) = O(n=?) where ¢ is as in the
statement of Lemma .l This proves the first inequality in the statement of the
lemma.

The second result in the statement of the lemma is proven similarly. The proof
requires the second inequality of Lemma 5l 1

The proof of the following lemma can be done along the same lines and will be
omitted:

Lemma 4.7. The following inequalities hold true:
(B YuQu ()| < K/

4
< K.

E | ¢, Y5 Qn (2)

We now prove Theorem

Proof of Theorem [2.2}([)). To prove this result, we follow the idea of [8, [9]. We
start with a purely algebraic result. By Assumption [l there exists a N x r matrix
A, and a n X r matrix B,,, both with rank r and bounded spectral norms, such
that P, = A, B} (at this step, A, need not be an isometry matrix as was done
before Equation (@])). Assume that > 0 is not an eigenvalue of n='Y,Y;*. Then
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x is an eigenvalue of ¥, % if and only if det Sn(z) = 0 where S, (z) is the 2r x 2r
matrix

§ (CC) = \/EAZQH(@AH I. + ”71/2A2Yn@n(I)Bn
L 40T 2BEQ (2)Y R A, VIB:Qn(z)B,

(for details, see the derivations in [9] or in [20, Section 3]). The intuitive idea is the

following. Fix the value of z. By the results shown above, S, (x) is close for large

" Su(z) = {ﬁm”(lfmwn \/EB:;I{“;(x)BJ |

Hence, we expect the eigenvalues of 3,37 in (a, ), when they exist, to be close for
large n to the zeros in (a,b) of

det S, (x) = det (xmn(x)A;AnB,’;Tvn(:v)Bn - Ir)

= (~1)" det (IN - xmn(x)PnTn(x)P;) .

For any = € (a,b), det Sp(z) = (=1)"det(H,(x) + I,) ~ (=1)"det(H.(z) + I,)
where H,, is given by Equation (@) and H. is provided in the statement of the
theorem. Hence the zeros of D(z) in (a,b) are the limits of the isolated eigenvalues
of ¥,%5.

We now formalize this argument. Our first task is to establish the properties of
H,(z) given in the statement of Theorem 22} (). We start by defining the function
det S,,(2) on C; by writing

det S, (z) = (—1)" det (IN - zmn(z)PnTvn(z)P;) = (=1)"det (H,(2) + I,).

Let V be a small enough neighborhood of [, x2] in C, where we recall that [z, z2]
is an arbitrary interval in (a,b). By the construction of A,,, Proposition [Z1] and
Lemma[3T] the functions H,,(z) are analytic on V for n large enough, the functions
H,(z) are analytic on V, and from every sequence of integers increasing to infinity,
one can extract a subsequence o(n) along which H,,)(z) converges to one of the
H,(2) uniformly on the compact subsets of V. The comments preceding Theorem
show that any H.(z) is the Stieltjes Transform of a matrix-valued nonnegative
measure I'. Since H,.(z) is analytic on V, the interval [zq, 23] lies outside the
support of I". Hence, the extension of H,(z) to [z1,x2] is increasing on this interval
in the order of Hermitian matrices, and the properties of this function given in the
statement of Theorem 22} () are established.

In order to prove the convergence stated in Theorem 22} (), it will be enough
to show that for large n and with probability one, ¥¥* has no eigenvalues in any
compact interval lying in (a,p1), (p1,p2),..., or in (pg,b) if & > 1, or in (a,b)
if £k = 0, and the number of its eigenvalues in any small neighborhood of any
of the p; is equal to the multiplicity of this zero. Let D7 . be the open disk
with diameter [z1,x2] where z1 and x5 are chosen such that [x1,22] C (a,b) and
{p1, -, pet N{x1, 22} = 0. Let us restrict ourselves to the probability one set
where n~'YY* has no eigenvalues for large n in a large enough closed interval in
(a,b). We need to prove that on this set, the number of zeros of det §n(2) in D ..
converges almost surely to the number of zeros of det(H,(z) + I,.) in that same
disk. Let L, = #{i : A" € DS .}, L, = #{ zeros of det S,(z) in DS , }, and

1,22 xT1,T2
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L=t{i : p; € D2, with multiplicities}. By the well known argument principle

T1,T2
for holomorphic functions,

a /
F_1 f{ (det Sy ()"
oD®

C 2w Jops , detS,(z)
/ /
- § (et Suz) g, - L f (et (Ho(2) + 1))
2 Jopo det S, (2) 2 Jopeo det(H,(z) + I,.)
T1,%2
Ll eeeny,
C um D3, ., det(H.(z) + I)
where ODg . is seen as a positively oriented contour.

For any 1 < k. ¢ < r, let hypre(z) = [AL(Qn(2) — mn(2)IN)An]ke. Let V
be a small neighborhood of Dy, 4,, the closure of D7, . . Let z, be a sequence of
complex numbers in V having an accumulation point in V. By Lemmas 1] and
[0 and the Borel Cantelli lemma, hy, k ¢(zm) B 0asn — oo for every m. Moreover,
for n large, the hy, i ¢ are uniformly bounded on any compact subset of V. By the
normal family theorem, every n-sequence of h,, ¢ contains a further subsequence
which converges uniformly on the compact subsets of V' to a holomorphic function
hy. Since h.(zy,) = 0 for every m, we obtain that almost surely, h, i ¢ converges
uniformly to zero on the compact subsets of V', and the same can be said about
|A%(Qn(2) = mp(2)IN)Ay|. Using in addition Lemmas B and 7] we obtain the
same result for || Bz (Qn(2) — Tn(2))By|| and n=/2|| A% Y, Qn(2)Bayl.

Since det X is a polynomial in the elements of matrix X, det S, (z) — det Sp,(2)
converges almost surely to zero on D3, ., and this convergence is uniform. By
analyticity, the same can be said about the derivatives of these quantities. More-
over, det S, (z) converges to (—1)"det(H.(z) + I;) (which is the same for all ac-
cumulation points A,) uniformly on 9D2 Similarly, (det S, (2))" converges to

x1,T2°

(=1)"(det(H.(z) + I;)) uniformly on 90D2 Furthermore, by construction of

xr1,r2°
the interval [z, z2], we have inf.cops, . | det(H.(2) + I)] > 0 which implies that
liminf,, imfzeapgl’m2 |det Sp,(2)] > 0. Tt follows that En — L, 38 0and L, — L as
n — oo. This concludes the proof of Theorem 221 ().

Proof of Theorem 2.2 ) and (8). We start with the following lemma:

Lemma 4.8. Let A = inf(supp(u) — {0}). Let I = [x1,x2] C supp(u)©. Then the
following hold true:

(i) If xo < A, then m(z)(1 + em(z)t)~ > 0 for all x € I and all t € supp(v).

(ii) Alternatively, if x1 > A, then there exists a measurable set E C Ry such
that v(OE) = 0, v(E) > 0 and m(z)(1 + cm(x)t)~! < 0 for all x € I and
allt € E.

Proof. To have an illustration of some of the proof arguments, the reader might
refer to Figures [[l and 2] which provide typical plots of z(m) for ¢ < 1 and ¢ > 1
respectively. We start with a preliminary result:

Since m(z) is the Stieltjes Transform of a probability measure supported by R, the
function m(z) decreases to zero as x — —oo. From Proposition B2l z(m) — —oo
asm — 0, and

m > 0= z(m) < A.
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From Proposition3.2, J = m([) is an interval [m1, my] C B. Let E = [0, —(cm;) ™}
with the convention £ = () when m; > 0. We already assumed that v({0}) = 0.
Since —(cmy)~! € supp(v)¢ by Proposition B2, v({—(ecm;)~'}) = 0. The main
part of the proof consists in showing that

v(E)>0s x> A (11)

To see why (1) proves the lemma, consider first 27 > A. Then m; < 0 and ms < 0.
Forany t € Fand any m € J, 1 + cmt > 1 — em(emy)~! > 0. As m < 0, (i4) is
true. Assume now that zo < A. In the case J C (0,00), () is immediate. Assume
J C BN (—00,0). Then, since v(E) = 0, we get that V¢ € supp(v),t > —(cmy) 1,
therefore t > —(cmg)~t. Consequently, for any ¢t € supp(v) and any m € J,
l+cemt <1—cm(emy)™ ! =1—m/my <0, and (i) is true.

Let us first prove () in the < direction. When z; > A, we have seen that
m; < 0. Assume that v(E) = 0. Then (—oo,m;] C B. Since ¢t > —(cm;) ™! in the
integral in (), z(m) — 0 as m — —oo by the dominated convergence theorem. By
Propositions B B2l and B3], 2(m) should be increasing from 0 to 1 on (—oo, my].
This contradicts x1 > A.

We now prove ([[]) in the = direction. To that end, we consider in turn the cases
c<l,c>landc=1.

Assume ¢ < 1. We have seen that z(m) — —oo as m — 0". From (§) we
notice that mz(m) — (1 — ¢)/c > 0 as m — oo, hence z(m) reaches a positive
maximum on (0, 00). By Propositions[3.2] and B3] this maximum is A, and we have
x < A= m(z) > 0. Therefore, 21 < A= v(E) = 0.

Consider now the case ¢ > 1. We shall also show that 77 < A = v(E) = 0. By
PropositionB.4] the measure ;1 has a Dirac at zero with weight 1—c~'. Hence, either
21 <a9<0,0or A>0and0<x; <xo < A. Since m(z) is the Stieltjes Transform
of a probability measure supported by R, it holds that x < 0 = m(x) > 0. Hence,
v(E) = 0 when x; < 0. We now consider the second case. Since (0, z1] C supp(u)©,
the image of this interval by m belongs to B. By Proposition B4, lim,_,o+ m(z) =
—o00. Hence this image is (—oo, 21]. This implies that v(E) = 0.

We finally consider the case ¢ = 1. We show here that A = 0, which will result in
r < A= m(z) >0=v(F) =0 as above. Assume A > 0 and let zp € (0, A). By
Proposition B4} 1({0}) = 0 hence m(z) = [(t — zo) ' p(dt) > 0. But from (&),
we observe that 2(m) increases from —oo to 0 as m increases from 0 to oo, which
raises a contradiction. This concludes the proof of Lemma O

This lemma shows that for any = < inf(supp(p) — {0}), H.(xz) > 0, hence
D(x) > 0 for those x. This proves Theorem 2.2} (2.
Turning to Theorem 2.2} ([3]), choose an interval [z, 23] C (a,b) such that [p1, p,] C
(21,22). Let E be the set associated with |21, 23] by Lemma 8 (ii). By Lemma
[£3(ii) and the properties of a Stieltjes Transform, the function

@) = [ st

is negative and increasing on [z1,22]. Let @ = diag(w?,...,w?) where w? =
—1/q(pr). Then it is clear that function D(x) = det(q(z)Q + I,) has r roots
in [x1, 2] which coincide with the py. Theorem 22} ([B]) will be proved if we find
a sequence of matrices P, such that one of the H,(z) associated to P, as in (1)

converges to ¢(z)§2 uniformly in the compact subsets of a neighborhood of [z, x2].
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-20 -15 -10 -5 0 5 10 1

FIGURE 1. Plot of z(m) for ¢ = 0.1 and v = 0.5(d1 + d3). The
thick segment represents supp(u).

T ) |

-1 -0.5 0 0.5 1

FIGURE 2. Plot of 2(m) for ¢ = 5 and v = 0.5(d; /2 + d5/2). The
thick segments represent supp(p).

Rearrange the elements of D;, in such a way that all the d} which belong to E are in
the top left corner of this matrix. Let M,, = [M}] be a random |nv(E)] x r matrix
with iid elements such that /nM{} has mean zero and variance one. Let Z,, be the
n X r matrix obtained by adding n— |nv(E)| rows of zeros below M,,. Then the law
of large numbers shows in conjunction with a normal family theorem argument that
there is a set of probability one over which zmy,(2)Z: T, (2)Z, converges to q(z)I,
uniformly on the compact subsets of a neighborhood of [21, z2]. Consequently, there
exists a sequence of deterministic matrices B, such that zmn(z)BZTvn(z)Bn —
q(z)I, uniformly on these compact subsets. Matrix P, = A,B; with A, =

1/2
[O « } satisfies the required property. Theorem 22} @) is proved.
(N—=r)xr
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5. SECOND ORDER ANALYSIS

In all this section we shall work on a sequence of factorizations P, = U, R}, such
that A,, satisfies the third item of Assumption[ll We also write U,, = [U1,, -+ Upn)
and R, = [R1,n -+ R p] where U, ,, € CVN*Ji and R;,, € C*Ji,

We start by briefly showing the first two facts stated by Theorem For any

i=1,...,p, it is clear that m(p;)®> > 0 and m’(p;) > 0. An immediate calculus
then gives m’(p;)A(p;) = m?(p;) which shows that A(p;) > 0.
To prove the second fact, we shall establish more generally that lim sup /n|| H,(pi)+
g(pi)Q2| < oco. Invoking Equation ([B) and its analogue m,(z) = (—z + [#(1 +
Cnmp (2)t) "Ly, (dt)) ™1, taking the difference and doing some straightforward deriva-
tions, we get that (m,(p;) —m(p;))(A(p;)+e1) = €2 where &1 — 0 and where |e3] <
K/\/n thanks to the first two items of Assumption [l Hence |m,(p;) — m(p;)| <
K/\/n. Now we have

Hn(pi)Jrg(pi)ﬂ:/( i (pi) m(pi) )t) An(dt)

1+ enmp(pi)t 1+ cem(p;

m(p;) m(p;)
+/71+cm(pi)tz\n(dt) —/71+Cm(pi)ty(dt) « Q.

which shows thanks to Assumption [7 that lim sup /n|| H, (p;) + g(p:)Q| < .

We now enter the core of the proof Theorem 2.3 The following preliminary
lemmas are proven in the appendix:

Lemma 5.1. Let s be a fizved integer, and let Zy = [Z;;] be a N x s complex
matriz with id elements with independent N'(0,1/2) real and imaginary parts. Let
Tn =[Yi;] be a deterministic Hermitian N x N matriz such that Tr Y n =0, and
let Fy = [Fyj] be a complex deterministic N x s matriz. Assume that F Fn — G2,
that limsupy || T x| < 0o, and that N~* Tr Y% — 0% as N — co. Let M be a s x s
complex matriz with iid elements with independent N'(0,1/2) real and imaginary
parts, and let G be a s x s GUE matriz independent of M. Then
(N‘1/2Z;§,TNZN, ZJ*VFN) —L s (0G,sM).

—00
Lemma 5.2. For z € supp(p)©,
a2 my, (2)2a5 Dy T2 ()i,

1 — cpa?my, (2)2L Tr D2T2(z)

E [¢na;;é§n(x)(n—ly;yn)@n(x)an] = cn +OmY

and
Var (60,00 () (17 Vi ¥o) O ()in) < -

Lemma 5.3. Fori=1,...,p, let A; be a deterministic Hermitian j; X j; matriz
imndependent of n, where p and the j; are as in the statement of Theorem [2.3. For
i=1,...,p, let M;,, an x j; matriz such that sup,, ||M; | < oco. Then for any
teR,

E [exp (z\/ﬁt i Tr AZMZ*H(QVn(pl)—TVn(pl))MZn)] = exp(—t252/2)+0(n~1/?)

i=1



22 CHAPON, COUILLET, HACHEM AND MESTRE

where

Qv

p
Z CnPiPEMn pz mn(pk)
i,k=1

1- Cnpipkmn(l’i)mn(/’k)ﬁ Tr DnTn(pi)DnTn(pk)

Replacing the M, ,, with the blocks R; ,, of R, in the statement of Lemma [5.3]
and observing that

t
/ pipk(L + cnmn(pi)t)(1 + cnmy(pr)t)

we obtain from the third item of Assumption [ that 62 — 7| &7 Tr A? where

R T (pi) DnTo(pi) R

Ap(dt),

~ cw? m(p;)
5i = Api) (/ (1 —l—cr:l)(pi)t)?V(dt))Q'

Invoking the Cramer-Wold device, this means that the p-uple of random matrices

Vi (B2(@up) = Tulp) Rin)_

converges in distribution towards (&iéi)le where él, cee ép are independent GUE
matrices with G; € CJi%7:

Lemmas B.IH5.3] lead to the following result which plays a central role in the
proof of Theorem

Lemma 5.4. Consider the 3p-uple of random matrices
L, =+/nx

Ut YuQu(pi)Rin
Nz

Define the following quantities

2 12 mQ(Pi)t
ST / Tt em(pnz” @)

2 _ 1 m* (p;)t* y
v / T+ em(pyz )

7= o ([ o)

Let My, ..., M, be random matrices such that M; € C**Ji and has mdependent ele-

ments wzth independent N (0, 1/2) real and imaginary parts. Let Gy, Gl, o Gy, G

be GUE matrices such that G, Gl € CI*Ji. Assume in addition that My, Gy, él,
M,, Gp, ép are independent. Then

p

Ui (Qu(pi) = mn(pi) IN)Ui iy R (Qn(pi) — (pz))Ri,n>

i=1

P

n—r00

L, 2 (CiMiaaiGh&iéi)

=1
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Proof. Let a,(p) = N1 Tr Qn(p). By LemmasE3and S, /n(an (pi) —mn(p:)) 5
0. Therefore, we can replace the m,(p;) in the expression of L, by a,(p;), as we
shall do in the rest of the proof.

Write s = j1 +--- 4+ jp and let Z, be a N x s complex matrix with iid elements
with independent A(0,1/2) real and imaginary parts. Assume that Z, and X,
are independent. Write Z,, = [Zl,n e Zp,n] where the block Z;, is N x j;. Let
n~12X, = WnAnW;: be a singular value decomposition of n~/2X,,. By assump-
tion 2 the square matrices W,, and Wn are Haar distributed over their respective
unitary groups, and moreover, W, , A,, and W,, are independent. Let

L,=

p

ﬁ(%W,Umn(m—an<pz—>IN>Un,R @) - T (pz>>Ri,n>

=1

We have
Lo £(VN(Z320) 225 i, N2 20) 2250302025 20) 2,
~ ~ P
VAR (Qu(p) = Ta(pi) Rin)

i=1

where F;,, = 051/2AnW:{ 1/2Qn(pl) R;y, and Y, , = 71/2((A WD, W A,
pi)~' — an(pi)Iy). We shall now show that the term VN(Z:Z,)~ 1/2Z »F;n can
be replaced with Z}F;,. By the law of large numbers, we have N~1Z*Z, =N
By the independence of Z,, and (A,, W,,), we have E[Tr ZyEin by, Zn | (A W) =
sc,t Tr R;‘)n@n(pi)(n_lY; Yn)@n(pi)Riyn whose limit superior is bounded with prob-
ability one. Hence Z} F; ,, is tight, proving that the replacement can be done.

By deriving the variances of the elements of N_1/2Z:;Ti7nZn with respect to the

law of Z,, and by recalling that limsup,, || ;| is bounded with probability one,
we obtain that these elements are also tight. It results that we can replace L,, with

* p
Zi7nTi,nZi n

VB @uto) T (p»)Rz-,n)

Fori=1,...,p, let A; and B; be deterministic Hermitian j; x j; matrices and let
C; be deterministic complex j; X j; matrices, all independent of n. The lemma will
be established if we prove that

Ln - (Z:an,na
=1

{exp( \/_tZTrA Ry o (Qulpi) — (Pz))Ri,n)

E [exp (ztz N=V2Ty B ZE  CinZim + R(Tr cizgjnm,n)) \ (A, Wn)] }
i=1
—>Hexp (—t*(62Tr A2 + 02 Tr B2 + = clTrCC*)/2) (12)

n—oo
i=1
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In addition to the boundedness of || Y; || w.p. one, we have Tr T, ,, = 0, and

N
1 9 1 " 1 2
N Y5, = ecn N ;:1 (()\e —pi) — an(pi))
—— 7 (m/(p;) — m(pi)*) = ¢ 'm(pi)* (A(pi) T — 1) = o}

Moreover, using Lemma [5.2] in conjunction with Assumption [} we obtain
. R 1 ~ P
FiuFin = i R (@) 2YY00l00) ) o -2 21,
n n— oo

From any sequence of integers increasing to infinity, there exists a subsequence
along which this convergence in probability holds in the almost sure sense. Ap-
plying Lemma 51l we get that the inner expectation at the left hand side of (I2)
converges almost surely along this subsequence towards [[5_, exp(—t?(o? Tr B? +
262 Tr C;C;)/2). Using in addition Lemma along with the dominated conver-
gence theorem, we obtain that Convergence (I2)) holds true along this subsequence.

Since the original sequence is arbitrary, we obtain the required result. O

The remainder of the proof of Theorem is an adaptation of the approach of

.

Lemma 5.5. For a given z € R and a given i € {1,...,p}, let y = p; + n=/?x,
and let

~

Suy)= |, VIU@nW)Un I+ 02U YaQu(y) R

I + 0 V2R Qu(y)Y, U VIR:Qn(y) Ry,

Let

t

(@) =n% [det Su(y) — [] [wia(p) — 1]

k#i
o (ﬁan (Qn(p;)rl(_P?n(pi)IN) L + Pim(Pi)\/ﬁRin(@n(Pi) - Tvn(pi))Riﬂl
— 2R [Uifnyn@n(pi)Rim} - \/E(Hl,n(pl) + I’i) - xH{,n(ﬂZ’))] (13)

where R(M) = (M + M*)/2 for a square matriz M. Then

(D (@1), - XD () —— 0

n
n—oo

for every finite sequence {x1,...,2p}.

Proof. We show the result for i = 1, the same procedure being valid for the other
values of 7. The notation X,, = op(1) means that the random variable X,, converges
to zero in probability, while X,, = Op(n~%) means that n‘X,, is tight. Write
U = [Ul,Ul] and R = [Rl,Rl] where Ul = [UQ,...,Ut] and Rl = [RQ,...,Rt].
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Writing

A= VU Q(y)Un \/ﬂlﬁkQ(y)[ﬁ] o [Au A12]
WVIUTQWUL U Qy)Ur] — [Afy Az’

i L0 P C S
n~Y2UFY Q(y) Ry L—j, +n Y205V Q(y) Ry By Baa|’
C— ﬂ@’{@(y)Rl ﬂ]:?’{@(y)]?l — [Cll 012]
_\/ERTQ(y)Rl VIRTQ(y) Ry Cly O’
we have
A Bn Ay Bpo
. By, Cu B3, Cha
det §' = det A* B = det = det Mil My
B C M12 M22

A%y Bo Azz Bao
Biy Ciy B3 O

after a row and column permutation. Hence n/1/2 det S = det Moo x ni1/2 det(M;—
My My,' Myy). Write = diag(w?1),, Q). From the first order analysis we get that

I._; I._;
M a.s. \/p_lm(pl) T—J1 r ]L :|
%2 oo [ I—j, Voi(em(pr) = prt(1 =€)

which is invertible since det Mz 23 [T,-, (wig(p1) — 1) # 0. Moreover, ||Myz|| =
Op(n~Y?). To see this, consider for instance the term /nCia = /nyR:I(Q —

TRy, + ,/nyR’{TRl. The first term is tight by Lemma [5.4] while the second is
bounded by Assumption [l The other terms are treated similarly. It results that
| M2 Moy My || = Op(1/n). _ _

In addition, det(y~/2C11) % [w3(em(pr) — p7 (1 — &)t = (prmi(p1)) 7 by the
definition of p;. From these observations we get that

nd1/2 det S = (H(W%Q(Pl) — 1) + OP(1)> ((mm(p1)) ™7 +op(1))

k>1
x det (,/nyAll — «/nanCl_llel + Op(nfl/z)) )
Now we make the expansion

VYA — /nyBi1C' B, (14)
= yvnU7 (Q(y) — ma(y)IN)Ur + yv/nmn (y) 1,

NG
(1m0

+vn <Ij1 +Ur Yew) R1> (RIQ(y)R1) (R (Qy) — T(y) R)(RiT(y)R1) ™

n
_m (Iﬁ Ly Yew R1> (RiT(y) )" (IJ—I Iy ritle U1> | (15)

vn vn
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To go further, remark that
yVima (y)1, = Va(RiT(y)Ri) ™!
= (RiT(y)R) ™ [V (ymn () RIT () Ry — prma(p) RiT(p1) R )
+vn (len(Pl)Rff(Pl)Rl - Ijl):|
= pim(p1) [—zH](p1) — V(Hi(p1) + 1;,)] + o(1)
where we recall that y = py +xn~ % — p; and that R’{T(g)R1~—> (p1m(p1)) 1.
Recall from Lemma B4l that /nUs (Q — myI)Ur, vnR}(Q — TRy, and UTYQRy
are tight. Keeping the non negligible terms, we can write ([4]) under the form
ViyAn — iy BuCy' Bry
= VAU (Q(pr) = ma(p)In)Us + (prm(p1))* VR (Q(p1) = T(p1)Tn) Fa
—2pim(p1)R |UTYQ(p1) R | — prm(py) (zH] (p1) + vn(Hi(p1) + 1;,)) + op(1).

Plugging this expression at the right hand side of the expression of ni1/2 det § and
observing that H{ , (p1) = —wig(p1)';, concludes the proof. O

For i = 1,...,p, take x1(7) > y1(2) > x2(i) > y2(i) > ... > y;, (1) fixed se-
quences of real numbers. Call J,, = (\/ﬁ(AZ(i)+z —pi),i=1,....p, £=1,...,5:),

with k(i) = Y01 j.. Let also C be the rectangle C' = [z1(1),y1(1)] X ... X
[p(4p), Yp(jp)]- Then, for all large n, with probability one

P(J,eC)=P ({det S, (m + “—\}3) det S, (pi + yf—\/(%)) < o})

since det S, (t) changes sign around t = ;\Z( and only there (with probability

D)0
one, for all large n).

From Lemma [5.5] we see that, for growing n, the probability for the product of
the determinants above to be negative for all ¢ and ¢ approaches the probability

P ({det A,,;det Ay, ;) <0, i=1,...,p, £=1,...,5})

where A, is the matrix

VU, (Qu(pi) = mn(p)IN) Ui pin/RE, (Qu(pi) = Tolpi)) Rim
B m(p;) w2(c+ cpim(p;) — 1)

= 2R (U, Qulpi) Rin | = V(i () + 1) = 2], ().

Az

This last probability is equal to P(.J,, € C), where .J,, are the decreasingly ordered
eigenvalues of the matrix

- <ﬁU;tn (@n(pi) — mn(pi)IN) Ui

m(p;)

B; = [H],(pi

+piﬁR?,n(@n(pi) — Tulp))) Rs

Fletepmip) —1) 2 [Vin¥ @ulo) R _mHi’"(piHI”))'
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From Lemma 5.4} {Bi, ..., B;} asymptotically behave as scaled non-zero mean
GUE matrices. Precisely, denoting B; = H ,(pi)Bi + /n(H;in(p:i) + Ij,), from
Lemma 5.4 and for all a, b,

E [|(Bi)ab|’]

‘712 P 3 2
m(pi T e+ epmip) 1 T2
2
= s ()T + 267
_ m?(p) 12 (dt) e ([ mlptr(de) ) 2wty (dt)
= Al / L+ emp)n? P (/ (1+ em(p,)t)? ) +/ <1+cm(pi>t>2]'

This concludes the proof of Theorem

APPENDIX A. PROOFS OF LEMMAS [5.1] TO

A.1. Proof of Lemma [5.1l Given a s x s deterministic Hermitian matrix A
and a s X s deterministic complex matrix B, let I'y = N—1/2 Tr AZNYNZN +
R(Tr BZ}, Fn) where R(M) = (M + M*)/2 for any square matrix M. We shall
show that for any t € R,

2 2, 2 * 2,,2
on(t) := Elexp(utT' y)] mexp(—ﬁa TrA”+¢"Tr BB /2) — exp(_t_v)'

2 2
The result will follow by invoking the Cramér-Wold device. To establish this
convergence, we show that the derivative ¢y (t) satisfies ¢y (t) = —tv2pn(t) +

en(t) where en(t) — 0 as N — oo uniformly on any compact interval of R.
That being true, the function ¥y (t) = @n(t) exp(t?v?/2) satisfies ¥y (t) = 1 +
fot en(u) exp(u?v?/2)du — 1 which proves the lemma.

By the IP formula, we get

Az; Z]WTkZZEl

o' (t) = E[T exp(th)]
s s N
Bi; Z} i Fi + Fy; Z1; B
~al(Y Y PP > )

i,j=1 k=1 i,j=1 k=1

X exp(ztl")}

Aij Tie O(Zo;i exp(th))
=E Z .
T VN 0Zy;
L1 Z BUFkZ@eXp atl) LB 8exp(th)]

~ 07 a7,

We obtain after a small calculation
0 exp(uT) [AZ*Y]j, 1
pinaiee 20 bl Y (i -
07 ( JN 2
0 exp(utT) [YZAl,; 1
" =1t + =
0Zy; ( VN 2

[B"F*Jjx) exp(utT),

[FB]kj) exp(utT)
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which leads to
¢ (t) = —tE[N"'Tr A2Z*Y%Z exp(utT')] — (t/2) Te(BB*F*F) ¢(t)

+IN“YV2Te ATe Y o(t)

—tE[N~Y2Tr AB*F*Y Z exp(utT')] — (t/2)E[N~Y2 Tr Z*YFBA exp(utl)].
Let us consider the first term at the right hand side of this equation. We have
E[N"1Tr A2Z*Y2?Z] = N-'Tr A2 Tr Y2. Applying the Poincaré-Nash inequality,
we obtain after some calculations that Var(N ! Tr A2Z*T2Z) < 2N 2Tr A Tr T =
O(N™1) since ||T]| is bounded. It results that E[N~!Tr A2Z*Y2Z exp(utl')] =
N='Tr A2 Tr Y2 ¢(t) + O(N~1/?) by Cauchy-Schwarz inequality. The third term
is zero by hypothesis. Finally, N7'E|Tr Z*YFBA|? = N~ ' Tr Y2FBA?B*F* <
N=YT||? Tr FBA2B*F* = O(N~'). Hence, the last two terms are O(N~1/2) by
Cauchy-Schwarz inequality, which proves Lemma [B.11

A.2. An intermediate result. The following lemma will be needed in the proof
of Lemma

Lemma A.1. For z,y € supp(p)°,

- - LTy DT, (z) DT (y) n-l
Lﬁn Tr Qn(e >DQn<y>D]‘1_cnxmn<> AT DL, @DT) )

. 14 (@) DT, ()0
R E M IF ¥ P oT YT A

Proof. We denote here Q, = @(x) and drop all unnecessary indices. Using the
integration by parts formula, we obtain

L& (0¥ ¥ Quipty @] = 22 (50— B [0 50G0.00]
—E]E {QSQVm,jj [Y@I]iPYi’;@y,pq} - %E [@ﬁ@w,jp@y,pj [Y@y]iq}
+E [ [adJ(w)wly]z‘jﬁ-’&@m,jp@y,pq}) :
Summing over 7, p, and §, this is
B [0V Y Ga DGy lun| = —E [V adi()9/Y DDyl + enda [610: DGyl

1 1 ~ ~  ~ 1 1 ~  ~ ~
- EE [(bﬁ Tr DQz[Y*YQzDQy]aq} - EE {Qbﬁ Tr QxDQyD[Y*YQy]aq] .

Using the relation %Y*Y@z = x@x + I,, and appropriately gathering the terms
on each side gives

E |:¢[©zD@y]aq(I —cp do + x% Tr D@x)}
=-E {aswéy]aq(l +o TrD@)] ~E {qb% Tr Q2 DQy D(3(a — g) + y[éy]mﬁ]

FE | L adi(0)0Y DADG o] (16)



P, 0
Introducing the term f, = ¢L Tr DQ, and f, = B, — E[G,], we have

E [$(Q2DQyas | (& = c0 du +E[5))

— B [6DQ ] (1 + E[5,) ~ E |02 Tr3.DQ,D | (510 ~ )+ yE[G, L)

B [[DQ ] - E [0 D@ gt ~ & |02 T 0D, D410y ~ B )

B |V a0V DG DO, (17)

At this point, we can prove both results for the trace and for the quadratic form.
We start by dividing each side by =z — ¢, dq + a:IE[Bz] We begin with the trace
result. Multiplying the resulting left- and right-hand sides by d,, summing over
a = ¢ and normalizing by 1/n, we obtain

B 02 rQuDQ.D| = ~(1+ B3.)E |01 T DG,DA |
~E [qﬁ% Tr@wDvaD] (yE[¢% Tr DA,Q,] + % TrDAm> +en
where we denoted A, = (x(1 + E[3,])],, — ¢, D)~* and where

en=E [Tr WD@ID@D@] _E [% TrD@yDAIEm]

_E E Tr émDéyDAzém]
~E {d)% TrQ,DQ, Dy (% TrQ,DA, — E(% Tr @yDAz))} . (18)

From Lemma @3 E[3,] = d, + O(n~2), where we denoted &, = L Tr DT,. Also, it
is easily observed that

. ~1 1 ~
(In(l o) — an) - T (19)
14 0y
with T, = T(x). Therefore, along with Lemma F5, we now have
1 o~ o~
E [(b— Tr QIDQID}
n
| 1, =~ = LTy DT, T, + L Tt DT,
=—-Tr DT, DT, +E [qﬁ— Tr QIDQID} Y vt +en+0(n32).
n n 1 + 6;3
Using now the fact that yfy + 1, = an_LSDTy, we conclude
Y
1 - - LTy DT, DT, 2
E|op—TrQ.DQ.D| = — - ——— +¢,+0(n" 7).
n 1—cy(1+6,)" (14 6,) 'L Tr DT, DT,

It therefore remains to prove that &, = O(n~!). Due to the presence of ¢ in the

expression of B,, and using LemmaF3 and Cauchy-Schwarz inequality, one can see
that the last three terms in the expression of &, are O(n™!). As for the first term,
it is treated in a similar manner as in the proof of Lemma L6, and is O(n~2).
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In order to prove the result on the quadratic form, we start again from (7).
Dividing each side again by x — ¢, d, + 2E[8;], introducing [i],, [0]4, and summing
over the indices, we obtain

E [0 Q.DQ, 1)
- _E W*sz)@y@} _E {d)% Tr CNQID@yD} (ﬂ*Am(y]E[qﬁ@y] n In)f;) el (20)

where ¢/, is very similar to &, and is shown to be O(n~!) with the same line of
arguments. Using Lemma 3, ([J), and the previous result on E[¢< Tr Q, DQ, D],
we finally obtain

E [d)ﬂ*@zD@yﬁ}

from which
o 0T, DT,
E[qﬁa*QzDQyﬁ} - e L o@mY).
1= cn(148,)"1(1 4 8,)~ L T DT, DT,

We conclude with the remark zm,, (z) = —(1 + 6,) 1. O

A.3. Proof of Lemmal5.2l The line of proof closely follows the proof of Lemmal[Al
We provide here its main steps. By the integration by parts formula, we have

~ ~ dm ~ ~ ~ -~  ~
Ay -
- 7E[¢}/22Qm7"@pm [YQ]Zk]

dm ~ * A . /
=+ WE[Q;DlekaT [adj(¥)Y"Y ] em)

Taking the sum over m, we obtain

E6Qu Y3 Y Qo] = %I’“E[B]E[eﬁ@pk@m -— B%

+ +1IE[3] %]E[@pkyﬁg (adj ()Y DQler] — EBOi Vi [Y Qler]

where f(z) = ¢1 Tr DQ(z) and 5(:6) = ((z)—¢E[B(x)] as in the proof of Lemma[Al
Taking the sum over £ then over k, we obtain

E[Y;, QD@ [Y Qlex]

VY ~ 1 . 1 ~ 1YY ~
BOIQ—— Q] = en i ElOIQD ] = 1Bl QAD Ty T
1 1o SYradi)g'y = s S YY
O DGl - BG=

Observing that (1 + E[3(x)])™! = —2m,(z) + O(n™2) and making the usual ap-
proximations, we get

~Y*Y ~

Bloi" QL Qi) = (ama(o) - TrEl 1

0)) - cnxmn(x))wa*épéa] +OMmY

n
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Observing that n~* Tr(E[p(n~'Y*Y)Q(z)] = Nn~tzm,(z) + Nn~! + O(n~2) and
invoking Lemma [A-]] we obtain the desired result.

A.4. Proof of Lemma As in the previous proofs, we discard unnecessary
indices. We also denote Q; = Q(p;). For readability, we also write M, = M; A,
and use the shortcut notation I' = /n> %, TrMi*@i]\;[i. We focus first on the
term in p;. The line of proof closely follows that of Lemma [5.1] with the exception
that we need to introduce the regularization function ¢ to ensure the existence of
all the quantities under study. That is, with ¢y (t) = E[exp(¢t¢I')], we only need
to show that ¢y (t) = —td2on(t) + O(1/y/n). Using |on(t)| < 1 and Lemma 4],
|Elexp(utT)] — pn ()] <1 —E[p] = 0 as N — oo, from which the result unfolds.
Using the integration by parts formula, we first obtain

. (b{y Y@} emr]
n pq
~ 1 ~ [Y*Y ~
= ¢uE [9[DQ1pe**T | ~E | o= TrDQl[ ~ Ql] GM]
pq
ol ;2 1 S ~ kN Y'Y ~
— K |ute ¢ = [(Mj)aQJ—DQl} Qj(Mj)a +5n,pq
n 4 q n
j=1la=1 p
where
* : / _ % . / _
o = B[ L [LROY 5] ] [ [V ,tremr]
Pq pq

and where we denoted X, the column a of matrix X, X} being the row vector
(Xa)*. A

With §; = ¢1 Tr DQ;, B; = f; — ¢E [ﬁj}, and with the relation n=1Y*Y Q; =
I, + plél, we obtain

(P10 +EIB) = o dp) E [4[Q1]me™" | = =5(p — 0)(1 +E[B1))E [6e"]

p _ . . Y*Y ~
—E zte”‘“(fin > [(Mj)ZQjDQl}q [ - Qj(Mj)a} + €npg
j=1a=1 P

where

2 |Y*Y ~
Enpg = Enpg — E lﬂl [ - Ql] emﬁr} _
pq

Dividing each side by p1(1 +E[$1]) — ¢, d,, then multiplying by (M), and (M),
and summing over p, q gives

E[p Tr(M5 Q1 My)e ™| = —(1 + E[Bi])Elge™ | Tr (15 A, 1)

1 p ~ Y*Y"' - .
— it (bzembrﬁZTerAplTQijMJ*QjDQl + e,
j=1
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with A, = (pi(1 + E[Bi]) I, — ¢, D)~ ", and
=Tr M;A, E'M,

with (E'),q = €},,- From (IJ), the identity nY*YQ; = I,,+p;Q;, and LemmalL3],
we finally obtain

E (bTr(Mf@lMl)e”“bF} — E[petteT) TerﬁM1

* T T; "
—uE ¢ezt¢r‘ Z M1 1+t; 1+5 MM T’Z)T’lj\41
2(1461)~1(1 +6,;)~ 1L Tr DT DT

+el, +0(n?)

with T; = T(p;), from which
E [qﬁ Tr(Ml*@lMl)e”“bF] — E[¢peT) Tr M Ty M,
#E[be?T] LPu cppiimin mn(p;) Tr M3Ty, DT; M M*T; DTy M
_ [ ]Z P1 (Pl)PJ (PJ) 141 1J ki 1 1—|—En—|—0(
\/ﬁ j=1 1- Cnplmn(pl)pjmn(pj)ﬁ TrDTlDT]

It remains to show that ¢/, = O(n™1). We have explicitly
1 ~ Y™ adj Y~
=E {ﬁ Tr (Mprl %DQlMO (1+ mtr)e”ﬂ

Y -
—QlMl) €Zt¢r] .

Using the fact that |e®?T| = 1 and the relation n~Y*YQr = p1Q1 + I, the
second term is easily shown to be O(n~!) from the Cauchy-Scwharz inequality and
Lemma [£3] If it were not for the factor T', the convergence of the first term would
unfold from similar arguments as in the proof of Lemma We only need to
show here that E[|¢I'|?] = O(1). But this follows immediately from Lemma 3] and
Lemma N

The generalization to 3, E[¢ Tr(M; Q;M;)e*?T] is then immediate and we have the
expected result.

_E [qﬁél Tr <M;‘Am
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