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Jérôme DEDECKERa, Florence MERLEVÈDEb and Magda PELIGRADc ∗
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Abstract

In this paper we study the almost sure conditional central limit theorem in its functional

form for a class of random variables satisfying a projective criterion. Applications to strongly

mixing processes and non irreducible Markov chains are given. The proofs are based on the

normal approximation of double indexed martingale-like sequences, a theory which has interest

in itself.
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1 Introduction

Let (ξi)i≥0 be a Markov chain admitting an invariant probability π. Let f be a real-valued

function such that π(f 2) < ∞ and π(f) = 0, and let Sn = f(ξ1)+· · ·+f(ξn). If the central limit

theorem (CLT) holds for n−1/2Sn starting form the initial distribution π, an interesting question

is to know whether it remains true for another initial distribution ν. Maxwell and Woodroofe

(2000) have given a projective criterion under which Sn satisfies the so-called conditional CLT,

which implies that the CLT holds for any initial distribution having a bounded density with

respect to π. Necessary and sufficient conditions for the conditional CLT are given in Dedecker

and Merlevède (2002), and Wu and Woodroofe (2004).

The question is more delicate if ν is a Dirac mass at point x. One says that the CLT is

quenched if it holds for almost every starting point with respect to π. The same terminology

is used for the functional central limit theorem (FCLT). For Harris recurrent Markov chain,

this question is solved thanks to Proposition 17.1.6 in Meyn and Tweedie (1993): if the CLT

(or FCLT) holds for the initial distribution π, then it holds for any initial distribution, and

hence for any starting point x. In the non irreducible setting, the situation is not so clear.
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1



This question of the quenched CLT can be formulated in the more general context of

stationary sequences: it means that, on a set of measure one, the central limit theorem holds

when replacing the usual expectation by the conditional expectation with respect to the past

σ-algebra. Some examples of stationary processes satisfying the CLT but not the quenched

CLT can be found in Derriennic and Lin (2001) and Volný and Woodroofe (2010a).

The first general results on the quenched CLT and FCLT are given in Borodin and Ibragimov

(1994): in the Markov chain setting, it says that the FCLT holds if there is a solution in L
2(π)

to the Poisson equation (see Gordin and Lifschitz (1978)); in a general setting it means that

the FCLT is true under Gordin’s condition (1969). This result has been improved by Derrienic

and Lin (2001, 2003), Zhao and Woodroofe (2008), Cuny (2011), Cuny and Peligrad (2012),

Volný and Woodroofe (2010b) and Merlevède et al. (2012). In a recent paper, Cuny and

Merlevède (2012) have proved that the FCLT is quenched under the condition of Maxwell and

Woodroofe (2000).

All the papers cited above use a martingale approximation in L
2. Consequently, the pro-

jective condition obtained up to now are always expressed in terms of L
2 norms of conditional

expectations. In this paper, we prove the quenched FCLT under a projective condition in-

volving L
1-norms, in the spirit of Gordin (1973). As a consequence, we obtain that the FCLT

of Doukhan et al. (1994) for strongly mixing sequences is quenched. Note that Doukhan

et al (1994) have shown that their condition is optimal in some sense for the usual FCLT,

so it is also sharp for the quenched FCLT. In Section 3.1, we study the example of the non

irreducible Markov chain associated to an intermittent map. Once again, we shall see through

this example that our condition is essentially optimal.

Our main result, Theorem 2.1 below, is a consequence of the more general Proposition 4.1,

where the conditions are expressed in terms of conditional expectations of partial sums. The

proof of this proposition is done via a blocking argument followed by a two step martingale

decomposition. We start with a finite number of consecutive blocks of random variables.

The sum in blocks are approximated by martingales. This decomposition introduces the

need of studying the normal approximation for a family of double indexed martingales. This

approximation has interest in itself and is presented in Section 6.

2 Results

Let (Ω,A, P) be a probability space, and T : Ω 7→ Ω be a bijective bimeasurable transformation

preserving the probability P. An element A is said to be invariant if T (A) = A. We denote

by I the σ-algebra of all invariant sets. The probability P is ergodic if each element of I has

measure 0 or 1.

Let F0 be a σ-algebra of A satisfying F0 ⊆ T−1(F0) and define the nondecreasing filtration

(Fi)i∈Z by Fi = T−i(F0). We assume that there exists a regular version PT |F0 of T given F0,

and for any integrable random variable f from Ω to R we write K(f) = PT |F0(f). Since P
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is invariant by T , for any integer k, a regular version PT |Fk
of T given Fk is then obtained

via PT |Fk
(f) = K(f ◦ T−k) ◦ T k. In the sequel, all the conditional expectations of functions

of T with respect to Fk are obtained trough these conditional probabilities. With these

notations E(f ◦ T 2|F0) = K(K(f) ◦ T ) = K2(f), and more generally, for any positive integer

ℓ, E(f ◦ T ℓ|F0) = Kℓ(f). In what follows we shall often use the notation Ek(X) = E(X|Fk).

Let X0 be an F0-measurable, square integrable and centered random variable. Define the

sequence X = (Xi)i∈Z by Xi = X0 ◦ T i. Let Sn = X1 + · · · + Xn, and define the Donsker

process Wn by Wn(t) = n−1/2(S[nt] + (nt − [nt])X[nt]+1).

Let H∗ the space of continuous functions ϕ from (C([0, 1]), ‖.‖∞) to R such that x →
|(1 + ‖x‖2

∞)−1ϕ(x)| is bounded. Our main result is the following:

Theorem 2.1. Assume that
∑

k≥0

‖X0E0(Xk)‖1 < ∞ . (2.1)

then the series

η = E(X2
0 |I) + 2

∑

k>0

E(X0Xk|I) (2.2)

converges in L
1. Moreover, for any ϕ in H∗

lim
n→∞

E0(ϕ(Wn)) =

∫

ϕ(x
√

η)W (dx) almost surely and in L
1, (2.3)

where W is the distribution of a standard Wiener process.

Note that the L
1-convergence in (2.3) has been proved in Dedecker and Merlevède (2002).

In this paper, we shall prove the almost sure convergence. Note that various classes satisfying

(2.1) can be found in Dedecker and Rio (2000).

This result has an interesting interpretation in the terminology of additive functionals

of Markov chains. Let (ξn)n≥0 be a Markov chain with values in a Polish space S, so that

there exists a regular transition probability Pξ1|ξ0=x. Let P be the transition kernel defined by

P (f)(x) = Pξ1|ξ0=x(f) for any bounded measurable function f from S to R, and assume that

there exists an invariant probability π for this transition kernel, that is a probability measure

on S such that π(f) = π(P (f)) for any bounded measurable function f from S to R. Let then

L
2
0(π) be the set of functions from S to R such that π(f 2) < ∞ and π(f) = 0. For f ∈ L

2
0(π)

define Xi = f(ξi). Notice that any stationary sequence (Yk)k∈Z can be viewed as a function of

a Markov process ξk = (Yi; i ≤ k), for the function g(ξk) = Yk.

In this setting the condition (2.1) is
∑

k≥0 π(|fP k(f)|) < ∞. Note that the random variable

η defined in Theorem 2.1 is the limit almost surely and in L
1 of n−1

E(S2
n|ξ0), in such a way that

η = η̄(ξ0). By stationarity, it is also the limit in L
1 of the sequence n−1

E((X2+ · · ·+Xn+1)
2|ξ1),

so that η̄(ξ0) = η̄(ξ1) almost surely. Consequently η̄ is an harmonic function for P in the sense

that π-almost surely P (η̄) = η̄.

In the context of Markov chain the conclusion of Theorem 2.1 is also known under the

3



terminology of FCLT started at a point. To rephrase it, let P
x be the probability associated

to the Markov chain started from x and let E
x be the corresponding expectation. Then, for

any ϕ in H∗,

π
{

x : E
x(ϕ(Wn)) →

∫

ϕ(z
√

η̄(x))W (dz)
}

= 1 (2.4)

and

lim
n→∞

∫

∣

∣

∣
E

x(ϕ(Wn)) −
∫

ϕ(z
√

η̄(x))W (dz)
∣

∣

∣
π(dx) = 0 . (2.5)

Note that in Theorem 2.1 no assumption of irreducibility nor of aperiodicity is imposed.

Under the additional assumptions that the Markov chain is irreducible, aperiodic and positively

recurrent, Chen (1999) showed that the CLT holds for the stationary Markov chain under

the condition
∑

k≥0 π(fP k(f)) is convergent, and the quenched CLT holds under the same

condition by applying Proposition 17.1.6 in Meyn and Tweedie (1993).

3 Applications

As a consequence of Theorem 2.1, we obtain the following corollary for a class of weakly

dependent sequences. We first need some definitions.

Definition 3.1. For a sequence Y = (Yi)i∈Z, where Yi = Y0 ◦ T i and Y0 is an F0-measurable

and real-valued random variable, let for any k ∈ N,

αY(k) = sup
t∈R

∥

∥E(1Yk≤t|F0) − E(1Yk≤t)
∥

∥

1
.

Definition 3.2. A quantile function Q is a function from ]0, 1] to R+, which is left-continuous

and non increasing. For any nonnegative random variable Z, we define the quantile function

QZ of Z by QZ(u) = inf{t ≥ 0 : P(|Z| > t) ≤ u}.

Definition 3.3. Let µ be the probability distribution of a random variable X. If Q is an

integrable quantile function, let Mon(Q, µ) be the set of functions g which are monotonic on

some open interval of R and null elsewhere and such that Q|g(X)| ≤ Q. Let F(Q, µ) be the

closure in L
1(µ) of the set of functions which can be written as

∑L
ℓ=1 aℓfℓ, where

∑L
ℓ=1 |aℓ| ≤ 1

and fℓ belongs to Mon(Q, µ).

Corollary 3.4. Let Y0 be a real-valued random variable with law PY0, and Yi = Y0 ◦ T i. Let

Q be a quantile function such that

∑

k≥0

∫ αY(k)

0

Q2(u)du < ∞ . (3.1)

Let Xi = f(Yi) − E(f(Yi)), where f belongs to F(Q, PY0). Then (2.1) is satisfied and conse-

quently, for any ϕ in H∗, (2.3) holds.
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To prove that (3.1) implies (2.1), it suffices to apply Proposition 5.3 with m = q = 1 of

Merlevède and Rio (2012).

Notice that if (α(k))k≥0 is the usual sequence of strong mixing coefficients of the stationary

sequence (Xi)i∈Z as defined by Rosenblatt (1956), then it follows from Corollary 3.4 that if

∑

k≥0

∫ α(k)

0

Q2
|X0|(u)du < ∞ , (3.2)

then (2.3) holds for any ϕ in H∗. Hence the weak invariance principle of Doukhan et al. (1994)

is also quenched. We refer to Theorem 2 in Doukhan et al. (1994) and to Bradley (1997) for

a discussion on the optimality of the condition (3.2).

3.1 Application to functions of Markov chains associated to inter-

mittent maps

For γ in ]0, 1[, we consider the intermittent map Tγ from [0, 1] to [0, 1], which is a modification

of the Pomeau-Manneville map (1980):

Tγ(x) =







x(1 + 2γxγ) if x ∈ [0, 1/2[

2x − 1 if x ∈ [1/2, 1] .

Recall that Tγ is ergodic (and even mixing in the ergodic theoretic sense) and that there exists

a unique Tγ-invariant probability measure νγ on [0, 1], which is absolutely continuous with

respect to the Lebesgue measure. We denote by Lγ the Perron-Frobenius operator of Tγ with

respect to νγ. Recall that for any bounded measurable functions f and g,

νγ(f · g ◦ Tγ) = νγ(Lγ(f)g) .

Let (Yi)i≥0 be a Markov chain with transition Kernel Lγ and invariant measure νγ.

Definition 3.5. A function H from R+ to [0, 1] is a tail function if it is non-increasing, right

continuous, converges to zero at infinity, and x → xH(x) is integrable. If µ is a probability

measure on R and H is a tail function, let Mon∗(H,µ) denote the set of functions f : R → R

which are monotonic on some open interval and null elsewhere and such that µ(|f | > t) ≤ H(t).

Let F∗(H,µ) be the closure in L1(µ) of the set of functions which can be written as
∑L

ℓ=1 aℓfℓ,

where
∑L

ℓ=1 |aℓ| ≤ 1 and fℓ ∈ Mon∗(H, µ).

Corollary 3.6. Let γ ∈ (0, 1/2) and (Yi)i≥1 be a stationary Markov chain with transition

kernel Lγ and invariant measure νγ. Let H be a tail function such that

∫ ∞

0

x(H(x))
1−2γ
1−γ dx < ∞ . (3.3)
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Let Xi = f(Yi) − νγ(f) where f belongs to F∗(H, νγ). Then (2.1) is satisfied and, for any ϕ

in H∗, (2.3) holds with

η = νγ((f − νγ(f))2) + 2
∑

k>0

νγ((f − νγ(f))f ◦ T k
γ ) . (3.4)

Proof. To prove this corollary, it suffices to see that (3.3) implies (3.1). For this purpose, we use

Proposition 1.17 in Dedecker et al. (2010) stating that there exist two positive constant B, C

such that, for any n > 0, Bn(γ−1)/γ ≤ αY(n) ≤ Cn(γ−1)/γ, together with their computations

page 817. �

In particular, if f is BV and γ < 1/2, we infer from Corollary 3.6 that (2.3) holds for

any ϕ in H∗, with η defined by (3.4) . Note also that (3.3) is satisfied if H is such that

H(x) ≤ Cx−2(1−γ)/(1−2γ)(ln(x))−b for x large enough and b > (1−γ)/(1−2γ). Therefore, since

the density hνγ
of νγ is such that hνγ

(x) ≤ Cx−γ on (0, 1], one can easily prove that if f is

positive and non increasing on (0, 1), with

f(x) ≤ C

x(1−2γ)/2| ln(x)|b near 0 for some b > 1/2,

then (3.3) and the quenched FCLT hold. Notice that when f is exactly of the form f(x) =

x−(1−2γ)/2, Gouëzel (2004) proved that the central limit theorem holds for
∑n

i=1(f(Yi)− νγ(f))

but with the normalization
√

n ln(n). This shows that the condition (3.3) is essentially optimal

for the quenched CLT with the normalization
√

n. .

4 Some general results

In this section we develop sufficient conditions imposed to conditional expectations of partial

sums for the validity of the quenched CLT and FCLT.

Let η be a F0-measurable random variable, such that η = η ◦ T almost surely. For any

positive integers i and p, define S
(i)
p = Spi − Sp(i−1).
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4.1 A quenched CLT

Let us introduce the following three conditions under which the quenched central limit theorem

holds:

C1 lim
m→∞

lim sup
p→∞

1√
mp

m+1
∑

i=2

E0|E(i−2)p(S
(i)
p )| = 0 a.s.

C2 lim
m→∞

lim sup
p→∞

E0

∣

∣

∣

m
∑

i=1

1

mp
E(i−1)p

(

(S(i+1)
p )2

)

− η
∣

∣

∣
= 0 a.s.

lim
m→∞

lim sup
p→∞

E0

∣

∣

∣

m
∑

i=1

1

mp
E(i−1)p

(

(S(i)
p + S(i+1)

p )2
)

− 2η
∣

∣

∣
= 0 a.s.

C3 for each ε > 0 lim
m→∞

lim sup
p→∞

1

m

m
∑

i=1

1

p
E0

(

(S(i)
p )21|S(i)

p |/√p>ε
√

m

)

= 0 a.s.

Proposition 4.1. Assume that C1, C2 and C3 hold. Then, for any continuous and bounded

function f ,

lim
n→∞

E0(f(n−1/2Sn)) =

∫

f(x
√

η)g(x)dx a.s.

where g is the density of a standard normal.

This proposition is designed especially for the proof of Theorem 2.1. Notice that in the

expression E(i−2)p(S
(i)
p ) of condition C1 there is a gap of p variables between S

(i)
p and the

variables used for conditioning. This gap is important for weakening the dependence and is

essentially used in the proof of Theorem 2.1. With a similar proof, based on Theorem 6.1

instead of Proposition 4.2, the conclusion of Proposition 4.1 remains valid if we replace C1

and C2 by conditions involving conditional expectations without gaps: C1 by

C′
1 lim

m→∞
lim sup

p→∞

1√
mp

E0

∣

∣

∣

m+1
∑

i=2

E(i−1)p(S
(i)
p )

∣

∣

∣
= 0 a.s.

and C2 by

C′
2 lim

m→∞
lim sup

p→∞
E0

∣

∣

∣

m
∑

i=1

1

mp
E(i−1)p

(

(S(i)
p )2

)

− η
∣

∣

∣
= 0 a.s.

Proof of Proposition 4.1. The result will follows from Proposition 4.2 below, for double indexed

arrays of random variables:

Proposition 4.2. Assume that (Yn,m,i)i≥1 is an array of random variables in L
2 adapted to

an array (Gn,m,i)i≥1 of nested sigma fields. Let En,m,i denote the conditional expectation with

respect to Gn,m,i. Suppose that

lim
m→∞

lim sup
n→∞

m+1
∑

i=2

E|En,m,i−2(Yn,m,i)| = 0 , (4.1)
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and that there exists σ2 ≥ 0 such that

lim
m→∞

lim sup
n→∞

E

∣

∣

∣

m
∑

i=1

En,m,i−1

(

Y 2
n,m,i+1

)

− σ2
∣

∣

∣
= 0 (4.2)

and

lim
m→∞

lim sup
n→∞

E

∣

∣

∣

m
∑

i=1

En,m,i−1

(

(Yn,m,i + Yn,m,i+1)
2
)

− 2σ2
∣

∣

∣
= 0 . (4.3)

Assume in addition that for each ε > 0

lim
m→∞

lim sup
n→∞

m+1
∑

i=1

E(Y 2
n,m,i1|Yn,m,i|>ε) = 0. (4.4)

Then for any continuous and bounded function f ,

lim
m→∞

lim sup
n→∞

∣

∣

∣
E

(

f
(

m
∑

i=1

Yn,m,i

))

− E(f(σN))
∣

∣

∣
= 0 ,

where N is a standard Gaussian random variable.

Before proving Proposition 4.2, let us show how it leads to Proposition 4.1. Let m be a

fixed positive integer less than n. Set p = [n/m]. We apply Proposition 4.2 to the sequence

Yn,m,i = S
(i)
p /

√
mp and the filtration Gn,m,i = Fip. We also replace the expectation E by the

conditional expectation E0 (recall that all the conditional expectations of functions of T with

respect to F0 are obtained through the regular conditional probability PT |F0), and σ2 by the

non negative F0-measurable random variable η. With these notations, the conditions C1, C2

and C3 implies that (4.1), (4.2), (4.3) and (4.4) hold almost surely. It follows from Proposition

4.2 that, for any continuous and bounded function f ,

lim
m→∞

lim sup
n→∞

∣

∣

∣
E0

(

f
(

n−1/2

m[n/m]
∑

i=1

Xi

))

−
∫

f(x
√

η)g(x)dx
∣

∣

∣
= 0 a.s.

where g is the density of a standard normal. Proposition 4.1 will then follow if we can prove

that for any ε > 0,

lim
m→∞

lim sup
n→∞

P0

(∣

∣

∣

n
∑

i=1

Xi −
m[n/m]
∑

i=1

Xi

∣

∣

∣
≥ ε

√
n
)

= 0 a.s. (4.5)

With this aim, we notice that

P0

(∣

∣

∣

n
∑

i=1

Xi −
m[n/m]
∑

i=1

Xi

∣

∣

∣
≥ ε

√
n
)

≤ P0

(

m2 max
1≤i≤n

X2
i ≥ ε2n

)

.
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and therefore (4.5) holds by Lemma 7.1 applied to Zi = X2
i . It remains to prove Proposition

4.2.

Proof of Proposition 4.2. For any positive integer i, let

Un,m,i = Yn,m,i + En,m,i(Yn,m,i+1) − En,m,i−1(Yn,m,i) . (4.6)

To ease the notation, we shall drop the first two indexes (the pair n, m) when no confusion is

possible. With this notation,

Yi = Ui − Ei(Yi+1) + Ei−1(Yi) ,

and since we have telescoping sum,

m
∑

i=1

Yi =
m

∑

i=1

Ui + E0(Y1) − Em(Ym+1) .

Notice that for any i ∈ {1, m + 1} and any ε > 0,

E(|Ei−1(Yi)|2) ≤ ε2 + E(Y 2
i 1|Yi|>ε) . (4.7)

Therefore by condition (4.4),

lim
m→∞

lim sup
n→∞

E
(

En,m,m(Yn,m,m+1))
2 + (En,m.0(Yn,m,1))

2
)

= 0 . (4.8)

The theorem will be proven if we can show that the sequence (Un,m,i)i≥1 defined by (4.6)

satisfies the conditions of Theorem 6.1. We first notice that Ei−1(Ui) = Ei−1(Yi+1). Hence

condition (6.1) is clearly satisfied under (4.1). On an other hand,

Var(Ui|Gi−1) = Ei−1

(

Y 2
i + 2YiEi(Yi+1)

)

+ Ei−1

(

(Ei(Yi+1))
2
)

− (Ei−1(Yi))
2

− 2(Ei−1(Yi))(Ei−1(Yi+1)) − (Ei−1(Yi+1))
2 . (4.9)

Notice that for any ε > 0

m
∑

i=1

E
(

(Ei−1(Yi+1))
2
)

≤ ε
m

∑

i=1

E
∣

∣Ei−1(Yi+1)
∣

∣ + ε

m
∑

i=1

E
(

|Yi+1|1|Yi+1|>ε

)

+
m

∑

i=1

E
(

Y 2
i+11|Yi+1|>ε

)

≤ ε
m

∑

i=1

E
∣

∣Ei−1(Yi+1)
∣

∣ + 2
m+1
∑

i=2

E
(

Y 2
i 1|Yi|>ε

)

. (4.10)

Similarly, for any ε > 0,

m
∑

i=1

E
∣

∣(Ei−1(Yi))(Ei−1(Yi+1))
∣

∣ ≤ ε

m
∑

i=1

E
∣

∣Ei−1(Yi+1)
∣

∣ + 2
m+1
∑

i=1

E
(

Y 2
i 1|Yi|>ε

)

.
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In addition since Ei−1

(

Y 2
i + 2YiEi(Yi+1)

)

= Ei−1

(

(Yi + Yi+1)
2
)

− Ei−1

(

Y 2
i+1

)

, the conditions

(4.2) and (4.3) imply that

lim
m→∞

lim sup
n→∞

E

∣

∣

∣

m+1
∑

i=1

En,m,i−1

(

Y 2
n,m,i + 2Yn,m,iEn,m,i(Yn,m,i+1)

)

− σ2
∣

∣

∣
= 0 . (4.11)

Starting from (4.9) and considering (4.10), (4.11) and (4.11), it follows that condition (6.2)

will be satisfied provided that (4.1) and (4.4) hold and

lim
m→∞

lim sup
n→∞

E

∣

∣

∣

m
∑

i=1

(

En,m,i−1

(

(En,m,i(Yn,m,i+1))
2
)

− (En,m,i−1(Yn,m,i))
2
)

∣

∣ = 0 . (4.12)

To prove (4.12), we first write that

m
∑

i=1

(

Ei−1

(

(Ei(Yi+1))
2
)

− (Ei−1(Yi))
2
)

= Em(Ym+1))
2 − (E0(Y1))

2

−
m

∑

i=1

(

(Ei(Yi+1))
2 − Ei−1

(

(Ei(Yi+1))
2
))

.

By (4.8), it follows that (4.12) will hold if we can show that

lim
m→∞

lim sup
n→∞

E

∣

∣

∣

m
∑

i=1

(

(En,m,i(Yn,m,i+1))
2 − En,m,i−1

(

(En,m,i(Yn,m,i+1))
2
))

∣

∣

∣
= 0 . (4.13)

This follows from an application of Lemma 6.2 with

dn,m,i = (En,m,i(Yn,m,i+1))
2 − En,m,i−1

(

(En,m,i(Yn,m,i+1))
2
)

.

Indeed
m

∑

i=1

E(|dn,m,i|) ≤ 2
m+1
∑

i=1

E(Y 2
n,m,i) ,

and by Lemma 6.3, for any ε > 0,

m
∑

i=1

E(|dn,m,i|1|dn,m,i|>8ε2) ≤ 2
m

∑

i=1

E
(

(En,m,i(Yn,m,i+1))
21(En,m,i(Yn,m,i+1))2>4ε2)

≤ 2
m

∑

i=1

E
(

Y 2
n,m,i+11|En,m,i(Yn,m,i+1)|>2ε) ≤ 4

m+1
∑

i=1

E
(

Y 2
n,m,i1|Yn,m,i|>ε) .

So condition (6.13) holds by using (4.2) and (4.4).

It remains to prove that (6.3) holds. Clearly this can be achieved by using (4.4) combined

with Lemma 6.3. �
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4.2 Finite dimensional convergence

For 0 < t1 < · · · < td ≤ 1, define the function πt1,...,td from C([0, 1]) to R
d by πt1,...,td(x) =

(x(t1), x(t2) − x(t1), . . . , x(td) − x(td−1)). For any a in R
d define the function fa from R

d to R

by fa(x) =< a, x >=
∑d

i=1 aixi.

Proposition 4.3. Let t1, t2, . . . , td be d rational numbers such that 0 < t1 < · · · < td ≤ 1.

Assume that C1, C2 and C3 hold. Then, for any continuous and bounded function h,

lim
n→∞

E0

(

h ◦ fa ◦ πt1,...,td(Wn)
)

=

∫

h ◦ fa ◦ πt1,...,td(x
√

η)W (x)dx a.s.

where W is the distribution of a standard Wiener process.

Proof of Proposition 4.3. For any ℓ ∈ {1, . . . , d}, let tℓ = rℓ/sℓ where rℓ and sℓ are positive

integers. let cd =
∏d

ℓ=1 sℓ. Rewrite tℓ = bℓ/cd. The bℓ are then positive integers such that

0 < b1 < · · · < bd ≤ cd. Let m be a fixed positive integer and let p = [n/(mcd)]. Notice that

for any ℓ ∈ {1, . . . , d},
[ntℓ] − mbℓ < mpbℓ ≤ [ntℓ] + 1 .

Therefore for any reals a1, · · · , ad, with the convention that t0 = 0 and b0 = 0,

∣

∣

∣

d
∑

ℓ=1

aℓ

[ntℓ]
∑

i=[ntℓ−1]+1

Xi −
d

∑

ℓ=1

aℓ

pmbℓ
∑

i=pmbℓ−1+1

Xi

∣

∣

∣
≤

d
∑

ℓ=1

|aℓ|
(p+1)mbℓ

∑

i=pmbℓ+1

|Xi| .

Using (7.2) of Lemma 7.1, we infer that for any ℓ ∈ {1, . . . , d} and every ε > 0,

lim
n→∞

P0

( |aℓ|√
n

(p+1)mbℓ
∑

i=pmbℓ+1

|Xi| > ε
)

= 0 a.s.

In addition,

∣

∣

∣

d
∑

ℓ=1

aℓ

(

Wn(tℓ) − Wn(tℓ−1)
)

−
d

∑

ℓ=1

aℓ

(

S[ntℓ] − S[ntℓ−1]

)

∣

∣

∣
≤ 2

d
∑

ℓ=1

|aℓ| max
1≤i≤n

|Xi| ,

implying once again by (7.2) in Lemma 7.1 that

lim
n→∞

n−1/2
E0

(
∣

∣

∣

d
∑

ℓ=1

aℓ

(

Wn(tℓ) − Wn(tℓ−1)
)

−
d

∑

ℓ=1

aℓ

(

S[ntℓ] − S[ntℓ−1]

)

∣

∣

∣

)

= 0 a.s. (4.14)

From the preceding considerations, it remains to prove that for any continuous and bounded

function f ,

lim
m→∞

lim sup
n→∞

∣

∣

∣
E0

(

f
(

n−1/2

d
∑

ℓ=1

aℓ

pmbℓ
∑

i=pmbℓ−1+1

Xi

))

− E0(f(σdN))
∣

∣

∣
= 0 a.s. , (4.15)
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where σ2
d = η

∑d
ℓ=1 a2

ℓ(tℓ − tℓ−1) and N is a standard Gaussian random variable independent

of F0. With this aim, we write that

d
∑

ℓ=1

aℓ

pmbℓ
∑

i=pmbℓ−1+1

Xi =
d

∑

ℓ=1

aℓ

mbℓ
∑

i=mbℓ−1+1

S(i)
p =

mbd
∑

k=1

λm,d,kS
(k)
p ,

where λm,d,k =
∑d

ℓ=1 aℓ1mbℓ−1+1≤k≤mbℓ
. Hence to prove (4.15), it suffices to apply Proposition

4.2 to the random variables Ym,n,i = (mpcd)
−1/2λm,d,iS

(i)
p and the filtration Gn,m,i = Fip, by

replacing the expectation E by E0. The conditions (4.1) and (4.4) are verified by using

respectively C1 and C3. To verify (4.2) and (4.3) with σ2 = σ2
d = η

∑d
ℓ=1 a2

ℓ(tℓ − tℓ−1), we

proceed as follows. For (4.2), we write that

E0

∣

∣

∣

mbd
∑

i=1

En,m,i−1(Y
2
i+1) − σ2

d

∣

∣

∣
= E0

∣

∣

∣

1

mpcd

d
∑

ℓ=1

a2
ℓ

mbℓ
∑

i=mbℓ−1+1

E(i−1)p((S
(i+1)
p )2) − σ2

d

∣

∣

∣

≤
d

∑

ℓ=1

a2
ℓE0

∣

∣

∣

1

mpcd

mbℓ
∑

i=mbℓ−1+1

E(i−1)p((S
(i+1)
p )2) − η(tℓ − tℓ−1)

∣

∣

∣
.

Since tℓ = bℓ/cd, we obtain that

E0

∣

∣

∣

mbd
∑

i=1

En,m,i−1(Y
2
i+1) − σ2

d

∣

∣

∣
≤

d
∑

ℓ=1

a2
ℓbℓ

cd

E0

∣

∣

∣

1

mpbℓ

mbℓ
∑

i=1

E(i−1)p((S
(i+1)
p )2) − η

∣

∣

∣

+
d

∑

ℓ=1

a2
ℓbℓ−1

cd

E0

∣

∣

∣

1

mpbℓ−1

mbℓ−1
∑

i=1

E(i−1)p((S
(i+1)
p )2) − η

∣

∣

∣
.

Condition (4.2) is then proved by using the first part of C2. Using similar arguments, we

prove (4.3) by using the second part of C2. �

4.3 A quenched invariance principle

Let us define the maximal version of C3. For k ≤ l, let S̄k,l = maxk≤i≤l |Si − Sk|.

C4 for any ε > 0 lim
m→∞

lim sup
p→∞

1

m

m
∑

i=1

1

p
E0

(

S̄2
(i−1)p,ip1|S̄(i−1)p,ip|/

√
p>ε

√
m

)

= 0 a.s.

Proposition 4.4. Assume that C1, C2 and C4 hold. Then, for any continuous and bounded

function f from C([0, 1]) to R,

lim
n→∞

E0(f(Wn)) =

∫

f(x
√

η)W (x)dx almost surely

where W is the distribution of a standard Wiener process.
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Proof of Proposition 4.4. In this proof, m will always denote a positive integer. Since C4

implies C3, it follows that Proposition 4.3 holds. In what follows, we shall prove that the

process {Wn(t), t ∈ [0, 1]} is almost surely tight, that is, for any ε > 0,

lim
m→∞

lim sup
n→∞

P0

(

sup
|t−s|≤m−1

|Wn(t) − Wn(s)| > ε
)

= 0 almost surely. (4.16)

Note that (4.16) together with Proposition 4.3 implies that the conclusion of Proposition 4.3

also holds for any d-tuple of reals 0 < t1 < · · · < td ≤ 1 in addition of being true for any

d-tuple of rationals.

According to inequality (25) in Brown (1971), to prove (4.16) it suffices to show that, for

any ε > 0,

lim
m→∞

lim sup
n→∞

m
∑

i=1

P0

(

sup
(i−1)m−1<t≤im−1

|Wn(t) − Wn((i − 1)m−1)| > ε
)

= 0 a.s. (4.17)

Since supt∈[0,1] |Wn(t) − n−1/2S[nt]| = n−1/2 max1≤i≤n |Xi|, by using (7.2) of Lemma 7.1, it

follows that (4.17) is equivalent to

lim
m→∞

lim sup
n→∞

m
∑

i=1

P0

(

sup
(i−1)m−1<t≤im−1

|S[nt] − S[n(i−1)m−1]| > ε
√

n
)

= 0 a.s. (4.18)

Let p = [n/m], and note that, for any non negative integer i, [nim−1] − i < pi ≤ [nim−1]. It

follows that, for any integer i in [1, m],

sup
(i−1)m−1<t≤im−1

|S[nt]−S[n(i−1)m−1]| ≤ S̄(i−1)p,ip +
1√
n

[n(i−1)m−1]
∑

k=[n(i−1)m−1]−m

|Xk|+
1√
n

[nim−1]
∑

k=[nim−1]−m

|Xk| .

Using (7.2) of Lemma 7.1, we infer that

lim
n→∞

1√
n

[n(i−1)m−1]
∑

k=[n(i−1)m−1]−m

E0(|Xk|) = 0 a.s.

Hence, (4.17) holds as soon as

lim
m→∞

lim sup
n→∞

m
∑

i=1

P

(

S̄(i−1)p,ip > ε
√

n
∣

∣

∣
F0

)

= 0 a.s.,

which holds under C4.
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5 Proof of Theorem 2.1 and additional comments

5.1 Proof of Theorem 2.1

Proposition 5.1. If (2.1) holds, then C1,C2 and C4 hold, with η defined in (2.2). In addition

the conclusion of Proposition 4.4 also holds for f in H∗.

Proof of Proposition 5.1. We first prove that the following reinforced version of C2 holds:

C∗
2 for any integer i ≥ 1 lim

n→∞
E0

∣

∣

∣

1

n
E(i−1)n

(

(S(i)
n )2

)

− η
∣

∣

∣
= 0 a.s.

for any integer i ≥ 1 lim
n→∞

E0

∣

∣

∣

1

n
E(i−1)n

(

(S(i)
n + S(i+1)

n )2
)

− 2η
∣

∣

∣
= 0 a.s.

We only prove the first part of C∗
2, the proof of the second part being similar. For any

positive integer N

(Sin − S(i−1)n√
n

)2

=
1

n

in
∑

j=(i−1)n+1

X2
j +

2

n

in
∑

j=(i−1)n+1

(in−j)∧N
∑

l=1

XjXj+l + Ri,l,N . (5.1)

Firstly,

E0(|E(i−1)n(Ri,l,N)|) ≤ 1

n

in
∑

j=(i−1)n+1

E0

(

∑

l>j+N

|XjEj(Xl)|
)

.

Let Zj,N =
∑

l>j+N |XjEj(Xl)| and note that, by assumption, Zj,N = Z0,N ◦ T j belongs to L
1.

Applying the ergodic theorem in relation (7.1) of Lemma 7.1 we obtain that

lim
n→∞

1

n

in
∑

j=(i−1)n+1

E0(Zj,N) = E(Z0,N |I) a.s.

Hence,

lim sup
n→∞

E0(|E(i−1)n(Ri,l,N)|) ≤ E(Z0,N |I) a.s.

and consequently

lim
N→∞

lim sup
n→∞

E0(|E(i−1)n(Ri,l,N)|) = 0 a.s. (5.2)

Next, let

ηN = E(X2
0 |I) + 2

N
∑

k=1

E(X0Xk|I)

and ηN,K = E(X2
01|X0|2≤K |I) + 2

N
∑

k=1

E(X0Xk1|X0Xk|≤K |I) .
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By the ergodic theorem for stationary sequences,

lim
n→∞

∣

∣

∣
ηN,K − 1

n

in
∑

j=(i−1)n+1

X2
j 1|Xj |2≤K +

2

n

in−l
∑

j=(i−1)n+1

(in−j)∧N
∑

l=1

XjXj+l1|XjXj+l|≤K

∣

∣

∣
= 0 a.s. (5.3)

and by the ergodic theorem in relation (7.1) of Lemma 7.1 applied with Zj = X2
j 1|Xj |2>K and

with Zj =
∑N

l=1 |XjXj+l|1|XjXj+l|>K ,

lim
K→∞

lim sup
n→∞

E0

( 1

n

in
∑

j=(i−1)n+1

X2
j 1|Xj |2>K +

2

n

in−l
∑

j=(i−1)n+1

(in−j)∧N
∑

l=1

|XjXj+l|1|XjXj+l|>K

)

= 0 a.s.

(5.4)

Using (5.3), (5.4) and the dominated convergence theorem, it follows that

lim
n→∞

E0

(∣

∣

∣
ηN − 1

n

in
∑

j=(i−1)n+1

X2
j +

2

n

in−l
∑

j=(i−1)n+1

(in−j)∧N
∑

l=1

XjXj+l

∣

∣

∣

)

= 0 a.s. (5.5)

The first part of condition C∗
2 follows from (5.1), (5.2) and (5.5), and the fact that limN→∞ ηN =

η almost surely.

Next, we prove that C1 holds. From the proof of Proposition 3 in Dedecker and Merlevède

(2002), it suffices to prove that for any integer i ≥ 2,

lim
n→∞

E(|X0||I)E0

(
∣

∣

∣
E(i−2)n

(Sin − S(i−1)n√
n

)∣

∣

∣

)

= 0 a.s.

Now,

E0

(
∣

∣

∣
E(i−2)n

(

E(|X0||I)
(Sin − S(i−1)n)√

n

)
∣

∣

∣

)

≤ E0

(∣

∣

∣
E(i−2)n

(( 1

n

(i−1)n
∑

k=(i−2)n+1

|Xk| − E(|X0||I)
)(Sin − S(i−1)n)√

n

)∣

∣

∣

)

+
1

n

(i−1)n
∑

k=(i−2)n+1

E0

(∣

∣

∣
E(i−2)n

(

|Xk|
(Sin − S(i−1)n)√

n

)∣

∣

∣

)

. (5.6)

Using the fact that F0 ⊆ F(i−2)n and applying Cauchy-Schwarz’s inequality conditionally

to F0, the first term on right hand in (5.6) is smaller than

E
1/2
0

(( 1

n

(i−1)n
∑

k=(i−2)n+1

|Xk| − E(|X0||I)
)2)

E
1/2
0

((Sin − S(i−1)n√
n

)2)

. (5.7)
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By C∗
2,

lim
n→∞

E0

((Sin − S(i−1)n√
n

)2)

= η a.s. (5.8)

Since X0 belongs to L
2, proceeding as in the proof of (5.5), we obtain that

lim
n→∞

E0

(( 1

n

(i−1)n
∑

k=(i−2)n+1

|Xk| − E(|X0||I)
)2)

= 0 a.s. (5.9)

From (5.7), (5.8) and (5.9), we infer that the first term on right hand in (5.6) converges to 0

almost surely as n tends to infinity.

Now, for k > (i − 2)n, F(i−2)n ⊆ Fk and

E0

(∣

∣

∣
E

(

|Xk|
(Sin − S(i−1)n)√

n

∣

∣

∣
F(i−2)n

)∣

∣

∣

)

≤ 1√
n

E0

(
∣

∣E(|Xk|(Sin − S(i−1)n)|Fk)
∣

∣

)

≤ 1√
n

E0

(

∞
∑

i=k+1

|XkEk(Xi)|
)

.

Let Zk =
∑∞

i=k+1 |XkEk(Xi)| and note that, by assumption, Zk = Z0 ◦ T k belongs to L
1. It

follows that that second term on right hand in (5.6) is smaller than n−3/2
∑(i−1)n

k=(i−2)n+1 E0(Zk) ,

which converges almost surely to 0 as n tends to infinity, by the ergodic theorem in relation

(7.1) of Lemma 7.1. Hence C1 is proved.

We turn now to the proof of C4. With this aim, we shall prove the following reinforcement

of it:

C∗
4 lim

k→∞
lim sup

n→∞
max
1≤i≤k

E0

( S̄2
(i−1)n,in

n

(

1 ∧ S̄(i−1)n,in√
nk

))

= 0 a.s.

To prove C∗
4, we shall use the following maximal inequality, which is a conditional version of

the inequality given in Proposition 1(a) of Dedecker and Rio (2000).

Proposition 5.2. For any k < l and λ ≥ 0 let Γk,l(λ) = {S̄k,l > λ}. The following inequality

holds

E0((S̄k,l − λ)2
+) ≤ 8

l
∑

i=k+1

E0(X
2
i 1Γk,i(λ)) + 16

l
∑

i=k+1

E0(|Xi1Γk,i(λ)Ei(Sl − Si)|) .

Let us continue the proof of C∗
4. Note first that

E0

( S̄2
(i−1)n,in

n

(

1 ∧ S̄(i−1)n,in√
nk

))

≤ 2εE0

( S̄2
(i−1)n,in

n

)

+
4

n
E0

(

(S̄(i−1)n,in − ε
√

nk)2
+

)

.

From Proposition 5.2 with λ = 0, we obtain that

E0

( S̄2
(i−1)n,in

n

)

≤ 8

n

in
∑

k=(i−1)n+1

E0(X
2
k) +

16

n

in
∑

k=(i−1)n+1

E0(Zk) ,
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and, by the ergodic theorem in relation (7.1) of Lemma 7.1,

lim sup
n→∞

max
1≤i≤k

E0

( S̄2
(i−1)n,in

n

)

≤ 8E(X2
0 |I) + 16E(Z0|I) a.s. (5.10)

Hence C∗
4 will be proved if, for any ε > 0,

lim
k→∞

lim sup
n→∞

max
1≤i≤k

1

n
E0

(

(S̄(i−1)n,in − ε
√

nk)2
+

)

= 0 a.s. (5.11)

Applying Proposition 5.2, we infer that, for any positive integer N ,

E0

(

(S̄(i−1)n,in − ε
√

nk)2
+

)

≤ 4

n

in
∑

j=(i−1)n+1

E0(X
2
j 1Γ(i−1)n,in(ε

√
nk)) (5.12)

+
8

n

in
∑

j=(i−1)n+1

(in−j)∧N
∑

l=1

E0(|XjXj+l|1Γ(i−1)n,in(ε
√

nk)) +
8

n

in
∑

j=(i−1)n+1

E0(Zj,N) .

By the the ergodic theorem in relation (7.1) of Lemma 7.1, for any positive integer i,

lim
n→∞

1

n

in
∑

j=(i−1)n+1

E0(Zj,N) = E(Z0,N |I) a.s.

and consequently,

lim
N→∞

lim sup
n→∞

max
1≤i≤k

1

n

in
∑

j=(i−1)n+1

E0(Zj,N) = 0 a.s. (5.13)

Now, for any positive M and any 0 ≤ l ≤ N ,

1

n

in
∑

j=(i−1)n+1

E0(|XjXj+l|1Γ(i−1)n,in(ε
√

nk)) ≤
M

ε2k
E0

( S̄2
(i−1)n,in

n

)

+
1

n

in
∑

j=(i−1)n+1

E0(|XjXj+l|1|XjXj+l|>M) . (5.14)

According to (5.10), we have that

lim
k→∞

lim sup
n→∞

max
1≤i≤k

M

ε2k
E0

( S̄2
(i−1)n,in

n

)

= 0 a.s. (5.15)

Next, by the ergodic theorem in relation (7.1) of Lemma 7.1, for any positive integer i,

lim
n→∞

1

n

in
∑

j=(i−1)n+1

E0(|XjXj+l|1|XjXj+l|>M) = E(|X0Xl|1|X0Xl|>M |I) a.s.
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and consequently

lim
M→∞

lim sup
k→∞

lim sup
n→∞

max
1≤i≤k

1

n

in
∑

j=(i−1)n+1

E0(|XjXj+l|1|XjXj+l|>M) = 0 a.s. (5.16)

Gathering (5.12), (5.13), (5.14), (5.15) and (5.16), we infer that (5.11) holds. This ends the

proof of C∗
4. For any continuous and bounded function ϕ from C([0, 1]) to R, the conclusion of

Theorem 2.1 then follows from an application of Proposition 4.4. To prove that the conclusion

also holds for any function ϕ in H∗, it suffices to notice that since (2.1) implies C∗
4, it entails

in particular that almost surely, the sequence (n−1 max1≤k≤n S2
k)n≥1 is uniformly integrable for

the conditional expectation with respect to F0. �.

Proof of Proposition 5.2. It is exactly the same as to get (3.12) in the paper by Dedecker

and Rio (2000), with the only difference that the expectation is replaced by the conditional

expectation with respect to F0. �.

5.2 Remark on martingale approximations in L
2

The aim of this short section is to point out that the conditions C1, C2 and C3 are satisfied if

there is a martingale approximation in L
2 for the quenched CLT. Since the conditions obtained

through this martingale approach are known to be sharp in some sense, this is another way to

see that our conditions C1, C2 and C3 are also sharp for the quenched CLT.

From the proof of Theorem 5.1, we see that, if X1 is a martingale difference, that is

E(X1|F0) = 0, then the conditions C1, C∗
2 and C∗

4 are satisfied. The following claim is then

easily deduced.

Claim 5.3. Let X0 and d0 be two F0-measurable, centered and square integrable random

variables with E(d0 ◦T |F0) = 0, and let Xi = X0 ◦T i and di = d0 ◦T i. Let Sn = X1 + · · ·+Xn

and Mn = d1 + · · · + dn.

1. If

lim
n→∞

1

n
E0((Sn − Mn)2) = 0 almost surely,

then the conditions C1, C2 and C3 are satisfied.

2. If

lim
n→∞

1

n
E0

(

max
1≤k≤n

(Sk − Mk)
2
)

= 0 almost surely, (5.17)

then the conditions C1, C2 and C4 are satisfied.

In particular, if the condition of Maxwell and Woodroofe (2000) is satisfied

∑

n>0

‖E0(Sn)‖2

n3/2
< ∞ ,
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then it follows from Cuny and Merlevède (2012) that (5.17) holds, so that the conditions C1,

C2 and C4 are satisfied. This shows that the conditions C1, C2 and C4 are sharp for the

quenched FCLT.

6 Normal approximation for double indexed arrays and

auxiliary results

There are many situations when we are dealing with double indexed sequences of random

variables. For instance at each point in the two dimensional space we start a random walk.

Our motivation for this section comes from the fact that in our blocking procedure we introduce

a new parameter, the number of blocks, m, that is kept fixed at the beginning.

The next theorem treats the martingale approximation for double arrays of random vari-

ables.

Theorem 6.1. Assume that (Un,m,i)i≥1 is an array of random variables in L
2 adapted to an

array (Gn,m,i)i≥1 of nested sigma fields. Let En,m,i denote the conditional expectation with

respect to Gn,m,i. Suppose that

lim
m→∞

lim sup
n→∞

E

∣

∣

∣

m
∑

i=1

En,m,i−1(Un,m,i)
∣

∣

∣
= 0 , (6.1)

there exists σ2 ≥ 0 such that

lim
m→∞

lim sup
n→∞

E

∣

∣

∣

m
∑

i=1

Var(Un,m,i|Gn,m,i−1) − σ2
∣

∣

∣
= 0 (6.2)

and for each ε > 0

lim
m→∞

lim sup
n→∞

m
∑

i=1

E(U2
n,m,i1|Un,m,i|>ε) = 0 (6.3)

Then for any continuous and bounded function f ,

lim
m→∞

lim sup
n→∞

∣

∣

∣
E

(

f
(

m
∑

i=1

Un,m,i

))

− E(f(σN))
∣

∣

∣
= 0 , (6.4)

where N is a standard Gaussian variable.

Proof of Theorem 6.1. For any i ≥ 1, let dn,m,i = Un,m,i − En,m,i−1(Un,m,i). By condition

(6.1), the theorem will follow if we can prove that (6.4) holds with
∑m

i=1 dn,m,i replacing
∑m

i=1 Un,m,i. If σ2 = 0 the theorem is trivial. So we can assume without loss of generality that

σ2 = 1. In the rest of the proof, in order to ease the notation, we shall drop the first two

indexes (n, m), keeping them only when it is necessary to avoid confusion. Let ε and M be
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positive reals fixed for the moment. For any i ≥ 1, let

Vi =
i

∑

ℓ=1

Eℓ−1(d
2
ℓ) and Yi = di1|di|≤ε1Vi≤M .

Notice first that

P

(

m
∑

i=1

di 6=
m

∑

i=1

Yi

)

≤ P

(

max
1≤i≤m

di > ε
)

+ P(Vm > M)

≤ 1

ε2

m
∑

i=1

E(d2
i 1|di|>ε) +

1

M

(

1 + E

∣

∣

∣

m
∑

i=1

Var(Ui|Gi−1) − 1
∣

∣

∣

)

.

Hence using Lemma 6.3, we get that

P

(

m
∑

i=1

di 6=
m

∑

i=1

Yi

)

≤ 8

ε2

m
∑

i=1

E(U2
i 1|Ui|>ε/3) +

1

M

(

1 + E

∣

∣

∣

m
∑

i=1

Var(Ui|Gi−1) − 1
∣

∣

∣

)

.

Therefore using (6.3) and (6.2), it follows that

lim
M→∞

lim sup
ε→0

lim sup
m→∞

lim sup
n→∞

P

(

m
∑

i=1

dn,m,i 6=
m

∑

i=1

Yn,m,i

)

= 0 . (6.5)

We notice now that since Ei−1(di) = 0 and Vi is Gi−1-measurable

m
∑

i=1

Ei−1(Yi) =
m

∑

i=1

1Vi≤MEi−1(di1|di|>ε) .

Therefore by Lemma 6.3,

E

∣

∣

∣

m
∑

i=1

Ei−1(Yi)
∣

∣

∣
≤ 8

ε

m
∑

i=1

E(U2
i 1|Ui|>ε/3) ,

implying that

lim
ε→0

lim sup
m→∞

lim sup
n→∞

E

∣

∣

∣

m
∑

i=1

Ei−1(Yi)
∣

∣

∣
= 0 . (6.6)

Considering (6.5) and (6.6), the theorem will follow if we can show that for any continuous

bounded function f ,

lim
M→∞

lim sup
ε→0

lim sup
m→∞

lim sup
n→∞

∣

∣

∣
E

(

f
(

m
∑

i=1

d∗
n,m,i

))

− E(f(N))
∣

∣

∣
= 0 , (6.7)

where

d∗
n,m,i = Yn,m,i − En,m,i−1(Yn,m,i) .
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By the result given in Heyde and Brown (1970), this will follow if we can show that for a δ > 0,

lim
M→∞

lim sup
ε→0

lim sup
m→∞

lim sup
n→∞

m
∑

i=1

E
(

|d∗
n,m,i|2+2δ

)

= 0 , (6.8)

and

lim
M→∞

lim sup
ε→0

lim sup
m→∞

lim sup
n→∞

E

∣

∣

∣

m
∑

i=1

En,m,i−1

(

(d∗
n,m,i)

2
)

− 1
∣

∣

∣

1+δ

= 0 . (6.9)

Notice that

m
∑

i=1

E
(

|d∗
i |2+2δ

)

≤ 8(2ε)2δ

m
∑

i=1

E(d2
i ) ≤ 8(2ε)2δ

(

1 + E

∣

∣

∣

m
∑

i=1

Var(Ui|Gi−1) − 1
∣

∣

∣

)

.

Hence (6.8) follows by condition (6.2). It remains to prove (6.9). With this aim, we first write

that

E

∣

∣

∣

m
∑

i=1

Ei−1((d
∗
i )

2) − 1
∣

∣

∣

1+δ

≤ 22+δ
E

∣

∣

∣

m
∑

i=1

Ei−1(Y
2
i ) − 1

∣

∣

∣

1+δ

+ 22+δ
E

∣

∣

∣

m
∑

i=1

(

Ei−1(Yi)
)2

∣

∣

∣

1+δ

. (6.10)

Now since Vn,m,i is Gn,m,i−1-measurable and En,m,i−1(dn,m,i) = 0,

E

(

m
∑

i=1

(

Ei−1(Yi)
)2

)1+δ

≤ E

((

m
∑

i=1

(

Ei−1(di1|di|>ε)
)2

)(

m
∑

k=1

1Vk≤MEk−1(d
2
k)

)δ)

≤ M δ

m
∑

i=1

E(d2
i 1|di|>ε) . (6.11)

On the other hand, using again the fact that Vn,m,i is Gn,m,i−1-measurable and also that

Vn,m,i ≤ Vn,m,i+1, we derive that

E

∣

∣

∣

m
∑

i=1

Ei−1(Y
2
i ) − 1

∣

∣

∣

1+δ

≤ E

((

1 +
m

∑

i=1

1Vi≤MEi−1(d
2
i )

)δ∣
∣

∣
1 −

m
∑

k=1

1Vk≤MEk−1(d
2
k1|dk|≤ε)

∣

∣

∣

)

≤ (M + 1)δ

m
∑

i=1

E(d2
i 1|di|>ε) + (M + 1)δ

E

∣

∣

∣
1 −

m
∑

k=1

1Vk≤MEk−1(d
2
k)

∣

∣

∣

≤ (M + 1)δ

m
∑

i=1

E(d2
i 1|di|>ε) + (M + 1)δ

E

∣

∣

∣

m
∑

k=1

Ek−1(d
2
k) − 1

∣

∣

∣

+(M + 1)δ
E

∣

∣

∣
1Vm>M

m
∑

k=1

Ek−1(d
2
k)

∣

∣

∣
.
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Therefore,

E

∣

∣

∣

m
∑

i=1

Ei−1(Y
2
i ) − 1

∣

∣

∣

1+δ

≤ (M + 1)δ

m
∑

i=1

E(d2
i 1|di|>ε) + 2(M + 1)δ

E

∣

∣

∣

m
∑

k=1

Ek−1(d
2
k) − 1

∣

∣

∣

+
(M + 1)δ

M

(

1 + E

∣

∣

∣

m
∑

k=1

Ek−1(d
2
k) − 1

∣

∣

∣

)

. (6.12)

Starting from (6.10) and considering the bounds (6.11) and (6.12) together with the fact that

En,m,k−1(d
2
n,m,k) = Var(Un,m,i|Gn,m,i−1), we then infer that (6.9) holds for any δ ∈]0, 1[. This

ends the proof of (6.7) and then of the theorem. �

Lemma 6.2. Assume that (dn,m,i)i≥1 is an array of random variables in L
2 adapted to an

array (Gn,m,i)i≥1 of nested sigma fields, and such that for any i ≥ 1, En,m,i−1(dn,m,i) = 0 almost

surely. Suppose that

lim
m→∞

lim sup
n→∞

m
∑

i=1

E(|dn,m,i|1|dn,m,i|>ε) = 0 and
m

∑

i=1

E|dn,m,i| < K (6.13)

for some positive constant K. Then

lim
m→∞

lim sup
n→∞

E

∣

∣

∣

m
∑

i=1

dn,m,i

∣

∣

∣
= 0 .

Proof of Lemma 6.2. Let ε > 0, and let for any i ≥ 1,

d′
n,m,i = dn,m,i1|dn,m,i|≤ε and d′′

n,m,i = dn,m,i1|dn,m,i|>ε .

With this notation and since En,m,i−1(dn,m,i) = 0 almost surely,

m
∑

i=1

dn,m,i =
m

∑

i=1

(

d′
n,m,i − En,m,i−1(d

′
n,m,i)

)

+
m

∑

i=1

(

d′′
n,m,i − En,m,i−1(d

′′
n,m,i)

)

.

Since

E
∣

∣

(

d′′
n,m,i − En,m,i−1(d

′′
n,m,i)

)∣

∣ ≤ 2E(|dn,m,i|1|dn,m,i|>ε) = 0 ,

by using the first part of (6.13), the lemma will follow if we can prove that

lim
ε→0

lim sup
m→∞

lim sup
n→∞

E

∣

∣

∣

m
∑

i=1

(

d′
n,m,i − En,m,i−1(d

′
n,m,i)

)

∣

∣

∣
= 0 . (6.14)
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With this aim, we notice that

E

(

m
∑

i=1

(

d′
n,m,i − En,m,i−1(d

′
n,m,i)

)

)2

≤
m

∑

i=1

E(d′
n,m,i)

2 ≤ ε

m
∑

i=1

E|d′
n,m,i|

≤ ε
m

∑

i=1

E|dn,m,i| +
m

∑

i=1

E(|dn,m,i|1|dn,m,i|>ε) ,

showing that (6.14) holds under (6.13). �

Lemma 6.3. Let X be a real random variable and F a sigma-field. For any p ≥ 1 and any

ε > 0,

E
(

|X|p1|E(X|F)|>2ε

)

≤ 2 E
(

|X|p1|X|>ε

)

, (6.15)

and setting Y = X − E(X|F),

E
(

|X|p1|Y |>3ε

)

≤ 2 E
(

|X|p1|X|>ε

)

and E(|Y |p1|Y |>4ε) ≤ 3 × 2p+1
E

(

|X|p1|X|>ε) . (6.16)

Proof of Lemma 6.3. We first write that

|X|p1|E(X|F)|>2ε ≤ |X|p1|X|>ε + εp1|E(X|F)|>2ε . (6.17)

Notice now that {|E(X|F)| > 2ε} ⊆ {|E(X1|X|>ε)|F)| > ε}, implying that

εp1|E(X|F)|>2ε ≤ |E(X1|X|>ε|F)|p ≤ E
(

|X|p1|X|>ε|F
)

, (6.18)

Starting from (6.17), using (6.18) and taking the expectation, (6.15) follows. To prove (6.16),

the only difference is that we start by writing that

|X|p1|Y |>3ε ≤ |X|p1|X|>ε + εp1|E(X|F)|>2ε ,

and since for any positive reals a, b and ε, (a + b)p1a+b>4ε ≤ 2p+1ap1a>2ε + 2p+1bp1b>2ε,

E(|Y |p1|Y |>4ε) ≤ 2p+1
E(|X|p1|X|>2ε) + 2p+1

E(|X|p1|E(X|F)|>2ε) . �

7 Ergodic theorem

We gather below the ergodic theorems used in this paper. We keep the notations of Section 2.

Lemma 7.1. Let Z be a real-valued random variable in L
1 and define Zk = Z ◦ T k for any k

in Z. Then
1

n

n
∑

i=1

E0(Zi) → E(Z|I) almost surely and in L
1, (7.1)
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and
1

n
E0

(

max
1≤i≤n

|Zi|
)

→ 0 almost surely and in L
1. (7.2)

Proof. By definition of the operator K (see the beginning of Section 2),

1

n

n
∑

i=1

E0(Zi) =
1

n

n
∑

i=1

Ki(Z) .

Applying the Dunford-Schwartz ergodic theorem (see for instance Krengel (1985)) we obtain

that (K(Z) + · · · + Kn(Z))/n converges almost surely and in L
1 to some g ∈ L

1. Now by the

usual ergodic theorem, (Z1 + · · · + Zn)/n converges in L
1 to E(Z|I). Therefore using the fact

that E(Z|I) = E0(E(Z|I)) almost surely (see Bradley (2007)) and the contraction in L
1, it

follows that g = E(Z|I) almost surely.

We turn now to the proof of (7.2). With this aim, we notice that for any N > 0,

1

n
E0

(

max
1≤i≤n

|Zi|
)

≤ N

n
+

1

n

n
∑

i=1

E0(|Zi|1|Zi|>N) .

By using (7.1), n−1
∑n

i=1 E0(|Zi|1|Zi|>N) converges to E(|Z|1|Z|>N |I) almost surely and in L
1,

as n tends to infinity. Therefore

lim
N→∞

lim sup
n→∞

1

n

n
∑

i=1

E0(|Zi|1|Zi|>N) = 0 almost surely and in L
1,

which ends the proof of (7.2).
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