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Abstract

In this paper, the decomposition of nD-rotations is studied. Using this decompo-
sition, nD-rotations are classified and properties are underlined. For each class,
an algorithm previously presented by the authors to decompose nD-rotation into
planar rotations is proposed and a generalized algorithm is presented. More-
over, an alternate algorithm based on the Schur decomposition is investigated.
A comparison between these different algorithms is finally provided.

Keywords: nD-dimensional rotations, planar rotations, Cartan-Dieudonné
theorem, Schur decomposition, classification of nD-rotation.

1. Introduction

Rotation characterization is very useful in many application domains such as
in computer vision [1], in medicine [2, 3], in Procrustes analysis [4] or in global
visibility computation [5] for example. In many cases, estimating 3D rotations is
sufficient but higher dimensions are needed in some cases (color image analysis,
global visibility computation using Pliicker space for example).

From a set of points and their images, our aim is to characterize the rotation
parameters (determination of the angles and planes) in nD. Since, our framework
is experimental, the method must be somewhat robust to noise. This work is
supposed to be a basis for the description of nD discrete rotations by extension
of hinge angles for 3D discrete rotations [6]. In this paper, we suppose without
loss of generality that the rotations are centred on the origin of the frame and
that the angles are in [0; 7].

Unfortunately, as explained in [7], in the available literature there are not
many methods that determine the characteristics of a nD-rotation. Some meth-
ods can be used only in 3D [2, 3, 8]. Other methods [9, 10] estimate the rotor
which describes the rotation. In [9], the rotation planes cannot be computed
easily.

Moreover, in [10], the versor can be determined only with exact data. The
constructive proof of the Cartan-Dieudonné theorem proposed in [11] could

*Corresponding author

Preprint submitted to Elsevier March 17, 2011



provide an algorithm to characterize nD rotations by their decomposition into
planar rotations. Unfortunately it has been shown that this solution is not
practicable [7].

In [12], Fontijne et al. proposed a method to reconstruct versors using
vector correspondences. This method is based on the construction of a reflection
sequence which aligns the points with their correspondences one by one. As
explained by its authors, this method is not well suited for noisy data [13]. In
this case, retrieving the reflexion axis could be very difficult. Even if the found
axis is in accordance with the data, due to the multiple necessary decisions, the
obtained versor could be significantly different from the correct one.

Another method can be deduced from the Schur decomposition [14, 15] which
factorizes a matrix A into two matrices (an orthogonal matrix U and a block-
diagonal matrice T such that A = UTU"). As far as we know, the Schur
decomposition has not been used to decompose nD-rotations into planar rota-
tions. Since few methods exist, the authors have proposed a new algorithm to
determine nD rotations from n points and their images [7]. From the Cartan-
Dieudonné theorem [16], we know that a nD rotation can be decomposed into
an even number of planar rotations. In [7], some of the authors have proposed
an algorithm that finds these planar rotations and the angle for each of them.
This fully characterizes the rotation.

The paper is organized as follow. In Section 2, our method presented in [7]
for determining rotation parameters is summarized and its limits are underlined.
In Section 3, nD-rotations are classified and an improvement of our algorithm is
proposed. Another method based on the Schur decomposition is investigated in
the next section. Finally, a comparison between our algorithm, its improvements
and the Schur decomposition is provided.

2. The nD rotation decomposition algorithm presented in [7]

In [7], the authors have proposed an algorithm to decompose the nD-rotations.
It works in the Geometric Algebra framework [9, 17, 18, 19, 20]. However, there
are particular classes of rotations that are not handled by the proposed algo-
rithm: the isoclinic rotations and what we called the pseudo-isoclinic rotations.
We will therefore extend this algorithm to integrate those particular cases. We
briefly present the useful notions for the understanding; for more details the
reader may refer to [7].

In the following, the n dimensional space E (usually R™) is considered with
a basis (not necessarily an orthogonal one) denoted by (x;);=1..,. The space
FE must be equipped with a non-degenerated quadratic form and the associated
bilinear form is denoted by B. In standard cases, B corresponds to the usual
scalar product. Thus, the space F is a metric space upon which isometries can
be defined.

2.1. Some results about nD-rotations
Let R be a rotation in SO(FE), the rotation group of E. The fixed-point
subspace of R is denoted by F'. Its orthogonal subspace in F is denoted by P



or F+. In other words,
F={x€E|R(x)=x}and F* ={x€ F|Vy € F, B(x,y) = 0}.

The respective images of (x;);=1..., by R are denoted by (yi)i=1...n. Since B
is non-degenerate, the space E can be decomposed into £ = P @ F.
In the following of this paper, the following notations are used:

* the orthogonal subspace to F' is denoted by P
* the rotation planes are denoted by P;

* P, is used in the R-isogonal subspace decomposition provided in Section
3.3

Moreover, E can also be decomposed into another direct sum given by the
following well-known proposition [16]:

Proposition 1. Let f be a linear isometry of E. The vector space E is an
orthogonal direct sum :

E=VeWoP o --0F
where the subspaces V., W and P; are stable under f, and f |y= Idy, f |lw=
—Idw and every P; fori=1,...,r is a plane such that f |p, is a rotation.

In term of matrices, Proposition 1 shows us that there exists an orthonormal
basis of F such that the matrix of f can be written as

I
~I,
‘F = Rel
Ry,
where I, denotes the identity matrix of order p and Ry, (i =1,...,7) are 2 X 2

planar rotation matrices. As we deal with rotations, W has an even dimension q.
Thus, we can consider the submatrix —I, as the concatenation of ¢/2 rotations
of angle w. So, wecanset V=F W =0and P=P, & ---® P,.

2.2. First version of our algorithm [7]

The method we proposed in [7] consists of three steps. We begin by the
determination of P, the orthogonal subspace to the rotation fixed-points set.
From it, we can construct the rotation planes and finally we can retrieve the
rotation angles.

Determination of P.

The invariant subspace F' of a transformation R and its orthogonal P are in
direct sum. Moreover, the null space (denoted by Ker) and the range (denoted
by I'm) of an application are in direct sum too. From the two equalities £ =
P@F and E = Ker(R — Id) ® Im(R — Id) we deduce that P is generated by
(¥i — Xi)i=1...n. The complete proof is provided in [7].



Figure 1: Graphical illustration of rotation plane and angle. x1,y1 (resp. x2,y2) represent
a vector and its image by a rotation. The rotation plane P; is generated by x1 —y1 and
X2 —y2. The angle between x3 and y1 is the same than those between x1 and y1, in Pr.

Determination of the rotation planes.
The goal here is to build a basis of P in order to be able to determine the
rotation planes. Using Proposition 1, the subspace P can be decomposed as

P=P, @ - @P,i=1,...,r

Then, if we compute an orthogonal basis of P, two elements of basis will deter-
mine P;. Actually, let (by,ba, - ,bar_1,ba;) be an orthogonal basis of P. In
other words,

P=bi AbaA---Abg._1 Abg,.

The plane P; is generated by bo;_1 A bg; for i = 1...7.

The most obvious choice to compute it would be to use the Gram-Schmidt
orthogonalization process over the vectors y; — x;. However, in case of noisy
data, it is difficult to obtain a matrix with correct rank!. This is very important
in case of real data. It is one of the main reasons why we worked on this
method rather than simply using the Schur method as it can be seen in Section
4. We decided to use an alternative which is to use a SVD decomposition over
the matrix formed by the vectors y; — x;. The approximation property of the
SVD [14] ensures that we obtain a matrix with rank 2r that is the dimension of
P even in case of slightly noisy data. Hence, following the usual presentation of
the SVD decomposition, the first 2r columns form the desired basis.

Determination of rotation angles.
The last step of the algorithm finds the rotation angle of each planar rotation.
For each rotation plane P;, the rotation angle between x and y is the same than

IThe (y; —Xj)(i=1...n) family generates P. So, the obtained matrix must be of rank 2 <n
that is at most 2r =n — 1 if n is odd.



B

Figure 2: Contraction of a vector x by a plane B.

the angle between their projections x, and y, in P; (cf Figure 1).

Then, for each P; we have to determine these two vectors x, and y,. To do
so, we suppose that the vectors x and y are chosen such that their projections
onto P; are not null.

A collinear vector to x,, is given by (x| P;) | P; where (.].) denotes the orthogo-
nal contraction? (see [7]). A graphical illustration of the orthogonal contraction
of a vector into a plane is provided in Figure 2.

Then, the rotation angle 6 in P; is the angle between x and y and is given
by: N

XH'yH . XH y”
O = Tyl ¢ " = el e
The computation is applied to all rotation planes in order to find all the rotation
angles. Unfortunately, as shown in [7], this algorithm is not adapted in some
particular cases.

2.8. Limits of this algorithm

In 4D, a rotation can be decomposed into one or two planar rotations. These
4D-rotations are said to be respectively simple and double rotations. They
leave fixed respectively a plane and one point (the rotation center). If the
angles 6; and 65 of a double rotation have the same magnitude (|61 = |62] €
[0, 7]) then the 4D rotation is said to be isoclinic. This is also called a Clifford
displacement [21].

More generally, we have the following definition:

Definition 1 (Isoclinic rotations). In a n-dimensional space, with n even, a

rotation is said isoclinic if all its § angles are equal (up to the sign).

These particular rotations are only defined in an even dimension space. In-
deed, in an odd dimension space, the unique isoclinic rotation is the identity
transformation. In [7], the term pseudo-isoclinic was introduced as follows:

2If A is an a-blade and B a b-blade then < A, B > is the subspace of dimension (b — a)
in B which is orthogonal to A



Definition 2 (Pseudo-isoclinic rotations). A nD-rotation with at least two
equal angles is called pseudo-isoclinic.

This definition works both in an even and in an odd dimension space.

In [7], we showed that our algorithm is not adapted to these particular
cases. Actually, if the data represents these two kinds of rotations, the rotation
parameters are not well determined by the algorithm such as it is presented in
[7]. In [7], numerical experiments have been conducted with dimension strictly
smaller than 7. In this case, four groups of pseudo-isoclinic rotations can be
distinguished:

(a) In 4D, the rotation has 2 equal angles.
(b) In 6D, the rotation has 3 equal angles.

= the rotation is said #soclinic.
(¢) In 5D, the rotation has 2 equal angles.

(d) In 6D, the rotation has exactly 2 equal angles.

An adaptation of the algorithm to these cases is proposed in Section 3.
There exist previous works on isoclinic rotations [21]: the rotation planes are
given by orthogonal planes generated by a vector and its image. Our algorithm
uses this to handle cases (a,b). To the best of the knowledge of the authors
case (c) has not yet been addressed. Nevertheless, some rotations in an odd
dimension space (see Section 3.1.1) can be handled like isoclinic rotations in an
even dimension space. An enhancement is also provided in case (d). It is based
on the projections onto the range. These improvements are detailed case-by-case
in the following section.

This list is only exhaustive for rotations in a space of dimension strictly
smaller than 7. Actually, in higher dimension, other cases have to be considered.
For example, a 9D-rotation can be decomposed into four rotations having four
angles 601,05,03,0, with 6, = 65 # 63 = 6,. This pseudo-isoclinic rotation
is composed of a couple of isoclinic rotations. This underlines that the term
pseudo-isoclinic, as it is defined in [7], gathered various cases. A classification
of these pseudo-isoclinic rotations can thus be proposed. In Section 3.3 a general
method is proposed.

3. Extension to the pseudo-isoclinic rotations

In this section, a classification of the nD-rotations as well as some new defi-
nitions are proposed. According to the best of the knowledge of the authors, it
is the first time that such a classification is proposed. For each class of rotations,
a decomposition algorithm is presented. Finally, a generalized decomposition
algorithm which can be applied to all pseudo-isoclinic rotation is supplied.



8.1. Classification and properties of nD-rotations

In the following, R denotes a nD-rotation which is not the identity transform.

8.1.1. Classification of nD-rotations
The nD-rotations can be classified with respect to their decomposition. Let
us recall or even introduce some new terms useful for the proposed classification.
The isoclinic notion, explained in the previous section, is only defined in

an even dimension space. In an odd dimension space, a similar notion can be
defined.

Definition 3 (Pure pseudo-isoclinic rotations). In an odd dimension space,
the nD-rotations, with all its ”T_l angles equal are called pure pseudo-isoclinic
rotation.

The (pseudo) isocliny property is defined for angle equality. Since the data
is noisy, it is necessary to decide when two angles are equal. This problem is a
recurrent one when working with real numbers. In order to have a partition of
the finite set of the angles we introduce the following relation.

Let 61 and 65 be two angles. Let 8 be the approximation parameter and let
=3 be the following relation:

01=502 < | |01] — |02 | < B

For our experiments we arbitrarily fix the value of 3 to {5. Moreover, since
B is given and to avoid cumbersome indexes, we simply set = in order to denote
=3 in the following.

Let us introduce the new term pseudo-isogonal to characterize the relation
=. This relation is reflexive and symmetric but not transitive so = is not an
equivalence relation. The idea is to use this relation to form a partition of the
angle set. The following definition is required:

Definition 4 (Pseudo-isogonal component). The pseudo isogonal compo-
nent (PIC) of an angle 6 denoted by [0] is defined as the set of the angles o < 6
in relation with 6. In other words :

0] = {a € [0;60] | a=0}.

The pseudo-isogonal component is not an empty set. Actually, from the
reflexivity property, an angle belongs always to its pseudo-isogonal component.
Let S be the ordered set of the angles (in decreasing order).

Definition 5 (Pseudo-isogonal partition). A pseudo-isogonal partition
(PIP) is a set of pseudo-isogonal components such that it forms a partition of
the angle set; that means:

Vo, € 5,3'[9]] € PIP | 0; € [93]



Algorithm 1 Compute the pseudo-isogonal partition of a rotation

Input: S (ordered set of angles of the rotation R)
Output: C (set of the pseudo-isogonal component of R)
cC=10
while S # ) do
O : first element of S
Compute [©]
C + CU[O]
S+ 8\[9]

end while

Remark 1. The following property holds: PIP C PIC. There is no equality
between both sets because of the non transitivity of the relation =.

The method to compute a pseudo-isogonal partition of a rotation R is summa-
rized by the algorithm 1.

Definition 6 (Length of the pseudo-isogonal component). The length of
the pseudo-isogonal component denoted by 1([f]) is defined as its cardinal num-
ber.

This length is included between 1 and |3 ]. For a given rotation, the com-

ponent number is as well included in the interval [1; | §]].

Proposition 2. The pseudo-isogonal component of an isoclinic or a pure pseudo-
1soclinic rotation is unique and its length is mazximal.

Definition 7 (Isogonal space). An even dimensional subspace of E (of di-
mension at least 4) is said R-isogonal if the restriction of the rotation R to this
subspace is an isoclinic rotation.

A nD-rotation R (for n > 8) can have many R-isogonal subspaces. For
example, a 9D-rotation with two pseudo-isogonal components of length 2 has
two R-isogonal subspaces. An isoclinic rotation R (resp. pure pseudo-isoclinic
rotation) has only one R-isogonal subspace. Its dimension is n (respectively
%71) The R-isogonal subspace is the maximal subspace in P (the orthogonal
subspace to the invariant subspace).

Example 1. Let us consider a 11D-rotation which can be decomposed into 5
rotations with angles (61, 02,0s3,04,05) = (130°,130°,72°, 68°,60°). With these
new definitions, the following relations and equalities are true: 01RO, 03RO,
0sRO5, 04RO5 , [01] = {61,02} = [02], [05] = {05,04,05} = [04] = [05], I([01]) =
1(162]) = 2, I([83]) = 1([04]) = L([65]) = 3.

Remark 2. The partition based on the pseudo-isogonal components can be cal-
culated from the input data of our algorithm. Actually for a given matriz A,
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its SVD decomposes A as USV? where S is diagonal and its elements®, called
singular values, are the square root of the eigenvalues of AAt. Here, the SVD is
applied to the matriz (A—Id). An elementary calculation shows that the eigen-
values of (A —I)(A— 1)t with A be a rotation matriz are given by (2 —2cosb;).
Each eigenvalue is of order two. Thereby, the number of angles is the half of
the number of non-null singular value number (see Section 3.2.1).

The nD-rotations can be classified according to the number of angles A/, and
to the number of pseudo-isogonal components A,. This classification is given
by the following theorem.

Theorem 1 (Classification of nD rotations). Let R be a nD-rotation. If
all the angles of R are different then R is a general rotation else R is a
pseudo-isoclinic rotation. In this case, if all the | 5| angles of R are equal
andn is even (resp. odd) then R is an isoclinic rotation (resp. pure pseudo-
isoclinic rotation) in other cases R is an ordinary pseudo-isoclinic rota-

tion.

8.1.2. Properties of nD-rotations

In [21], Mebius defines two particular 4D-isoclinic rotations. The 4D-space
is equipped with an arbitrary standard orientation. A 4D-isoclinic rotation has
two angles of same magnitude (the angles have the same or an opposite sign).
If the two angles have the same orientation then the rotation is said to be
left-isoclinic else it is said to be right-isoclinic. In other words:

R0t4D = ROtQD (e]_)ROtQD (92) with (91 = 92 or 91 = —(92.
Using these definition, we have the following theorem:

Theorem 2 (Isoclinic decomposition theorem [21]). Any 4D rotation can
be decomposed into two 4D-rotations: one left- and one right-isoclinic rotation.
This decomposition can be processed in two ways, differing by a central reversion.

In other words,

R0t4D

[ROtQD (91)R0t2D (92)] Py [ROtQD (93)R0t2D (94)] Ps
[ROtQD (01)R0t2D (93)] [ROtQD (02)ROt2D (94)]

Left-isoclinic

with 91 = 93 and 92 = —64.
The proof of this theorem is provided in [21].
Moreover, Mebius decomposes the 3D rotation into the same way:

Right-isoclinic

Theorem 3. [21] Any 3D-rotation of angle 20 can be decomposed in a right-
and a left-isoclinic rotation of angle 6.

In other words,

3By convention, singular values are in decreasing order.



ROth (29) = [R0t2D (G)ROth (9)]p1 [ROtQD (9);50?52[)(—9)}132 = Rpl (29)

The proof of this second theorem is also provided in [21].

The notion of left- and right-isoclinic rotations make no sense in higher di-
mensions. Actually, two angles can be said to be equal or opposite but relations
between three angles can not be characterized in this way. In order to by-pass
the problem, another notion needs to be introduced:

Definition 8 (Standard rotations). A nD-rotation with all its angles of same
magnitude is said to be a standard rotation (n not necessarily even).

To decompose a rotation into standard rotations, one needs to order the
rotation in a convenient way. In 3D, rotations do not commute but there is no
isoclinic rotation. Whereas, in 4D, under some special condition on orthogonal-
ity, rotations can be permuted and thus placed in the convenient order. Let us
recall the notion of completely orthogonal planes:

Definition 9 (Completely orthogonal planes). Two planes P; and P, are
said to be completely orthogonal if each line in P; is orthogonal to any line in
Ps.

The isoclinic decomposition theorem of Mebius can be extended to any nD-
rotations in completely orthogonal planes:

Theorem 4 (Decomposition of the nD-rotations). Any nD-rotation in
planes completely orthogonal can be decomposed into standard rotations. The
decomposition is not unique.

Let us introduce the notion of simple, double and k-rotations used in the
proof of Theorem 4.

Definition 10 (Simple and double rotations). A nD-rotation with only one
(resp. two) angle is called simple (resp. double) rotation.

Definition 11 (k-rotation). A nD-rotation which can be decomposed into k
planar rotations with & angles (3 <k < |3 ]) is called by k-rotations.

More precisely, Theorem 4 can be reformulated as : a simple rotation can be
decomposed into two standard rotations, a k-rotation can be decomposed into
k standard rotations. Let us prove Theorem 4.

PROOF. In the proof, the notation Rp(«) denotes the rotation of angle « in the
plane P. The proof is in two parts: for kK = 1 (simple rotation) and for k > 2
(k-rotation).

10



* Simple rotations:

Let R be the nD-rotation of an angle @ in the rotation plane P. The rotation R
is the composition of the rotation R; of angle 6 in the plane P and the rotation
Ry of angle 0 in P with P and P completely orthogonal. The rotation R; can

be written as: 040 00
_|_ J—
Rp(0) = Rp <2> Rp <2> .

In the same way, the rotation Ro can be written as:
0+0 0—06
R5(0) = Rp (2 ) Rs (2 > .
With these decompositions, the rotation R can be written:
0+0 6—-0 0+0 0—40
R=Rp(O)Rp(0)=Rp| —— |Rp | —— | Rp Ry .
2 2 2 2

Since the rotation planes are completely orthogonal, the factors commute:

e (150 (1) (052 o (5°).

The rotation R is the composition of two standard double rotations of angle of
magnitude |0]|/2 and | — 0]/2.

* the k-rotations:

Let R be a k-rotation with k angles 61,05, ...,0;. The rotation planes are sup-
posed to be completely orthogonal. In each plane, the rotation can be expressed

as:

Rp, (61) = Rp, (701;62) ...Rp, (LJQFG’“) Rp, (91 — 7(91;62) - = 7(61;9’“))

Rey(00) = [Rr, (2552) Ry, (H2529)) Ry, (<25202)
Rp, (—01 +0uth) 44 Ll;@k))}

and for j =2,....k—1

Rp,y(051) = [Rey, (FO592) Ry, (FO5020) Ry, (252)

If we denote by O1,0a, ..., O the k angles of the standard double rotations
then the angles are related by the following relations:

i=2, ..k

{m=m—3j&

01 +GJ
—5 for

The first (k — 1) standard rotations are of angle of magnitude ‘

j=2,...,k. The last one is of angle of magnitude ’91 — WTQQ) — = W .

The common factor is #; but we can choose another one so the decomposition
is not unique.lJ

11



Rotations Na N Parity of Algo
n Algo
General < |%]| Ny (of length 1) | E& O of [7] -
é E;oclinic : 2 1 (of length %) E Algo2 | :%
= | Pure pseudo- n n 5
2 | isoclinic 5] | 1 (of length [5)] 0] Algo 3 %o
% Ordinary gign(;
% | pseudo- x y<z E & O .
A, . section
isoclinic 393

Table 1: The nD-rotation classification and the associated decomposition algorithms. The
letter E (resp. O) denotes the even (resp. odd) dimension, N, the number of angles and N,
the number of pseudo-isogonal components.

Table 1 sums up all the different nD-rotations according to these criteria.
The algorithms which permit their decomposition are also provided. They are
developed in the following sections.

3.2. Eatension of the algorithm from [7]

In this section, for each pseudo-isoclinic rotations, a method to extend the
algorithm provided in [7] is proposed. A generalized method available for all
pseudo-isoclinic is then provided.

First, we extend our algorithm to the isoclinic rotations, the pure pseudo-
isoclinic rotations and the ordinary pseudo-isoclinic rotations only in 6D with
two equal angles. These cases are particular cases of the generalized method
which deals with all the pseudo-isoclinic rotations provided in Section 3.3.

8.2.1. Isoclinic rotations

The first improvement of our algorithm presented in [7] is the extension of
the isoclinic rotations.

This particular case can be identified from the SVD. If the rotation is isoclinic
then the eigenvalue is unique and is of order n. Thus, isoclinic rotations can be
easily detected (cf Remark 2) and treated separately. In case of noisy data, the
eigenvalues are compared using an error margin € (|v; — v2| < € = v1 =, v3).

In this case, all the half-lines from the origin point are rotated by the same
angle and all planes generated by a vector and its image are invariant. In
other words, a 4D-isoclinic rotation is completely characterized by any point of
the hypersphere centered in 0 and its image which belongs to this hypersphere
too [21]. In 4D, it is sufficient to find two couples (x;,y;) and (xj,y;) with
vi = R(x;) and y; = R(x;j) such that P, = x; Ay; and P; = x5 Ay; are
orthogonal. The planes P; and P; can be used as rotation planes. In a general
way, two planes generated by two vectors and their images are not mutually
orthogonal. Consequently, it is not judicious to randomly choose vectors among
our input data. In order to correctly build those planes using only our input

12



data (n points and their images) we apply the following method (based on the
Gram-Schmidt orthogonalization). The first plane P; is arbitrarily defined by
x1 Ay1. Then a couple (x;,y;) which does not belongs to P; can be chosen. The
projection of (x;,y;) on P is given by (xj,,yi ). The vectors x;; = x; — x;, and
Yil = ¥i — ¥ir can be computed. They define a plane P, generated by a vector
and its image 4. Moreover the plane P, is orthogonal to P; (by construction).
So we can choose P; and P, as rotation planes.

In nD, 3 planes are required. In the same way, P; and P are built. The
third plane is generated by xx — projp, (xk) — projp, (xx) and yx —projp, (yx) —
projp,(yx) with (xk, yx) which belongs to neither Py nor P,. In a general way,
the (i+1)* plane is generated by x; —Z;;ll projp, (x;) and y; —Z;;ll projp, (yi)
with (xj,yi) not belongs to P, ..., P;. This method can be used in any even
dimension space to characterize the isoclinic rotations.

Algorithm 2 Find P; (rotation plane) for isoclinic rotation in all even dimension
space
Input: (Xi)i=1,..n, (¥i)i=1..n
Output: F;
Pr=x1/Ay1
for i =2 to dim/2 do
Choose (xi,y;) ¢ P1,..., Pi—1

X = 23;11 pTOij (xi)
1—1 .
Yii = Zz‘zl pTO]Pj (YI)
P = (Xi - Xiu) A (yi - yil\)
end for

The algorithm of [7] can be extended to the isoclinic rotations. It is sufficient
to detect these rotations from the SVD and then to apply Algorithm 2.

3.2.2. Pure pseudo-isoclinic rotations

A nD-rotation R (with n odd) is said to be a pure isoclinic rotation if its | |
angles are equal. A pure pseudo-isoclinic rotation has an invariant subspace F'
of dimension 1 and the restriction of R to P (of even dimension n — 1) is an
isoclinic rotation. Therefore, the subspace P is R-isogonal.

Let the matrix A be the rotation matrix. Let the matrix U be the matrix
which comes from the SVD of the matrix (A —Id). The subspace P is generated
by the (n — 1) first column vectors of the matrix U and the subspace F' is
generated by its last vector.

One way to determine the rotation planes is to project all the n vectors
and their images onto the subspace P using orthogonal contractions. Then,
Algorithm 2 is applied. Naturally, its input data are these projections.

“From [7]: yi1 +yu = R(xiL) + R(xy,) and yi1 = R(x;1) € F,yi, = R(x,) € P
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This method can be extended to all the pure pseudo-isoclinic rotations in
any dimension.

The rotation parameter determination for pure pseudo-isoclinic rotation in
any dimension space is summarized in Algorithm 3.

Algorithm 3 Find P; (rotation plane) for pure pseudo-isoclinic rotation in all
odd dimension space
Input: (Xi)i=1..n, (¥i)i=1..n
Output: P;
Zi =Y¥i — X
(S,U,V) = SVD|zy...2y)
n—1 .
P=N\_; U(:1)
for i=1ton do
Xi = projp(xi)
yi = projp(yi)
end for
Choose (Xk,¥k) # (0,0)
P =X Ayk
for i =2 to (dim —1)/2 do
Choose (_xﬁ, yi) ¢ Py..Pi_
Xiy = Y05, Projr, (%)
Yin = Z;;ll pTOij (ﬁ)
P’i = (Xil - xi\l) A (ﬁ - yin)
end for

8.2.3. Ordinary pseudo-isoclinic rotations in 6D with exactly 2 equal angles

To better understand the following, we start to detail the 6D-rotation with
three angles 6,1, 62 and 63 where exactly two are equal. In the following, the
angles ; and 6, are supposed equal.® The rotation R has got two pseudo-
isogonal components. This is an example which can be generalized to any
dimension and any pseudo-isogonal component number (see Section 3.3).

The space E can be decomposed as E = P @ F. The space F is reduced to
0. The space P can be decomposed as P = P; ® P, & P3. We suppose that the
rotation angle 6; belongs to P;, for i = 1,2, 3.

Let A be the rotation matrix. The SVD of the matrix (A — Id) gives two
distinct singular values: s; of order 4 and sg is of order 2. Let (4,7 4+ 1) with j
odd be the indexes of the matrix S such that S(j,j) = S(j+1,7+1) = s2. The
4" and (5 + 1) columns of the matrix U (denoted by U(:,5) and U(:,j + 1) in
the following) span P3 and the four other columns span P; & Ps.

In other words,

Ps=U(7)ANU( G+ 1).

5In other words, 61=02, 03 #£02, 03 #£60;.
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6
PePy= \UGK), k#jj+1 (1)
k=1

The restriction of the rotation R to P; @& P, is an isoclinic rotation, that means
the space P, @& P, is R-isogonal. In this space all planes generated by a vector
and its image are invariant. Thus, the spaces P; and P, are generated by a
vector and its images.

If the six vectors and their images are projected onto the space P; @ P», these
projections can be used as input data (instead of the x; and y;) of Algorithm 2.

The algorithm provided in [7] can be extended using these three previous
methods as shown by Algorithm 4. Nevertheless, a generalized method can be
now proposed which includes the previous three algorithms. This method works
with all the pseudo-isoclinic rotations.

3.3. General method

The aim of this section is to provide an algorithm which can be applied to
the three pseudo-isoclinic rotations previously stated in any dimension space.
It is a generalization of the three algorithms presented in Sections 3.2.1, 3.2.2,
3.2.3. In particular, it is based on the identification of the R-isogonal subspaces
of the nD-rotation R. Actually, any pseudo-isoclinic rotations have got at least
one R-isogonal subspace.

Let R be a nD-rotation in E and let A be its matrix in the canonical basis
of E. The space E can be decomposed into £ = P& F where F is the invariant
subspace and P its orthogonal. The space F' is eventually reduced to 0.

Let us introduce some notations:

* Let 61,...,0; for 1 <k < [%] be the k rotation angles of R.

* Let j be the number of distinct pseudo-isogonal components of the parti-

tion.

* Let C;* for 1 <14 < j be the i-th component of the partition with length
(678

By convention, since singular values are in decreasing order, the compo-
nents are in angle value decreasing order.

Since, the pseudo-isogonal components form a partition of the angle set,
we have > 7_, o; = k.

Consequently, the space P can be decomposed into j subspaces as
P=P1®..D Pj

where each P; is of dimension 2c; with 1 < «; < [%J This decomposition is
called R-isogonal subspace decomposition of the rotation.’

SIf for all 4, a; = 1, then each P; are planes and P =P, @ ... ® pP;
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Obviously, if a; > 2, the subspace P; is R-isogonal.

These subspaces can be calculated from the SVD of the matrix A — Id. Ac-
tually, the matrix A can be decomposed into USV?. The matrix S is diagonal
and its diagonal elements s; for ¢ = 1,...,n are in decreasing order. The com-
ponents are in decreasing order too. Thus, the first (2a;)" singular values are
equal, the next (2as)'™" are equal too, and so on. Consequently the first (2c;)t"
columns of the matrix U span P; , the next (2az)™ span Py and so on. In a
general way, we have the following equality:

20

Pe=/\ Ui, (2)

1=2a_1+1

By convention, ag = 0. The formula (2) extends the formula (1) given in
the previous part. Using the formula (2), rotation planes are easy to retrieve.
Actually, for each Py, two cases are possible:

* Either 2ay, = 2 then Py, is a plane. It is determined by the formula (2).

* Or 2ap > 2 then Py is not a plane but a direct sum of planes. All the
n vectors and their images are projected on R-isogonal subspace Py. The
planes are determined by application of Algorithm 2.

This can be summarized by Algorithm 5.

Algorithm 4 Find P; (rotation plane) in the pseudo-isoclinic rotation case.
Input: (Xi)i=1..n, (¥i)i=1..n
Output: P;
Zi =YyVi—Xj
(S,U,V)=5SVDizy...2y]
Calculate the pseudo-isogonal partition composed with the C;* for 1 <4 < j
(i-th component which length «; of the partition, in conventional order).
P=P&..6 Pj
Py = /\fj;ak_lﬂ U(:,1) with ag =0
for all P, do
if 2ap = 2 then
Pe= A% 1 UG1)
else
Calculate the projections into Py of (Xi)i=1..n, (¥i)i=1..n
P,=0utput of Algorithm 2 with these projections as input data
end if
end for

4. An alternative: the Schur decomposition

It is well-known that every rotation matrix can be block-diagonalized in an
orthogonal basis [16]. One way to block-diagonalize a matrix is to compute
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Algorithm 5 General algorithm to find P; (rotation plane) and 6; (rotation
angle). The lines 3-9 can be replaced by the algorithm 4.

Input: (Xi)i=1...n; (¥i)i=1..n

Output: P;, 6;

/] Compute rotation planes

Zi =Yyi — Xj

(S,U,V)=5SVDlz1...24)

match case with

case [ (n even) & (One singular value (contained in S) of order n ) ]

// Isoclinic rotations

| P,= Output of Algorithm 2

6: case [(n odd)& (One non-null singular value (contained in S) of order n—1)

@

/] Pure pseudo-isoclinic rotations
7. |P;= Output of Algorithm 3
8: case [ at least one singular value of order at least 4 |
// Ordinary pseudo-isoclinic rotations
9: |P;=Output of the Algorithm of section 3.2.3
10: case: other cases
// General case
11: {k =rank(U)
12: for all 7 such that 1 <7 < g do
132 P=U(;,20—1) AU(:, 29)
14: end for}
15: end match
// Compute rotation angles
16: for all P; do
17: Find x5, =< x4, P; >1, P, > and y;, =< y;, B >1,F > non-null

XY Sy T X AYg
18:  Calculate cos(6;) = 7||in|l\\;juu and sin(6;) = 7“%”3“”),;'”&.
19: end for

the Schur decomposition [14, 15]. This decomposition is very used for example
for the resolution of Riccati equations [22], for the definition of the matrix
sign fonction [23] and in control theory [24]. However, according to the best
knowledge of the authors, the Schur decomposition has never been used to
characterize rotations that means to find rotation angles and rotation planes.
In the following, we explain how to do this.

The principle of the Schur decomposition is to factorize a given matrix A
into A = UTU? where U is orthogonal and T is block-diagonal with blocks of
size 1 x 1 or of size 2 x 2. In order to become block-diagonal, a rotation matrix
A undergoes orthogonal transformations. These transformations are stored into
the matrix U (which is a basis change matrix). The blocks 2 x 2 of the matrix
T represent 2 x 2 planar rotation matrices and the blocks 1 x 1 represent the
identity matrices of order 1. From 7', the rotation angles are thus retrieved
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and from the corresponding columns of U the rotation planes can be computed.
This method is summarized by Algorithm 6.

Algorithm 6 Find P; (rotation plane) and 6; (rotation angle)
Input: (Xi)i=1..n, (¥i)i=1..n
Output: P;, 6;
A= [y1ya]
(U, T) = Schur-decomposition(A)
// U is orthogonal, T is block-diagonal
for each 2 x 2-block in T' do
(4,7 + 1) = indexes of columns which compose the block
0; = acos(T};)
P =T ) AT(,5+1)
end for

5. Comparison of the different algorithms

5.1. Numerical experimentations

Our algorithm, its improvement and the Schur decomposition have been
implemented and compared in higher dimensions with the library developed
in [20] using the OCaml language [25].

The following numerical experiments have been conducted. The rotation
planes and angles are randomly chosen and the rotation matrices A; are then
generated. To simulate the noise, the obtained matrices are biased that means
the second or the third decimal of each floating number value is randomly
changed. The biased matrices are denoted by B;.

Afterward, the different methods are applied to these matrices. All the meth-
ods are experimented with the same matrices. The estimated rotation planes
and angles are thus estimated (resp. P; and 6;). In [7], in order to estimate the
error of the method, we successively compute the rotor R corresponding to these
parameters and the image of each basis vector xy using RxiR~!. The rotor R
is given by R = cos(#;) — P;sin(6;). The matrix such that the k" column is the
vector RxiR™! is denoted by F; and is compared with the initial matrix A;.
In [7], we have (arbitrarily) considered that the plane P; is generated by the
(2i — 1)*™ and the 2i*" columns of the matrix U which results from the SVD.

Since there exists Ek!k' possibility of permutations of the vectors of U (where k
2% k1

is the number of columns of U), it is not obvious to retrieve the same matrix.
Here, we evaluate the transformation rather than to calculate the images of
basis vectors. To do so, the rotor R is calculated, then a vector v is randomly
generated. Its image vineo is calculated using the matrix of y; and is compared
t0 Vprat = RvR~'. The error is thus equal to the norm of (Viheo — Vprat)-
As in [7], the tests have been conducted in 4D, 5D and 6D (not in 3D because
there exists only one rotation plane so the change of evaluation do not modify
the result) with 500 matrices in each case.
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Dim. Prec. Algo [7] | New eval | Algo 2 Algo 6 Algo 5
(1) (2) (3) (4) (5)
AD 0.001 0.027 0.013 0.011 0.023 0.011
0.01 0.24 0.12 0.11 0.20 0.11
5D 0.001 0.040 0.017 - 0.032 0.013
0.01 0.32 0.14 - 0.24 0.13
6D 0.001 0.069 0.028 0.028 0.041 0.019
0.01 0.49 0.20 0.19 0.29 0.16

Table 2: Result of the various algorithms: (1): algorithm presented in [7] without modification;
(2) algorithm presented in [7] with the new evaluation; (3) adaptation to the isoclinic case
with new evaluation; (4) the Schur decomposition; (5) adaptation to all the pseudo-isoclinic
cases.

Dim. | Prec. | (L)vs(2) | (2)vs(3) | (2)vs(4) | (2)vs(5) | (4)vs(5)
AD 0.001 52% 15% 43% 15% 52%
0.01 50% 8% 40% 8% 45%
5D 0.001 58% — 47% 24% 59%
0.01 56% — 42% ™% 46%
6D 0.001 59% 0% 32% 32% 54%
0.1 59% 5% 31% 20% 45%

Mean 55.6% 7.0% 39.2% 17.7% 50.2%

Table 3: Comparative study of the different algorithms: (1): algorithm presented in [7]
without modification; (2) algorithm presented in [7] with the new evaluation; (3) adaptation
to the isoclinic case with new evaluation; (4) the Schur decomposition, (5) adaptation to all
the pseudo-isoclinic cases.

5.2. Result analysis

The results are given in Tables 2, 3, 4 and 5. As in [7], experiments have
been conducted with a precision 1072 and 10~ for each dimension (4D, 5D and
6D).

Table 2 gives for each dimension and each precision the mean error for each
algorithm. The quantities have no unit since it is a norm. The error is cal-
culated for the algorithm presented in [7] with the previous (1) and the new
evaluation (2), its extension to the isoclinic rotations only (3)(no result in odd
dimension), its extension to all the pseudo-isoclinic rotations (5) and for the
algorithm deduced of the Schur decomposition (4).

The comparative study between all the algorithms is given by Table 3. Per-
centages indicate the improvements between the various algorithms. The mean
improvement is given in the last row.

The error is smaller using the new evaluation than the previous one. Since
parameter rotations are the same in both cases, this proves that our evaluation
used in [7] is not a good evaluation. The rotation parameters are well estimated
but due to their non-unicity, the error is very high. The evaluation method used
in [7] must therefore be used only if the parameters are unique.
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Dimension | Precision | Isoclinic rotations | Pseudo-isoclinic rotations
I — :
e — :
T — ,

Table 4: Number of isoclinic and pseudo-isoclinic rotations detected by the comparison of the
singular values.

Dim.| Prec. All matrices Iso. & Pseudo-iso. cases
Before After Comp Before After Comp

AD 0.001| 0.013 0.011 (15%) 0.054 0.018 (67%)
0.01 | 0.12 0.11 (8%) 0.37 0.10 (73%)

5D 0.001| 0.017 0.013 (24%) 0.085 0.026 (69%)
0.01 | 0.14 0.13 (7%) 0.40 0.09 (78%)

6D 0.001| 0.028 0.019 (32%) 0.078 0.032 (59%)
0.01 | 0.20 0.16 (20%) 0.35 0.12 (66%)

Table 5: Mean of the error before (algorithm presented in [7] using the new evaluation)
and after improvement (in isoclinic and pseudo-isoclinic case), using algorithm 5 for all the
matrices and only those corresponding to an isoclinic or pseudo-isoclinic rotations.

The algorithm extended to the isoclinic case have an edge (7%). This can be
explained by the number of isoclinic rotations. These numbers are given in the
table 4. In this case, the mean over all the 500 matrices is not representative
when only 2 matrices are concerned as for example in 6D. A better comparison
in thus provided by the table 5 where the mean over the 500 matrices and only
matrices which correspond to isoclinic rotations and pseudo-isoclinic rotations is
calculated. By considering only these matrices, the mean is improved by almost
69%. In a general way, our generalized algorithm is very efficient when data
represent isoclinic or pseudo-isoclinic rotations. The improvement between the
initial version proposed in [7] and the extended version is very significant. The
improvement is almost 63%. Moreover, our new algorithm is better than those
deduced of the Schur decomposition (+50%).

5.3. Numerical example in 3D
Let us consider the space E = R3 equipped with the canonical basis (x1, X2, X3).
We consider the composition of a rotation of angle w/4 around the X-axis
and a rotation of angle 7/6 around the Y-axis. The vectors y; are thus given by:
Y1 = (\/5/27 0, _1/2)7 y2 = (\/5/45 \/5/27 \/6/4) and ys = (\/5/47 _\/5/27 \/6/4)
From our algorithm, it is easy to show that the rotation plane (which is
unique in 3D) is represented by the 2-blade P = x}; Axj, where xj; = (V3/2—

1,0,-1/2) and x}, = (v2/8,v2/2 — 1, —(4v/6 — Tv/2)/(8v/3 — 16)). The angle
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rotation is given by the angle between x7, and y1,, the projection of x; and y;
in P. For more numerical examples in particular in 4D, the reader can refer to

[7].

6. Conclusion

In [7], we have proposed an algorithm that computes the decomposition into
planar rotations of an nD rotation. The input data are n points and their images.
Using the geometric algebra framework this algorithm is easy to implement.

If the data do not represent a pseudo-isoclinic rotation, the calculated planes
and angles are very close to the exact ones even if the input data are biased.
However, the algorithm was not adapted to the pseudo-isoclinic rotations.

In this paper, we have proposed an improvement which takes into account
this particular case of rotations. The evaluation method is changed. The new
method is more adapted since the parameters are not unique.

Our generalized algorithm is very efficient when the data represent isoclinic
or pseudo-isoclinic rotations. The improvement between the initial version pro-
posed in [7] and the extended version is significant. Moreover, our new algorithm
is better than those deduced of the Schur decomposition.

A classification of nD-rotations is also presented. Moreover, some properties
for decomposition of these rotations are also provided.

As an application of this work, we plan to use it in order to describe nD
discrete rotations by extending the hinge angle notion developed for 3D rotations
in [6].

References

[1] L. G. Shapiro and G C. Stockman. Computer Vision. Prentice Hall, 2001.

[2] PL. Cheng, AC. Nicol, and JP. Paul. Determination of axial rotation angles
of limb segments - a new method. Journal of Biomechanics, Volume 33,
2000.

[3] PL. Cheng. Joint rotation between two attitudes in the spherical rotation
coordinate system. Journal of Biomechanics, Volume 37, 2004.

[4] J. C. Gower and G. B. Dijksterhuis. Procrustes problems. Oxford University
Press, 2004.

[5] S. Charneau, L. Aveneau, and L. Fuchs. Exact, robust and efficient full
visibility computation in the Pliicker space. The Visual Computer journal,
Volume 23:Pages 773-782, September 2007.

[6] Y. Thibault, Y. Kenmochi, and A. Sugimoto. Computing upper and lower
bounds of rotation angles from digital images. Pattern Recognition, 2009.

[7] A. Richard, L. Fuchs, and S. Charneau. An algorithm to decompose n-
dimensional rotations into planar rotations. LNCS 6026, 2010.

21



8]

[9]

[10]

[16]
[17]

[18]

GA. Watson. Computing Helmert transformations. Journal of Computa-
tional and Applied Mathematics, Volume 197, 2006.

C. Perwass and G Sommer. Numerical evaluation of versors with Clifford
Algebra. Proceeding of the AGACSE 2001, 2001.

L. Dorst. Determining a versor in nD geometric algebra from known trans-
formation of n vectors. In Proc. GraVisMa 2009 Conference, 2009.

G. Aragon-Gonzalez, JL. Aragon, MA. Rodriguez-Andrade, and L. Verde-
Star. Reflections, rotations, and pythagorean numbers. Advances in Applied
Clifford Algebra, Volume 19, 2009.

D. Fontijne and L. Dorst. Reconstructing rotations and rigid body motions
from points correspondences as a sequence of reflections. AGACSE 2010,
2010.

A. Richard, G. Largeteau, M. Rodriguez, E. Andres, L. Fuchs, and JSD
Ouattara. Properties and applications of the simplified generalized perpen-
dicular bisector. 2011.

G. Golub and C. Van Loan. Matriz computations. Johns Hopkins Studies
in Mathematical Sciences (3rd edition), 1996.

http://planetmath.org/encyclopedia/DecompositionOfOrthogonalOperators
AsRotationsAndReflections.html. web site.

M. Audin. Geometry. Springer, 2003.

L. Dorst, D. Fontijne, and S. Mann. Geometric algebra for computer sci-
ence: an object oriented approach to geometry. Morgan Kauffmann Pub-
lishers, 2007.

D. Hildebrand, D. Fontijne, C. Perwass, and L. Dorst. Geometric algebra
and its application to computer graphics. 25th annual conference of the
European Association for Computer Graphics - Interacting with Virtual
worlds, 2004.

G. Sommer. Geometric computing with Clifford Algebra. Springer-Verlag,
2001.

S. Charneau. Etude et application des algébres géométriques pour le calcul
de la visibilité globale dans un espace projectif de dimension n > 2. PhD
thesis, Université de Poitiers, France, 2007.

J.E. Mebius. Applications of quaternions by dynamical simulation, com-
puter graphics and biomechanics. PhD thesis, Delft University of Technol-
ogy, The Netherlands, 1994.

22



[22] A. Laub. A Schur method for solving algebraic Riccati equations. Auto-
matic Control, IEEE Transactions on, Volume 24(Number 6):Pages 913
921, 2002.

[23] J-G. Sun. Perturbation analysis of the matrix sign function. Linear algebra
and its applications, Volume 250:177-206, 1997.

[24] A. Bojanczyk, G. Golub, and P. Van Dooren. The periodic Schur decom-
position. algorithms and applications. In Proc. SPIE Conference, volume
250, pages 31-42, 1992.

[25] http://www.ocaml.org. web site.

23



