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Abstract. Multi-resolution analysis and numerical precision problems
are very important subjects in fields like image analysis or geometrical
modeling. In the continuation of our previous works, we propose to ap-
ply the method of Ω-arithmetization to ellipses. We obtain a discrete
multi-resolution representation of arcs of ellipses. The corresponding al-
gorithms are completely constructive and thus, can be exactly translated
into functional computer programs. Moreover, we give a global condition
for the connectivity of the discrete curves generated by the method at
every scale.

Keywords: discrete geometry, multi-resolution analysis, nonstandard
analysis.

1 Introduction

Discrete analytical geometry has been somewhat accidently founded in 1988
by Jean-Pierre Reveillès [18] when he proposed the analytical description of a
discrete straight line. This was an unexpected result that came out of theoretical
research in nonstandard analysis (NSA). Nonstandard analysis [20, 17] provides
an explicit framework for the manipulation of infinitely large and infinitely small
numbers. The authors, in this paper and several previous papers, have decided
to go back to the roots of Reveillès’ discovery: the arithmetization method.
The arithmetization process is a way to discretize a continuous curve that is a
solution of a differential equation. The general idea is to transform a classical
approximation scheme (such as the Euler scheme for instance) of the continuous
solution of a differential equation defining a curve, into an equivalent discrete
scheme. This is possible because, given an infinitely large (nonstandard) number
ω (the global scale), it is possible to establish an equivalence between the set of
limited real numbers and a subset HRω of Z. The set HRω, with an additional
structure, is called the Harthong-Reeb line. The intuitive idea is that, in some
way, the real line R is similar to the discrete line Z seen from far away.
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In a previous work, the authors re-examined the circle of Holin [9, 10]. The
corresponding arithmetization process was based on infinitely large integers that
had only an axiomatic status. Hence, the method was not constructive in nature
and it was impossible to give an exact numerical representation of the result.
In a past paper [5], we tried to tackle the issue of the constructivity of our
model by using Ω-numbers of Laugwitz and Schmieden [12]. Roughly speaking,
an Ω-number (natural, integer or rational) is a serie of numbers of same nature,
with an adapted equality relation. The sets of Ω-numbers are extending the
corresponding sets of usual numbers with the added advantage of providing nat-
urally infinitely large integer numbers: for instance, an Ω-integer α represented
by a sequence (αn) of integers is such that α ≈ +∞ if limn→+∞αn = +∞ in
the usual meaning. Clearly, these infinite numerical entities are constructive .
It was a pleasant surprise to discover that the corresponding Ω-arithmetization
method is also a discrete multi-scale representation of the real function on which
the method is applied.

The goal of the present paper is to apply the Ω-arithmetization to the case of
an ellipse and to study some connectivity property of the corresponding discrete
curve. The first result is a constructive algorithm which gives an exact discrete
multi-resolution representation of an arc of ellipse. In the Figure 1, we give a
graphical illustration of this kind of representation. In fact, this multi-resolution
aspect is a normal consequence of the Ω-arithmetization: this is in relation with
thenature of the scaling parameter ω of the method. Since ω is now an infinitely
large Ω-integer, it encodes an infinity of increasing scales. The arithmetization
process gives simultaneously a discretization of the initial real function at each
of these scales. Since nowadays many developments in image analysis, geomet-
rical modelling, etc. comprise multi-resolution approaches and must deal with
numerical precision problems, the Ω-arithmetization is a new tool which has
the interesting property of taking into account these two aspects. The second
main result of this paper is about the discrete connectivity: we show that the
connectivity of the corresponding discrete ellipse arcs is a global property and
that there is a rectangle within these curves are connected at every scale. Such
global properties for a step-by-step integration process is unexpected. It extends
a similar result we already had for circles but here, the property extends through
all the scales. The paper is organized as follows: in Section 2, we introduce the
Ω-numbers and the associated Harthong-Reeb line. In Section 3, we propose
an Ω-arithmetization of ellipse arcs. Properties and graphical representation are
discussed in Section 4. We conclude and provide perspectives for this work in
Section 5.

2 Theoretical Basis : the Ω-numbers and the Associated

Harthong-Reeb Line

The aim of this section is to present the basis of the nonstandard theory of
Laugwitz and Schmieden [12, 13]. Our goal is to implement such a theory using
the Ocaml language [11] and use it to build conic arcs.
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Fig. 1. Graphical representations of the multiresolution aspects of the Ω-
arithmetization of an arc of ellipse. (Full explanation in Section 3).

Globally, this theory permits the definition of a nonstandard model of the
integer number set that can be used to build a discrete model of real numbers,
this discrete model of the continuum is called the Harthong-Reeb line [8]. The
main interest of this nonstandard model (compared to other nonstandard theo-
ries such as, for instance, Internal Set Theory [17]) is that it is constructive [3].
Therefore, the implementation in a programming language is possible. In this
section, we will not describe the whole theory but only introduce the basic no-
tions that are essential to understand the Harthong-Reeb line. For more details
about our approach please refer to [5].

2.1 The Ω-numbers of Laugwitz and Schmieden

To extend a theory of integer numbers, Laugwitz and Schmieden introduce a new
symbol, Ω to the classical ones (0, 3, 9,+, /, ...). The only thing that we know
about it is that Ω verifies the following propriety named the Basic Definition

and called (BD) :

Definition 1. Let S(n) be a statement in N depending of n ∈ N. If S(n) is true

for almost n ∈ N, then S(Ω) is true.

We specify that here and in all this article, the expression ”almost n ∈ N”
means ”for all n ∈ N from some level N”, i.e. ”(∃N ∈ N) such that (∀n ∈ N)
with n > N”. Since Ω can be substituted to any natural number, it denotes an
Ω-number which is the first example of Ω-integer. Immediately, we can verify
that Ω is infinitely large, i.e. greater than every element of N. Indeed, for p ∈ N,
we apply (BD) to the statement p < n which is true for almost n ∈ N; thus
p < Ω for each p ∈ N. And Ω is the sequence (n)n∈N.

Hence, each element a of this theory will be declined as a sequence (an)n∈N.
To compare such Ω-numbers, we put the following equivalence relation:

Definition 2. Let a = (an)n∈N and b = (bn)n∈N be two Ω-numbers, a and b are

equal if it exists N ∈ N such that for all n > N , an = bn.
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The definition of the operations and relations between ZΩ , the set of Ω-
numbers are the following:

Definition 3. Let a = (an)n∈N and b = (bn)n∈N two Ω-numbers,

– a+ b =def (an + bn)n∈N and −a =def (−an) and a× b =def (an × bn)n∈N;
– a > b =def [(∃N∀n > N) an > bn] and a > b =def [(∃N∀n > N) an > bn];
– |a| =def (|an|).

As in all nonstandard theories, there exist two classes of elements, the standard
one and the nonstandard one. We recall that in classical IST nonstandard theory,
this second class exists only in an axiomatic way: there are the infinitely small
and large numbers. Here two classes of elements which can be distinguished:

- the class of element standard which are the elements α = (αn)n∈N which
verify ∃p ∈ Z such that ∃N ∈ N, ∀n > N,αn = p (example: (2)n∈N ).

- the class of element nonstandard which are all the other element of ZΩ

(examples : (−1)n
n∈N

,(n)n∈N )

Among the nonstandard element, we focus infinitely large numbers which are
the sequences α = (αn)n∈N such that limn→+∞αn = +∞ (example: (n)n∈N).

2.2 The Harthong-Reeb Line Based on Ω-numbers

The Harthong-Reeb line (HRω) is built upon the usual nonstandard axiomatic
theory IST [8]. This kind of formalism was introduced by Diener in [6]. It is
defined as a scaling on the integer numbers. We consider a new unit which is
an infinitely large integer named ω = (ωn)n∈N, which can be Ω himself. This
scaling strongly contracts Z so that the result looks like R [7].

ℤ

ℝ
≃

HR

1

10

0

ω

1ω0

ω

Fig. 2. Intuitive representation of the Harthong-Reeb line.

More formally, we defined the Harthong-Reeb with Ω-numbers as follows.

Definition 4. We consider the set

HRω = {x ∈ ZΩ , ∃p ∈ N, |x| ≤ pω}

and the relations, operations and constants on HRω described by the following

definitional equalities: for all (x, y) ∈ HR2
ω, we set
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• (x =ω y) =def (∀p ∈ N) (p|x− y| ≤ ω);
• (x >ω y) =def (∃p ∈ N) (p(x− y) ≥ ω) ;

• (x 6=ω y) =def (x >ω y) ∨ (x <ω y);
• (x ≤ω y) =def (∀z ∈ HRω) (z <ω x⇒ z <ω y);
• (x+ω y) =def (x+ y) and 0ω =def 0 and −ω x =def −x;
• (x×ω y) =def ((x × y) ÷ ω) and 1ω =def ω and x(−1)ω =def (ω2 ÷ x) for

x 6=ω 0.

Then, the Harthong-Reeb line is the numerical system (HRω,=ω,≤ω,+ω,×ω).

We can say that HRω is the set of Ω-integers which are limited at the scale ω.
We can describe all these relations and operations with integers, for instance,
x =ω y ⇐⇒ ∀p ∈ N ∃Mp ∈ N ∀n ≥Mp p|xn − yn| ≤ ωn

The goal of the construction of this line is to obtain a discrete model of the
continuum. To understand that the Harthong-Reeb line is a kind of continuum,
we can compare it to (Rlim

Ω ,≃,.,+,×). This is the set of limited Ω-rational
numbers of Laugwitz and Schmieden defined considering sequences of rational
numbers. The two following maps:

{
ϕω : HRω → Rlim

Ω

x 7→ x/ω

}
and

{
ψω : Rlim

Ω → HRω

u 7→ (⌊ωu⌋)

}

are the isomorphic maps necessary to pass from the classical real world to the
discrete one. The following section uses the Harthong-Reeb line to define the
arithmetization process based on the well known Euler scheme.

3 The Discrete Ellipse Arcs

In this section we revisit and extend recent work about the arithmetization
method. The arithmetization is basically a way of transforming a continuous
Euler scheme into a discrete one. This leads to a step-by-step generation algo-
rithm of a discrete object. Recently the authors have arithmetized differential
equations defining a circular arc [19]. This was done with an axiomatic defini-
tion of infinitely large integers. In another recent paper, the authors introduced
the Ω-arithmetization method based on Ω-numbers which allows a construc-
tive representation of infinitely large integers. In this section we apply the Ω-
arithmetization to circles and more generally to ellipses.

We consider an axis-aligned ellipse of equation

x(t)2

a′2
+
y(t)2

b′2
= 1 (1)

with a′ and b′ ∈ Q. The parametric form of this set is

{
x = a′ cos(t)
y = b′ sin(t)

(2)

and is the solution of the differential system
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{
x′ = −a′/b′ y(t)
y′ = b′/a′ x(t).

(3)

As a′ and b′ are in Q, so there exist p, q,∈ Z and r, s ∈ N∗ such that a′ = p/r and
b′ = q/s. We can define two integer numbers a an b thus that a/b = a′/b′ and
b/a = b′/a′ . So, now only integers are manipulated in the differential system.

To obtain a solution we use the well known Euler method. In this case, we
have: {

(x0, y0) = (0, b′)

(xn+1, yn+1) = (xn, yn) + (−
a

b
h yn,

b

a
h xn).

(4)

We know that the smaller the integration step h, better is the approximation.
In some meaning, the better choice is h infinitesimal.

We want to embed this scheme in HRΩ line. Using the idea of the isomor-
phism ψω

ψω : Rlim −→ HRω

x 7−→ ⌊ωx⌋

and replace the step h by 1/β we can write the following scheme

{
(x0, y0) = (0, ⌊ωb′⌋)

(xn+1, yn+1) = (xn, yn) + ((−ayn) ÷ (bβ), bxn ÷ (aβ))
(5)

where

– ∃α such that α, β, ω ∈ HRω; α, β, ω ≃ +∞ and ω = αβ (we say that ω is
the global scale)

– ⌊ωb′⌋ = (⌊ω0b
′⌋, ⌊ω1b

′⌋, . . .)
– ∀u, v ∈ HRω, u÷ v = (⌊u0 ÷ v0⌋, ⌊u1 ÷ v1⌋, . . .)
– (x0, y0) ∈ HR2

ω

As presented in [4, 19], the problem of this scheme is that it generates values
that are infinitely far from each other and thus the corresponding discrete curve is
strongly (infinitely) non-connected. To avoid this problem, we divide everything
by β in order to bring the discrete points close together. It is equivalent to
work at a scale α which is named the intermediary scale.3 Let us introduce the
following notations to describe the decomposition x = x̃β + x̂ for any integer
x ∈ HRω so x̃ = x ÷ β ∈ HRα and x̂ = xmodβ ∈ {0, . . . , β − 1}. The integer
x̃ ∈ HRα is interpreted as the result of the rescaling on x. This decomposition
produces the following scheme:





(x̃0, ỹ0) = (0, ⌊ωb′⌋ ÷ β)
(x̂0, ŷ0) = (0, ⌊ωb′⌋modβ)
(f1

n, f
2
n) = ((−a(ỹnβ + ŷn)) ÷ (bβ), b(x̃nβ + x̂n) ÷ (aβ))

(x̃n+1, ỹn+1) = (x̃n + (x̂n + f1
n) ÷ β, ỹn + (ŷn + f2

n) ÷ β)
(x̂n+1, ŷn+1) = ((x̂n + f1

n) modβ, (ŷn + f2
n) modβ)

(6)

3 We could of course as well work at the intermediary scale β. The equations would
be slightly different because of the role of β as 1/h but the principle would remain
the same.
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the relevant variables are x̃ and ỹ ∈ HRα while x̂ and x̂ only conserve the
accumulated error.

Let us call Eα
d (0, a, b) the discrete curve defined by the solution (x̃n, ỹn) of

(6). Eα
d (0, a, b) is the arithmetization at the intermediate scale α of the initial

ellipse (1).
Observe that the algorithm (6) is standard. This means that for α, β and

ω standard we get a usual scheme in Z2. Nevertheless, in this paper, we have
to consider that all objects are Ω-numbers, i.e. infinite sequences of integers
operating with the relations and operations defined in Section 2, for instance, a =
(a)m∈N, b = (b)m∈N

4 and β = (βm)m∈N and (x̃n, ỹn)n∈N = ((x̃m,n), (ỹm,n))n∈N.
Let us note that n represents the iteration in the algorithm and that m the

level in the sequence.

4 Properties and Graphical Results

In this section we present some theoretical results on the connectivity of the
elliptical arcs and some graphical illustrations of the algorithm which result of
an implementation in Ocaml. Let us first start with an extension of the theorem
on the connectivity of circular arcs proposed in [19] by Richard and al.

4.1 Connectivity Properties

Before proving connectivity properties, we need some definitions.

Definition 5. An arc of Eα
d (0, a, b) is a sequence of the following form

(x̃n, ỹn)k<n<k+p for k and p fixed in N

Then, we define the notion of connectedness with Ω-intergers and call it 8Ω-
connectedness:

Definition 6. A curve defined by the Ω-points ((x̃m,n), (ỹm,n))(m∈N, k≤n≤k+p)

is 8Ω-connexe if

∀n, ∀m, |xm,n+1 − xm,n| ≤ 1 and |ym,n+1 − ym,n| ≤ 1.

This is equivalent to the classical 8-connectedness for each level m of the un-
derlying sequences. This is the natural generalization to the Ω-numbers of the
discrete connectivity. We also need the definition of a rectangle that is defined
in Z2

Ω . A rectangle in Z2
Ω , centered in zero and with length 2l = (2l, 2l, ...) and

width 2w = (2w, 2w, ...) is defined by :

Rl,w = {(x, y) ∈ Z2
Ω ; −l ≤ x < l and −w ≤ y < w}.

If we remember that Ω-numbers are sequences, this definition becomes:

Rl,w = {((xm)(m∈N), (ym)(m∈N)) ∈ Z2
Ω ;∀n ∈ N (−l ≤ xm < l and −w ≤ ym < w)}.

4 Here a and b are standard Ω-numbers because of ϕΩ , hence the sequences are con-
stant ones.
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The following theorem is an extension of the connectivity theorem given
in [19]. This is a double extention: firstly to the axis aligned elliptical arcs and
secondly to the Ω-numbers. The proof is very close to the one proposed in [19].
It is however remarkable that, since we are working with Ω-integers, the result
is a multi-scale result that is valid at all scales at the same time.

Theorem 1. Every arc of Eα
d (0, a, b) in the square Rl,w is 8-Ω-connected for

l = aβ ÷ b and bβ ÷ a.

Proof. Let Γ = ((x̃n, ỹn))k≤n≤k+p an arc of Eα
d (0, a, b) such that (x̃n, ỹn) ∈ Rβ

for each n = k, . . . , k + p.

The proof is in two parts: in part (a) we will give a necessary and sufficient
condition for the connectedness of Γ and in part (b) we will show that the
condition Γ ⊂ Rl,w with (l, w) = (aβ ÷ b, bβ ÷ a) is sufficient.

(a) Equivalent conditions: using the two schemes (5) and (6) and properties of
the Euclidean division, we can see that the following conditions are equivalent:

−1 ≤ x̃m,n+1 − x̃m,n ≤ 1

−1 ≤ (x̂m,n + f1
n) ÷ βm ≤ 1

−βm ≤ x̂n + f1
n < 2βm

−βm − x̂m,n ≤ (−a(ỹm,nβm + ŷm,n)) ÷ (bβm) < 2βm − x̂m,n

−bβ2
m − bx̂m,nβm ≤ −a(ỹnβm + ŷm,n) < 2bβ2

m − bx̂m,nβm

−bβ2
m − bx̂m,nβm ≤ −aym,n < 2bβ2

m − bx̂m,nβm

−
b

a
(β2

m + x̂m,nβm) ≤ −ym,n <
b

a
(2β2

m − x̂m,nβm)

Hence with a similar proof for (ỹm,n+1 − ỹm,n), Γ is 8Ω-connected if and only
if, for each n = k, . . . , k + p− 1 for all m , we have:

•
b

a
(−2β2

m + x̂m,nβm) < ym,n ≤
b

a
(β2

m + x̂m,nβm)

•
a

b
(β2

m + ŷm,nβm) ≤ xm,n <
a

b
(2β2

m − ŷm,nβm).

(b) Sufficient condition: We prove here that if Γ ⊂ Raβ÷b,bβ÷a, then the
previous condition is verified. Since 0 ≤ x̂n ≤ β − 1 and 0 ≤ ŷn ≤ β − 1, we get
the two following sequences of inequalities:

b

a
(−2β2

m + x̂m,nβm) ≤
b

a
(−β2

m − βm) < −
b

a
β2

m <
b

a
β2

m ≤
b

a
(β2

m + x̂m,nβm)

−
a

b
(β2

m + ŷm,nβm) ≤ −
a

b
β2

m <
a

b
β2

m <
a

b
(β2

m + βm) ≤
a

b
(2β2

m − ŷm,nβm).
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From −
b

a
β2

m ≤ yn <
b

a
β2

m, we derive5

(
−
b

a
β2

m

)
÷β ≤ yn ÷β <

b

a
β2

m ÷β which

imply −
b

a
βm ≤ ỹn <

b

a
βm. This implies −(bβm ÷ a) ≤ ỹn < bβm ÷ a.

For x̃, applying the same property, if −
a

b
β2

m ≤ xn <
a

b
β2

m, then −(aβm÷b) ≤

x̃n < aβm ÷ b. This is the condition of the inclusion in the rectangle Raβ÷b,bβ÷a

and so for the 8Ω-connectedness. �

The section (4.2) shows some representations and interpretations of this the-
orem.

4.2 Graphical Illustrations

In this section, we present different representations of axis-aligned elliptical arcs
which illustrate our connectivity theorem and our arithmetization method in
general. The Ω-integers are implemented in Ocaml language. Firstly, some words
about this language, Ocaml is a functional programming language i.e. a pro-
gramming paradigm that treats computation as the evaluation of mathematical
functions and avoids state and mutable data. It prefers the application of func-
tions, contrarily to the imperative programming style, which emphasizes changes
in state. Hence, objects are functions which permits the manipulation of infinite
ones. For instance, Ω-integers are viewed as a function of integers: sequences
which associate a value an to n for all n.

The multiresolution aspect is introduced by the different colors which encode
the level m in the Ω-integers. We can observe that there is a correlation between
the level of resolution and the size of the error. It is important to understand
that the Ω-numbers contain all the scales at the same time and that the model
as such is inherently multiscale. In fact, the algorithm handle entities which are
infinity, but for the graphical illustration, we just extract some of them.

According to the theorem of Section 4.1, we have here two Ω-arithmetization
of circle arcs. In Figure 5(a), the arc is connected and satisfies αR < β, (R,α, β) =
((2)n, (2n)n, (9n)n), hence we have indeed ∀n ∈ N, Rαn = 2∗2n = 4n < 9n. The
second example, in Figure 5(b) is not connected. Its parameters are (R,α, β) =
((2)n, (4n)n, (3n)n).

The Figure 5(b). shows that all the parts (arcs) of the ellipse that are located
inside the rectangle R(2β;⌊0.5β⌋) are connected.

In Figure 5. we can see in (a) a multiresolution representation of a discrete

ellipse E
(2n)n∈N

d (0, 4, 2) with β = (7n)n∈N. The pictures (b), (c), (d), (e), (f) are
the different scales presented separatly in Figure 6.(a). The rectangle R(2β;⌊0.5β⌋)

is also displayed for each picture .

5 Usually, the division algorithm operates on integer numbers. Here we need to extend
it to rational numbers. Hence we defined u ÷ v where u and v are rational fractions
by u ÷ v =def ⌊u/v⌋.
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(a) (b)

Fig. 3. Graphical representations of the Ω-arithmetization of connected and non-
connected circle arcs.

Fig. 4. Illustration of the theorem with an ellipse E
(2n)

n∈N

d (0, 3, 2) with β = (80n)n∈N.

5 Conclusion

In the present paper, we have applied the new concept of Ω-arithmetization
to the case of an arc of ellipse. This method gives a discrete and multi-scale
representation of this kind of Euclidean object. Due to the structure of the Ω-
integers, we obtain a completely constructive algorithms which can be exactly
translated into functional computer programs. It follows that these programs
do not generate any numerical error and they provide an exact discrete multi-
resolution representation of the given arc of ellipse. Furthermore, we have shown
that a discrete ellipse arc is connected inside a global region of the discrete plane.

The properties of the obtained one-revolution-connected ellipse are not stud-
ied because it is due to the accumulated error of Euler scheme, and does not
depend on the applied theory. Moreover, we emphasize that the goal of this work
is not to define discrete objects in an intuitive way. That is why we do not com-



Ω-arithmetization of Ellipses 11

(a) (b)

(c) (d)

(e) (f)

Fig. 5. Graphical representations of ellipse with the associated rectangle-
connectedness.

pare our discrete ellipse definition with others like Bresenham [2] or Andres [1]
definitions.

In future works on this subject, we plan to study systematically this form of
multi-resolution analysis for other kinds of continuous curves such as polynomial
ones and spline curves. In addition, we intend to change our general theoreti-
cal framework; we want to move from the theory of Ω-numbers of Laugwitz-
Schmieden to the formalism of constructive type theory of P. Martin-Löf [14,
15]. The first reason is that this stark approach of mathematics and computer
science is well suited for both developing constructive mathematics and writing
programs. Furthermore, Martin-Löf has already developed a nonstandard ex-
tension of constructive type theory [16] in which we dispose of infinitely large
natural numbers. Hence, in this more satisfactory context, it would be possible
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to define an Harthong-Reeb line as a new model of the continuum and build a
general tool for discrete multi-resolution analysis of continuous objects.
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