open science

On the isolated eigenvalues of large Gram random matrices with a fixed rank deformation

Francois Chapon, Romain Couillet, Walid Hachem, Xavier Mestre

To cite this version:

Francois Chapon, Romain Couillet, Walid Hachem, Xavier Mestre. On the isolated eigenvalues of large Gram random matrices with a fixed rank deformation. 2012. hal-00713811v1

HAL Id: hal-00713811 https://hal.science/hal-00713811v1

Preprint submitted on 2 Jul 2012 (v1), last revised 22 Jan 2013 (v2)

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L'archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

ON THE ISOLATED EIGENVALUES OF LARGE GRAM RANDOM MATRICES WITH A FIXED RANK DEFORMATION

FRANÇOIS CHAPON, ROMAIN COUILLET, WALID HACHEM AND XAVIER MESTRE

Abstract

Consider the matrix $\Sigma_{n}=n^{-1 / 2} X_{n} D_{n}^{1 / 2}+P_{n}$ where the matrix $X_{n} \in \mathbb{C}^{N \times n}$ has Gaussian standard independent elements, D_{n} is a deterministic diagonal nonnegative matrix, and P_{n} is a deterministic matrix with fixed rank. Under some known conditions, the spectral measures of $\Sigma_{n} \Sigma_{n}^{*}$ and $n^{-1} X_{n} D_{n} X_{n}^{*}$ both converge towards a compactly supported probability measure μ as N and n converge to infinity at the same rate. In this paper, we prove that finitely many eigenvalues of $\Sigma_{n} \Sigma_{n}^{*}$ may stay outside the support of μ in the large dimensional regime. The existence and locations of these eigenvalues in any compact interval outside the support of μ are studied. The fluctuations of the extreme isolated eigenvalues of $\Sigma_{n} \Sigma_{n}^{*}$ are also analyzed. The results find applications in the fields of signal processing and radio communications.

1. Introduction

1.1. The model and the literature. Consider a sequence of $N \times n$ matrices Y_{n}, $n=1,2, \ldots$, of the form $Y_{n}=X_{n} D_{n}^{1 / 2}$ where X_{n} is a $N \times n$ random matrix whose coefficients $X_{i j}$ are independent and identically distributed (iid) complex Gaussian random variables such that $\Re\left(X_{11}\right)$ and $\Im\left(X_{11}\right)$ are independent, each with mean zero and variance $1 / 2$, and where D_{n} is a deterministic nonnegative diagonal $n \times n$ matrix. Writing $D_{n}=\operatorname{diag}\left(d_{j}^{n}\right)_{j=1, \ldots, n}$ and denoting by δ the Dirac measure, it is assumed that the spectral measure $\nu_{n}=n^{-1} \sum_{j=1}^{n} \boldsymbol{\delta}_{d_{j}^{n}}$ of D_{n} converges weakly to a compactly supported probability measure ν when $n \rightarrow \infty$. It is also assumed that the maximum of the distances from the diagonal elements of D_{n} to the support $\operatorname{supp}(\nu)$ of ν goes to zero as $n \rightarrow \infty$. Assume that $N / n \rightarrow c$ when $n \rightarrow \infty$, where c is a positive constant. Then it is known that with probability one, the spectral measure of the Gram matrix $n^{-1} Y_{n} Y_{n}^{*}$ converges weakly to a compactly supported probability measure μ (see [26, [16, 35, 36]) and, with probability one, $n^{-1} Y_{n} Y_{n}^{*}$ has no eigenvalues in any compact interval outside $\operatorname{supp}(\mu)$ for large $n 3$.
Let r be a given positive integer and consider a sequence of deterministic $N \times n$ matrices $P_{n}, n=1,2, \ldots$, such that $\operatorname{rank}\left(P_{n}\right)=r$ and $\sup _{n}\left\|P_{n}\right\|<\infty$ where $\|\cdot\|$ is the spectral norm. Consider the matrix $\Sigma_{n}=n^{-1 / 2} Y_{n}+P_{n}$. Since the additive deformation P_{n} has a fixed rank, the spectral measure of $\Sigma_{n} \Sigma_{n}^{*}$ still converges to μ (see, e.g., [2, Lemma 2.2]). However, a finite number of "isolated" eigenvalues of $\Sigma_{n} \Sigma_{n}^{*}$

[^0]might stay outside the support of μ. The purpose of this paper is to characterize the conditions under which this phenomenon occurs, to determine the locations of the isolated eigenvalues, and to study the fluctuations of the largest among them.

The study of the isolated eigenvalues of large random matrices has a wide range of applications. These include detection and estimation of wireless communication signals 20, fault diagnosis in complex systems [14, financial portfolio management [34], or chemometrics [29]. In the statistics literature, one of the first contributions to deal with this subject was [23. It raised the question of the behavior of the extreme eigenvalues of a sample covariance matrix when the population covariance matrix has all but finitely many of its eigenvalues equal to one (leading to a mutliplicative fixed rank deformation). This problem has been studied thoroughly in [5. 6, 32]. Other contributions (see [11]) study the isolated eigenvalues of a Wigner matrix subject to a fixed rank additive deformation. The asymptotic fluctuations of the isolated eigenvalues have been addressed in [5, 33, 32, 1, 11, 12, 7].

Recently, Benaych-Georges and Nadakuditi proposed in [8, 9] a generic method for characterizing the behavior of the isolated eigenvalues for a large palette of random matrix models. For our model, this method shows that the limiting locations as well as the fluctuations of the isolated eigenvalues are intimately related to the asymptotic behavior of certain bilinear forms involving the resolvents $\left(n^{-1} Y_{n} Y_{n}^{*}-x I_{N}\right)^{-1}$ and $\left(n^{-1} Y_{n}^{*} Y_{n}-x I_{n}\right)^{-1}$ of the undeformed matrix at real values of x. When $D_{n}=I_{n}$, the asymptotic behavior of these bilinear forms can be simply identified (see [9]) thanks to the fact that the probability law of Y_{n} is invariant by left or right multiplication by unitary deterministic matrices. For general D_{n}, other tools need to be used. In this paper, these bilinear forms are studied with the help of an integration by parts formula for functionals of Gaussian vectors and the Poincaré-Nash inequality. These tools belong to the arsenal of random matrix theory, as shown in the recent monograph 31] and in the references therein. In order to be able to use them in our context, we make use of a regularizing function ensuring that the moments of the bilinear forms exist for certain $x \in \mathbb{R}_{+}=[0, \infty)$.

Before entering the subject, we remark that the results of the paper can be straightforwardly generalized to the case where D_{n} is replaced by a nonnegative Hermitian matrix R_{n}, which is a more practical model in many applications. Indeed, write $R_{n}=V_{n} D_{n} V_{n}^{*}$ where V_{n} is a unitary matrix, and let $R_{n}^{1 / 2}=$ $V_{n} D_{n}^{1 / 2} V_{n}^{*}$. Then the singular values of $\Sigma_{n}=n^{-1 / 2} X_{n} D_{n}^{1 / 2}+P_{n}$ coincide with those of $n^{-1 / 2}\left(X_{n} V_{n}^{*}\right) R_{n}^{1 / 2}+P_{n} V_{n}^{*}$. Since X_{n} and $X_{n} V_{n}^{*}$ are equal in law, the vector of singular values of Σ_{n} and the vector of singular values of $n^{-1 / 2} X_{n} R_{n}^{1 / 2}+P_{n}^{\prime}$ where $P_{n}^{\prime}=P_{n} V_{n}^{*}$ are also equal in law.

The paper is organized as follows. The assumptions and the main results are provided in Section 2. Section 3 is devoted to the basic mathematical tools needed for the proofs. These proofs are provided in Sections 4 and 5 which concern respectively the first order (convergence) and the second order (fluctuations) behavior of the isolated eigenvalues.

2. Problem description and main Results

Given a sequence of integers $N=N(n), n=1,2, \ldots$, we consider the sequence of $N \times n$ matrices $\Sigma_{n}=n^{-1 / 2} Y_{n}+P_{n}=n^{-1 / 2} X_{n} D_{n}^{1 / 2}+P_{n}$ with the following assumptions:

Assumption 1. The ratio $c_{n}=N(n) / n$ converges to a positive constant c as $n \rightarrow \infty$.
Assumption 2. The matrix $X_{n}=\left[X_{i j}\right]_{i, j=1}^{N, n}$ is a $N \times n$ random matrix whose coefficients $X_{i j}$ are iid complex random variables such that $\Re\left(X_{11}\right)$ and $\Im\left(X_{11}\right)$ are independent, each with probability distribution $\mathcal{N}(0,1 / 2)$.

Assumption 3. The sequence of $n \times n$ deterministic diagonal nonnegative matrices $D_{n}=\operatorname{diag}\left(d_{j}^{n}\right)_{j=1}^{n}$ satisfies the following:
(1) The probability measure $\nu_{n}=n^{-1} \sum_{j=1}^{n} \boldsymbol{\delta}_{d_{j}^{n}}$ converges weakly to a probability measure ν with compact support.
(2) The distances $\boldsymbol{d}\left(d_{j}^{n}, \operatorname{supp}(\nu)\right)$ from d_{j}^{n} to $\operatorname{supp}(\nu)$ satisfy

$$
\max _{j \in\{1, \ldots, n\}} \boldsymbol{d}\left(d_{j}^{n}, \operatorname{supp}(\nu)\right) \underset{n \rightarrow \infty}{ } 0
$$

This assumption implies that $\mathbf{d}_{\max }=\sup _{n}\left\|D_{n}\right\|<\infty$.
As is usual in random matrix theory, a central role will be played here by the so called Stieltjes Transform. The Stieltjes Transform of a positive finite measure μ over the Borel sets of \mathbb{R} is the function

$$
\begin{equation*}
m(z)=\int_{\mathbb{R}} \frac{1}{t-z} \mu(d t) \tag{1}
\end{equation*}
$$

analytic on $\mathbb{C}-\operatorname{supp}(\mu)$. It is straightforward to check that $\Im m(z) \geq 0$ when $z \in$ $\mathbb{C}_{+}=\{z: \Im(z)>0\}$, and $\sup _{y>0}|y m(\imath y)|<\infty$. Conversely, any analytic function $m(z)$ on \mathbb{C}_{+}that has these two properties admits the integral representation (11) where μ is a positive finite measure. Furthermore, for any continuous real function φ with compact support in \mathbb{R},

$$
\begin{equation*}
\int \varphi(t) \mu(d t)=\frac{1}{\pi} \lim _{y \downarrow 0} \int \varphi(x) \Im m(x+\imath y) d x \tag{2}
\end{equation*}
$$

which implies that the measure μ is uniquely defined by its Stieltjes Transform. Finally, if $\Im(z m(z)) \geq 0$ when $z \in \mathbb{C}_{+}$, then $\mu((-\infty, 0))=0$ [25].
These facts can be generalized to Hermitian matrix-valued nonnegative finite mea-
 $\Im X=\left(X-X^{*}\right) /(2 \imath)$, assume that $\Im m(z) \geq 0$ and $\Im(z m(z)) \geq 0$ in the order of the Hermitian matrices for any $z \in \mathbb{C}_{+}$, and that $\sup _{y>0}\|y m(\imath y)\|<\infty$. Then $m(z)$ admits the representation (1) where μ is now a $r \times r$ matrix-valued nonnegative finite measure such that $\mu((-\infty, 0))=0$. One can also check that $\mu([0, \infty))=-\lim _{y \rightarrow \infty} \imath y m(-\imath y)$.

The following theorem characterizes the asymptotic behavior of the eigenvalues of $n^{-1} Y_{n} Y_{n}^{*}$:

Theorem 2.1. Under Assumptions 1, 园 and 3, the following hold true:
(1) For any $z \in \mathbb{C}_{+}$, the equation

$$
\begin{equation*}
\mathbf{m}=\left(-z+\int \frac{t}{1+c \mathbf{m} t} \nu(d t)\right)^{-1} \tag{3}
\end{equation*}
$$

admits a unique solution $\mathbf{m} \in \mathbb{C}_{+}$. The function $\mathbf{m}=\mathbf{m}(z)$ so defined on \mathbb{C}_{+}is the Stieltjes Transform of a probability measure μ whose support is a compact set of \mathbb{R}_{+}.
Let $\left(\lambda_{i}^{n}\right)_{i=1, \ldots, N}$ be the eigenvalues of $n^{-1} Y_{n} Y_{n}^{*}$, and let $\theta_{n}=N^{-1} \sum_{i=1}^{N} \delta_{\lambda_{i}^{n}}$ be the spectral measure of this matrix. Then for every bounded and continuous real function f,

$$
\begin{equation*}
\int f(t) \theta_{n}(d t) \xrightarrow[n \rightarrow \infty]{a . s .} \int f(t) \mu(d t) . \tag{4}
\end{equation*}
$$

(2) For any interval $\left[x_{1}, x_{2}\right] \subset \mathbb{R}-\operatorname{supp}(\mu)$,

$$
\sharp\left\{i: \lambda_{i}^{n} \in\left[x_{1}, x_{2}\right]\right\}=0 \text { with probability } 1 \text { for all large } n \text {. }
$$

The first part of this theorem has been shown in [26, 36, and the second part in 3.

Let $Q_{n}(z)=\left(n^{-1} Y_{n} Y_{n}^{*}-z I_{N}\right)^{-1}$ and $\widetilde{Q}_{n}(z)=\left(n^{-1} Y_{n}^{*} Y_{n}-z I_{n}\right)^{-1}$ be the resolvents of $n^{-1} Y_{n} Y_{n}^{*}$ and $n^{-1} Y_{n}^{*} Y_{n}$ respectively. The first part of Theorem 2.1 can also be deduced from the following result that will be used in our subsequent derivations:

Proposition 2.1 ([36, 22, 18]). Assume that D_{n} is a $n \times n$ diagonal nonnegative matrix. Then, for any n, the equation

$$
m_{n}=\left[-z\left(1+\frac{1}{n} \operatorname{Tr} D_{n} \widetilde{T}_{n}\right)\right]^{-1} \quad \text { where } \quad \widetilde{T}_{n}=\left[-z\left(I_{n}+c_{n} m_{n} D_{n}\right)\right]^{-1}
$$

admits a unique solution $m_{n} \in \mathbb{C}_{+}$for any $z \in \mathbb{C}_{+}$. The function $m_{n}=m_{n}(z)$ so defined on \mathbb{C}_{+}is the Stieltjes Transform of a probability measure μ_{n} whose support is a compact set of \mathbb{R}_{+}. Moreover, the $n \times n$ diagonal matrix-valued function $\widetilde{T}_{n}(z)=\left[-z\left(I_{n}+c_{n} m_{n}(z) D_{n}\right)\right]^{-1}$ is analytic on \mathbb{C}_{+}and $n^{-1} \operatorname{Tr} \widetilde{T}_{n}(z)$ coincides with the Stieltjes Transform of $c_{n} \mu_{n}+\left(1-c_{n}\right) \boldsymbol{\delta}_{0}$.
Let Assumption 圆 hold true, and assume that $\sup _{n}\left\|D_{n}\right\|<\infty$, and $0<\liminf c_{n} \leq$ $\limsup c_{n}<\infty$. Then

$$
\begin{equation*}
\frac{1}{N} \operatorname{Tr}\left(Q_{n}(z)-m_{n}(z) I_{N}\right) \xrightarrow[n \rightarrow \infty]{\text { a.s. }} 0 \quad \text { and } \quad \frac{1}{n} \operatorname{Tr}\left(\widetilde{Q}_{n}(z)-\widetilde{T}_{n}(z)\right) \xrightarrow[n \rightarrow \infty]{\text { a.s. }} 0 \tag{5}
\end{equation*}
$$

for any $z \in \mathbb{C}_{+}$. When Assumptions 1 and 3 hold true, $m_{n}(z)$ converges to $\mathbf{m}(z)$ provided in the statement of Theorem 2.1 uniformly on the compact subsets of \mathbb{C}_{+}.

The function $m_{n}(z)=\left(-z+\int t\left(1+c_{n} m_{n}(z) t\right)^{-1} \nu_{n}(d t)\right)^{-1}$ is a "finite horizon" analogue of $\mathbf{m}(z)$. Since $N^{-1} \operatorname{Tr} Q_{n}(z)$ is the Stieltjes Transform of the spectral measure θ_{n}, Convergence (4) stems from the first convergence in (5). Note that $n^{-1} \operatorname{Tr} \widetilde{Q}_{n}(z)$ is the Stieltjes Transform of $c_{n} \theta_{n}+\left(1-c_{n}\right) \boldsymbol{\delta}_{0}$. Hence Convergence (44) can also be deduced from the second convergence in (5).

We now consider the additive deformation P_{n} :
Assumption 4. The deterministic $N \times n$ matrices P_{n} have a fixed rank equal to r. Moreover, $\mathbf{p}_{\max }=\sup _{n}\left\|P_{n}\right\|<\infty$.

In order for some of the eigenvalues of $\Sigma_{n} \Sigma_{n}^{*}$ to converge to values outside $\operatorname{supp}(\mu)$, an extra assumption involving in some sense the interaction between P_{n} and D_{n} is needed.

Let $P_{n}=U_{n} R_{n}^{*}$ be a factorization of P_{n} where U_{n} is an isometry matrix of size $N \times r$, e.g., a QR factorization. Define the $r \times r$ Hermitian nonnegative matrixvalued measure Λ_{n} as

$$
\Lambda_{n}=R_{n}^{*}\left[\begin{array}{ccc}
\boldsymbol{\delta}_{d_{1}^{n}} & & \tag{6}\\
& \ddots & \\
& & \boldsymbol{\delta}_{d_{n}^{n}}
\end{array}\right] R_{n}
$$

It is clear that the support of Λ_{n} is included in $\left[0, \mathbf{d}_{\max }\right]$ and that $\Lambda_{n}\left(\left[0, \mathbf{d}_{\max }\right]\right) \leq$ $\mathbf{p}_{\max }^{2} I_{r}$. Since the sequence $\Lambda_{n}\left(\left[0, \mathbf{d}_{\max }\right]\right)$ is bounded in norm, for every sequence of integers increasing to infinity, there is a subsequence n_{k} and a nonnegative finite measure Λ_{*} such that $\int f d \Lambda_{n_{k}} \rightarrow \int f d \Lambda_{*}$ for every function $f \in \mathcal{C}\left(\left[0, \mathbf{d}_{\max }\right]\right)$, with $\mathcal{C}\left(\left[0, \mathbf{d}_{\max }\right]\right)$ the set of continuous functions on $\left[0, \mathbf{d}_{\max }\right]$. This fact is a straightforward extension of its analogue for scalar measures.

Assumption 5. Any two accumulation points Λ_{1} and Λ_{2} of the sequences Λ_{n} satisfy $\Lambda_{1}(d x)=U \Lambda_{2}(d x) U^{*}$ where U is a unitary matrix.

An equivalent statement of this assumption, perhaps more easily verifiable in some applications, is the following: there exists a sequence of factorizations $P_{n}=$ $U_{n} R_{n}^{*}$ such that for every function $f \in \mathcal{C}\left(\left[0, \mathbf{d}_{\text {max }}\right]\right)$, the sequence of measures Λ_{n} associated to these factorizations by (6) satisfies $\int f d \Lambda_{n} \rightarrow \int f d \Lambda_{*}$ where Λ_{*} is a matrix-valued nonnegative finite measure.

It is shown in 37 that the limiting spectral measure μ has a continuous density on $\mathbb{R}^{*}=\mathbb{R}-\{0\}$ (see Prop. 3.1]below). Our first order result addresses the problem of the presence of isolated eigenvalues of $\Sigma_{n} \Sigma_{n}^{*}$ in any compact interval outside the support of this density. Of prime importance will be the $r \times r$ matrix functions

$$
H_{*}(z)=\int \frac{\mathbf{m}(z)}{1+c \mathbf{m}(z) t} \Lambda_{*}(d t)
$$

where Λ_{*} is an accumulation point of a sequence Λ_{n}. Since $|1+c \mathbf{m}(z) t|=\mid z(1+$ $c \mathbf{m}(z) t)\left|/|z| \geq|\Im(z(1+c \mathbf{m}(z) t))| /|z| \geq \Im(z) /|z|\right.$ on \mathbb{C}_{+}, the function $H_{*}(z)$ is analytic on \mathbb{C}_{+}. It is further easy to show that $\Im\left(H_{*}(z)\right) \geq 0$ and $\Im\left(z H_{*}(z)\right) \geq 0$ on \mathbb{C}_{+}, and $\sup _{y>0}\left\|y H_{*}(\imath y)\right\|<\infty$. Hence $H_{*}(z)$ is the Stieltjes Transform of a matrix-valued nonnegative finite measure carried by $[0, \infty)$. Note also that, under Assumption 5 the eigenvalues of $H_{*}(z)$ remain unchanged if Λ_{*} is replaced by another accumulation point.
Theorem 2.2. Let Assumptions 1, 园 and 3 hold true. Denote by $\left(\hat{\lambda}_{i}^{n}\right)_{i=1, \ldots, N}$ the eigenvalues of $\Sigma_{n} \Sigma_{n}^{*}$. Let (a, b) be an interval in $\operatorname{supp}(\mu)^{c}=\mathbb{R}-\operatorname{supp}(\mu)$ such that a belongs to the boundary $\partial \operatorname{supp}(\mu)$ or $a=0$, and $b \in \partial \operatorname{supp}(\mu)$ or $b=\infty$. Then the following facts hold true:
(1) Let $\left(P_{n}\right)$ be a sequence satisfying Assumptions 4 and 5. Given an accumulation point Λ_{*} of a sequence Λ_{n}, let $H_{*}(z)=\int \mathbf{m}(z)(1+c \mathbf{m}(z) t)^{-1} \Lambda_{*}(d t)$. Then $H_{*}(z)$ can be analytically extended to (a, b) where its values are Hermitian matrices, and the extension is increasing in the order of Hermitian
matrices on (a, b). The function $\mathcal{D}(x)=\operatorname{det}\left(H_{*}(x)+I_{r}\right)$ has at most r zeros on (a, b). Let $\rho_{1}, \ldots, \rho_{k}, k \leq r$ be these zeros counting multiplicities. If $k \geq 1$, let $\left[a^{\prime}, b^{\prime}\right] \subset(a, b)$ be such that $\left[\rho_{1}, \rho_{k}\right] \subset\left(a^{\prime}, b^{\prime}\right)$. If $k=0$, let $\left[a^{\prime}, b^{\prime}\right]$ be any closed interval in (a, b). Define the functions $C(x)$ and $\widehat{C}_{n}(x)$ on $\left[a^{\prime}, b^{\prime}\right]$ as
$C(x)=\sharp\left\{i: \rho_{i} \leq x\right\} \quad$ and $\widehat{C}_{n}(x)=\sharp\left\{i: \hat{\lambda}_{i}^{n} \in\left[a^{\prime}, b^{\prime}\right]\right.$ and $\left.\hat{\lambda}_{i}^{n} \leq x\right\}$.
Then

$$
\int_{a^{\prime}}^{b^{\prime}}\left|\widehat{C}_{n}(x)-C(x)\right| d x \underset{n \rightarrow \infty}{\text { a.s. }} 0
$$

(2) If $b=\inf (\operatorname{supp}(\mu)-\{0\})$, then for any positive $b^{\prime}<b$ and for any sequence of matrices $\left(P_{n}\right)$ satisfying Assumption 4.

$$
\sharp\left\{i: \hat{\lambda}_{i}^{n} \in\left(0, b^{\prime}\right]\right\}=0 \text { with probability } 1 \text { for large } n \text {. }
$$

(3) Assume $a>\inf (\operatorname{supp}(\mu)-\{0\})$. Then for any $\rho_{1} \leq \ldots \leq \rho_{r}$ in (a, b), there exists a sequence of matrices P_{n} satisfying Assumptions 4 and 5 for which $\int_{a^{\prime}}^{b^{\prime}}\left|\widehat{C}_{n}(x)-C(x)\right| d x \xrightarrow{a s} 0$, where $\left[a^{\prime}, b^{\prime}\right] \subset(a, b)$ and $\left[\rho_{1}, \rho_{r}\right] \subset\left(a^{\prime}, b^{\prime}\right)$, and where $C(x)$ and $\widehat{C}_{n}(x)$ are defined as above.
Hence, for n large, $\Sigma_{n} \Sigma_{n}^{*}$ cannot have isolated eigenvalues before the first "bulk" of eigenvalues, i.e., the first interval of the support of μ. Alternatively, between any two bulks or after the last bulk of this support, the number of isolated eigenvalues of $\Sigma_{n} \Sigma_{n}^{*}$ can reach the rank of the additive deformation.

It would be useful to complete the results of this theorem by specifying the indices of the isolated eigenvalues that appear between the bulks. This study (not done in this paper) may be done by following the ideas of [11 or 38 relative to the so called separation of the eigenvalues of $\Sigma_{n} \Sigma_{n}^{*}$. Another approach dealing with the same kind of problem is developed in 4.

In a few words, the proof of Theorem 2.2 consists in showing that the isolated eigenvalues of $\Sigma_{n} \Sigma_{n}^{*}$ in (a, b) are close for large n to the zeros of $\operatorname{det}\left(G_{n}(x)+I_{N}\right)$ in this interval, where $G_{n}(x)$ is the analytic extension of $G_{n}(z)=m_{n}(z) P_{n}(I+$ $\left.c_{n} m_{n}(z) D_{n}\right)^{-1} P_{n}^{*}$ to (a, b). Performing a factorization $P_{n}=U_{n} R_{n}^{*}$ where U_{n} is an isometry matrix of size $N \times r$, we observe that $G_{n}(z)$ can be represented in an orthonormal basis of \mathbb{C}^{N} whose first vectors are the columns of U_{n} as $\left[\begin{array}{cc}H_{n}(z) & 0 \\ 0 & 0\end{array}\right]$ where $H_{n}(z)=m_{n}(z) R_{n}^{*}\left(I+c_{n} m_{n}(z) D_{n}\right)^{-1} R_{n}$. These functions can be written as

$$
\begin{equation*}
H_{n}(z)=\int \frac{m_{n}(z)}{1+c_{n} m_{n}(z) t} \Lambda_{n}(d t) \tag{7}
\end{equation*}
$$

and we shall show that they admit the $H_{*}(z)$ as uniform limits on the compact subsets of $\mathbb{C}-\operatorname{supp}(\mu)$. In practice, the isolated eigenvalues for a given large n can be approximated by the zeros of $\operatorname{det}\left(m_{n}(x) R_{n}^{*}\left(I+c_{n} m_{n}(x) D_{n}\right)^{-1} R_{n}+I_{r}\right)$ in (a, b).

A scenario of practical importance at least in the fields of signal processing and wireless communications is provided by the following assumption. Recall that ν is the probability measure given by Assumption 3

Assumption 6. The accumulation points Λ_{*} are of the form $\nu(d t) \times U \boldsymbol{\Omega} U^{*}$ where

$$
\boldsymbol{\Omega}=\left[\begin{array}{ccc}
\omega_{1}^{2} I_{j_{1}} & & \\
& \ddots & \\
& & \omega_{t}^{2} I_{j_{t}}
\end{array}\right]>0, \quad \omega_{1}^{2}>\cdots>\omega_{t}^{2}, \quad j_{1}+\cdots+j_{t}=r
$$

and where U is a unitary matrix.
In wireless communications, the ω_{i}^{2} typically represent the powers of radio sources transmitting signals to an antenna array.
Observe from Proposition 2.1 that $\int(1+c \mathbf{m}(z) t)^{-1} \nu(d t)=-z \lim \left(n^{-1} \operatorname{Tr} \widetilde{T}_{n}(z)\right)=$ $-c z \mathbf{m}(z)+1-c$. Consequently, in this particular case, $H_{*}(x)$ is unitarily equivalent to $-\mathbf{m}(x)(c x \mathbf{m}(x)-1+c) \boldsymbol{\Omega}$ on (a, b). This brings the following corollary of Theorem 2.2.

Corollary 2.1. Assume the setting of Theorem 2.2-(1), and let Assumption 6 hold true. Then the function $g(x)=\mathbf{m}(x)(c x \mathbf{m}(x)-1+c)$ is decreasing on (a, b). Depending on the value of $\omega_{\ell}^{2}, \ell=1, \ldots, t$, the equation $\omega_{\ell}^{2} g(x)=1$ has either zero or one solution in (a, b). Denoting by $\rho_{1}, \ldots, \rho_{s}$ these solutions counting multiplicities, $\int_{a^{\prime}}^{b^{\prime}}\left|\widehat{C}_{n}(x)-C(x)\right| d x \xrightarrow{a s} 0$, where $a^{\prime}, b^{\prime}, \widehat{C}_{n}(x)$ and $C(x)$ are built as in the statement of Theorem 2.2-(1).

We now turn to the second order result. This result will be stated in the simple and practical framework of Assumption 6. Actually, a stronger assumption is needed:

Assumption 7. The following facts hold true:

$$
\begin{gathered}
\sup _{n} \sqrt{n}\left|c_{n}-c\right|<\infty \\
\limsup _{n} \sqrt{n}\left|\int \frac{1}{t-x} \nu_{n}(d t)-\int \frac{1}{t-x} \nu(d t)\right|<\infty \text { for all } x \in \mathbb{R}-\operatorname{supp}(\nu)
\end{gathered}
$$

Moreover, there exists a sequence of factorizations of P_{n} such that the measures Λ_{n} associated with these factorizations by (6) converge to $\nu(d t) \times \boldsymbol{\Omega}$ and such that

$$
\limsup _{n} \sqrt{n}\left\|\int \frac{1}{t-x} \Lambda_{n}(d t)-\int \frac{1}{t-x} \nu(d t) \times \boldsymbol{\Omega}\right\|<\infty \text { for all } x \in \mathbb{R}-\operatorname{supp}(\nu)
$$

We recall that a GUE matrix (i.e., a matrix taken from the Gaussian Unitary Ensemble) is a random Hermitian matrix G such that $G_{i i} \sim \mathcal{N}(0,1), \Re\left(G_{i j}\right) \sim$ $\mathcal{N}(0,1 / 2)$ and $\Im\left(G_{i j}\right) \sim \mathcal{N}(0,1 / 2)$ for $i<j$, and such that all these random variables are independent.
Theorem 2.3. Let Assumptions 1.7 hold true. Let g be the function defined in the statement of Corollary 2.1] and let $\vec{B}_{\mu}=\sup (\operatorname{supp}(\mu))$. Assume that the equations $\omega_{\ell}^{2} g(x)=1$ with $x \in\left(B_{\mu}, \infty\right)$, have a solution for each $\ell \in\{1, \ldots, p\}, p \leq 1$, denoted $\rho_{1}>\cdots>\rho_{p}$ (with multiplicities j_{1}, \ldots, j_{p}), respectively. Let Λ_{n} be any sequence of measures satisfying the third item of Assumption 7, and let $H_{n}(z)$ be the matrix function associated with Λ_{n} by (7). Denote by $H_{1, n}(z), \ldots, H_{p, n}(z)$ the first p upper left diagonal blocks of $H_{n}(z)$, where $H_{i, n}(z) \in \mathbb{C}^{j_{i} \times j_{i}}$. Then the following facts hold true:

$$
\boldsymbol{\Delta}\left(\rho_{i}\right)=1-c \int\left(\frac{\mathbf{m}\left(\rho_{i}\right) t}{1+c \mathbf{m}\left(\rho_{i}\right) t}\right)^{2} \nu(d t) \text { is positive for every } i=1, \ldots, p
$$

- $\lim \sup _{n}\left\|\sqrt{n}\left(H_{i, n}\left(\rho_{i}\right)+I_{j_{i}}\right)\right\|<\infty$ for every $i=1, \ldots, p$.

For $i=1, \ldots, p$, let

$$
M_{i}^{n}=\sqrt{n}\left(\left[\begin{array}{c}
\hat{\lambda}_{j_{1}}^{n}+\cdots+j_{i-1}+1 \\
\vdots \\
\hat{\lambda}_{j_{1}+\cdots+j_{i}}^{n}
\end{array}\right]-\rho_{i}\left[\begin{array}{c}
1 \\
\vdots \\
1
\end{array}\right]\right)
$$

where $j_{0}=0$ and where the eigenvalues $\hat{\lambda}_{i}^{n}$ of $\Sigma_{n} \Sigma_{n}^{*}$ are arranged in decreasing order. Let G_{1}, \ldots, G_{p} be independent GUE matrices such that G_{i} is a $j_{i} \times j_{i}$ matrix. Then, for any bounded continuous $f: \mathbb{R}^{j_{1}+\ldots+j_{p}} \rightarrow \mathbb{R}$,

$$
\mathbb{E}\left[f\left(M_{1}^{n}, \ldots, M_{p}^{n}\right)\right]-\mathbb{E}\left[f\left(\Xi_{1}^{n}, \ldots, \Xi_{p}^{n}\right)\right] \underset{n \rightarrow \infty}{\longrightarrow} 0
$$

where $\Xi_{i}^{n} \in \mathbb{R}^{j_{i}}$ is the random vector of the decreasingly ordered eigenvalues of the matrix

$$
\frac{1}{\omega_{i}^{2} g\left(\rho_{i}\right)^{\prime}}\left(\boldsymbol{\alpha}_{i} G_{i}+\sqrt{n}\left(H_{i, n}\left(\rho_{i}\right)+I_{j_{i}}\right)\right),
$$

where

$$
\boldsymbol{\alpha}_{i}^{2}=\frac{\mathbf{m}^{2}\left(\rho_{i}\right)}{\boldsymbol{\Delta}\left(\rho_{i}\right)}\left[\int \frac{t^{2}+2 \omega_{i}^{2} t}{\left(1+c \mathbf{m}\left(\rho_{i}\right) t\right)^{2}} \nu(d t)+c\left(\int \frac{\rho_{i} \omega_{i}^{2} \mathbf{m}\left(\rho_{i}\right) t}{\left(1+c \mathbf{m}\left(\rho_{i}\right) t\right)^{2}} \nu(d t)\right)^{2}\right] .
$$

Before turning to the proofs, some comments can be useful. We shall see that the results of Theorems 2.2 and 2.3 are intimately related to the first and second order behaviors of bilinear forms of the type $u_{n}^{*} Q_{n}(x) v_{n}, \tilde{u}_{n}^{*} \widetilde{Q}_{n}(x) \tilde{v}_{n}$, and $n^{-1 / 2} u_{n}^{*} Y_{n} \widetilde{Q}_{n}(x) \tilde{v}_{n}$ where $u_{n}, v_{n}, \tilde{u}_{n}$ and \tilde{v}_{n} are deterministic vectors of bounded norm and of appropriate dimensions, and where x is a real number lying outside the support of μ. In fact, it is possible to generalize Theorem [2.2 to the case where the elements of X_{n} are not necessarily Gaussian. This can be made possible by using the technique of [21] to analyze the first order behavior of these bilinear forms. On the other hand, the Gaussian assumption plays a central role in Theorem [2.3] Indeed, the proof of this theorem is based on the fact that these bilinear forms asymptotically fluctuate like Gaussian random variables when centered and scaled by \sqrt{n}. Take $u_{n}=e_{1, N}$ and $\tilde{v}_{n}=e_{1, n}$ where $e_{k, m}$ is the $k^{\text {th }}$ canonical vector of \mathbb{R}^{m}. Denoting by $\tilde{q}_{i j}^{n}$ and by $\tilde{t}_{i j}^{n}$ the (i, j) elements of $\widetilde{Q}_{n}(x)$ and $\widetilde{T}_{n}(x)$ respectively, we can informally write

$$
e_{1, N}^{*} Y_{n} \widetilde{Q}(x) e_{1, n}=\sum_{j=1}^{n}\left(d_{j}^{n}\right)^{1 / 2} \tilde{q}_{j 1}^{n} X_{1 j} \approx\left(d_{1}^{n}\right)^{1 / 2} \tilde{t}_{11}^{n} X_{11}+\sum_{j=2}^{n}\left(d_{j}^{n}\right)^{1 / 2} \tilde{q}_{j 1}^{n} X_{1 j}
$$

following [21]. It can be shown furthermore that $\tilde{t}_{11}^{n}=\mathcal{O}(1)$ for large n and that the sum $\sum_{j=2}^{n}$ is tight. Hence, $e_{1, N}^{*} Y_{n} \widetilde{Q}(x) e_{1, n}$ is tight. However, when X_{11} is not Gaussian, we infer that $e_{1, N}^{*} Y_{n} \widetilde{Q}(x) e_{1, n}$ does not converge in general towards a Gaussian random variable. In this case, when $P_{n}=\omega^{2} e_{1, N} e_{1, n}^{*}$ (see Section (5), Theorem 2.3 no longer holds. Yet, we conjecture that the results of this Theorem can be recovered when $e_{1, N}$ and $e_{1, n}$ are replaced with vectors whose elements are "spread enough", see 12 which deals with a similar problem.

A word about the notations. In the remainder of the paper, we shall often drop the subscript or the superscript n when there is no ambiguity. A constant bound that might change from an inequality to another but which is independent of n will always be denoted K. Element (i, j) of matrix M is denoted $M_{i j}$ or $[M]_{i j}$. Element i of vector x is denoted $[x]_{i}$. As usual, A^{*} means the adjoint of a matrix or a vector A, and for a complex number z, we will use either \bar{z} or z^{*} to denote the complex conjugate of z. Convergence in probability will be denoted $\xrightarrow{\mathcal{P}}$, and convergence in distribution $\xrightarrow{\mathcal{D}}$.

3. Mathematical tools and useful Results

We start this section with some basic mathematical tools.
3.1. Differentiation formulas. Let $\partial / \partial z=(\partial / \partial x-\imath \partial / \partial y) / 2$ and $\partial / \partial \bar{z}=(\partial / \partial x+$ $\imath \partial / \partial y) / 2$ for $z=x+\imath y$. Given a Hermitian matrix X with a spectral decomposition $X=\sum_{\ell} \lambda_{\ell} v_{\ell} v_{\ell}^{*}$, let $\operatorname{adj}(X)=\sum_{k}\left(\prod_{\ell \neq k} \lambda_{\ell}\right) v_{k} v_{k}^{*}$ be the classical adjoint of X, i.e., the transpose of its cofactor matrix. Let ψ be a continuously differentiable real-valued function on \mathbb{R}. Then

$$
\frac{\partial \operatorname{det} \psi\left(n^{-1} Y Y^{*}\right)}{\partial \bar{Y}_{i j}}=\frac{1}{n}\left[\operatorname{adj}\left(\psi\left(n^{-1} Y Y^{*}\right)\right) \psi^{\prime}\left(n^{-1} Y Y^{*}\right) y_{j}\right]_{i}
$$

where y_{j} is column j of Y, see [19, Lemma 3.9] for a proof.
We shall also need the expressions of the following derivatives of the elements of the resolvents Q and \widetilde{Q} (see [18):

$$
\frac{\partial Q_{p q}}{\partial \bar{Y}_{i j}}=-\frac{1}{n}[Q Y]_{p j} Q_{i q}, \quad \frac{\partial \widetilde{Q}_{p q}}{\partial \bar{Y}_{i j}}=-\frac{1}{n} \widetilde{Q}_{p j}[Y \widetilde{Q}]_{i q}
$$

3.2. Gaussian tools. Our analysis fundamentally relies on two mathematical tools which are often used in the analysis of large random matrices with Gaussian elements. The first is the so called Integration by Parts (IP) formula for functionals of Gaussian vectors introduced in random matrix theory in [24, 30]. Let $\Gamma: \mathbb{R}^{2 N n} \rightarrow \mathbb{C}$ be a continuously differentiable function polynomially bounded together with its partial derivatives. Then

$$
\mathbb{E}\left(Y_{i j} \Gamma(Y)\right)=d_{j} \mathbb{E}\left[\frac{\partial \Gamma(Y)}{\partial \bar{Y}_{i j}}\right]
$$

for any $i \in\{1, \ldots, N\}$ and $j \in\{1, \ldots, n\}$. The second tool is the Poincaré-Nash inequality (see for instance [13]). In our situation, it states that the variance $\operatorname{Var}(\Gamma(Y))$ satisfies

$$
\operatorname{Var}(\Gamma(Y)) \leq \sum_{i=1}^{N} \sum_{j=1}^{n} d_{j} \mathbb{E}\left[\left|\frac{\partial \Gamma(Y)}{\partial Y_{i j}}\right|^{2}+\left|\frac{\partial \Gamma(Y)}{\partial \bar{Y}_{i j}}\right|^{2}\right]
$$

The results of Silverstein and Choi [37] relative to the support of μ will be needed in the proof and recalled in the following paragraph for completeness. Close results can be found in 27 and in 28.

3.3. Analysis of the support of μ.

Proposition 3.1 ([37], Th.1.1). For all $x \in \mathbb{R}^{*}, \underset{z \in \mathbb{C}_{+} \rightarrow x}{ } \mathbf{m}(z)$ exists. The limit that we denote $\mathbf{m}(x)$ is continuous on \mathbb{R}^{*}. Moreover, μ has a continuous density f on \mathbb{R}^{*} given by $f(x)=\pi^{-1} \Im \mathbf{m}(x)$.

In [37], the support of μ is also identified. Since $\mathbf{m}(z)$ is the unique solution in \mathbb{C}_{+}of (3) for $z \in \mathbb{C}_{+}$, it has a unique inverse on \mathbb{C}_{+}given by

$$
z(\mathbf{m})=-\frac{1}{\mathbf{m}}+\int \frac{t}{1+c \mathbf{m} t} \nu(d t)
$$

The characterization of the support of μ is based on the following idea. On any open interval of $\operatorname{supp}(\mu)^{c}, \mathbf{m}(x)=\int(t-x)^{-1} \mu(d t)$ is a real, continuous and increasing function. Consequently, it has a real, continuous and increasing inverse. In 37, it is shown that the converse is also true. More precisely, let $B=\{\mathbf{m}: \mathbf{m} \neq$ $\left.0,-(c \mathbf{m})^{-1} \in \operatorname{supp}(\nu)^{c}\right\}$, and let

$$
\begin{align*}
x: B & \longrightarrow \mathbb{R} \\
\mathbf{m} & \longmapsto x(\mathbf{m})=-\frac{1}{\mathbf{m}}+\int \frac{t}{1+c \mathbf{m} t} \nu(d t) \tag{8}
\end{align*}
$$

Then the following proposition holds:
Proposition 3.2 (37, Th. 4.1 and 4.2). For any $x_{0} \in \operatorname{supp}(\mu)^{c}$, let $\mathbf{m}_{0}=\mathbf{m}\left(x_{0}\right)$. Then $\mathbf{m}_{0} \in B, x_{0}=x\left(\mathbf{m}_{0}\right)$, and $x^{\prime}\left(\mathbf{m}_{0}\right)>0$. Conversely, let $\mathbf{m}_{0} \in B$ such that $x^{\prime}\left(\mathbf{m}_{0}\right)>0$. Then $x_{0}=x\left(\mathbf{m}_{0}\right) \in \operatorname{supp}(\mu)^{c}$, and $\mathbf{m}\left(x_{0}\right)=\mathbf{m}_{0}$.

The following proposition will also be useful:
Proposition 3.3 (37], Th. 4.4). Let $\left[\mathbf{m}_{1}, \mathbf{m}_{2}\right]$ and $\left[\mathbf{m}_{3}, \mathbf{m}_{4}\right]$ be two disjoint intervals of B satisfying $\forall \mathbf{m} \in\left(\mathbf{m}_{1}, \mathbf{m}_{2}\right) \cup\left(\mathbf{m}_{3}, \mathbf{m}_{4}\right), x^{\prime}(\mathbf{m})>0$. Then $\left[x_{1}, x_{2}\right]$ and $\left[x_{3}, x_{4}\right]$ are disjoint where $x_{i}=x\left(\mathbf{m}_{i}\right)$.

The following result is also proven in 37:
Proposition 3.4. Assume that $\nu(\{0\})=0$. Then $\mu(\{0\})=\max \left(0,1-c^{-1}\right)$.
We shall assume hereafter that $\nu(\{0\})=0$ without loss of generality (otherwise, it would be enough to change the value of c). The two following lemmas will also be needed:

Lemma 3.1. Let $\left[x_{1}, x_{2}\right] \in \operatorname{supp}(\mu)^{c}$ with $x_{1}>0$, and let $D_{x_{1}, x_{2}}$ be the closed disk having $\left[x_{1}, x_{2}\right]$ as one of its diameters. Then there exists a constant K which depends on x_{1} and x_{2} only such that

$$
\begin{gathered}
\forall t \in \operatorname{supp}(\nu), \forall z \in D_{x_{1}, x_{2}},|1+c \mathbf{m}(z) t| \geq K, \quad \text { and } \\
\forall n \text { large enough, } \forall t \in \operatorname{supp}\left(\nu_{n}\right), \forall z \in D_{x_{1}, x_{2}},\left|1+c_{n} m_{n}(z) t\right| \geq K
\end{gathered}
$$

From the second inequality, we deduce that $\widetilde{T}_{n}(z)$ is analytic in a neighborhood of $\left[x_{1}, x_{2}\right]$ for n large enough, and

$$
\begin{equation*}
\limsup _{n} \sup _{z \in D_{x_{1}, x_{2}}}\left\|\widetilde{T}_{n}(z)\right\|<\infty \tag{9}
\end{equation*}
$$

Proof. When $z \in \mathbb{C}_{+}$, $\Im \mathbf{m}(z)>0$ and $\Im\left(-(c \mathbf{m}(z))^{-1}\right)>0$, and we have the opposite inequalities when $\Im z<0$. Applying Proposition 3.2 for $z \in\left[x_{1}, x_{2}\right]$, we deduce that $|\mathbf{m}(z)|$ and $f(z)=\boldsymbol{d}\left(-(c \mathbf{m}(z))^{-1}, \operatorname{supp}(\nu)\right)$ are positive on $D_{x_{1}, x_{2}}$. Since these functions are continuous on this compact set, $\min |\mathbf{m}(z)|=K_{1}>0$ and $\min f(z)=K_{2}>0$ on $D_{x_{1}, x_{2}}$. Consequently, for any $z \in D_{x_{1}, x_{2}}$ and any $t \in \operatorname{supp}(\nu),|1+c \mathbf{m}(z) t|=\left|c \mathbf{m}(z)\left(-(c \mathbf{m}(z))^{-1}-t\right)\right| \geq|c \mathbf{m}(z)| f(z) \geq c K_{1} K_{2}>0$. We now prove the second inequality. Denote by $\boldsymbol{d}_{\mathrm{H}}(A, B)$ the Hausdorff distance between two sets A and B. Let $f_{n}(z)=\boldsymbol{d}\left(-\left(c_{n} m_{n}(z)\right)^{-1}, \operatorname{supp}\left(\nu_{n}\right)\right)$. We have

$$
\begin{aligned}
f_{n}(z) & \leq \boldsymbol{d}\left(\frac{-1}{c_{n} m_{n}(z)}, \frac{-1}{c \mathbf{m}(z)}\right)+\boldsymbol{d}\left(\frac{-1}{c \mathbf{m}(z)}, \operatorname{supp}\left(\nu_{n}\right)\right) \\
& \leq \boldsymbol{d}\left(\frac{-1}{c_{n} m_{n}(z)}, \frac{-1}{c \mathbf{m}(z)}\right)+f(z)+\boldsymbol{d}_{\mathrm{H}}\left(\operatorname{supp}\left(\nu_{n}\right), \operatorname{supp}(\nu)\right)
\end{aligned}
$$

and $f(z) \leq \boldsymbol{d}\left(-\left(c_{n} m_{n}(z)\right)^{-1},-(c \mathbf{m}(z))^{-1}\right)+f_{n}(z)+\boldsymbol{d}_{\mathrm{H}}\left(\operatorname{supp}\left(\nu_{n}\right), \operatorname{supp}(\nu)\right)$ similarly. Since $m_{n}(z)$ converges uniformly to $\mathbf{m}(z)$ and $\inf |\mathbf{m}(z)|>0$ on $D_{x_{1}, x_{2}}$, $\boldsymbol{d}\left(-\left(c_{n} m_{n}(z)\right)^{-1},-(c \mathbf{m}(z))^{-1}\right) \rightarrow 0$ uniformly on this disk. By Assumption 3 $\boldsymbol{d}_{\mathrm{H}}\left(\operatorname{supp}\left(\nu_{n}\right), \operatorname{supp}(\nu)\right) \rightarrow 0$. Hence $f_{n}(z)$ converges uniformly to $f(z)$ on $D_{x_{1}, x_{2}}$ which proves the second inequality.

Lemma 3.2. In the setting of Lemma 3.1, for any sequence of vectors $\tilde{u}_{n} \in \mathbb{C}^{n}$ such that $\sup _{n}\left\|\tilde{u}_{n}\right\|<\infty$, the quadratic forms $\tilde{u}_{n}^{*} \widetilde{T}_{n}(z) \tilde{u}_{n}$ are the Stieltjes Transforms of positive measures γ_{n} such that $\sup _{n} \gamma_{n}(\mathbb{R})<\infty$ and $\gamma_{n}\left(\left[x_{1}, x_{2}\right]\right)=0$ for n large enough.

Indeed, one can easily check the conditions that enable $\tilde{u}_{n}^{*} \widetilde{T}_{n}(z) \tilde{u}_{n}$ to be a Stieltjes Transform of a positive finite measure. The last result is obtained by analyticity in a neighborhood of $\left[x_{1}, x_{2}\right]$. In fact, it can be checked that $\operatorname{supp}\left(\gamma_{n}\right) \subset$ $\operatorname{supp}\left(\mu_{n}\right) \cup\{0\}$.
3.4. A Control over the support of θ_{n}. In this paragraph, we adapt to our case an idea developed in [11 to deal with Wigner matrices whose elements distribution satisfies a Poincaré-Nash inequality.

Proposition 3.5. For any sequence of $n \times n$ deterministic diagonal nonnegative matrices \widetilde{U}_{n} such that $\sup _{n}\left\|\widetilde{U}_{n}\right\|<\infty$,

$$
\begin{gathered}
\left|\frac{1}{n} \operatorname{Tr} \mathbb{E} Q_{n}(z)-m_{n}(z)\right| \leq \frac{P(|z|) R\left(|\Im(z)|^{-1}\right)}{n^{2}} \text {, and } \\
\left|\frac{1}{n} \operatorname{Tr} \widetilde{U}_{n} \mathbb{E} \widetilde{Q}_{n}(z)-\frac{1}{n} \operatorname{Tr} \widetilde{U}_{n} \widetilde{T}_{n}(z)\right| \leq \frac{P(|z|) R\left(|\Im(z)|^{-1}\right)}{n^{2}}
\end{gathered}
$$

for $z \in \mathbb{C}_{+}$, where P and R are polynomials with nonnegative coefficients independent of n.

This proposition is obtained from a simple extension of the results of [18, Th. 3 and Prop.5] from $z \in(-\infty, 0)$ to $z \in \mathbb{C}_{+}$.
The following important result, due to Haagerup and Thorbjørnsen, is established in the proof of [17, Th.6.2]:

Lemma 3.3. Assume that $h(z)$ is an analytic function on \mathbb{C}_{+}that satisfies $|h(z)| \leq$ $P(|z|) R\left(|\Im(z)|^{-1}\right)$ where P and R are polynomials with nonnegative coefficients.

Then for any function $\varphi \in \mathcal{C}_{c}^{\infty}(\mathbb{R}, \mathbb{R})$, the set of smooth real-valued functions with compact support in \mathbb{R},

$$
\underset{y \downarrow 0}{\limsup }\left|\int_{\mathbb{R}} \varphi(x) h(x+\imath y) d x\right|<\infty
$$

Since $N^{-1} \operatorname{Tr} Q_{n}(z)$ is the Stieltjes Transform of the spectral measure θ_{n}, the inversion formula (2) shows that

$$
\int \varphi(t) \theta_{n}(d t)=\frac{1}{\pi} \lim _{y \downarrow 0} \Im \int \varphi(x) \frac{1}{N} \operatorname{Tr} Q_{n}(x+\imath y) d x
$$

for any function $\varphi \in \mathcal{C}_{c}^{\infty}(\mathbb{R}, \mathbb{R})$. Using then Proposition 3.5 and Lemma 3.3, we obtain the following result:

Proposition 3.6. For any function $\varphi \in \mathcal{C}_{c}^{\infty}(\mathbb{R}, \mathbb{R})$,

$$
\left|\mathbb{E} \int \varphi(t) \theta_{n}(d t)-\int \varphi(t) \mu_{n}(d t)\right| \leq \frac{K}{n^{2}}
$$

4. First Order Analysis: Proof of Theorem 2.2

In all this section, $\left[x_{1}, x_{2}\right]$ is an interval in (a, b) where a and b are given in the statement of Theorem [2.2 and z is a complex number such that $\Re(z) \in\left[x_{1}, x_{2}\right]$ and $\Im(z)$ is arbitrary. Moreover, $u_{n}, v_{n} \in \mathbb{C}^{N}$ and $\tilde{u}_{n}, \tilde{v}_{n} \in \mathbb{C}^{n}$ are sequences of deterministic vectors such that $\sup _{n} \max \left(\left\|u_{n}\right\|,\left\|v_{n}\right\|,\left\|\tilde{u}_{n}\right\|,\left\|\tilde{v}_{n}\right\|\right)<\infty$, and \widetilde{U}_{n} is a sequence of $n \times n$ diagonal deterministic matrix such that $\sup _{n}\left\|\widetilde{U}_{n}\right\|<\infty$.
We now introduce the regularization function alluded to in the introduction. Choose $\varepsilon>0$ small enough so that $\left[x_{1}, x_{2}\right] \cap \mathcal{S}_{\varepsilon}=\emptyset$ where $\mathcal{S}_{\varepsilon}=\{x \in \mathbb{R}, \boldsymbol{d}(x, \operatorname{supp}(\mu) \cup$ $\{0\}) \leq \varepsilon\}$. Fix $0<\varepsilon^{\prime}<\varepsilon$, let $\psi: \mathbb{R} \rightarrow[0,1]$ be a continuously differentiable function such that

$$
\psi(x)= \begin{cases}1 & \text { if } x \in \mathcal{S}_{\varepsilon^{\prime}} \\ 0 & \text { if } x \in \mathbb{R}-\mathcal{S}_{\varepsilon}\end{cases}
$$

and let $\phi_{n}=\operatorname{det} \psi\left(n^{-1} Y_{n} Y_{n}^{*}\right)$. In all the subsequent derivations, quantities such as $u_{n}^{*} Q_{n}(z) u_{n}$ or $\tilde{u}_{n}^{*} \widetilde{Q}_{n}(z) \tilde{u}_{n}$ for $\Re(z) \in\left[x_{1}, x_{2}\right]$ will be multiplied by ϕ_{n} in order to control their magnitudes when z is close to the real axis. By performing this regularization as is done in [19, we shall be able to define and control the moments of random variables such as $\phi_{n} u_{n}^{*} Q_{n}(z) u_{n}$ or $\phi_{n} \tilde{u}_{n}^{*} \widetilde{Q}_{n}(z) \tilde{u}_{n}$ with the help of the Gaussian tools introduced in Section 3.2.

We start with a series of lemmas. The first of these lemmas relies on Proposition 3.6 and on the Poincaré-Nash inequality. Its detailed proof is a minor modification of the proof of [19, Lemma 3] and is therefore omitted:

Lemma 4.1. Given $0<\varepsilon^{\prime}<\varepsilon$, let φ be a smooth nonnegative function equal to zero on $\mathcal{S}_{\varepsilon^{\prime}}$ and to one on $\mathbb{R}-\mathcal{S}_{\varepsilon}$. Then for any $\ell \in \mathbb{N}$, there exists a constant K_{ℓ} for which

$$
\mathbb{E}\left[\left(\operatorname{Tr} \varphi\left(n^{-1} Y_{n} Y_{n}^{*}\right)\right)^{\ell}\right] \leq \frac{K_{\ell}}{n^{\ell}}
$$

Remark 1. Notice that this lemma proves Theorem 2.1-(2). The proof provided in [3] is in fact more general, being not restricted to the Gaussian case.

Lemma 4.2. For any $\ell \in \mathbb{N}$, the following holds true:

$$
\mathbb{E}\left[\left(\sum_{i, j=1}^{N, n} d_{j}\left|\frac{\partial \phi_{n}}{\partial \bar{Y}_{i j}}\right|^{2}\right)^{\ell}\right] \leq \frac{K_{\ell}}{n^{2 \ell}}
$$

Proof. Letting $n^{-1 / 2} Y=W \operatorname{diag}\left(\sqrt{\lambda}_{1}, \cdots, \sqrt{\lambda}_{N}\right) V^{*}$ be a singular value decomposition of $n^{-1 / 2} Y$, we have
$\operatorname{adj}\left(\psi\left(\frac{Y Y^{*}}{n}\right)\right) \psi^{\prime}\left(\frac{Y Y^{*}}{n}\right) \frac{Y}{\sqrt{n}}=W \Xi V^{*}$ where $\Xi=\operatorname{diag}\left(\sqrt{\lambda}_{k} \psi^{\prime}\left(\lambda_{k}\right) \prod_{\ell \neq k} \psi\left(\lambda_{\ell}\right)\right)_{k=1}^{N}$
and we observe that $\operatorname{Tr} \Xi^{2} \leq K Z_{n}$ where $Z_{n}=\sharp\left\{k: \lambda_{k} \in \mathcal{S}_{\varepsilon}-\mathcal{S}_{\varepsilon^{\prime}}\right\}$. Using the first identity in Section 3.1 and recalling that $|\operatorname{Tr}(A B)| \leq\|A\| \operatorname{Tr} B$ when A is a square matrix and B is a Hermitian nonnegative matrix, we have

$$
\mathbb{E}\left[\left(\sum_{i, j=1}^{N, n} d_{j}\left|\frac{\partial \phi_{n}}{\partial \bar{Y}_{i j}}\right|^{2}\right)^{\ell}\right]=\frac{1}{n^{\ell}} \mathbb{E}\left[\left(\operatorname{Tr}\left(\operatorname{adj}(\psi) \psi^{\prime} \frac{Y D Y^{*}}{n} \operatorname{adj}(\psi) \psi^{\prime}\right)\right)^{\ell}\right] \leq \frac{K}{n^{\ell}} \mathbb{E} Z_{n}^{\ell}
$$

and the result follows from Lemma 4.1 with a proper choice of φ.
Lemma 4.3. The following inequalities hold true:

$$
\begin{gathered}
\mathbb{E}\left|\phi_{n} u_{n}^{*} Q_{n}(z) v_{n}-\mathbb{E}\left[\phi_{n} u_{n}^{*} Q_{n}(z) v_{n}\right]\right|^{4} \leq \frac{K}{n^{2}} \\
\mathbb{E}\left|\phi_{n} \tilde{u}_{n}^{*} \widetilde{Q}_{n}(z) \tilde{v}_{n}-\mathbb{E}\left[\phi_{n} \tilde{u}_{n}^{*} \widetilde{Q}_{n}(z) \tilde{v}_{n}\right]\right|^{4} \leq \frac{K}{n^{2}}, \\
\operatorname{Var}\left(\phi_{n} \operatorname{Tr} Q_{n}(z)\right) \leq K
\end{gathered}
$$

Proof. We shall only prove the first inequality. By the polarization identity, this inequality is shown whenever we show that $\mathbb{E}\left|\phi u^{*} Q u-\mathbb{E}\left[\phi u^{*} Q u\right]\right|^{4} \leq K / n^{2}$. Let us start by showing that $\operatorname{Var}\left(\phi u^{*} Q u\right) \leq K / n$. By the Poincaré-Nash inequality, we have

$$
\begin{aligned}
\operatorname{Var}\left(\phi u^{*} Q u\right) & \leq 2 \sum_{i, j=1}^{N, n} d_{j} \mathbb{E}\left|\frac{\partial \phi u^{*} Q u}{\partial \bar{Y}_{i j}}\right|^{2} \\
& \leq 4 \sum_{i, j=1}^{N, n} d_{j} \mathbb{E}\left|\phi \frac{\partial u^{*} Q u}{\partial \bar{Y}_{i j}}\right|^{2}+4 \sum_{i, j=1}^{N, n} d_{j} \mathbb{E}\left|u^{*} Q u \frac{\partial \phi}{\partial \bar{Y}_{i j}}\right|^{2}
\end{aligned}
$$

Using the expression of $\partial Q_{p q} / \partial \bar{Y}_{i j}$ in Section 3.1, we have

$$
\partial u^{*} Q u / \partial \bar{Y}_{i j}=-n^{-1} u^{*} Q y_{j}[Q u]_{i}
$$

hence

$$
\sum_{i, j=1}^{N, n} d_{j} \mathbb{E}\left|\phi \frac{\partial u^{*} Q u}{\partial \bar{Y}_{i j}}\right|^{2}=\frac{1}{n} \mathbb{E}\left[\phi^{2} u^{*} Q \frac{Y D Y^{*}}{n} Q u u^{*} Q^{2} u\right] \leq \frac{K}{n}
$$

since the argument of the expectation is bounded for $\Re(z) \in\left[x_{1}, x_{2}\right]$. From the first identity in Section 3.1, $\sum_{i, j} d_{j} \mathbb{E}\left|u^{*} Q u \partial \phi / \partial \bar{Y}_{i j}\right|^{2} \leq K \sum_{i, j} d_{j} \mathbb{E}\left|\partial \phi / \partial \bar{Y}_{i j}\right|^{2}$ which
is bounded by K / n^{2} by Lemma 4.2. It results that $\operatorname{Var}\left(\phi u^{*} Q u\right) \leq K / n$. Now, writing $\stackrel{\circ}{X}=X-\mathbb{E} X$,

$$
\mathbb{E}|\overbrace{\phi u^{*} Q u}^{\circ}|^{4}=\left(\operatorname{Var}\left(\phi u^{*} Q u\right)\right)^{2}+\mathbb{V} \operatorname{ar}((\overbrace{\phi u^{*} Q u}^{\circ})^{2}) \leq K / n^{2}+\mathbb{V} \operatorname{ar}((\overbrace{\phi u^{*} Q u}^{\circ})^{2}) .
$$

By the Poincaré-Nash inequality,

$$
\begin{aligned}
& \operatorname{Var}((\overbrace{\phi u^{*} Q u})^{2}) \leq 2 \sum_{i, j=1}^{N, n} d_{j} \mathbb{E}|\partial(\overbrace{\phi u^{*} Q u}^{\circ})^{2} / \partial \bar{Y}_{i j}|^{2} \\
\leq & 16 \sum_{i, j=1}^{N, n} d_{j} \mathbb{E}|\overbrace{\phi u^{*} Q u}^{\circ} \phi \frac{\partial u^{*} Q u}{\partial \bar{Y}_{i j}}|^{2}+16 \sum_{i, j=1}^{N, n} d_{j} \mathbb{E}|\overbrace{\phi u^{*} Q u}^{\circ} u^{*} Q u \frac{\partial \phi}{\partial \bar{Y}_{i j}}|^{2}:=V_{1}+V_{2} .
\end{aligned}
$$

By developing the derivative in V_{1} similarly to above, $V_{1} \leq K n^{-1} \mathbb{E}|\overbrace{\phi u^{*} Q u}^{\circ}|^{2} \leq$ $K n^{-2}$. By the Cauchy-Schwarz inequality and Lemma 4.2,

$$
V_{2} \leq K \sum_{i, j=1}^{N, n} d_{j} \mathbb{E}|\overbrace{\phi u^{*} Q u}^{\circ} \frac{\partial \phi}{\partial \bar{Y}_{i j}}|^{2} \leq \frac{K}{n^{2}}(\mathbb{E}|\overbrace{\phi u^{*} Q u}^{\circ}|^{4})^{1 / 2} .
$$

Writing $a_{n}=n^{2} \mathbb{E}|\overbrace{\phi u^{*} Q u}^{\circ}|^{4}$, we have shown that $\sqrt{a_{n}} \leq K / \sqrt{a_{n}}+K / n$. Assume that a_{n} is not bounded. Then there exists a sequence n_{k} of integers such that $a_{n_{k}} \rightarrow \infty$, which raises a contradiction. The first inequality in the statement of this lemma is shown. The other two inequalities can be shown similarly.

Lemma 4.4. The following holds true:

$$
1-\mathbb{E} \phi_{n} \leq \frac{K_{\ell}}{n^{\ell}} \quad \text { for any } \ell \in \mathbb{N}
$$

Proof. For $0<\varepsilon_{1}<\varepsilon^{\prime}$ where ε^{\prime} is defined in the construction of ψ, let φ be a smooth nonnegative function equal to zero on $\mathcal{S}_{\varepsilon_{1}}$ and to one on $\mathbb{R}-\mathcal{S}_{\varepsilon^{\prime}}$. Then $1-\phi_{n} \leq\left(\operatorname{Tr}\left(\varphi\left(n^{-1} Y Y^{*}\right)\right)\right)^{\ell}$ for any $\ell \in \mathbb{N}$, and the result stems from Lemma 4.1.

Lemma 4.5. The following inequalities hold true (recall that $\Re(z) \notin \operatorname{supp}(\mu))$:

$$
\left|\mathbb{E}\left[\phi_{n} \operatorname{Tr} Q_{n}(z)\right]-N m_{n}(z)\right| \leq \frac{K}{n}, \quad \text { and } \quad\left|\operatorname{Tr} \widetilde{U}_{n}\left(\mathbb{E}\left[\phi_{n} \widetilde{Q}_{n}(z)\right]-\widetilde{T}_{n}(z)\right)\right| \leq \frac{K}{n}
$$

Proof. Let ε be defined in the construction of ψ. Choose a small $\varepsilon_{1}>\varepsilon$ in such a way that $\mathcal{S}_{\varepsilon_{1}} \cap\left[x_{1}, x_{2}\right]=\emptyset$. Let ζ be a $\mathcal{C}_{c}^{\infty}(\mathbb{R}, \mathbb{R})$ nonnegative function equal to one on $\mathcal{S}_{\varepsilon}$ and to zero on $\mathbb{R}-\mathcal{S}_{\varepsilon_{1}}$, so that

$$
\phi \frac{1}{n} \operatorname{Tr} Q=\phi \int \frac{\zeta(t)}{t-z} \theta_{n}(d t)
$$

Using this equality, and recalling that $\phi \in[0,1]$, we have

$$
\left|\mathbb{E} \phi \frac{1}{n} \operatorname{Tr} Q-\mathbb{E} \int \frac{\zeta(t)}{t-z} \theta_{n}(d t)\right| \leq \mathbb{E}\left[(1-\phi)\left|\int \frac{\zeta(t)}{t-z} \theta_{n}(d t)\right|\right] \leq \frac{1-\mathbb{E} \phi}{d\left(z, \mathcal{S}_{\varepsilon_{1}}\right)} \leq \frac{K_{\ell}}{n^{\ell}}
$$

for any $\ell \in \mathbb{N}$. Moreover, we have

$$
\left|\mathbb{E} \int \frac{\zeta(t)}{t-z} \theta_{n}(d t)-m_{n}(z)\right|=\left|\mathbb{E} \int \frac{\zeta(t)}{t-z} \theta_{n}(d t)-\int \frac{\zeta(t)}{t-z} \mu_{n}(d t)\right| \leq \frac{K}{n^{2}}
$$

by Proposition 3.3 and the first inequality is proved.
By performing a spectral factorization of $n^{-1} Y^{*} Y$, one can check that $n^{-1} \operatorname{Tr} \widetilde{U} \widetilde{Q}(z)$ is the Stieltjes Transform of a positive measure τ_{n} such that $\sup _{n} \tau_{n}(\mathbb{R})<\infty$ and $\operatorname{supp}\left(\tau_{n}\right) \subset \operatorname{supp}\left(\theta_{n}\right) \cup\{0\}$. By Lemma 3.2, $n^{-1} \operatorname{Tr} \widetilde{U} \widetilde{T}(z)$ is the Stieltjes Transform of a positive measure γ_{n} such that $\sup _{n} \gamma_{n}(\mathbb{R})<\infty$ and $\gamma_{n}\left(\left[x_{1}, x_{2}\right]\right)=0$ for all large n. With the help of the second inequality of Proposition 3.5] we have a result similar to that of Proposition 3.6. namely that $\left|\mathbb{E} \int \varphi d \tau_{n}-\int \varphi d \gamma_{n}\right| \leq K / n^{2}$ for any function $\varphi \in \mathcal{C}_{c}^{\infty}(\mathbb{R}, \mathbb{R})$. We can then prove the second inequality similarly to the first one.

Lemma 4.6. The following inequalities hold true:

$$
\begin{aligned}
&\left|\mathbb{E}\left[\phi_{n} u_{n}^{*} Q_{n}(z) v_{n}\right]-u_{n}^{*} v_{n} m_{n}(z)\right| \leq K / n \\
&\left|\mathbb{E}\left[\phi_{n} \tilde{u}_{n}^{*} \widetilde{Q}_{n}(z) \tilde{v}_{n}\right]-\tilde{u}_{n}^{*} \widetilde{T}_{n}(z) \tilde{v}_{n}\right| \leq K / n
\end{aligned}
$$

In [21, it is proven in a more general setting that $\left|\mathbb{E} u_{n}^{*} Q_{n}(z) u_{n}-\left\|u_{n}\right\|^{2} m_{n}(z)\right| \leq$ $P(|z|) R\left(|\Im(z)|^{-1}\right) / \sqrt{n}$ for any $z \in \mathbb{C}_{+}$. Observing that $u_{n}^{*} Q_{n}(z) u_{n}$ and $\left\|u_{n}\right\|^{2} m_{n}(z)$ are Stieltjes Transforms of positive measures, and mimicking the proof of the previous lemma, we can establish this lemma with the rate $\mathcal{O}\left(n^{-1 / 2}\right)$, which is in fact enough for our purposes. However, in order to give a flavor of the derivations that will be carried out in the next section, we consider here another proof that uses the IP formula and the Poincaré-Nash inequality. To that end, we introduce new notations:

$$
\begin{gathered}
\beta(z)=\phi_{n} \frac{1}{n} \operatorname{Tr} Q_{n}(z), \alpha(z)=\mathbb{E} \beta(z), \hat{\beta}(z)=\beta(z)-\phi_{n} \alpha(z), \quad \text { and } \\
\tilde{\alpha}(z)=\frac{1}{n} \operatorname{Tr} D_{n}\left[-z\left(I_{n}+\alpha(z) D_{n}\right)\right]^{-1}
\end{gathered}
$$

Proof. We start with the first inequality. By the IP formula, we have

$$
\mathbb{E}\left[Q_{p i} Y_{i j} \bar{Y}_{\ell j} \phi\right]=-\frac{d_{j}}{n} \mathbb{E}\left[\left[Q y_{j}\right]_{p} Q_{i i} \bar{Y}_{\ell j} \phi\right]+\delta(\ell-i) d_{j} \mathbb{E}\left[Q_{p i} \phi\right]+\frac{d_{j}}{n} \mathbb{E}\left[Q_{p i} \bar{Y}_{\ell j}\left[\operatorname{adj}(\psi) \psi^{\prime} y_{j}\right]_{i}\right]
$$

Taking the sum over i, we obtain

$$
\mathbb{E}\left[\left[Q y_{j}\right]_{p} \bar{Y}_{\ell j} \phi\right]=-d_{j} \mathbb{E}\left[\left[Q y_{j}\right]_{p} \bar{Y}_{\ell j} \beta\right]+d_{j} \mathbb{E}\left[Q_{p \ell} \phi\right]+\frac{d_{j}}{n} \mathbb{E}\left[\bar{Y}_{\ell j}\left[Q \operatorname{adj}(\psi) \psi^{\prime} y_{j}\right]_{p}\right]
$$

Writing $\beta=\hat{\beta}+\phi \alpha$, we get

$$
\begin{aligned}
\mathbb{E}\left[\left[Q y_{j}\right]_{p} \bar{Y}_{\ell j} \phi\right] & =\frac{d_{j}}{1+\alpha d_{j}} \mathbb{E}\left[Q_{p \ell} \phi\right]-\frac{d_{j}}{1+\alpha d_{j}} \mathbb{E}\left[\left[Q y_{j}\right]_{p} \bar{Y}_{\ell j} \hat{\beta}\right] \\
& +\frac{d_{j}}{n\left(1+\alpha d_{j}\right)} \mathbb{E}\left[\bar{Y}_{\ell j}\left[Q \operatorname{adj}(\psi) \psi^{\prime} y_{j}\right]_{p}\right]
\end{aligned}
$$

Taking the sum over j, we obtain

$$
\begin{aligned}
\mathbb{E}\left[\left[Q \frac{Y Y^{*}}{n}\right]_{p \ell} \phi\right] & =-z \tilde{\alpha} \mathbb{E}\left[Q_{p \ell} \phi\right]-\mathbb{E}\left[\hat{\beta}\left[Q \frac{Y D(I+\alpha D)^{-1} Y^{*}}{n}\right]_{p \ell}\right] \\
& +\frac{1}{n} \mathbb{E}\left[\left[Q \operatorname{adj}(\psi) \psi^{\prime} \frac{Y D(I+\alpha D)^{-1} Y^{*}}{n}\right]_{p \ell}\right]
\end{aligned}
$$

We now use the identity $z Q=n^{-1} Q Y Y^{*}-I$, which results in

$$
\begin{aligned}
z \mathbb{E}\left[Q_{p \ell} \phi\right] & =\mathbb{E}\left[\left[Q \frac{Y Y^{*}}{n}\right]_{p \ell} \phi\right]-\delta(p-\ell) \mathbb{E}[\phi] \\
\mathbb{E}\left[Q_{p \ell} \phi\right] & =\frac{\delta(p-\ell)}{-z(1+\tilde{\alpha})} \mathbb{E}[\phi]+\frac{2 \text { nd and 3rd terms of next to last equation }}{z(1+\tilde{\alpha})} .
\end{aligned}
$$

Multiplying each side by $\left[u^{*}\right]_{p}[v]_{\ell}$ and taking the sum over p and ℓ, we finally obtain

$$
\begin{align*}
\mathbb{E}\left[u^{*} Q v \phi\right] & =\mathbb{E}[\phi] \frac{u^{*} v}{-z(1+\tilde{\alpha})}-[-z(1+\tilde{\alpha})]^{-1} \mathbb{E}\left[\hat{\beta} u^{*} Q \frac{Y D(I+\alpha D)^{-1} Y^{*}}{n} v\right] \\
& +\frac{1}{n}[-z(1+\tilde{\alpha})]^{-1} \mathbb{E}\left[u^{*} Q \operatorname{adj}(\psi) \psi^{\prime} \frac{Y D(I+\alpha D)^{-1} Y^{*}}{n} v\right] \tag{10}
\end{align*}
$$

Let us evaluate the three terms at the right hand side of this equality. From Lemma 4.5, we have $\alpha=c_{n} m_{n}+\mathcal{O}\left(n^{-2}\right)$. Using in addition the bound (9), we obtain $\tilde{\alpha}=n^{-1} \operatorname{Tr}\left(D\left(-z\left(I+c_{n} m_{n} D+\left(\alpha-c_{n} m_{n}\right) D\right)^{-1}\right)=n^{-1} \operatorname{Tr} D \widetilde{T}+\mathcal{O}\left(n^{-2}\right)\right.$. Since $m_{n}(z)=\left(-z\left(1+n^{-1} \operatorname{Tr} D \widetilde{T}(z)\right)\right)^{-1}$, we obtain that $(-z(1+\tilde{\alpha}))^{-1}=m_{n}(z)+$ $\mathcal{O}\left(n^{-2}\right)$. Using in addition Lemma 4.4. we obtain that the first right hand side term of (10) is $u^{*} v m_{n}(z)+\mathcal{O}\left(n^{-2}\right)$. Due to the presence of ϕ in the expression of $\hat{\beta}$, the second term is bounded by $K \mathbb{E}|\hat{\beta}|$. Moreover, $\hat{\beta}=n^{-1} \phi \operatorname{Tr} Q-n^{-1} \mathbb{E}[\phi \operatorname{Tr} Q]+$ $(1-\phi) n^{-1} \mathbb{E}[\phi \operatorname{Tr} Q]$. By Lemmas 4.4 and 4.3, $\mathbb{E}|\hat{\beta}|=\mathcal{O}\left(n^{-1}\right)$. The third term can be shown to be bounded by $K n^{-1} \mathbb{E} \operatorname{Tr} \varphi\left(n^{-1} Y Y^{*}\right)=\mathcal{O}\left(n^{-2}\right)$ where φ is as in the statement of Lemma 4.1. This proves the first inequality in the statement of the lemma.
The second result in the statement of the lemma is proven similarly. The proof requires the second inequality of Lemma 4.5

The proof of the following lemma can be done along the same lines and will be omitted:

Lemma 4.7. The following inequalities hold true:

$$
\begin{aligned}
\left|\mathbb{E} \phi_{n} u_{n}^{*} Y_{n} \widetilde{Q}_{n}(z) \tilde{v}_{n}\right| & \leq K / \sqrt{n} \\
\mathbb{E}\left|\phi_{n} u_{n}^{*} Y_{n} \widetilde{Q}_{n}(z) \tilde{v}_{n}\right|^{4} & \leq K
\end{aligned}
$$

We now prove Theorem 2.2
Proof of Theorem [2.2-(1). To prove this result, we follow the idea of 8, 9. We start with a purely algebraic result. By Assumption 4 there exists a $N \times r$ matrix A_{n} and a $n \times r$ matrix B_{n}, both with rank r and bounded spectral norms, such that $P_{n}=A_{n} B_{n}^{*}$ (at this step, A_{n} need not be an isometry matrix as was done before Equation (6)). Assume that $x>0$ is not an eigenvalue of $n^{-1} Y_{n} Y_{n}^{*}$. Then
x is an eigenvalue of $\Sigma_{n} \Sigma_{n}^{*}$ if and only if $\operatorname{det} \widehat{S}_{n}(x)=0$ where $\widehat{S}_{n}(x)$ is the $2 r \times 2 r$ matrix

$$
\widehat{S}_{n}(x)=\left[\begin{array}{cc}
\sqrt{x} A_{n}^{*} Q_{n}(x) A_{n} & I_{r}+n^{-1 / 2} A_{n}^{*} Y_{n} \widetilde{Q}_{n}(x) B_{n} \\
I_{r}+n^{-1 / 2} B_{n}^{*} \widetilde{Q}_{n}(x) Y_{n}^{*} A_{n} & \sqrt{x} B_{n}^{*} \widetilde{Q}_{n}(x) B_{n}
\end{array}\right]
$$

(for details, see the derivations in [9] or in [20, Section 3]). The intuitive idea is the following. Fix the value of x. By the results shown above, $\widehat{S}_{n}(x)$ is close for large n to

$$
S_{n}(x)=\left[\begin{array}{cc}
\sqrt{x} m_{n}(x) A_{n}^{*} A_{n} & I_{r} \\
I_{r} & \sqrt{x} B_{n}^{*} \widetilde{T}_{n}(x) B_{n}
\end{array}\right]
$$

Hence, we expect the eigenvalues of $\Sigma_{n} \Sigma_{n}^{*}$ in (a, b), when they exist, to be close for large n to the zeros in (a, b) of

$$
\begin{aligned}
\operatorname{det} S_{n}(x) & =\operatorname{det}\left(x m_{n}(x) A_{n}^{*} A_{n} B_{n}^{*} \widetilde{T}_{n}(x) B_{n}-I_{r}\right) \\
& =(-1)^{r} \operatorname{det}\left(I_{N}-x m_{n}(x) P_{n} \widetilde{T}_{n}(x) P_{n}^{*}\right)
\end{aligned}
$$

For any $x \in(a, b)$, $\operatorname{det} S_{n}(x)=(-1)^{r} \operatorname{det}\left(H_{n}(x)+I_{r}\right) \simeq(-1)^{r} \operatorname{det}\left(H_{*}(x)+I_{r}\right)$ where H_{n} is given by Equation (7) and H_{*} is provided in the statement of the theorem. Hence the zeros of $\mathcal{D}(x)$ in (a, b) are the limits of the isolated eigenvalues of $\Sigma_{n} \Sigma_{n}^{*}$.

We now formalize this argument. Our first task is to establish the properties of $H_{*}(x)$ given in the statement of Theorem[2.2-(1). We start by defining the function $\operatorname{det} S_{n}(z)$ on \mathbb{C}_{+}by writing

$$
\operatorname{det} S_{n}(z)=(-1)^{r} \operatorname{det}\left(I_{N}-z m_{n}(z) P_{n} \widetilde{T}_{n}(z) P_{n}^{*}\right)=(-1)^{r} \operatorname{det}\left(H_{n}(z)+I_{r}\right)
$$

Let V be a small enough neighborhood of $\left[x_{1}, x_{2}\right]$ in \mathbb{C}, where we recall that $\left[x_{1}, x_{2}\right]$ is an arbitrary interval in (a, b). By the construction of Λ_{n}, Proposition 2.1 and Lemma 3.1 the functions $H_{n}(z)$ are analytic on V for n large enough, the functions $H_{*}(z)$ are analytic on V, and from every sequence of integers increasing to infinity, one can extract a subsequence $\varphi(n)$ along which $H_{\varphi(n)}(z)$ converges to one of the $H_{*}(z)$ uniformly on the compact subsets of V. The comments preceding Theorem 2.2 show that any $H_{*}(z)$ is the Stieltjes Transform of a matrix-valued nonnegative measure Γ. Since $H_{*}(z)$ is analytic on V, the interval $\left[x_{1}, x_{2}\right.$] lies outside the support of Γ. Hence, the extension of $H_{*}(z)$ to $\left[x_{1}, x_{2}\right]$ is increasing on this interval in the order of Hermitian matrices, and the properties of this function given in the statement of Theorem [2.2 (11) are established.

In order to prove the convergence stated in Theorem 2.2 (1), it will be enough to show that for large n and with probability one, $\Sigma \Sigma^{*}$ has no eigenvalues in any compact interval lying in $\left(a, \rho_{1}\right),\left(\rho_{1}, \rho_{2}\right), \ldots$, or in $\left(\rho_{k}, b\right)$ if $k \geq 1$, or in (a, b) if $k=0$, and the number of its eigenvalues in any small neighborhood of any of the ρ_{i} is equal to the multiplicity of this zero. Let $D_{x_{1}, x_{2}}^{\circ}$ be the open disk with diameter $\left[x_{1}, x_{2}\right]$ where x_{1} and x_{2} are chosen such that $\left[x_{1}, x_{2}\right] \subset(a, b)$ and $\left\{\rho_{1}, \ldots, \rho_{k}\right\} \cap\left\{x_{1}, x_{2}\right\}=\emptyset$. Let us restrict ourselves to the probability one set where $n^{-1} Y Y^{*}$ has no eigenvalues for large n in a large enough closed interval in (a, b). We need to prove that on this set, the number of zeros of $\operatorname{det} \widehat{S}_{n}(z)$ in $D_{x_{1}, x_{2}}^{\circ}$ converges almost surely to the number of zeros of $\operatorname{det}\left(H_{*}(z)+I_{r}\right)$ in that same disk. Let $\widehat{L}_{n}=\sharp\left\{i: \hat{\lambda}_{i}^{n} \in D_{x_{1}, x_{2}}^{\circ}\right\}, L_{n}=\sharp\left\{\right.$ zeros of $\operatorname{det} S_{n}(z)$ in $\left.D_{x_{1}, x_{2}}^{\circ}\right\}$, and
$L=\sharp\left\{i: \rho_{i} \in D_{x_{1}, x_{2}}^{\circ}\right.$ with multiplicities $\}$. By the well known argument principle for holomorphic functions,

$$
\begin{aligned}
\widehat{L}_{n} & =\frac{1}{2 \imath \pi} \oint_{\partial D_{x_{1}, x_{2}}^{\circ}} \frac{\left(\operatorname{det} \widehat{S}_{n}(z)\right)^{\prime}}{\operatorname{det} \widehat{S}_{n}(z)} d z \\
L_{n} & =\frac{1}{2 \imath \pi} \oint_{\partial D_{x_{1}, x_{2}}^{\circ}} \frac{\left(\operatorname{det} S_{n}(z)\right)^{\prime}}{\operatorname{det} S_{n}(z)} d z=\frac{1}{2 \imath \pi} \oint_{\partial D_{x_{1}, x_{2}}^{\circ}} \frac{\left(\operatorname{det}\left(H_{n}(z)+I_{r}\right)\right)^{\prime}}{\operatorname{det}\left(H_{n}(z)+I_{r}\right)} d z \quad \text { and } \\
L & =\frac{1}{2 \imath \pi} \oint_{\partial D_{x_{1}, x_{2}}^{\circ}} \frac{\left(\operatorname{det}\left(H_{*}(z)+I_{r}\right)\right)^{\prime}}{\operatorname{det}\left(H_{*}(z)+I_{r}\right)} d z
\end{aligned}
$$

where $\partial D_{x_{1}, x_{2}}^{\circ}$ is seen as a positively oriented contour.
For any $1 \leq k, \ell \leq r$, let $h_{n, k, \ell}(z)=\left[A_{n}^{*}\left(Q_{n}(z)-m_{n}(z) I_{N}\right) A_{n}\right]_{k, \ell}$. Let V be a small neighborhood of $D_{x_{1}, x_{2}}$, the closure of $D_{x_{1}, x_{2}}^{\circ}$. Let z_{m} be a sequence of complex numbers in V having an accumulation point in V. By Lemmas 4.1, 4.3 and 4.6 and the Borel Cantelli lemma, $h_{n, k, \ell}\left(z_{m}\right) \xrightarrow{\text { as }} 0$ as $n \rightarrow \infty$ for every m. Moreover, for n large, the $h_{n, k, \ell}$ are uniformly bounded on any compact subset of V. By the normal family theorem, every n-sequence of $h_{n, k, \ell}$ contains a further subsequence which converges uniformly on the compact subsets of V to a holomorphic function h_{*}. Since $h_{*}\left(z_{m}\right)=0$ for every m, we obtain that almost surely, $h_{n, k, \ell}$ converges uniformly to zero on the compact subsets of V, and the same can be said about $\left\|A_{n}^{*}\left(Q_{n}(z)-m_{n}(z) I_{N}\right) A_{n}\right\|$. Using in addition Lemmas 3.1 and 4.7 we obtain the same result for $\left\|B_{n}^{*}\left(\widetilde{Q}_{n}(z)-\widetilde{T}_{n}(z)\right) B_{n}\right\|$ and $n^{-1 / 2}\left\|A_{n}^{*} Y_{n} \widetilde{Q}_{n}(z) B_{n}\right\|$.

Since $\operatorname{det} X$ is a polynomial in the elements of matrix $X, \operatorname{det} \widehat{S}_{n}(z)-\operatorname{det} S_{n}(z)$ converges almost surely to zero on $\partial D_{x_{1}, x_{2}}^{\circ}$, and this convergence is uniform. By analyticity, the same can be said about the derivatives of these quantities. Moreover, $\operatorname{det} S_{n}(z)$ converges to $(-1)^{r} \operatorname{det}\left(H_{*}(z)+I_{r}\right)$ (which is the same for all accumulation points Λ_{*}) uniformly on $\partial D_{x_{1}, x_{2}}^{\circ}$. Similarly, ($\left.\operatorname{det} S_{n}(z)\right)^{\prime}$ converges to $(-1)^{r}\left(\operatorname{det}\left(H_{*}(z)+I_{r}\right)\right)^{\prime}$ uniformly on $\partial D_{x_{1}, x_{2}}^{\circ}$. Furthermore, by construction of the interval $\left[x_{1}, x_{2}\right]$, we have $\inf _{z \in \partial D_{x_{1}, x_{2}}^{\circ}}\left|\operatorname{det}\left(H_{*}(z)+I_{r}\right)\right|>0$ which implies that $\lim \inf _{n} \inf _{z \in \partial D_{x_{1}, x_{2}}^{\circ}}\left|\operatorname{det} S_{n}(z)\right|>0$. It follows that $\widehat{L}_{n}-L_{n} \xrightarrow{\text { as }} 0$ and $L_{n} \rightarrow L$ as $n \rightarrow \infty$. This concludes the proof of Theorem (2.2 (1).

Proof of Theorem 2.2-(22) and (3). We start with the following lemma:
Lemma 4.8. Let $A=\inf (\operatorname{supp}(\mu)-\{0\})$. Let $I=\left[x_{1}, x_{2}\right] \subset \operatorname{supp}(\mu)^{c}$. Then the following hold true:
(i) If $x_{2}<A$, then $\mathbf{m}(x)(1+c \mathbf{m}(x) t)^{-1}>0$ for all $x \in I$ and all $t \in \operatorname{supp}(\nu)$.
(ii) Alternatively, if $x_{1}>A$, then there exists a measurable set $E \subset \mathbb{R}_{+}$such that $\nu(\partial E)=0, \nu(E)>0$ and $\mathbf{m}(x)(1+c \mathbf{m}(x) t)^{-1}<0$ for all $x \in I$ and all $t \in E$.

Proof. To have an illustration of some of the proof arguments, the reader might refer to Figures 1 and 2 which provide typical plots of $x(\mathbf{m})$ for $c<1$ and $c>1$ respectively. We start with a preliminary result:
Since $\mathbf{m}(z)$ is the Stieltjes Transform of a probability measure supported by \mathbb{R}_{+}, the function $\mathbf{m}(x)$ decreases to zero as $x \rightarrow-\infty$. From Proposition [3.2, $x(\mathbf{m}) \rightarrow-\infty$ as $\mathbf{m} \rightarrow 0^{+}$, and

$$
\mathbf{m}>0 \Rightarrow x(\mathbf{m})<A
$$

From Proposition 3.2, $J=\mathbf{m}(I)$ is an interval $\left[\mathbf{m}_{1}, \mathbf{m}_{2}\right] \subset B$. Let $E=\left[0,-\left(c \mathbf{m}_{1}\right)^{-1}\right]$ with the convention $E=\emptyset$ when $\mathbf{m}_{1}>0$. We already assumed that $\nu(\{0\})=0$. Since $-\left(c \mathbf{m}_{1}\right)^{-1} \in \operatorname{supp}(\nu)^{c}$ by Proposition 3.2, $\nu\left(\left\{-\left(c \mathbf{m}_{1}\right)^{-1}\right\}\right)=0$. The main part of the proof consists in showing that

$$
\begin{equation*}
\nu(E)>0 \Leftrightarrow x_{1}>A \tag{11}
\end{equation*}
$$

To see why (11) proves the lemma, consider first $x_{1}>A$. Then $\mathbf{m}_{1}<0$ and $\mathbf{m}_{2}<0$. For any $t \in E$ and any $\mathbf{m} \in J, 1+c \mathbf{m} t \geq 1-c \mathbf{m}\left(c \mathbf{m}_{1}\right)^{-1}>0$. As $\mathbf{m}<0,(i i)$ is true. Assume now that $x_{2}<A$. In the case $J \subset(0, \infty),(i)$ is immediate. Assume $J \subset B \cap(-\infty, 0)$. Then, since $\nu(E)=0$, we get that $\forall t \in \operatorname{supp}(\nu), t \geq-\left(c \mathbf{m}_{1}\right)^{-1}$, therefore $t \geq-\left(c \mathbf{m}_{2}\right)^{-1}$. Consequently, for any $t \in \operatorname{supp}(\nu)$ and any $\mathbf{m} \in J$, $1+c \mathbf{m} t \leq 1-c \mathbf{m}\left(c \mathbf{m}_{2}\right)^{-1}=1-\mathbf{m} / \mathbf{m}_{2}<0$, and (i) is true.
Let us first prove (11) in the \Leftarrow direction. When $x_{1}>A$, we have seen that $\mathbf{m}_{1}<0$. Assume that $\nu(E)=0$. Then $\left(-\infty, \mathbf{m}_{1}\right] \subset B$. Since $t \geq-\left(c \mathbf{m}_{1}\right)^{-1}$ in the integral in (8), $x(\mathbf{m}) \rightarrow 0$ as $\mathbf{m} \rightarrow-\infty$ by the dominated convergence theorem. By Propositions 3.1, 3.2 and $3.3 x(\mathbf{m})$ should be increasing from 0 to x_{1} on $\left(-\infty, \mathbf{m}_{1}\right.$]. This contradicts $x_{1}>A$.
We now prove (11) in the \Rightarrow direction. To that end, we consider in turn the cases $c<1, c>1$ and $c=1$.
Assume $c<1$. We have seen that $x(\mathbf{m}) \rightarrow-\infty$ as $\mathbf{m} \rightarrow 0^{+}$. From (8) we notice that $\mathbf{m} x(\mathbf{m}) \rightarrow(1-c) / c>0$ as $\mathbf{m} \rightarrow \infty$, hence $x(\mathbf{m})$ reaches a positive maximum on $(0, \infty)$. By Propositions 3.2 and 3.3, this maximum is A, and we have $x<A \Rightarrow \mathbf{m}(x)>0$. Therefore, $x_{1}<A \Rightarrow \nu(E)=0$.
Consider now the case $c>1$. We shall also show that $x_{1}<A \Rightarrow \nu(E)=0$. By Proposition 3.4, the measure μ has a Dirac at zero with weight $1-c^{-1}$. Hence, either $x_{1} \leq x_{2}<0$, or $A>0$ and $0<x_{1} \leq x_{2}<A$. Since $\mathbf{m}(z)$ is the Stieltjes Transform of a probability measure supported by \mathbb{R}_{+}, it holds that $x<0 \Rightarrow \mathbf{m}(x)>0$. Hence, $\nu(E)=0$ when $x_{1}<0$. We now consider the second case. Since $\left(0, x_{1}\right] \subset \operatorname{supp}(\mu)^{c}$, the image of this interval by \mathbf{m} belongs to B. By Proposition 3.4, $\lim _{x \rightarrow 0^{+}} \mathbf{m}(x)=$ $-\infty$. Hence this image is $\left(-\infty, x_{1}\right]$. This implies that $\nu(E)=0$.
We finally consider the case $c=1$. We show here that $A=0$, which will result in $x<A \Rightarrow \mathbf{m}(x)>0 \Rightarrow \nu(E)=0$ as above. Assume $A>0$ and let $x_{0} \in(0, A)$. By Proposition 3.4, $\mu(\{0\})=0$ hence $\mathbf{m}\left(x_{0}\right)=\int\left(t-x_{0}\right)^{-1} \mu(d t)>0$. But from (8), we observe that $x(\mathbf{m})$ increases from $-\infty$ to 0 as \mathbf{m} increases from 0 to ∞, which raises a contradiction. This concludes the proof of Lemma4.8.

This lemma shows that for any $x<\inf (\operatorname{supp}(\mu)-\{0\}), H_{*}(x) \geq 0$, hence $\mathcal{D}(x)>0$ for those x. This proves Theorem 2.2 (21).
Turning to Theorem[2.2(3), choose an interval $\left[x_{1}, x_{2}\right] \subset(a, b)$ such that $\left[\rho_{1}, \rho_{r}\right] \subset$ $\left(x_{1}, x_{2}\right)$. Let E be the set associated with $\left[x_{1}, x_{2}\right]$ by Lemma 4.8(ii). By Lemma 4.8 (ii) and the properties of a Stieltjes Transform, the function

$$
q(x)=\int \frac{\mathbf{m}(x)}{1+c \mathbf{m}(x) t} 1_{E}(t) \nu(d t)
$$

is negative and increasing on $\left[x_{1}, x_{2}\right]$. Let $\boldsymbol{\Omega}=\operatorname{diag}\left(\omega_{1}^{2}, \ldots, \omega_{r}^{2}\right)$ where $\omega_{k}^{2}=$ $-1 / q\left(\rho_{k}\right)$. Then it is clear that function $\mathcal{D}(x)=\operatorname{det}\left(q(x) \boldsymbol{\Omega}+I_{r}\right)$ has r roots in $\left[x_{1}, x_{2}\right]$ which coincide with the ρ_{k}. Theorem [2.2(3) will be proved if we find a sequence of matrices P_{n} such that one of the $H_{n}(z)$ associated to P_{n} as in (7) converges to $q(z) \boldsymbol{\Omega}$ uniformly in the compact subsets of a neighborhood of $\left[x_{1}, x_{2}\right]$.

Figure 1. Plot of $x(\mathbf{m})$ for $c=0.1$ and $\nu=0.5\left(\boldsymbol{\delta}_{1}+\boldsymbol{\delta}_{3}\right)$. The thick segment represents $\operatorname{supp}(\mu)$.

Figure 2. Plot of $x(\mathbf{m})$ for $c=5$ and $\nu=0.5\left(\boldsymbol{\delta}_{1 / 2}+\boldsymbol{\delta}_{5 / 2}\right)$. The thick segments represent $\operatorname{supp}(\mu)$.

Rearrange the elements of D_{n} in such a way that all the d_{j}^{n} which belong to E are in the top left corner of this matrix. Let $M_{n}=\left[M_{i j}^{n}\right]$ be a random $\lfloor n \nu(E)\rfloor \times r$ matrix with iid elements such that $\sqrt{n} M_{11}^{n}$ has mean zero and variance one. Let Z_{n} be the $n \times r$ matrix obtained by adding $n-\lfloor n \nu(E)\rfloor$ rows of zeros below M_{n}. Then the law of large numbers shows in conjunction with a normal family theorem argument that there is a set of probability one over which $z m_{n}(z) Z_{n}^{*} \widetilde{T}_{n}(z) Z_{n}$ converges to $q(z) I_{r}$ uniformly on the compact subsets of a neighborhood of $\left[x_{1}, x_{2}\right]$. Consequently, there exists a sequence of deterministic matrices B_{n} such that $z m_{n}(z) B_{n}^{*} \widetilde{T}_{n}(z) B_{n} \rightarrow$ $q(z) I_{r}$ uniformly on these compact subsets. Matrix $P_{n}=A_{n} B_{n}^{*}$ with $A_{n}=$ $\left[\begin{array}{c}\Omega^{1 / 2} \\ 0(N-r) \times r\end{array}\right]$ satisfies the required property. Theorem 2.2 (3) is proved.

5. Second Order Analysis

In all this section we shall work on a sequence of factorizations $P_{n}=U_{n} R_{n}^{*}$ such that Λ_{n} satisfies the third item of Assumption 7. We also write $U_{n}=\left[U_{1, n} \cdots U_{t, n}\right]$ and $R_{n}=\left[R_{1, n} \cdots R_{t, n}\right]$ where $U_{i, n} \in \mathbb{C}^{N \times j_{i}}$ and $R_{i, n} \in \mathbb{C}^{n \times j_{i}}$.

We start by briefly showing the first two facts stated by Theorem 2.3. For any $i=1, \ldots, p$, it is clear that $\mathbf{m}\left(\rho_{i}\right)^{2}>0$ and $\mathbf{m}^{\prime}\left(\rho_{i}\right)>0$. An immediate calculus then gives $\mathbf{m}^{\prime}\left(\rho_{i}\right) \boldsymbol{\Delta}\left(\rho_{i}\right)=\mathbf{m}^{2}\left(\rho_{i}\right)$ which shows that $\boldsymbol{\Delta}\left(\rho_{i}\right)>0$.
To prove the second fact, we shall establish more generally that limsup $\sqrt{n} \| H_{n}\left(\rho_{i}\right)+$ $g\left(\rho_{i}\right) \boldsymbol{\Omega} \|<\infty$. Invoking Equation (3) and its analogue $m_{n}(z)=\left(-z+\int t(1+\right.$ $\left.\left.c_{n} m_{n}(z) t\right)^{-1} \nu_{n}(d t)\right)^{-1}$, taking the difference and doing some straightforward derivations, we get that $\left(m_{n}\left(\rho_{i}\right)-\mathbf{m}\left(\rho_{i}\right)\right)\left(\boldsymbol{\Delta}\left(\rho_{i}\right)+\varepsilon_{1}\right)=\varepsilon_{2}$ where $\varepsilon_{1} \rightarrow 0$ and where $\left|\varepsilon_{2}\right| \leq$ K / \sqrt{n} thanks to the first two items of Assumption [7 Hence $\left|m_{n}\left(\rho_{i}\right)-\mathbf{m}\left(\rho_{i}\right)\right| \leq$ K / \sqrt{n}. Now we have

$$
\begin{aligned}
H_{n}\left(\rho_{i}\right)+g\left(\rho_{i}\right) \boldsymbol{\Omega} & =\int\left(\frac{m_{n}\left(\rho_{i}\right)}{1+c_{n} m_{n}\left(\rho_{i}\right) t}-\frac{\mathbf{m}\left(\rho_{i}\right)}{1+c \mathbf{m}\left(\rho_{i}\right) t}\right) \Lambda_{n}(d t) \\
& +\int \frac{\mathbf{m}\left(\rho_{i}\right)}{1+c \mathbf{m}\left(\rho_{i}\right) t} \Lambda_{n}(d t)-\int \frac{\mathbf{m}\left(\rho_{i}\right)}{1+c \mathbf{m}\left(\rho_{i}\right) t} \nu(d t) \times \boldsymbol{\Omega}
\end{aligned}
$$

which shows thanks to Assumption 7 that $\lim \sup \sqrt{n}\left\|H_{n}\left(\rho_{i}\right)+g\left(\rho_{i}\right) \boldsymbol{\Omega}\right\|<\infty$.
We now enter the core of the proof Theorem 2.3. The following preliminary lemmas are proven in the appendix:
Lemma 5.1. Let s be a fixed integer, and let $Z_{N}=\left[Z_{i j}\right]$ be a $N \times s$ complex matrix with iid elements with independent $\mathcal{N}(0,1 / 2)$ real and imaginary parts. Let $\Upsilon_{N}=\left[\Upsilon_{i j}\right]$ be a deterministic Hermitian $N \times N$ matrix such that $\operatorname{Tr} \Upsilon_{N}=0$, and let $F_{N}=\left[F_{i j}\right]$ be a complex deterministic $N \times s$ matrix. Assume that $F_{N}^{*} F_{N} \rightarrow \varsigma^{2} I_{s}$, that $\lim \sup _{N}\left\|\Upsilon_{N}\right\|<\infty$, and that $N^{-1} \operatorname{Tr}^{2} \Upsilon_{N}^{2} \rightarrow \sigma^{2}$ as $N \rightarrow \infty$. Let M be a $s \times s$ complex matrix with iid elements with independent $\mathcal{N}(0,1 / 2)$ real and imaginary parts, and let G be a $s \times s$ GUE matrix independent of M. Then

$$
\left(N^{-1 / 2} Z_{N}^{*} \Upsilon_{N} Z_{N}, Z_{N}^{*} F_{N}\right) \xrightarrow[N \rightarrow \infty]{\mathcal{D}}(\boldsymbol{\sigma} G, \varsigma M)
$$

Lemma 5.2. For $x \in \operatorname{supp}(\mu)^{c}$,

$$
\mathbb{E}\left[\phi_{n} \tilde{u}_{n}^{*} \widetilde{Q}_{n}(x)\left(n^{-1} Y_{n}^{*} Y_{n}\right) \widetilde{Q}_{n}(x) \tilde{u}_{n}\right]=c_{n} \frac{x^{2} m_{n}(x)^{2} \tilde{u}_{n}^{*} D_{n} \widetilde{T}_{n}^{2}(x) \tilde{u}_{n}}{1-c_{n} x^{2} m_{n}(x)^{2} \frac{1}{n} \operatorname{Tr} D_{n}^{2} \widetilde{T}_{n}^{2}(x)}+\mathcal{O}\left(n^{-1}\right)
$$

and

$$
\operatorname{Var}\left(\phi_{n} \tilde{u}_{n}^{*} \widetilde{Q}_{n}(x)\left(n^{-1} Y_{n}^{*} Y_{n}\right) \widetilde{Q}_{n}(x) \tilde{u}_{n}\right) \leq \frac{K}{n}
$$

Lemma 5.3. For $i=1, \ldots, p$, let A_{i} be a deterministic Hermitian $j_{i} \times j_{i}$ matrix independent of n, where p and the j_{i} are as in the statement of Theorem 2.3. For $i=1, \ldots, p$, let $M_{i, n}$ a $n \times j_{i}$ matrix such that $\sup _{n}\left\|M_{i, n}\right\|<\infty$. Then for any $t \in \mathbb{R}$,

$$
\mathbb{E}\left[\exp \left(\imath \sqrt{n} t \sum_{i=1}^{p} \operatorname{Tr} A_{i} M_{i, n}^{*}\left(\widetilde{Q}_{n}\left(\rho_{i}\right)-\widetilde{T}_{n}\left(\rho_{i}\right)\right) M_{i, n}\right)\right]=\exp \left(-t^{2} \tilde{\sigma}_{n}^{2} / 2\right)+\mathcal{O}\left(n^{-1 / 2}\right)
$$

where

$$
\begin{aligned}
\tilde{\sigma}_{n}^{2}=\sum_{i, k=1}^{p} & c_{n} \rho_{i} \rho_{k} m_{n}\left(\rho_{i}\right) m_{n}\left(\rho_{k}\right) \\
& \times \frac{\operatorname{Tr} A_{i} M_{i, n}^{*} \widetilde{T}_{n}\left(\rho_{i}\right) D_{n} \widetilde{T}_{n}\left(\rho_{k}\right) M_{k, n} A_{k} M_{k, n}^{*} \widetilde{T}_{n}\left(\rho_{k}\right) D_{n} \widetilde{T}_{n}\left(\rho_{i}\right) M_{i, n}}{1-c_{n} \rho_{i} \rho_{k} m_{n}\left(\rho_{i}\right) m_{n}\left(\rho_{k}\right) \frac{1}{n} \operatorname{Tr} D_{n} \widetilde{T}_{n}\left(\rho_{i}\right) D_{n} \widetilde{T}_{n}\left(\rho_{k}\right)}
\end{aligned}
$$

Replacing the $M_{i, n}$ with the blocks $R_{i, n}$ of R_{n} in the statement of Lemma 5.3 and observing that

$$
R_{n}^{*} \widetilde{T}_{n}\left(\rho_{i}\right) D_{n} \widetilde{T}_{n}\left(\rho_{k}\right) R_{n}=\int \frac{t}{\rho_{i} \rho_{k}\left(1+c_{n} m_{n}\left(\rho_{i}\right) t\right)\left(1+c_{n} m_{n}\left(\rho_{k}\right) t\right)} \Lambda_{n}(d t)
$$

we obtain from the third item of Assumption 7 that $\tilde{\sigma}_{n}^{2} \rightarrow \sum_{i=1}^{p} \tilde{\boldsymbol{\sigma}}_{i}^{2} \operatorname{Tr} A_{i}^{2}$ where

$$
\tilde{\boldsymbol{\sigma}}_{i}^{2}=\frac{c \omega_{i}^{4}}{\boldsymbol{\Delta}\left(\rho_{i}\right)}\left(\int \frac{\mathbf{m}\left(\rho_{i}\right) t}{\left(1+c \mathbf{m}\left(\rho_{i}\right) t\right)^{2}} \nu(d t)\right)^{2} .
$$

Invoking the Cramer-Wold device, this means that the p-uple of random matrices

$$
\sqrt{n}\left(R_{i, n}^{*}\left(\widetilde{Q}_{n}\left(\rho_{i}\right)-\widetilde{T}_{n}\left(\rho_{i}\right)\right) R_{i, n}\right)_{i=1}^{p}
$$

converges in distribution towards $\left(\widetilde{\boldsymbol{\sigma}}_{i} \widetilde{G}_{i}\right)_{i=1}^{p}$ where $\widetilde{G}_{1}, \ldots, \widetilde{G}_{p}$ are independent GUE matrices with $\widetilde{G}_{i} \in \mathbb{C}^{j_{i} \times j_{i}}$.

Lemmas 5.15 5.3 lead to the following result which plays a central role in the proof of Theorem 2.3.

Lemma 5.4. Consider the 3 p-uple of random matrices
$L_{n}=\sqrt{n} \times$

$$
\left(\frac{U_{i, n}^{*} Y_{n} \widetilde{Q}_{n}\left(\rho_{i}\right) R_{i, n}}{\sqrt{n}}, U_{i, n}^{*}\left(Q_{n}\left(\rho_{i}\right)-m_{n}\left(\rho_{i}\right) I_{N}\right) U_{i, n}, R_{i, n}^{*}\left(\widetilde{Q}_{n}\left(\rho_{i}\right)-\widetilde{T}_{n}\left(\rho_{i}\right)\right) R_{i, n}\right)_{i=1}^{p}
$$

Define the following quantities

$$
\begin{aligned}
\boldsymbol{\varsigma}_{i}^{2} & =\frac{\omega_{i}^{2}}{\boldsymbol{\Delta}\left(\rho_{i}\right)} \int \frac{\mathbf{m}^{2}\left(\rho_{i}\right) t}{\left(1+c \mathbf{m}\left(\rho_{i}\right) t\right)^{2}} \nu(d t) \\
\boldsymbol{\sigma}_{i}^{2} & =\frac{1}{\boldsymbol{\Delta}\left(\rho_{i}\right)} \int \frac{\mathbf{m}^{4}\left(\rho_{i}\right) t^{2}}{\left(1+c \mathbf{m}\left(\rho_{i}\right) t\right)^{2}} \nu(d t) \\
\tilde{\boldsymbol{\sigma}}_{i}^{2} & =\frac{c \omega_{i}^{4}}{\boldsymbol{\Delta}\left(\rho_{i}\right)}\left(\int \frac{\mathbf{m}\left(\rho_{i}\right) t}{\left(1+c \mathbf{m}\left(\rho_{i}\right) t\right)^{2}} \nu(d t)\right)^{2} .
\end{aligned}
$$

Let M_{1}, \ldots, M_{p} be random matrices such that $M_{i} \in \mathbb{C}^{j_{i} \times j_{i}}$ and has independent elements with independent $\mathcal{N}(0,1 / 2)$ real and imaginary parts. Let $G_{1}, \widetilde{G}_{1}, \ldots, G_{p}, \widetilde{G}_{p}$ be GUE matrices such that $G_{i}, \widetilde{G}_{i} \in \mathbb{C}^{j_{i} \times j_{i}}$. Assume in addition that $M_{1}, G_{1}, \widetilde{G}_{1}$, $\ldots, M_{p}, G_{p}, \widetilde{G}_{p}$ are independent. Then

$$
L_{n} \underset{n \rightarrow \infty}{\mathcal{D}}\left(\boldsymbol{\varsigma}_{i} M_{i}, \boldsymbol{\sigma}_{i} G_{i}, \tilde{\boldsymbol{\sigma}}_{i} \widetilde{G}_{i}\right)_{i=1}^{p}
$$

Proof. Let $\alpha_{n}(\rho)=N^{-1} \operatorname{Tr} Q_{n}(\rho)$. By Lemmas 4.3 and 4.5. $\sqrt{n}\left(\alpha_{n}\left(\rho_{i}\right)-m_{n}\left(\rho_{i}\right)\right) \xrightarrow{\mathcal{P}}$ 0 . Therefore, we can replace the $m_{n}\left(\rho_{i}\right)$ in the expression of L_{n} by $\alpha_{n}\left(\rho_{i}\right)$, as we shall do in the rest of the proof.
Write $s=j_{1}+\cdots+j_{p}$ and let Z_{n} be a $N \times s$ complex matrix with iid elements with independent $\mathcal{N}(0,1 / 2)$ real and imaginary parts. Assume that Z_{n} and X_{n} are independent. Write $Z_{n}=\left[Z_{1, n} \cdots Z_{p, n}\right]$ where the block $Z_{i, n}$ is $N \times j_{i}$. Let $n^{-1 / 2} X_{n}=W_{n} \Delta_{n} \widetilde{W}_{n}^{*}$ be a singular value decomposition of $n^{-1 / 2} X_{n}$. By assumption 2. the square matrices W_{n} and \widetilde{W}_{n} are Haar distributed over their respective unitary groups, and moreover, W_{n}, Δ_{n} and \widetilde{W}_{n} are independent. Let
$\bar{L}_{n}=$
$\sqrt{n}\left(\frac{U_{n}^{*} Y_{n} \widetilde{Q}_{n}\left(\rho_{i}\right) R_{i, n}}{\sqrt{n}}, U_{n}^{*}\left(Q_{n}\left(\rho_{i}\right)-\alpha_{n}\left(\rho_{i}\right) I_{N}\right) U_{n}, R_{i, n}^{*}\left(\widetilde{Q}_{n}\left(\rho_{i}\right)-\widetilde{T}_{n}\left(\rho_{i}\right)\right) R_{i, n}\right)_{i=1}^{p}$.
We have

$$
\begin{aligned}
\bar{L}_{n} \stackrel{\mathcal{L}}{=} & \left(\sqrt{N}\left(Z_{n}^{*} Z_{n}\right)^{-1 / 2} Z_{n}^{*} F_{i, n}, N^{1 / 2}\left(Z_{n}^{*} Z_{n}\right)^{-1 / 2} Z_{n}^{*} \Upsilon_{i, n} Z_{n}\left(Z_{n}^{*} Z_{n}\right)^{-1 / 2}\right. \\
& \left.\sqrt{n} R_{i, n}^{*}\left(\widetilde{Q}_{n}\left(\rho_{i}\right)-\widetilde{T}_{n}\left(\rho_{i}\right)\right) R_{i, n}\right)_{i=1}^{p}
\end{aligned}
$$

where $F_{i, n}=c_{n}^{-1 / 2} \Delta_{n} \widetilde{W}_{n}^{*} D_{n}^{1 / 2} \widetilde{Q}_{n}\left(\rho_{i}\right) R_{i, n}$ and $\Upsilon_{i, n}=c_{n}^{-1 / 2}\left(\left(\Delta_{n} \widetilde{W}_{n}^{*} D_{n} \widetilde{W}_{n} \Delta_{n}-\right.\right.$ $\left.\left.\rho_{i}\right)^{-1}-\alpha_{n}\left(\rho_{i}\right) I_{N}\right)$. We shall now show that the term $\sqrt{N}\left(Z_{n}^{*} Z_{n}\right)^{-1 / 2} Z_{n}^{*} F_{i, n}$ can be replaced with $Z_{n}^{*} F_{i, n}$. By the law of large numbers, we have $N^{-1} Z_{n}^{*} Z_{n} \xrightarrow{\text { as }} I_{s}$. By the independence of Z_{n} and $\left(\Delta_{n}, \widetilde{W}_{n}\right)$, we have $\mathbb{E}\left[\operatorname{Tr} Z_{n}^{*} F_{i, n} F_{i, n}^{*} Z_{n} \mid\left(\Delta_{n} \widetilde{W}_{n}\right)\right]=$ $s c_{n}^{-1} \operatorname{Tr} R_{i, n}^{*} \widetilde{Q}_{n}\left(\rho_{i}\right)\left(n^{-1} Y_{n}^{*} Y_{n}\right) \widetilde{Q}_{n}\left(\rho_{i}\right) R_{i, n}$ whose limit superior is bounded with probability one. Hence $Z_{n}^{*} F_{i, n}$ is tight, proving that the replacement can be done.
By deriving the variances of the elements of $N^{-1 / 2} Z_{n}^{*} \Upsilon_{i, n} Z_{n}$ with respect to the law of Z_{n}, and by recalling that $\lim \sup _{n}\left\|\Upsilon_{i, n}\right\|$ is bounded with probability one, we obtain that these elements are also tight. It results that we can replace L_{n} with

$$
\underline{L}_{n}=\left(Z_{i, n}^{*} F_{i, n}, \frac{Z_{i, n}^{*} \Upsilon_{i, n} Z_{i, n}}{\sqrt{N}}, \sqrt{n} R_{i, n}^{*}\left(\widetilde{Q}_{n}\left(\rho_{i}\right)-\widetilde{T}_{n}\left(\rho_{i}\right)\right) R_{i, n}\right)_{i=1}^{p}
$$

For $i=1, \ldots, p$, let A_{i} and B_{i} be deterministic Hermitian $j_{i} \times j_{i}$ matrices and let C_{i} be deterministic complex $j_{i} \times j_{i}$ matrices, all independent of n. The lemma will be established if we prove that

$$
\begin{align*}
& \mathbb{E}\left\{\exp \left(\imath \sqrt{n} t \sum_{i=1}^{p} \operatorname{Tr} A_{i} R_{i, n}^{*}\left(\widetilde{Q}_{n}\left(\rho_{i}\right)-\widetilde{T}_{n}\left(\rho_{i}\right)\right) R_{i, n}\right)\right. \\
& \left.\quad \times \mathbb{E}\left[\exp \left(\imath t \sum_{i=1}^{p} N^{-1 / 2} \operatorname{Tr} B_{i} Z_{i, n}^{*} \Upsilon_{i, n} Z_{i, n}+\Re\left(\operatorname{Tr} C_{i} Z_{i, n}^{*} F_{i, n}\right)\right) \mid\left(\Delta_{n}, \widetilde{W}_{n}\right)\right]\right\} \\
& \xrightarrow[n \rightarrow \infty]{\longrightarrow} \prod_{i=1}^{p} \exp \left(-t^{2}\left(\tilde{\boldsymbol{\sigma}}_{i}^{2} \operatorname{Tr} A_{i}^{2}+\sigma_{i}^{2} \operatorname{Tr} B_{i}^{2}+\frac{1}{2} \boldsymbol{\varsigma}_{i}^{2} \operatorname{Tr} C_{i} C_{i}^{*}\right) / 2\right) \tag{12}
\end{align*}
$$

In addition to the boundedness of $\left\|\Upsilon_{i, n}\right\|$ w.p. one, we have $\operatorname{Tr} \Upsilon_{i, n}=0$, and

$$
\begin{aligned}
\frac{1}{N} \operatorname{Tr} \Upsilon_{i, n}^{2}= & \frac{1}{c_{n} N} \sum_{\ell=1}^{N}\left(\left(\lambda_{\ell}^{n}-\rho_{i}\right)^{-1}-\alpha_{n}\left(\rho_{i}\right)\right)^{2} \\
& \xrightarrow[n \rightarrow \infty]{\text { a.s. }} c^{-1}\left(\mathbf{m}^{\prime}\left(\rho_{i}\right)-\mathbf{m}\left(\rho_{i}\right)^{2}\right)=c^{-1} \mathbf{m}\left(\rho_{i}\right)^{2}\left(\boldsymbol{\Delta}\left(\rho_{i}\right)^{-1}-1\right)=\boldsymbol{\sigma}_{i}^{2} .
\end{aligned}
$$

Moreover, using Lemma 5.2 in conjunction with Assumption 6, we obtain

$$
F_{i, n}^{*} F_{i, n}=c_{n}^{-1} R_{i, n}^{*}\left(\widetilde{Q}_{n}\left(\rho_{i}\right) \frac{1}{n} Y_{n}^{*} Y_{n} \widetilde{Q}_{n}\left(\rho_{i}\right)\right) R_{i, n} \xrightarrow[n \rightarrow \infty]{\mathcal{P}} \boldsymbol{\varsigma}_{i}^{2} I_{j_{i}}
$$

From any sequence of integers increasing to infinity, there exists a subsequence along which this convergence in probability holds in the almost sure sense. Applying Lemma 5.1. we get that the inner expectation at the left hand side of (12) converges almost surely along this subsequence towards $\prod_{i=1}^{p} \exp \left(-t^{2}\left(\boldsymbol{\sigma}_{i}^{2} \operatorname{Tr} B_{i}^{2}+\right.\right.$ $\left.\frac{1}{2} \varsigma_{i}^{2} \operatorname{Tr} C_{i} C_{i}^{*}\right) / 2$). Using in addition Lemma 5.3 along with the dominated convergence theorem, we obtain that Convergence (12) holds true along this subsequence. Since the original sequence is arbitrary, we obtain the required result.

The remainder of the proof of Theorem 2.3 is an adaptation of the approach of [7.

Lemma 5.5. For a given $x \in \mathbb{R}$ and a given $i \in\{1, \ldots, p\}$, let $y=\rho_{i}+n^{-1 / 2} x$, and let

$$
\widehat{S}_{n}(y)=\left[\begin{array}{cc}
\sqrt{y} U_{n}^{*} Q_{n}(y) U_{n} & I_{r}+n^{-1 / 2} U_{n}^{*} Y_{n} \widetilde{Q}_{n}(y) R_{n} \\
I_{r}+n^{-1 / 2} R_{n}^{*} \widetilde{Q}_{n}(y) Y_{n}^{*} U_{n} & \sqrt{y} R_{n}^{*} \widetilde{Q}_{n}(y) R_{n}
\end{array}\right]
$$

Let

$$
\begin{align*}
& \chi_{n}^{(i)}(x)=n^{\frac{j_{i}}{2}}\left[\operatorname{det} \hat{S}_{n}(y)-\prod_{k \neq i}^{t}\left[\omega_{k}^{2} g\left(\rho_{i}\right)-1\right]^{j_{k}}\right. \\
& \times \operatorname{det}\left(\frac{\sqrt{n} U_{i, n}^{*}\left(Q_{n}\left(\rho_{i}\right)-m_{n}\left(\rho_{i}\right) I_{N}\right) U_{i, n}}{\mathbf{m}\left(\rho_{i}\right)}+\rho_{i} \mathbf{m}\left(\rho_{i}\right) \sqrt{n} R_{i, n}^{*}\left(\widetilde{Q}_{n}\left(\rho_{i}\right)-\widetilde{T}_{n}\left(\rho_{i}\right)\right) R_{i, n}\right. \\
& \left.\left.-2 \Re\left[U_{i, n}^{*} Y_{n} \widetilde{Q}_{n}\left(\rho_{i}\right) R_{i, n}\right]-\sqrt{n}\left(H_{i, n}\left(\rho_{i}\right)+I_{j_{i}}\right)-x H_{i, n}^{\prime}\left(\rho_{i}\right)\right)\right] \tag{13}
\end{align*}
$$

where $\Re(M)=\left(M+M^{*}\right) / 2$ for a square matrix M. Then

$$
\left(\chi_{n}^{(i)}\left(x_{1}\right), \ldots, \chi_{n}^{(i)}\left(x_{p}\right)\right) \xrightarrow[n \rightarrow \infty]{\mathcal{P}} 0
$$

for every finite sequence $\left\{x_{1}, \ldots, x_{p}\right\}$.
Proof. We show the result for $i=1$, the same procedure being valid for the other values of i. The notation $X_{n}=o_{P}(1)$ means that the random variable X_{n} converges to zero in probability, while $X_{n}=\mathcal{O}_{P}\left(n^{-\ell}\right)$ means that $n^{\ell} X_{n}$ is tight. Write $U=\left[U_{1}, \bar{U}_{1}\right]$ and $R=\left[R_{1}, \bar{R}_{1}\right]$ where $\bar{U}_{1}=\left[U_{2}, \ldots, U_{t}\right]$ and $\bar{R}_{1}=\left[R_{2}, \ldots, R_{t}\right]$.

Writing

$$
\begin{aligned}
A & =\left[\begin{array}{cc}
\sqrt{y} U_{1}^{*} Q(y) U_{1} & \sqrt{y} U_{1}^{*} Q(y) \bar{U}_{1} \\
\sqrt{y} \bar{U}_{1}^{*} Q(y) U_{1} & \sqrt{y} \bar{U}_{1}^{*} Q(y) \bar{U}_{1}
\end{array}\right]:=\left[\begin{array}{ll}
A_{11} & A_{12} \\
A_{12}^{*} & A_{22}
\end{array}\right] \\
B & =\left[\begin{array}{cc}
I_{j_{1}}+n^{-1 / 2} U_{1}^{*} Y \widetilde{Q}(y) R_{1} & n^{-1 / 2} U_{1}^{*} Y \widetilde{Q}(y) \bar{R}_{1} \\
n^{-1 / 2} \bar{U}_{1}^{*} Y \widetilde{Q}(y) R_{1} & I_{r-j_{1}}+n^{-1 / 2} \bar{U}_{1}^{*} Y \widetilde{Q}(y) \bar{R}_{1}
\end{array}\right]:=\left[\begin{array}{ll}
B_{11} & B_{12} \\
B_{21} & B_{22}
\end{array}\right], \text { and } \\
C & =\left[\begin{array}{ccc}
\sqrt{y} R_{1}^{*} \widetilde{Q}(y) R_{1} & \sqrt{y} R_{1}^{*} \widetilde{Q}(y) \bar{R}_{1} \\
\sqrt{y} \bar{R}_{1}^{*} \widetilde{Q}(y) R_{1} & \sqrt{y} \bar{R}_{1}^{*} \widetilde{Q}(y) \bar{R}_{1}
\end{array}\right]:=\left[\begin{array}{ll}
C_{11} & C_{12} \\
C_{12}^{*} & C_{22}
\end{array}\right],
\end{aligned}
$$

we have

$$
\operatorname{det} \widehat{S}=\operatorname{det}\left[\begin{array}{cc}
A & B \\
B^{*} & C
\end{array}\right]=\operatorname{det}\left[\begin{array}{llll}
A_{11} & B_{11} & A_{12} & B_{12} \\
B_{11}^{*} & C_{11} & B_{21}^{*} & C_{12} \\
& & & \\
A_{12}^{*} & B_{21} & A_{22} & B_{22} \\
B_{12}^{*} & C_{12}^{*} & B_{22}^{*} & C_{22}
\end{array}\right]:=\operatorname{det}\left[\begin{array}{ll}
M_{11} & M_{12} \\
M_{12}^{*} & M_{22}
\end{array}\right]
$$

after a row and column permutation. Hence $n^{j_{1} / 2} \operatorname{det} \widehat{S}=\operatorname{det} M_{22} \times n^{j_{1} / 2} \operatorname{det}\left(M_{11}-\right.$ $\left.M_{12} M_{22}^{-1} M_{12}^{*}\right)$. Write $\boldsymbol{\Omega}=\operatorname{diag}\left(\omega_{1}^{2} I_{j_{1}}, \boldsymbol{\Omega}_{2}\right)$. From the first order analysis we get that

$$
M_{22} \xrightarrow[n \rightarrow \infty]{\text { a.s. }}\left[\begin{array}{cc}
\sqrt{\rho_{1}} \mathbf{m}\left(\rho_{1}\right) I_{r-j_{1}} & I_{r-j_{1}} \\
I_{r-j_{1}} & \sqrt{\rho_{1}}\left(c \mathbf{m}\left(\rho_{1}\right)-\rho_{1}^{-1}(1-c)\right) \boldsymbol{\Omega}_{2}
\end{array}\right]
$$

which is invertible since $\operatorname{det} M_{22} \xrightarrow{\text { as }} \prod_{k>1}\left(\omega_{k}^{2} g\left(\rho_{1}\right)-1\right)^{j_{k}} \neq 0$. Moreover, $\left\|M_{12}\right\|=$ $\mathcal{O}_{P}\left(n^{-1 / 2}\right)$. To see this, consider for instance the term $\sqrt{n} C_{12}=\sqrt{n y} R_{1}^{*}(\widetilde{Q}-$ $\widetilde{T}) \bar{R}_{1}+\sqrt{n y} R_{1}^{*} \widetilde{T} \bar{R}_{1}$. The first term is tight by Lemma 5.4 while the second is bounded by Assumption 7 The other terms are treated similarly. It results that $\left\|M_{12} M_{22}^{-1} M_{12}^{*}\right\|=\mathcal{O}_{P}(1 / n)$.
In addition, $\operatorname{det}\left(y^{-1 / 2} C_{11}\right) \xrightarrow{\text { as }}\left[\omega_{1}^{2}\left(c \mathbf{m}\left(\rho_{1}\right)-\rho_{1}^{-1}(1-c)\right)\right]^{j_{1}}=\left(\rho_{1} \mathbf{m}\left(\rho_{1}\right)\right)^{-j_{1}}$ by the definition of ρ_{1}. From these observations we get that

$$
\begin{aligned}
n^{j_{1} / 2} \operatorname{det} \widehat{S}=\left(\prod _ { k > 1 } \left(\omega_{k}^{2} g\left(\rho_{1}\right)\right.\right. & \left.-1)^{j_{k}}+o_{P}(1)\right)\left(\left(\rho_{1} \mathbf{m}\left(\rho_{1}\right)\right)^{-j_{1}}+o_{P}(1)\right) \\
& \times \operatorname{det}\left(\sqrt{n y} A_{11}-\sqrt{n y} B_{11} C_{11}^{-1} B_{11}^{*}+\mathcal{O}_{P}\left(n^{-1 / 2}\right)\right)
\end{aligned}
$$

Now we make the expansion

$$
\begin{align*}
& \sqrt{n y} A_{11}-\sqrt{n y} B_{11} C_{11}^{-1} B_{11}^{*} \tag{14}\\
& =y \sqrt{n} U_{1}^{*}\left(Q(y)-m_{n}(y) I_{N}\right) U_{1}+y \sqrt{n} m_{n}(y) I_{j_{1}} \\
& +\sqrt{n}\left(I_{j_{1}}+U_{1}^{*} \frac{Y \widetilde{Q}(y)}{\sqrt{n}} R_{1}\right)\left(R_{1}^{*} \widetilde{Q}(y) R_{1}\right)^{-1}\left(R_{1}^{*}(\widetilde{Q}(y)-\widetilde{T}(y)) R_{1}\right)\left(R_{1}^{*} \widetilde{T}(y) R_{1}\right)^{-1} \\
& \times\left(I_{j_{1}}+R_{1}^{*} \frac{\widetilde{Q}(y) Y^{*}}{\sqrt{n}} U_{1}\right) \\
& -\sqrt{n}\left(I_{j_{1}}+U_{1}^{*} \frac{Y \widetilde{Q}(y)}{\sqrt{n}} R_{1}\right)\left(R_{1}^{*} \widetilde{T}(y) R_{1}\right)^{-1}\left(I_{j_{1}}+R_{1}^{*} \frac{\widetilde{Q}(y) Y^{*}}{\sqrt{n}} U_{1}\right) \tag{15}
\end{align*}
$$

To go further, remark that

$$
\begin{aligned}
y \sqrt{n} & m_{n}(y) I_{j_{1}}-\sqrt{n}\left(R_{1}^{*} \widetilde{T}(y) R_{1}\right)^{-1} \\
& =\left(R_{1}^{*} \widetilde{T}(y) R_{1}\right)^{-1}\left[\sqrt{n}\left(y m_{n}(y) R_{1}^{*} \widetilde{T}(y) R_{1}-\rho_{1} m_{n}\left(\rho_{1}\right) R_{1}^{*} \widetilde{T}\left(\rho_{1}\right) R_{1}\right)\right. \\
& \left.+\sqrt{n}\left(\rho_{1} m_{n}\left(\rho_{1}\right) R_{1}^{*} \widetilde{T}\left(\rho_{1}\right) R_{1}-I_{j_{1}}\right)\right] \\
& =\rho_{1} \mathbf{m}\left(\rho_{1}\right)\left[-x H_{1}^{\prime}\left(\rho_{1}\right)-\sqrt{n}\left(H_{1}\left(\rho_{1}\right)+I_{j_{1}}\right)\right]+o(1)
\end{aligned}
$$

where we recall that $y=\rho_{1}+x n^{-\frac{1}{2}} \rightarrow \rho_{1}$ and that $R_{1}^{*} \widetilde{T}(y) R_{1} \rightarrow\left(\rho_{1} \mathbf{m}\left(\rho_{1}\right)\right)^{-1} I_{j_{1}}$. Recall from Lemma 5.4 that $\sqrt{n} U_{1}^{*}\left(Q-m_{n} I\right) U_{1}, \sqrt{n} R_{1}^{*}(\widetilde{Q}-\widetilde{T}) R_{1}$, and $U_{1}^{*} Y \widetilde{Q} R_{1}$ are tight. Keeping the non negligible terms, we can write (14) under the form

$$
\begin{aligned}
& \sqrt{n y} A_{11}-\sqrt{n y} B_{11} C_{11}^{-1} B_{11}^{*} \\
& =\rho_{1} \sqrt{n} U_{1}^{*}\left(Q\left(\rho_{1}\right)-m_{n}\left(\rho_{1}\right) I_{N}\right) U_{1}+\left(\rho_{1} \mathbf{m}\left(\rho_{1}\right)\right)^{2} \sqrt{n} R_{1}^{*}\left(\widetilde{Q}\left(\rho_{1}\right)-\widetilde{T}\left(\rho_{1}\right) I_{n}\right) R_{1} \\
& -2 \rho_{1} \mathbf{m}\left(\rho_{1}\right) \Re\left[U_{1}^{*} Y \widetilde{Q}\left(\rho_{1}\right) R_{1}\right]-\rho_{1} \mathbf{m}\left(\rho_{1}\right)\left(x H_{1}^{\prime}\left(\rho_{1}\right)+\sqrt{n}\left(H_{1}\left(\rho_{1}\right)+I_{j_{1}}\right)\right)+o_{P}(1)
\end{aligned}
$$

Plugging this expression at the right hand side of the expression of $n^{j_{1} / 2} \operatorname{det} \widehat{S}$ and observing that $H_{1, n}^{\prime}\left(\rho_{1}\right) \rightarrow-\omega_{1}^{2} g\left(\rho_{1}\right)^{\prime} I_{j_{1}}$ concludes the proof.

For $i=1, \ldots, p$, take $x_{1}(i)>y_{1}(i)>x_{2}(i)>y_{2}(i)>\ldots>y_{j_{i}}(i)$ fixed sequences of real numbers. Call $J_{n}=\left(\sqrt{n}\left(\hat{\lambda}_{k(i)+\ell}^{n}-\rho_{i}\right), i=1, \ldots, p, \ell=1, \ldots, j_{i}\right)$, with $k(i)=\sum_{m=1}^{i-1} j_{m}$. Let also C be the rectangle $C=\left[x_{1}(1), y_{1}(1)\right] \times \ldots \times$ $\left[x_{p}\left(j_{p}\right), y_{p}\left(j_{p}\right)\right]$. Then, for all large n, with probability one

$$
\mathbb{P}\left(J_{n} \in C\right)=\mathbb{P}\left(\left\{\operatorname{det} \hat{S}_{n}\left(\rho_{i}+\frac{x_{\ell}(i)}{\sqrt{n}}\right) \operatorname{det} \hat{S}_{n}\left(\rho_{i}+\frac{y_{\ell}(i)}{\sqrt{n}}\right)<0\right\}\right)
$$

since det $\hat{S}_{n}(t)$ changes sign around $t=\hat{\lambda}_{k(i)+\ell}^{n}$, and only there (with probability one, for all large n).

From Lemma 5.5, we see that, for growing n, the probability for the product of the determinants above to be negative for all i and ℓ approaches the probability

$$
\mathbb{P}\left(\left\{\operatorname{det} A_{x_{\ell}(i)} \operatorname{det} A_{y_{\ell}(i)}<0, i=1, \ldots, p, \ell=1, \ldots, j_{i}\right\}\right)
$$

where A_{x} is the matrix

$$
\begin{aligned}
A_{x} & =\frac{\sqrt{n} U_{i, n}^{*}\left(Q_{n}\left(\rho_{i}\right)-m_{n}\left(\rho_{i}\right) I_{N}\right) U_{i, n}}{\mathbf{m}\left(\rho_{i}\right)}+\frac{\rho_{i} \sqrt{n} R_{i, n}^{*}\left(\widetilde{Q}_{n}\left(\rho_{i}\right)-\widetilde{T}_{n}\left(\rho_{i}\right)\right) R_{i, n}}{\omega_{i}^{2}\left(c+c \rho_{i} \mathbf{m}\left(\rho_{i}\right)-1\right)} \\
& -2 \Re\left[U_{i, n}^{*} Y \tilde{Q}_{n}\left(\rho_{i}\right) R_{i, n}\right]-\sqrt{n}\left(H_{i, n}\left(\rho_{i}\right)+I_{j_{i}}\right)-x H_{i, n}^{\prime}\left(\rho_{i}\right) .
\end{aligned}
$$

This last probability is equal to $\mathbb{P}\left(\bar{J}_{n} \in C\right)$, where \bar{J}_{n} are the decreasingly ordered eigenvalues of the matrix

$$
\begin{aligned}
& B_{i}=\left[H_{i, n}^{\prime}\left(\rho_{i}\right)\right]^{-1}\left(\frac{\sqrt{n} U_{i, n}^{*}\left(Q_{n}\left(\rho_{i}\right)-m_{n}\left(\rho_{i}\right) I_{N}\right) U_{i, n}}{\mathbf{m}\left(\rho_{i}\right)}\right. \\
& \left.+\frac{\rho_{i} \sqrt{n} R_{i, n}^{*}\left(\widetilde{Q}_{n}\left(\rho_{i}\right)-\widetilde{T}_{n}\left(\rho_{i}\right)\right) R_{i, n}}{\omega_{i}^{2}\left(c+c \rho_{i} \mathbf{m}\left(\rho_{i}\right)-1\right)}-2 \Re\left[U_{i, n}^{*} Y \tilde{Q}_{n}\left(\rho_{i}\right) R_{i, n}\right]-\sqrt{n}\left(H_{i, n}\left(\rho_{i}\right)+I_{j_{i}}\right)\right)
\end{aligned}
$$

From Lemma 5.4] $\left\{B_{1}, \ldots, B_{t}\right\}$ asymptotically behave as scaled non-zero mean GUE matrices. Precisely, denoting $\bar{B}_{i}=H_{i, n}^{\prime}\left(\rho_{i}\right) B_{i}+\sqrt{n}\left(H_{i, n}\left(\rho_{i}\right)+I_{j_{i}}\right)$, from Lemma 5.4 and for all a, b,

$$
\begin{aligned}
& \mathbb{E}\left[\left|\left(\bar{B}_{i}\right)_{a b}\right|^{2}\right] \\
& \rightarrow \frac{\boldsymbol{\sigma}_{i}^{2}}{\mathbf{m}\left(\rho_{i}\right)^{2}}+\frac{\rho_{i}^{2} \tilde{\boldsymbol{\sigma}}_{i}^{2}}{\omega_{i}^{4}\left(c+c \rho_{i} \mathbf{m}\left(\rho_{i}\right)-1\right)^{2}}+2 \varsigma^{2} \\
& =\frac{\boldsymbol{\sigma}_{i}^{2}}{\mathbf{m}\left(\rho_{i}\right)^{2}}+\rho_{i}^{2} \mathbf{m}\left(\rho_{i}\right)^{2} \tilde{\boldsymbol{\sigma}}_{i}^{2}+2 \varsigma^{2} \\
& =\frac{\mathbf{m}^{2}\left(\rho_{i}\right)}{\boldsymbol{\Delta}\left(\rho_{i}\right)}\left[\int \frac{t^{2} \nu(d t)}{\left(1+c \mathbf{m}\left(\rho_{i}\right) t\right)^{2}}+c \rho_{i}^{2} \omega_{i}^{4}\left(\int \frac{\mathbf{m}\left(\rho_{i}\right) t \nu(d t)}{\left(1+c \mathbf{m}\left(\rho_{i}\right) t\right)^{2}}\right)^{2}+\int \frac{2 \omega_{i}^{2} t \nu(d t)}{\left(1+c \mathbf{m}\left(\rho_{i}\right) t\right)^{2}}\right]
\end{aligned}
$$

This concludes the proof of Theorem 2.3 .

Appendix A. Proofs of Lemmas 5.1 to 5.3

A.1. Proof of Lemma 5.1, Given a $s \times s$ deterministic Hermitian matrix A and a $s \times s$ deterministic complex matrix B, let $\Gamma_{N}=N^{-1 / 2} \operatorname{Tr} A Z_{N}^{*} \Upsilon_{N} Z_{N}+$ $\Re\left(\operatorname{Tr} B Z_{N}^{*} F_{N}\right)$ where $\Re(M)=\left(M+M^{*}\right) / 2$ for any square matrix M. We shall show that for any $t \in \mathbb{R}$,

$$
\varphi_{N}(t):=\mathbb{E}\left[\exp \left(\imath t \Gamma_{N}\right)\right] \underset{N \rightarrow \infty}{ } \exp \left(-t^{2} \frac{\boldsymbol{\sigma}^{2} \operatorname{Tr} A^{2}+\boldsymbol{\varsigma}^{2} \operatorname{Tr} B B^{*} / 2}{2}\right):=\exp \left(-\frac{t^{2} \boldsymbol{v}^{2}}{2}\right)
$$

The result will follow by invoking the Cramér-Wold device. To establish this convergence, we show that the derivative $\varphi_{N}^{\prime}(t)$ satisfies $\varphi_{N}^{\prime}(t)=-t \boldsymbol{v}^{2} \varphi_{N}(t)+$ $\varepsilon_{N}(t)$ where $\varepsilon_{N}(t) \rightarrow 0$ as $N \rightarrow \infty$ uniformly on any compact interval of \mathbb{R}. That being true, the function $\psi_{N}(t)=\varphi_{N}(t) \exp \left(t^{2} \boldsymbol{v}^{2} / 2\right)$ satisfies $\psi_{N}(t)=1+$ $\int_{0}^{t} \varepsilon_{N}(u) \exp \left(u^{2} \boldsymbol{v}^{2} / 2\right) d u \rightarrow 1$ which proves the lemma.
By the IP formula, we get

$$
\begin{aligned}
& \varphi^{\prime}(t)= \imath \mathbb{E}[\Gamma \exp (\imath t \Gamma)] \\
&=\imath \mathbb{E}\left[\left(\sum_{i, j=1}^{s} \sum_{k, \ell=1}^{N} \frac{A_{i j} Z_{k j}^{*} \Upsilon_{k \ell} Z_{\ell i}}{\sqrt{N}}+\sum_{i, j=1}^{s} \sum_{k=1}^{N} \frac{B_{i j} Z_{k j}^{*} F_{k i}+F_{k i}^{*} Z_{k j} B_{i j}^{*}}{2}\right)\right. \\
&= \times \operatorname{E}\left[\sum_{i, j, k, \ell} \frac{A_{i j} \Upsilon_{k \ell}}{\sqrt{N}} \frac{\partial\left(Z_{\ell i} \exp (\imath t \Gamma)\right)}{\partial Z_{k j}}\right. \\
&\left.\quad+\frac{1}{2} \sum_{i, j, k} B_{i j} F_{k i} \frac{\partial \exp (\imath t \Gamma)}{\partial Z_{k j}}+F_{k i}^{*} B_{i j}^{*} \frac{\partial \exp (\imath t \Gamma)}{\partial Z_{k j}^{*}}\right] .
\end{aligned}
$$

We obtain after a small calculation

$$
\begin{gathered}
\frac{\partial \exp (\imath t \Gamma)}{\partial Z_{k j}}=\imath t\left(\frac{\left[A Z^{*} \Upsilon\right]_{j k}}{\sqrt{N}}+\frac{1}{2}\left[B^{*} F^{*}\right]_{j k}\right) \exp (\imath t \Gamma) \\
\frac{\partial \exp (\imath t \Gamma)}{\partial Z_{k j}^{*}}=\imath t\left(\frac{[\Upsilon Z A]_{k j}}{\sqrt{N}}+\frac{1}{2}[F B]_{k j}\right) \exp (\imath t \Gamma)
\end{gathered}
$$

which leads to

$$
\begin{aligned}
\varphi^{\prime}(t)= & -t \mathbb{E}\left[N^{-1} \operatorname{Tr} A^{2} Z^{*} \Upsilon^{2} Z \exp (\imath t \Gamma)\right]-(t / 2) \operatorname{Tr}\left(B B^{*} F^{*} F\right) \varphi(t) \\
& +\imath N^{-1 / 2} \operatorname{Tr} A \operatorname{Tr} \Upsilon \varphi(t) \\
& -t \mathbb{E}\left[N^{-1 / 2} \operatorname{Tr} A B^{*} F^{*} \Upsilon Z \exp (\imath t \Gamma)\right]-(t / 2) \mathbb{E}\left[N^{-1 / 2} \operatorname{Tr} Z^{*} \Upsilon F B A \exp (\imath t \Gamma)\right]
\end{aligned}
$$

Let us consider the first term at the right hand side of this equation. We have $\mathbb{E}\left[N^{-1} \operatorname{Tr} A^{2} Z^{*} \Upsilon^{2} Z\right]=N^{-1} \operatorname{Tr} A^{2} \operatorname{Tr} \Upsilon^{2}$. Applying the Poincaré-Nash inequality, we obtain after some calculations that $\operatorname{Var}\left(N^{-1} \operatorname{Tr} A^{2} Z^{*} \Upsilon^{2} Z\right) \leq 2 N^{-2} \operatorname{Tr} A^{4} \operatorname{Tr} \Upsilon^{4}=$ $\mathcal{O}\left(N^{-1}\right)$ since $\|\Upsilon\|$ is bounded. It results that $\mathbb{E}\left[N^{-1} \operatorname{Tr} A^{2} Z^{*} \Upsilon^{2} Z \exp (\imath t \Gamma)\right]=$ $N^{-1} \operatorname{Tr} A^{2} \operatorname{Tr} \Upsilon^{2} \varphi(t)+\mathcal{O}\left(N^{-1 / 2}\right)$ by Cauchy-Schwarz inequality. The third term is zero by hypothesis. Finally, $N^{-1} \mathbb{E}\left|\operatorname{Tr} Z^{*} \Upsilon F B A\right|^{2}=N^{-1} \operatorname{Tr} \Upsilon^{2} F B A^{2} B^{*} F^{*} \leq$ $N^{-1}\|\Upsilon\|^{2} \operatorname{Tr} F B A^{2} B^{*} F^{*}=\mathcal{O}\left(N^{-1}\right)$. Hence, the last two terms are $\mathcal{O}\left(N^{-1 / 2}\right)$ by Cauchy-Schwarz inequality, which proves Lemma 5.1
A.2. An intermediate result. The following lemma will be needed in the proof of Lemma 5.2.
Lemma A.1. For $x, y \in \operatorname{supp}(\mu)^{c}$,

$$
\begin{aligned}
\mathbb{E}\left[\phi_{n} \frac{1}{n} \operatorname{Tr} \widetilde{Q}_{n}(x) D \widetilde{Q}_{n}(y) D\right] & =\frac{\frac{1}{n} \operatorname{Tr} D \widetilde{T}_{n}(x) D \widetilde{T}_{n}(y)}{1-c_{n} x m_{n}(x) y m_{n}(y) \frac{1}{n} \operatorname{Tr} D \widetilde{T}_{n}(x) D \widetilde{T}_{n}(y)}+\mathcal{O}\left(n^{-1}\right) \\
\mathbb{E}\left[\phi_{n} \tilde{u}_{n}^{*} \widetilde{Q}_{n}(x) D \widetilde{Q}_{n}(y) \tilde{v}_{n}\right] & =\frac{\tilde{u}_{n}^{*} \widetilde{T}_{n}(x) D \widetilde{T}_{n}(y) \tilde{v}_{n}}{1-c_{n} x m_{n}(x) y m_{n}(y) \frac{1}{n} \operatorname{Tr} D \widetilde{T}_{n}(x) D \widetilde{T}_{n}(y)}+\mathcal{O}\left(n^{-1}\right)
\end{aligned}
$$

Proof. We denote here $\widetilde{Q}_{x}=\widetilde{Q}(x)$ and drop all unnecessary indices. Using the integration by parts formula, we obtain

$$
\begin{aligned}
& \frac{1}{n} \mathbb{E}\left[\phi Y_{i a}^{*} Y_{i j} \widetilde{Q}_{x, j p} d_{p} \widetilde{Q}_{y, p q}\right]=\frac{d_{p} d_{j}}{n}\left(\delta(a-j) \mathbb{E}\left[\phi \widetilde{Q}_{x, j p} \widetilde{Q}_{y, p q}\right]\right. \\
& -\frac{1}{n} \mathbb{E}\left[\phi \widetilde{Q}_{x, j j}\left[Y \widetilde{Q}_{x}\right]_{i p} Y_{i a}^{*} \widetilde{Q}_{y, p q}\right]-\frac{1}{n} \mathbb{E}\left[\phi Y_{i a}^{*} \widetilde{Q}_{x, j p} \widetilde{Q}_{y, p j}\left[Y \widetilde{Q}_{y}\right]_{i q}\right] \\
& \left.+\mathbb{E}\left[\frac{1}{n}\left[\operatorname{adj}(\psi) \psi^{\prime} Y\right]_{i j} Y_{i a}^{*} \widetilde{Q}_{x, j p} \widetilde{Q}_{y, p q}\right]\right) .
\end{aligned}
$$

Summing over i, p, and j, this is

$$
\begin{aligned}
& \frac{1}{n} \mathbb{E}\left[\phi\left[Y^{*} Y \widetilde{Q}_{x} D \widetilde{Q}_{y}\right]_{a q}\right]=\frac{1}{n^{2}} \mathbb{E}\left[\left[Y^{*} \operatorname{adj}(\psi) \psi^{\prime} Y D \widetilde{Q}_{x} D \widetilde{Q}_{y}\right]_{a q}\right]+c_{n} d_{a} \mathbb{E}\left[\phi\left[\widetilde{Q}_{x} D \widetilde{Q}_{y}\right]_{a q}\right] \\
& -\frac{1}{n} \mathbb{E}\left[\phi \frac{1}{n} \operatorname{Tr} D \widetilde{Q}_{x}\left[Y^{*} Y \widetilde{Q}_{x} D \widetilde{Q}_{y}\right]_{a q}\right]-\frac{1}{n} \mathbb{E}\left[\phi \frac{1}{n} \operatorname{Tr} \widetilde{Q}_{x} D \widetilde{Q}_{y} D\left[Y^{*} Y \widetilde{Q}_{y}\right]_{a q}\right]
\end{aligned}
$$

Using the relation $\frac{1}{n} Y^{*} Y \widetilde{Q}_{x}=x \widetilde{Q}_{x}+I_{n}$ and appropriately gathering the terms on each side gives

$$
\begin{align*}
& \mathbb{E}\left[\phi\left[\widetilde{Q}_{x} D \widetilde{Q}_{y}\right]_{a q}\left(x-c_{n} d_{a}+x \frac{1}{n} \operatorname{Tr} D \widetilde{Q}_{x}\right)\right] \\
& =-\mathbb{E}\left[\phi\left[D \widetilde{Q}_{y}\right]_{a q}\left(1+\frac{1}{n} \operatorname{Tr} D \widetilde{Q}_{x}\right)\right]-\mathbb{E}\left[\phi \frac{1}{n} \operatorname{Tr} \widetilde{Q}_{x} D \widetilde{Q}_{y} D\left(\delta(a-q)+y\left[\widetilde{Q}_{y}\right]_{a q}\right)\right] \\
& +\mathbb{E}\left[\frac{1}{n^{2}}\left[Y^{*} \operatorname{adj}(\psi) \psi^{\prime} Y D \widetilde{Q}_{x} D \widetilde{Q}_{y}\right]_{a q}\right] \tag{16}
\end{align*}
$$

Introducing the term $\tilde{\beta}_{x}=\phi \frac{1}{n} \operatorname{Tr} D \widetilde{Q}_{x}$ and $\hat{\tilde{\beta}}_{x}=\tilde{\beta}_{x}-\phi \mathbb{E}\left[\tilde{\beta}_{x}\right]$, we have

$$
\begin{align*}
& \mathbb{E}\left[\phi\left[\widetilde{Q}_{x} D \widetilde{Q}_{y}\right]_{a q}\right]\left(x-c_{n} d_{a}+x \mathbb{E}\left[\tilde{\beta}_{x}\right]\right) \\
& =-\mathbb{E}\left[\phi\left[D \widetilde{Q}_{y}\right]_{a q}\right]\left(1+\mathbb{E}\left[\beta_{x}\right]\right)-\mathbb{E}\left[\phi \frac{1}{n} \operatorname{Tr} \widetilde{Q}_{x} D \widetilde{Q}_{y} D\right]\left(\delta(a-q)+y \mathbb{E}\left[\left[\widetilde{Q}_{y}\right]_{a q}\right]\right) \\
& \left.-\mathbb{E}\left[\left[D \widetilde{Q}_{y}\right]_{a q} \hat{\tilde{\beta}}_{x}\right]-\mathbb{E}\left[\left[\widetilde{Q}_{x} D \widetilde{Q}_{y}\right]_{a q} x \hat{\tilde{\beta}}_{x}\right]-\mathbb{E}\left[\phi \frac{1}{n} \operatorname{Tr} \widetilde{Q}_{x} D \widetilde{Q}_{y} D y\left(\left[\widetilde{Q}_{y}\right]_{a q}-\mathbb{E}\left[\widetilde{Q}_{y}\right]_{a q}\right]\right)\right] \\
& +\mathbb{E}\left[\frac{1}{n^{2}}\left[Y^{*} \operatorname{adj}(\psi) \psi^{\prime} Y D \widetilde{Q}_{x} D \widetilde{Q}_{y}\right]_{a q}\right] \tag{17}
\end{align*}
$$

At this point, we can prove both results for the trace and for the quadratic form. We start by dividing each side by $x-c_{n} d_{a}+x \mathbb{E}\left[\tilde{\beta}_{x}\right]$. We begin with the trace result. Multiplying the resulting left- and right-hand sides by d_{a}, summing over $a=q$ and normalizing by $1 / n$, we obtain

$$
\begin{aligned}
\mathbb{E}\left[\phi \frac{1}{n} \operatorname{Tr} \widetilde{Q}_{x} D \widetilde{Q}_{x} D\right] & =-\left(1+\mathbb{E}\left[\tilde{\beta}_{x}\right]\right) \mathbb{E}\left[\phi \frac{1}{n} \operatorname{Tr} D \widetilde{Q}_{y} D A_{x}\right] \\
& -\mathbb{E}\left[\phi \frac{1}{n} \operatorname{Tr} \widetilde{Q}_{x} D \widetilde{Q}_{y} D\right]\left(y \mathbb{E}\left[\phi \frac{1}{n} \operatorname{Tr} D A_{x} \widetilde{Q}_{y}\right]+\frac{1}{n} \operatorname{Tr} D A_{x}\right)+\varepsilon_{n}
\end{aligned}
$$

where we denoted $A_{x}=\left(x\left(1+\mathbb{E}\left[\tilde{\beta}_{x}\right]\right) I_{n}-c_{n} D\right)^{-1}$ and where

$$
\begin{align*}
\varepsilon_{n} & =\mathbb{E}\left[\operatorname{Tr} \frac{Y^{*} \operatorname{adj}(\psi) \psi^{\prime} Y}{n^{3}} D \widetilde{Q}_{x} D \widetilde{Q}_{y} D A_{x}\right]-\mathbb{E}\left[\frac{1}{n} \operatorname{Tr} D \widetilde{Q}_{y} D A_{x} \hat{\tilde{\beta}}_{x}\right] \\
& -\mathbb{E}\left[\frac{1}{n} \operatorname{Tr} \widetilde{Q}_{x} D \widetilde{Q}_{y} D A_{x} \hat{\tilde{\beta}}_{x}\right] \\
& -\mathbb{E}\left[\phi \frac{1}{n} \operatorname{Tr} \widetilde{Q}_{x} D \widetilde{Q}_{y} D y\left(\frac{1}{n} \operatorname{Tr} \widetilde{Q}_{y} D A_{x}-\mathbb{E}\left(\frac{1}{n} \operatorname{Tr} \widetilde{Q}_{y} D A_{x}\right)\right)\right] \tag{18}
\end{align*}
$$

From Lemma 4.5, $\mathbb{E}\left[\tilde{\beta}_{x}\right]=\tilde{\delta}_{x}+\mathcal{O}\left(n^{-2}\right)$, where we denoted $\tilde{\delta}_{x}=\frac{1}{n} \operatorname{Tr} D \widetilde{T}_{x}$. Also, it is easily observed that

$$
\begin{equation*}
\left(I_{n}\left(1+\tilde{\delta}_{x}\right) x-c_{n} D\right)^{-1}=-\frac{1}{1+\tilde{\delta}_{x}} \widetilde{T}_{x} \tag{19}
\end{equation*}
$$

with $\widetilde{T}_{x}=\widetilde{T}(x)$. Therefore, along with Lemma 4.5, we now have

$$
\begin{aligned}
& \mathbb{E}\left[\phi \frac{1}{n} \operatorname{Tr} \widetilde{Q}_{x} D \widetilde{Q}_{x} D\right] \\
& =\frac{1}{n} \operatorname{Tr} D \widetilde{T}_{x} D \widetilde{T}_{y}+\mathbb{E}\left[\phi \frac{1}{n} \operatorname{Tr} \widetilde{Q}_{x} D \widetilde{Q}_{x} D\right] \frac{y \frac{1}{n} \operatorname{Tr} D \widetilde{T}_{x} \widetilde{T}_{y}+\frac{1}{n} \operatorname{Tr} D \widetilde{T}_{x}}{1+\tilde{\delta}_{x}}+\varepsilon_{n}+\mathcal{O}\left(n^{-2}\right)
\end{aligned}
$$

Using now the fact that $y \widetilde{T}_{y}+I_{n}=c_{n} \frac{1}{1+\tilde{\delta}_{y}} D \widetilde{T}_{y}$, we conclude

$$
\mathbb{E}\left[\phi \frac{1}{n} \operatorname{Tr} \widetilde{Q}_{x} D \widetilde{Q}_{x} D\right]=\frac{\frac{1}{n} \operatorname{Tr} D \widetilde{T}_{x} D \widetilde{T}_{y}}{1-c_{n}\left(1+\tilde{\delta}_{x}\right)^{-1}\left(1+\tilde{\delta}_{y}\right)^{-1} \frac{1}{n} \operatorname{Tr} D \widetilde{T}_{x} D \widetilde{T}_{y}}+\varepsilon_{n}+\mathcal{O}\left(n^{-2}\right)
$$

It therefore remains to prove that $\varepsilon_{n}=\mathcal{O}\left(n^{-1}\right)$. Due to the presence of ϕ in the expression of $\hat{\tilde{\beta}}_{x}$, and using Lemma4.3 and Cauchy-Schwarz inequality, one can see that the last three terms in the expression of ε_{n} are $\mathcal{O}\left(n^{-1}\right)$. As for the first term, it is treated in a similar manner as in the proof of Lemma 4.6, and is $\mathcal{O}\left(n^{-2}\right)$.

In order to prove the result on the quadratic form, we start again from (17). Dividing each side again by $x-c_{n} d_{a}+x \mathbb{E}\left[\tilde{\beta}_{x}\right]$, introducing $[\tilde{u}]_{a},[\tilde{v}]_{q}$, and summing over the indices, we obtain

$$
\begin{align*}
& \mathbb{E}\left[\phi \tilde{u}^{*} \widetilde{Q}_{x} D \widetilde{Q}_{y} \tilde{v}\right] \\
& =-\mathbb{E}\left[\phi \tilde{u}^{*} A_{x} D \widetilde{Q}_{y} \tilde{v}\right]-\mathbb{E}\left[\phi \frac{1}{n} \operatorname{Tr} \widetilde{Q}_{x} D \widetilde{Q}_{y} D\right]\left(\tilde{u}^{*} A_{x}\left(y \mathbb{E}\left[\phi \widetilde{Q}_{y}\right]+I_{n}\right) \tilde{v}\right)+\varepsilon_{n}^{\prime} \tag{20}
\end{align*}
$$

where ε_{n}^{\prime} is very similar to ε_{n} and is shown to be $\mathcal{O}\left(n^{-1}\right)$ with the same line of arguments. Using Lemma 4.3, (19), and the previous result on $\mathbb{E}\left[\phi \frac{1}{n} \operatorname{Tr} \widetilde{Q}_{x} D \widetilde{Q}_{y} D\right]$, we finally obtain

$$
\begin{aligned}
& \mathbb{E}\left[\phi \tilde{u}^{*} \widetilde{Q}_{x} D \widetilde{Q}_{y} \tilde{v}\right] \\
& =\tilde{u}^{*} \widetilde{T}_{x} D \widetilde{T}_{y} \tilde{v}\left(1+\frac{c_{n}\left(1+\tilde{\delta}_{x}\right)^{-1}\left(1+\tilde{\delta}_{y}\right)^{-1} \frac{1}{n} \operatorname{Tr} D \widetilde{T}_{x} D \widetilde{T}_{y}}{1-c_{n}\left(1+\tilde{\delta}_{x}\right)^{-1}\left(1+\tilde{\delta}_{y}\right)^{-1} \frac{1}{n} \operatorname{Tr} D \widetilde{T}_{x} D \widetilde{T}_{y}}\right)+\mathcal{O}\left(n^{-1}\right)
\end{aligned}
$$

from which

$$
\mathbb{E}\left[\phi \tilde{u}^{*} \widetilde{Q}_{x} D \widetilde{Q}_{y} \tilde{v}\right]=\frac{\tilde{u}^{*} \widetilde{T}_{x} D \widetilde{T}_{y} \tilde{v}}{1-c_{n}\left(1+\tilde{\delta}_{x}\right)^{-1}\left(1+\tilde{\delta}_{y}\right)^{-1} \frac{1}{n} \operatorname{Tr} D \widetilde{T}_{x} D \widetilde{T}_{y}}+\mathcal{O}\left(n^{-1}\right)
$$

We conclude with the remark $x m_{n}(x)=-\left(1+\tilde{\delta}_{x}\right)^{-1}$.
A.3. Proof of Lemma 5.2, The line of proof closely follows the proof of Lemma A.1 We provide here its main steps. By the integration by parts formula, we have

$$
\begin{aligned}
\mathbb{E}\left[\phi \widetilde{Q}_{p k} Y_{\ell k}^{*} Y_{\ell m} \widetilde{Q}_{m r}\right]= & -\frac{d_{m}}{n} \mathbb{E}\left[\phi \widetilde{Q}_{p k} Y_{\ell k}^{*} \widetilde{Q}_{m m}[Y \widetilde{Q}]_{\ell r}\right]+\delta(k-m) d_{m} \mathbb{E}\left[\phi \widetilde{Q}_{p k} \widetilde{Q}_{m r}\right] \\
& -\frac{d_{m}}{n} \mathbb{E}\left[\phi Y_{\ell k}^{*} \widetilde{Q}_{m r} \widetilde{Q}_{p m}[Y \widetilde{Q}]_{\ell k}\right] \\
& +\frac{d_{m}}{n} \mathbb{E}\left[\widetilde{Q}_{p k} Y_{\ell k}^{*} \widetilde{Q}_{m r}\left[\operatorname{adj}(\psi) \psi^{\prime} Y\right]_{\ell m}\right]
\end{aligned}
$$

Taking the sum over m, we obtain

$$
\begin{aligned}
\mathbb{E}\left[\phi \widetilde{Q}_{p k} Y_{\ell k}^{*}[Y \widetilde{Q}]_{\ell r}\right]= & \frac{d_{k}}{1+\mathbb{E}[\tilde{\beta}]} \mathbb{E}\left[\phi \widetilde{Q}_{p k} \widetilde{Q}_{k r}\right]-\frac{1}{1+\mathbb{E} \tilde{\beta}} \frac{1}{n} \mathbb{E}\left[\phi Y_{\ell k}^{*}[\widetilde{Q} D \widetilde{Q}]_{p r}[Y \widetilde{Q}]_{\ell k}\right] \\
& +\frac{1}{1+\mathbb{E}[\tilde{\beta}]} \frac{1}{n} \mathbb{E}\left[\widetilde{Q}_{p k} Y_{\ell k}^{*}\left[\operatorname{adj}(\psi) \psi^{\prime} Y D \widetilde{Q}\right]_{\ell r}\right]-\mathbb{E}\left[\hat{\tilde{\beta}} \widetilde{Q}_{p k} Y_{\ell k}^{*}[Y \widetilde{Q}]_{\ell r}\right]
\end{aligned}
$$

where $\tilde{\beta}(x)=\phi \frac{1}{n} \operatorname{Tr} D \widetilde{Q}(x)$ and $\hat{\tilde{\beta}}(x)=\tilde{\beta}(x)-\phi \mathbb{E}[\tilde{\beta}(x)]$ as in the proof of LemmaA. 1 . Taking the sum over ℓ then over k, we obtain

$$
\begin{aligned}
\mathbb{E}\left[\phi\left[\widetilde{Q} \frac{Y^{*} Y}{n} \widetilde{Q}\right]_{p r}\right]= & c_{n} \frac{1}{1+\mathbb{E}[\widetilde{\beta}]} \mathbb{E}\left[\phi[\widetilde{Q} D \widetilde{Q}]_{p r}\right]-\frac{1}{1+\mathbb{E}[\widetilde{\beta}]} \mathbb{E}\left[\phi[\widetilde{Q} D \widetilde{Q}]_{p r} \frac{1}{n} \operatorname{Tr}\left(\frac{Y^{*} Y}{n} \widetilde{Q}\right)\right] \\
& +\frac{1}{1+\mathbb{E}[\tilde{\beta}]} \frac{1}{n} \mathbb{E}\left[\left[\widetilde{Q} \frac{Y^{*} \operatorname{adj}(\psi) \psi^{\prime} Y}{n} D \widetilde{Q}\right]_{p r}\right]-\mathbb{E}\left[\hat{\tilde{\beta}}\left[\widetilde{Q} \frac{Y^{*} Y}{n} \widetilde{Q}\right]_{p r}\right]
\end{aligned}
$$

Observing that $(1+\mathbb{E}[\tilde{\beta}(x)])^{-1}=-x m_{n}(x)+\mathcal{O}\left(n^{-2}\right)$ and making the usual approximations, we get

$$
\mathbb{E}\left[\phi \tilde{u}^{*} \widetilde{Q} \frac{Y^{*} Y}{n} \widetilde{Q} \tilde{u}\right]=\left(x m_{n}(x) \frac{1}{n} \operatorname{Tr}\left(\mathbb{E}\left[\phi \frac{Y^{*} Y}{n} \widetilde{Q}\right]\right)-c_{n} x m_{n}(x)\right) \mathbb{E}\left[\phi \tilde{u}^{*} \widetilde{Q} D \widetilde{Q} \tilde{u}\right]+\mathcal{O}\left(n^{-1}\right)
$$

Observing that $n^{-1} \operatorname{Tr}\left(\mathbb{E}\left[\phi\left(n^{-1} Y^{*} Y\right) \widetilde{Q}(x)\right]=N n^{-1} x m_{n}(x)+N n^{-1}+\mathcal{O}\left(n^{-2}\right)\right.$ and invoking Lemma A.1 we obtain the desired result.
A.4. Proof of Lemma 5.3. As in the previous proofs, we discard unnecessary indices. We also denote $\widetilde{Q}_{i}=\widetilde{Q}\left(\rho_{i}\right)$. For readability, we also write $\tilde{M}_{i}=M_{i, n} A_{i}$ and use the shortcut notation $\Gamma=\sqrt{n} \sum_{i=1}^{p} \operatorname{Tr} M_{i}^{*} \widetilde{Q}_{i} \tilde{M}_{i}$. We focus first on the term in ρ_{1}. The line of proof closely follows that of Lemma 5.1 with the exception that we need to introduce the regularization function ϕ to ensure the existence of all the quantities under study. That is, with $\varphi_{N}(t)=\mathbb{E}[\exp (\imath t \phi \Gamma)]$, we only need to show that $\varphi_{N}^{\prime}(t)=-t \tilde{\sigma}_{n}^{2} \varphi_{N}(t)+\mathcal{O}(1 / \sqrt{n})$. Using $\left|\varphi_{N}(t)\right| \leq 1$ and Lemma 4.4 $\left|\mathbb{E}[\exp (\imath t \Gamma)]-\varphi_{N}(t)\right| \leq 1-\mathbb{E}[\phi] \rightarrow 0$ as $N \rightarrow \infty$, from which the result unfolds.

Using the integration by parts formula, we first obtain

$$
\begin{aligned}
& \mathbb{E}\left[\phi\left[\frac{Y^{*} Y}{n} \widetilde{Q}_{1}\right]_{p q} e^{\imath t \phi \Gamma}\right] \\
& =c_{n} \mathbb{E}\left[\phi\left[D \widetilde{Q}_{1}\right]_{p q} e^{\imath t \phi \Gamma}\right]-\mathbb{E}\left[\phi \frac{1}{n} \operatorname{Tr} D \widetilde{Q}_{1}\left[\frac{Y^{*} Y}{n} \widetilde{Q}_{1}\right]_{p q} e^{\imath t \phi \Gamma}\right] \\
& -\mathbb{E}\left[\imath t e^{\imath t \phi \Gamma} \phi^{2} \frac{1}{\sqrt{n}} \sum_{j=1}^{p} \sum_{a=1}^{r}\left[\left(\tilde{M}_{j}\right)_{a}^{*} \widetilde{Q}_{j} D \widetilde{Q}_{1}\right]_{q}\left[\frac{Y^{*} Y}{n} \widetilde{Q}_{j}\left(M_{j}\right)_{a}\right]_{p}\right]+\varepsilon_{n, p q}
\end{aligned}
$$

where

$$
\varepsilon_{n, p q}=\mathbb{E}\left[\frac{1}{n}\left[\frac{Y^{*} \operatorname{adj}(\psi) \psi^{\prime} Y}{n} D \widetilde{Q}_{1}\right]_{p q} e^{\imath t \phi \Gamma}\right]+\mathbb{E}\left[\phi \frac{1}{n}\left[\frac{Y^{*} \operatorname{adj}(\psi) \psi^{\prime} Y}{n} D \widetilde{Q}_{1}\right]_{p q} \imath t \Gamma e^{\imath t \phi \Gamma}\right]
$$

and where we denoted X_{a} the column a of matrix X, X_{a}^{*} being the row vector $\left(X_{a}\right)^{*}$.

With $\tilde{\beta}_{j}=\phi \frac{1}{n} \operatorname{Tr} D \widetilde{Q}_{j}, \hat{\tilde{\beta}}_{j}=\tilde{\beta}_{j}-\phi \mathbb{E}\left[\tilde{\beta}_{j}\right]$, and with the relation $n^{-1} Y^{*} Y \widetilde{Q}_{1}=$ $I_{n}+\rho_{1} \widetilde{Q}_{1}$, we obtain

$$
\begin{aligned}
& \left(\rho_{1}\left(1+\mathbb{E}\left[\tilde{\beta}_{1}\right]\right)-c_{n} d_{p}\right) \mathbb{E}\left[\phi\left[\widetilde{Q}_{1}\right]_{p q} e^{\imath t \phi \Gamma}\right]=-\delta(p-q)\left(1+\mathbb{E}\left[\tilde{\beta}_{1}\right]\right) \mathbb{E}\left[\phi e^{\imath t \phi \Gamma}\right] \\
& -\mathbb{E}\left[\imath t e^{\imath t \phi \Gamma} \phi^{2} \frac{1}{\sqrt{n}} \sum_{j=1}^{p} \sum_{a=1}^{r}\left[\left(\tilde{M}_{j}\right)_{a}^{*} \widetilde{Q}_{j} D \widetilde{Q}_{1}\right]_{q}\left[\frac{Y^{*} Y}{n} \widetilde{Q}_{j}\left(M_{j}\right)_{a}\right]_{p}\right]+\varepsilon_{n, p q}^{\prime}
\end{aligned}
$$

where

$$
\varepsilon_{n, p q}^{\prime}=\varepsilon_{n, p q}-\mathbb{E}\left[\hat{\tilde{\beta}}_{1}\left[\frac{Y^{*} Y}{n} \widetilde{Q}_{1}\right]_{p q} e^{\imath t \phi \Gamma}\right]
$$

Dividing each side by $\rho_{1}\left(1+\mathbb{E}\left[\tilde{\beta}_{1}\right]\right)-c_{n} d_{p}$, then multiplying by $\left(\tilde{M}_{1}\right)_{p}$ and $\left(M_{1}\right)_{q}$, and summing over p, q gives

$$
\begin{aligned}
\mathbb{E}\left[\phi \operatorname{Tr}\left(\tilde{M}_{1}^{*} \widetilde{Q}_{1} M_{1}\right) e^{\imath t \phi \Gamma}\right] & =-\left(1+\mathbb{E}\left[\tilde{\beta}_{1}\right]\right) \mathbb{E}\left[\phi e^{\imath t \Gamma}\right] \operatorname{Tr}\left(\tilde{M}_{1}^{*} A_{\rho_{1}} M_{1}\right) \\
& -\imath t \mathbb{E}\left[\phi^{2} e^{\imath t \phi \Gamma} \frac{1}{\sqrt{n}} \sum_{j=1}^{p} \operatorname{Tr} \tilde{M}_{1}^{*} A_{\rho_{1}} \frac{Y^{*} Y}{n} \widetilde{Q}_{j} M_{j} \tilde{M}_{j}^{*} \widetilde{Q}_{j} D \widetilde{Q}_{1}\right]+\varepsilon_{n}^{\prime}
\end{aligned}
$$

with $A_{\rho_{i}}=\left(\rho_{i}\left(1+\mathbb{E}\left[\tilde{\beta}_{i}\right]\right) I_{n}-c_{n} D\right)^{-1}$, and

$$
\varepsilon_{n}^{\prime}=\operatorname{Tr} \tilde{M}_{1}^{*} A_{\rho_{1}} E^{\prime} M_{1}
$$

with $\left(E^{\prime}\right)_{p q}=\varepsilon_{p q}^{\prime}$. From (19), the identity $n^{-1} Y^{*} Y \widetilde{Q}_{j}=I_{n}+\rho_{j} \widetilde{Q}_{j}$, and Lemma4.5 we finally obtain

$$
\begin{aligned}
& \mathbb{E}\left[\phi \operatorname{Tr}\left(\tilde{M}_{1}^{*} \widetilde{Q}_{1} M_{1}\right) e^{\imath t \phi \Gamma}\right]-\mathbb{E}\left[\phi e^{\imath t \phi \Gamma}\right] \operatorname{Tr} \tilde{M}_{1} \widetilde{T}_{1} M_{1} \\
& =\imath t \mathbb{E}\left[\phi e^{\imath t \phi \Gamma}\right] \frac{1}{\sqrt{n}} \sum_{j=1}^{p} \frac{\operatorname{Tr} \tilde{M}_{1}^{*} \frac{\widetilde{T}_{1}}{1+\tilde{\delta}_{1}} \frac{c_{n} D \widetilde{T}_{j}}{1+\tilde{\delta}_{j}} M_{j} \tilde{M}_{j}^{*} \widetilde{T}_{j} D \widetilde{T}_{1} M_{1}}{\left.1+\tilde{\delta}_{1}\right)^{-1}\left(1+\tilde{\delta}_{j}\right)^{-1} \frac{1}{n} \operatorname{Tr} D \widetilde{T}_{1} D \widetilde{T}_{j}}+\varepsilon_{n}^{\prime}+\mathcal{O}\left(n^{-2}\right)
\end{aligned}
$$

with $\widetilde{T}_{i}=\widetilde{T}\left(\rho_{i}\right)$, from which

$$
\begin{aligned}
& \mathbb{E}\left[\phi \operatorname{Tr}\left(\tilde{M}_{1}^{*} \widetilde{Q}_{1} M_{1}\right) e^{\imath t \phi \Gamma}\right]-\mathbb{E}\left[\phi e^{\imath t \phi \Gamma}\right] \operatorname{Tr} \tilde{M}_{1} \widetilde{T}_{1} M_{1} \\
& =\frac{\imath t \mathbb{E}\left[\phi e^{\imath t \phi \Gamma}\right]}{\sqrt{n}} \sum_{j=1}^{p} \frac{c_{n} \rho_{1} m_{n}\left(\rho_{1}\right) \rho_{j} m_{n}\left(\rho_{j}\right) \operatorname{Tr} \tilde{M}_{1}^{*} \widetilde{T}_{1} D \widetilde{T}_{j} M_{j} \tilde{M}_{j}^{*} \widetilde{T}_{j} D \widetilde{T}_{1} M_{1}}{1-c_{n} \rho_{1} m_{n}\left(\rho_{1}\right) \rho_{j} m_{n}\left(\rho_{j}\right) \frac{1}{n} \operatorname{Tr} D \widetilde{T}_{1} D \widetilde{T}_{j}}+\varepsilon_{n}^{\prime}+\mathcal{O}\left(n^{-2}\right) .
\end{aligned}
$$

It remains to show that $\varepsilon_{n}^{\prime}=\mathcal{O}\left(n^{-1}\right)$. We have explicitly

$$
\begin{aligned}
\varepsilon_{n}^{\prime} & =\mathbb{E}\left[\frac{1}{n} \operatorname{Tr}\left(\tilde{M}_{1}^{*} A_{\rho_{1}} \frac{Y^{*} \operatorname{adj}(\psi) \psi^{\prime} Y}{n} D \widetilde{Q}_{1} M_{1}\right)(1+\phi \imath t \Gamma) e^{\imath t \phi \Gamma}\right] \\
& -\mathbb{E}\left[\phi \hat{\tilde{\beta}}_{1} \operatorname{Tr}\left(\tilde{M}_{1}^{*} A_{\rho_{1}} \frac{Y^{*} Y}{n} \widetilde{Q}_{1} M_{1}\right) e^{\imath t \phi \Gamma}\right]
\end{aligned}
$$

Using the fact that $\left|e^{\imath t \phi \Gamma}\right|=1$ and the relation $n^{-1} Y^{*} Y \widetilde{Q}_{1}=\rho_{1} \widetilde{Q}_{1}+I_{n}$, the second term is easily shown to be $\mathcal{O}\left(n^{-1}\right)$ from the Cauchy-Scwharz inequality and Lemma 4.3. If it were not for the factor Γ, the convergence of the first term would unfold from similar arguments as in the proof of Lemma 4.6. We only need to show here that $\mathbb{E}\left[|\phi \Gamma|^{2}\right]=\mathcal{O}(1)$. But this follows immediately from Lemma 4.3 and Lemma 4.5
The generalization to $\sum_{i} \mathbb{E}\left[\phi \operatorname{Tr}\left(\tilde{M}_{i}^{*} \widetilde{Q}_{i} M_{i}\right) e^{\imath t \phi}\right]$ is then immediate and we have the expected result.

References

[1] Z. Bai and J.-F. Yao. Central limit theorems for eigenvalues in a spiked population model. Ann. Inst. Henri Poincaré Probab. Stat., 44(3):447-474, 2008.
[2] Z. D. Bai. Methodologies in spectral analysis of large-dimensional random matrices, a review. Statist. Sinica, 9(3):611-677, 1999.
[3] Z. D. Bai and J. W. Silverstein. No eigenvalues outside the support of the limiting spectral distribution of large-dimensional sample covariance matrices. Ann. Probab., 26(1):316-345, 1998.
[4] Z. D. Bai and Jack W. Silverstein. Exact separation of eigenvalues of large-dimensional sample covariance matrices. Ann. Probab., 27(3):1536-1555, 1999.
[5] J. Baik, G. Ben Arous, and S. Péché. Phase transition of the largest eigenvalue for nonnull complex sample covariance matrices. Ann. Probab., 33(5):1643-1697, 2005.
[6] J. Baik and J.W. Silverstein. Eigenvalues of large sample covariance matrices of spiked population models. J. Multivariate Anal., 97(6):1382-1408, 2006.
[7] F. Benaych-Georges, A. Guionnet, and M. Maïda. Fluctuations of the extreme eigenvalues of finite rank deformations of random matrices. Electron. J. Prob., 16:1621-1662, 2011. Paper no. 60.
[8] F. Benaych-Georges and R. R. Nadakuditi. The eigenvalues and eigenvectors of finite, low rank perturbations of large random matrices. Adv. in Math., 227(1):494-521, 2011.
[9] F. Benaych-Georges and R. R. Nadakuditi. The singular values and vectors of low rank perturbations of large rectangular random matrices. ArXiv e-prints, March 2011.
[10] Vladimir Bolotnikov. On a general moment problem on the half axis. Linear Algebra Appl., 255:57-112, 1997.
[11] M. Capitaine, C. Donati-Martin, and D. Féral. The largest eigenvalues of finite rank deformation of large Wigner matrices: convergence and nonuniversality of the fluctuations. Ann. Probab., 37(1):1-47, 2009.
[12] M. Capitaine, C. Donati-Martin, and D. Féral. Central limit theorems for eigenvalues of deformations of Wigner matrices. Ann. Inst. H. Poincaré Probab. Statist., 48(1):107-133, 2012.
[13] L. H. Y. Chen. An inequality for the multivariate normal distribution. J. Multivariate Anal., 12(2):306-315, 1982.
[14] R. Couillet and W. Hachem. Local failure detection and diagnosis in large sensor networks. ArXiv preprint, arXiv:1107.1409, 2011.
[15] Fritz Gesztesy and Eduard Tsekanovskii. On matrix-valued Herglotz functions. Math. Nachr., 218:61-138, 2000.
[16] V. L. Girko. Theory of random determinants, volume 45 of Mathematics and its Applications (Soviet Series). Kluwer Academic Publishers Group, Dordrecht, 1990.
[17] U. Haagerup and S. Thorbjørnsen. A new application of random matrices: $\operatorname{Ext}\left(C_{\mathrm{red}}^{*}\left(F_{2}\right)\right)$ is not a group. Ann. of Math. (2), 162(2):711-775, 2005.
[18] W. Hachem, O. Khorunzhy, P. Loubaton, J. Najim, and L. Pastur. A new approach for mutual information analysis of large dimensional multi-antenna chennels. IEEE Trans. Inform. Theory, 54(9):3987-4004, 2008.
[19] W. Hachem, P. Loubaton, X. Mestre, J. Najim, and P. Vallet. Large information plus noise random matrix models and consistent subspace estimation in large sensor networks. To be published in Random Matrices: Theory and Applications, 2011. ArXiv preprint arXiv:1106.5119.
[20] W. Hachem, P. Loubaton, X. Mestre, J. Najim, and P. Vallet. A subspace estimator for fixed rank perturbations of large random matrices. ArXiv preprint arXiv:1106.1497, 2011.
[21] W. Hachem, P. Loubaton, J. Najim, and P. Vallet. On bilinear forms based on the resolvent of large random matrices. To be published in Annales de l'IHP, 2012.
[22] W. Hachem, Ph. Loubaton, and J. Najim. Deterministic equivalents for certain functionals of large random matrices. Ann. Appl. Probab., 17(3):875-930, 2007.
[23] I. M. Johnstone. On the distribution of the largest eigenvalue in principal components analysis. Ann. Statist., 29(2):295-327, 2001.
[24] A. M. Khorunzhy and L. A. Pastur. Limits of infinite interaction radius, dimensionality and the number of components for random operators with off-diagonal randomness. Comm. Math. Phys., 153(3):605-646, 1993.
[25] M. G. Krĕ̆n and A. A. Nudel'man. The Markov moment problem and extremal problems. American Mathematical Society, Providence, R.I., 1977. Ideas and problems of P. L. Cebyšev and A. A. Markov and their further development, Translated from the Russian by D. Louvish, Translations of Mathematical Monographs, Vol. 50.
[26] V. A. Marčenko and L. A. Pastur. Distribution of eigenvalues in certain sets of random matrices. Mat. Sb. (N.S.), 72 (114):507-536, 1967.
[27] X. Mestre. Improved estimation of eigenvalues and eigenvectors of covariance matrices using their sample estimates. IEEE Trans. Inform. Theory, 54(11):5113-5129, 2008.
[28] X. Mestre. On the asymptotic behavior of the sample estimates of eigenvalues and eigenvectors of covariance matrices. IEEE Trans. Signal Process., 56(11):5353-5368, 2008.
[29] T. Næs, T. Isaksson, T. Fearn, and T. Davies. A User-Friendly Guide to Multivariate Calibration and Classification. NIR Publications, Chichester, UK, 2002.
[30] L. A. Pastur, A. M. Khorunzhǐ̆, and V. Yu. Vasil'chuk. On an asymptotic property of the spectrum of the sum of one-dimensional independent random operators. Dopov. Nats. Akad. Nauk Ukraïni, (2):27-30, 1995.
[31] L. A. Pastur and M. Shcherbina. Eigenvalue distribution of large random matrices, volume 171 of Mathematical Surveys and Monographs. American Mathematical Society, Providence, RI, 2011.
[32] D. Paul. Asymptotics of sample eigenstructure for a large dimensional spiked covariance model. Statist. Sinica, 17(4):1617-1642, 2007.
[33] S. Péché. The largest eigenvalue of small rank perturbations of Hermitian random matrices. Probab. Theory Related Fields, 134(1):127-173, 2006.
[34] M. Potters, J.-P. Bouchaud, and L. Laloux. Financial applications of random matrix theory: Old laces and new pieces. In Proceedings of the Cracow conference on "Applications of Random Matrix Theory to Economy and Other Complex Systems", 2005. arXiv preprint: arXiv:physics/0507111.
[35] J. W. Silverstein. Strong convergence of the empirical distribution of eigenvalues of largedimensional random matrices. J. Multivariate Anal., 55(2):331-339, 1995.
[36] J. W. Silverstein and Z. D. Bai. On the empirical distribution of eigenvalues of a class of large-dimensional random matrices. J. Multivariate Anal., 54(2):175-192, 1995.
[37] Jack W. Silverstein and Sang-Il Choi. Analysis of the limiting spectral distribution of largedimensional random matrices. J. Multivariate Anal., 54(2):295-309, 1995.
[38] P. Vallet, P. Loubaton, and X. Mestre. Improved subspace estimation for multivariate observations of high dimension: The deterministic signals case. Information Theory, IEEE Transactions on, 58(2):1043-1068, feb. 2012.

François Chapon,
Université Paul Sabatier,
Institut de Mathématiques de Toulouse, 118 route de Narbonne, 31062 Toulouse Cedex 9,
France.
e-mail: francois.chapon@math.univ-toulouse.fr

Romain Couillet,
Supélec,
Plateau de Moulon,
91192 Gif-sur-Yvette Cedex,
France.
e-mail: romain.couillet@supelec.fr
Walid Hachem,
CNRS, Télécom Paristech
46, rue Barrault,
75634 Paris Cedex 13,
France.
e-mail: walid.hachem@telecom-paristech.fr
Xavier Mestre,
Centre Tecnològic de Telecomunicacions de Catalunya (CTTC),
Parc Mediterrani de la Tecnologia (PMT) - Building B4,
Av. Carl Friedrich Gauss 7,
08860 - Castelldefels
Barcelona, Spain.
e-mail: xavier.mestre@cttc.cat

[^0]: Date: 20 June 2012.
 2000 Mathematics Subject Classification. Primary 15A52, Secondary 15A18, 60F15.
 Key words and phrases. Random Matrix Theory, Stieltjes Transform, Fixed rank deformation, Extreme eigenvalues, Gaussian fluctuations.

 The work of the first three authors was supported by the French Ile-de-France region, DIM LSC fund, Digiteo project DESIR.

