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Optimal Consensus set for Annulus Fitting

Rita Zrour, Gaélle Largeteau-Skapin, Eric Andres
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University of Poitiers BP 30179, UMR CNRS 6712
86962 Futuroscope Chasseneuil Cedex, France

Abstract. An annulus is defined as a set of points contained between
two circles. This paper presents a method for fitting an annulus to a
given set of points in a 2D images in the presence of noise by max-
imizing the number of inliers, namely the consensus set, while fixing
the thickness. We present a deterministic algorithm that searches the
optimal solution(s) within a time complexity of O(N*), N being the
number of points.

keywords: Digital geometry; shape fitting; consensus set; outliers; dig-
ital arc; annulus.

1 Introduction

Detection of basic geometric properties such as lines, planes and circles are
essential tasks in the field of image analysis and computer vision. The main
objective of this paper is annulus fitting to a given set of points. For instance,
annulus fitting is useful for shape approximation [4] and image segmentation
[6]. In this paper, we present a novel method that, given an arbitrary 2D point
cloud, finds annuli of a given width that minimizes the number of outliers, or
alternatively maximizes the number of inliers. One of the possible application
of our method in the digital space is the fitting of discrete analytical circle of
Andpres [2]. The set of points which do fit the model is also called consensus set.
The idea of using such consensus sets was proposed for the RANdom Sample
Consensus (RANSAC) method [9], which is one of the most widely used in
the field of computer vision. However RANSAC is inherently probabilistic in
its approach and does not guarantee any optimality while our method is both
deterministic and optimal in the size of the consensus set.

Different algorithms detecting annuli have been proposed. Most of these
algorithms minimize the thickness of the annuli (digital circle). Among them,
some consider that no noise is present in the image, and concentrate only on the
problem of recognition instead of the fitting problem [16, 5, 1]. Some algorithms
deal with outliers [7, 10, 11] but the number of outliers is usually predefined [10,
11] and the problem consists in minimizing the width.

One frequently used approach in annulus recognition stems from the O’Rourke
et al. [13] disk recognition method that transformed it into a problem of circular
separability; they use a mapping that raises every point (x,y) to the paraboloid
z = 22 + y2. Using this mapping, every circle in the primal space corresponds
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to a plane cutting the paraboloid in the dual space and thus circular separabil-
ity is transformed to a plane separability in the dual space. This separability
problem is then solved in linear time using Megiddo’s or Dyer linear algorithms
[8,12]. Recently, in the discrete geometry community, a simple online linear-
time algorithm for recognition of digital circular arcs has been proposed in [15]
based on the idea of O’Rourke et al. [13]; this algorithm can be used in an
incremental way, with a complexity O(n*/3) whenever a new point is added by
using an optimization proposed in [3]. Using O’Rourke’s mapping, an annuli
of fixed area in the primal space, corresponds to two parallel planes of fixed
vertical thickness in the dual space. The vertical thickness of the two parallel
planes corresponding to an annulus is however not fixed when the thickness
w of the annuli and not the area of the annuli is fixed, as is the case of our
fitting problem. In this case, the dual approach does not seem to simplify the
problem.

To our knowledge there is no work neither in the continuous domain nor
in the discrete domain that treated the problem of optimal annulus fitting
with fixed width. Our main contribution is that we find exact solution(s) by
minimizing the number of outliers.

The rest of the paper is organized as follows: in section 2 we expose the
problem of annulus fitting, present some properties of annuli and explain how
we can find all the consensus sets. In sections 3 we show how to build an annulus
from three points. Section 4 provides the algorithm for finding the optimal
annulus and shows some results. Finally Section 5 states some conclusions and
perspectives.

2 Annulus fitting

An annulus A of width w and radius R centered at C(Cy,Cy), is defined by
the set of points in R? satisfying two inequalities:

S={(P;,P) ER*: R* < (P, = C,)> + (P, — Cy)* < (R+w)*} (1)

where C(C,,Cy) € R? and R, w € R;..

Using the above annulus model, our fitting problem is then described as
follows: given a finite set S = {(P,, P,) € R*} of n points such that n > 3,
and given a width w we would like to find an annulus A of width w such that
it contains the maximum number of points in S. Points (P,, P,) € SN A are
called inliers; otherwise they are called outliers. It should be noted that n > 3
since if S contains less than 3 points, the fitting problem has an infinity number
of solutions.

We denote B; (resp. B.) that we call the internal (resp. external) border of
the annulus, the set of points located at distance R (resp. R + w) from C.
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2.1 Annuli and their consensus sets

Our approach is focused on inlier sets, also called consensus sets. Since S is
finite, it is obvious that the number of different consensus sets for the annulus
is finite as well. Thus, if we can find all different consensus sets C from a given
set S, we just need to verify the size of each C and find the maximum one
as the optimal solution. Then the following question comes up naturally: is it
possible, given a width w to find all the consensus sets of S? if the answer is
positive, how can we do it? In the section 2.2, we will answer both questions
by giving some properties related to annuli.

2.2 Annular characterizations

The following theorem states that given a width w, and given an annulus A
covering a set of points S, there exists at least another annulus A’ of same
width, that covers S and passes through at least 3 points of S.

Theorem 1. Let S be a set of n(n > 3) points inR?. Let A = (C(Cy, Cy), R, w)
be the annulus of center C(Cy,Cy), of internal radius R and of width w such
that V(P,, Py) € S, R? < (P, — Cy)? + (P, — Cy)* < (R+w)?. Then it exists
A" = (C'(Cy, Cy), R, w) such that:

3P, P, P €S, Vie[0,2),P € B; or P, € B

Proof. Let S be a set of n (n > 3) points in R%. Let A = (C(Cy, Cy), R,w) be
the annulus of center C(C,, Cy) with internal radius R and width w such that
A covers S:ie. V(P,,P)) €S, R? < (P, —Cy)?+ (P, — Cy) < (R+w)% Our
first assumption is that no point of S is on the annulus borders.

The theorem proof is given in three steps: First we show that we can al-
ways decrease the radius so as to put at least one point of S on the annulus
external borders. We note this point Fy. In the second step, we show that a
rotation centered on P, allows to put another point P; of S on one border.
The last step is more delicate since it consists in changing both the radius and
the center position so that a third point Ps is now on one of the borders of the
annulus. Of course, if in any of these steps we put more than one point on the
borders than we just skip one or more steps.

A First step: the radius decreasing. Let Ry be the distance between the far-
thest point Py of S from the center C' of A. The annulus Ag = (C(Cy, Cy), (Ro—
w),w) is such that Py is on its external border Be.

B Second step: the rotation centered on Py. Since the rotation center is on the
external border (see [A]), we can continuously rotate Ay to reach a second
point P; of S.

We note P the first point reached. Let Rotp, ¢ the rotation centered on F
with angle 6, such that 8 is the smallest angle verifying:

30 € [0,2n], IP, €S, R* < (P, — Cy)* + (P, — Cy)* < (R4 w)?
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We denote A; = (Rotp, 9(C), R,w).

C Third step: the radius variation. After the first two steps, we obtain an
annulus A; that has two points Py and P; of S on its borders. Two config-
urations can appear: either both points are on the border B, or the points
are each on a different border (case iii).

i.

ii.

Both points Py and P, are on B.. In this case, any modification on the
radius R involves a move of the center along the bisector of segment P
and P;. When the center C' passes exactly between both points, some
problems may occur and we have to separate two cases:

*x d(PyP1) > 2w: in this case, the center can pass between the points
and there always exists an annulus of width w passing through
both points. All the points of S can be reached this way and we
necessarily encounter a third point of S. In Fig. la, we can see

the annulus with the two extreme cases, when the radius is too.

Fig. 1b, shows an inital set of points with an initial annulus of
center C passing by two external border points Py and P; (colored
black), and the rotated annulus (colored red) by moving the center
toward —oo from C' to C5 in order to reach a third points Ps. Fig. 1c
shows the case when the center moves toward +oo in order to reach
a third points P,. The movement of the center between T oo allows
to reach a third point.

*x d(PyP1) < 2w: when the points Py, P; are on B,, the circle having
the two points on B, must have at least a radius of w since if the
radius is less than w, no internal circle and so no annulus can be
built. However when d(PyP;) < 2w, the movement of the center
from C to Cy to reach a third points Ps cannot be done in all
the cases. For example in Fig. 1d, d(PyP;) = w and in this case,
the center cannot move along the green line since ‘*’72 +b? >=
w?, i.e. b must be greater than @ Therefore there exist some
points of S that cannot be reached. Fig. le shows a case where no
annulus having three border points can be constructed from the
annulus having Py and P; on B.. When this is the case, we have to
change the configuration: we choose as point P, the point closest to
the limit and we build the annulus of width w with internal circle
passing through Py, P; and P, (Fig. 1f).

Both points are on different borders.

In Fig. 2a, b, ¢, there are three possible configurations of two points
on different border of the annulus A. In each of these configurations,
modifying the radius allows to reach almost all the initial set. If a point
P, of S is inside the green circle Fig. 2d, e , inside the annulus, it has
to be reached by one of the annulus border. However, there exists an
area that is not reached by such a variation (in dark in Fig. 2d, e).

If the points of S are all in this dark part, we have to change our
strategy: we choose as point P, of S the closest to one of the extreme
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Fig. 1. Third step: a), b) and c), shows case ii where both points Py and P; are on
the external border of A and the distance is greater than 2w. The center C colored
blue must be moved along the line —oco in b) and 400 in ¢) in order to reach a third
point P». The new center is C> and is colored in red, d), e), ) shows case ii where
both points Py and P; are on the external border of A and the distance between them
is less than 2w. The configuration must be changed by choosing a point P closest to
the limit and the new annulus is the one colored in red.

lines and we build the annulus of width w such that the three points
Py, P, and P, are on B. (see Fig. 2g, h). This annulus thus covers
the whole dark area where all the other points of S are and it passes
through 3 points of S.

In Fig. 2c¢, f, where both points are at distance w; we have to perform a
rotation centered on one of both points until reaching another point P’
on the border. If we rotate using Py, the point P; in Fig. 2f no longer
belongs to the border of the annulus. In this case the configuration can
be viewed as the same configurations we already adressed: either P’
and P, are on the internal border or P’ is on the external border but
not at the distance w from P, (otherwise it would have been reached
by a circle centered on Py with radius w passing through P; and thus
we would already have found the annulus we were searching for). Both
cases leads to a third point.

In all cases, if an annulus of width w covers S, then it is possible to build
an annulus of same width that passes through 3 points of S. g

3 Building an annulus of width w from three points

The following theorem states that we can build a finite number of annuli of
width w from 3 points (see Fig. 3).
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a) Po
b) Po
c) Po

Fig. 2. Third step: case iii, both Py and P; are on different border of A.

Theorem 2. There are at most 8 annuli of a given width w passing through 3
given points Py, P, and Ps of S.

Proof.

— If the 3 points are on the same circle: depending on the radius of the circle
one or two annuli can be build. If the radius of the circle is greater than w
then 2 annular are built, the first having the points on the internal border
and the other having the points on its external border. When the radius is
less than w then only one annulus having the three points on its internal
border can be built.

— If 2 of the 3 points are on one border and the third one on the other: three
possible configurations exists either (P, Py or Ps is alone on one border)
and for each of them we can buid at most two annuli (the lonely point is
either on B; or on B,). The principle of the building process is to build the
two circles C’ and C” that passes through the 2 points on the same border
and tangent (from the outside or inside) to the circle ¢ of radius w centered
on the third point. (see [14] for more details about the constuction).

Fig. 3 shows the different cases of building the annulus, we assume that P
and P, are on one border and P; on the other. Fig. 3a shows the construc-
tion method; the circle C of radius w centered on P; is drawn (blue circle),
then the two circles C’ and C” passing through Py and P and tangent to
C' are drawn (red circles). Fig. 3b presents the particular case where P is
exactly at distance w from P; (i.e. on the circle of center P; and radius
w). In this case there is a unique circle that passes through Py and P, and
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tangent to C'. Finally, there is a particular case when both Py and P, are
inside the circle C (Fig. 3¢), in this case it should be stated than no annulus
having Py and P, on one border and P; on the other can be found.

a) @ c b) @ c

Po

C /

P2

Fig. 3. Building of an annulus of width w from 3 points: a) Py and P» are outside the
circle C of radius w centered on Py, b) Py is on the circle C, ¢) Py and P» are inside
the circle C.

4 Finding the optimal fitting annulus of width w.

The principle of this naive algorithm is to test all the possible triplets of points
in S. For each triplet, we compute all the possible annuli (see theorem 2) and
count the number of inliers. The optimal annulus (or the annuli) is the one
that encloses the maximum number of inliers.

4.1 Algorithm

We now present Algorithm 1. Input is a set S of N discrete points and a
thickness w of our digital circle model. Output is a set V of parameter values
(Cop, C,P, R°P) corresponding to the fitted annuli that give the optimal con-
sensus sets. The time complexity of the algorithm is O(N?) because we have N
points in S and every combination of three points defines each of the 8 circles,
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Algorithm 1: Annuli fitting while fixing the thickness

input : A set S = {P;}ic1,n of N points and a thickness w
output: A list V of parameter values [(C7F, Cy¥, RF), ...] of the best fitted

annuli A
1 begin
2 initialize Max = 0;
3 foreach i € [1,n — 2] do
4 foreach j € [i +1,n— 1] do
5 foreach k € [j + 1,n]] do
6 L=list of the existing annuli passing through P;, P;, Py;
7 foreach element of L do
8 initialize nb_inliers = 0;
9 form=1,...,N do
10 if dist(C, Pn) >= R and dist(C, P,) <= R + w then
11 L nb_inliers = nb_inliers + 1;
12 if nb_inliers > Max then
13 clear(V);
14 Max = nb_inliers;
15 set Cpf = C,, CyP =Cy, R°? = R;
16 put (Cg?,Cy?, R°?) in V;
17 else if nb_inliers = Max then
18 set Ogf = C,, CyP =Cy, R’ = R;
19 append (Cg?,Cy?, R°?) in V;
20 return V;

so taking the points three by three has a complexity of O(N?), then checking
how many inliers and outliers we have for a given annulus is done in O(N)
time.

4.2 Experiments

We applied our method for 2D noisy digital Andres circles as shown in Fig. 4,
6, 7. For each of these set of points, an annulus of width w = 3, w = 1 and
w = 1 is used respectively. Table 1 shows the number of points, the optimal
consensus set size as well as the center position and the radius R of the inner
circle obtained after the fitting. It should be noted that in Fig. 7, two optimal
consensus sets are possible, since two annulus having the same number of inliers
can be fitted (two circles in Fig. 7). This proves that our method is capable of
detecting all optimal consensus sets. Our method is also applied to an Andres
arc of width 1 as shown in Fig. 5, we can see that the arc of width w = 1 is
detected.
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Table 1. The number of points and the optimal consensus set size for each of Fig. 4,
5,6, 7.

Figures|Number of points| Center position |R |Thickness w|Opt. consensus set size
Fig. 4 289 (31,31) 13 3 286
Fig. 5 121 (101.581,102.226) |86 1 118
Fig. 6 119 (31,31) 14 1 65
Fig. 7 309 (31,31) (49,49) |19 1 114

Fig. 4. Annulus fitting for a noisy digital Andres circle of width 3.

5 Conclusion and Perspectives

In this paper we have presented a new method for annulus fitting for annuli
of fixed width. Our approach is costly in terms of computation time however,
its main advantage is that it guarantees optimal result from the point of view
of maximal consensus set: we are guaranteed to fit an annulus with the least
amount of outliers. This is the first time, to the author’s best knowledge that
and axact optimal methods dealing with the problem of annulus fitting with a
fixed width with outliers has been proposed. One of the future work concerns
the complexity of our approach. Our approach is rather brute-force and we ob-
tain a O(N*) complexity. The question of improving this complexity is open.
We have wondered if this complexity may not be optimal. Indeed, it should
be noted that fitting a digital plane (corresponding to two parallel continuous
planes) to a given set of points in the presence of noise by maximizing the
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Fig. 5. Annulus fitting for a noisy digital Andres arc of width 1 .

a .. .
- .

I- - 1 ] I-

! .';_—' - -

Fig. 6. Annulus fitting for a noisy image of a digital Andres circle of width 1.
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Fig. 7. Annulus fitting for two noisy digital Andres circle of width 1.

number of inliers is solved in O(N3log N) [17]. As we have explained in the
introduction, there does not seem to be an immediate way of transforming our
problem into a plane fitting problem with a O’'Rourke type mapping [13]. How-
ever, if such a way exists, we would still face a O(N3log N) lower complexity
limit. One of the most immediate planned extensions is the fitting of 3D annuli.

References

1.

2.

P.K. Agarwal, S. Har-Peled, and K.R. Varadarajan. Approximating extent mea-
sures of points. Journal of the ACM, 51(4):606-635, 2004.

E. Andres and M.-A Jacob. The discrete analytical hyperspheres. IEEE Trans-
actions on Visualization and Computer Graphics, 3:75-86, 1997.

D. Coeurjolly, Y. Grard, J.P. Reveills, and L. Tougne. An elementary algorithm
for digital arc segmentation. Discrete Applied Mathematics, 139(1-3):31-50, 2004.
L. Da Fontoura Da Costa and Jr. Roberto Marcondes Cesar. Shape analysis and
classification: Theory and practice, 1st edition. CRC Press, Inc. Boca Raton, FL,
USA, 2000.

M. De Berg, P. Bose, D. Bremner, S. Ramaswami, and G. Ramaswami. Com-
puting constrained minimum-width annuli of point sets. Algorithms and Data
Structures, Lecture Notes in Computer Science, 1272:392-401, 1997.

D. Ding, X. Ping, M. Hu, and D. Wang. Range image segmentation based on
randomized hough transform. Pattern Recognition Letters, 26(13):2033-2041,
2005.

J. Dunagan and S. Vempala. Optimal outlier removal in high-dimensional spaces.
Journal of Computer and System Sciences, 68(2):335-373, 2004.



12

10.

11.

12.

13.

14.

15.

16.

17.

Rita Zrour, Gaglle Largeteau-Skapin, Eric Andres

M.E. Dyer. Linear time algorithms for two- and three-variable linear programs.
SIAM Journal on Computing, 13(1):31-45, 1984.

M.A. Fischler and R.C. Bolles. Random sample consensus: A paradigm for model
fitting with applications to image analysis and automated cartography. Commu-
nications of the ACM, 24:381-395, 1981.

S. Har-Peled and Y. Wang. Shape fitting with outliers. SIAM Journal on Com-
puting, 33(2):269-285, 2004.

J. Matousek. On enclosing k points by a circle. Information Processing Letters,
53(4):217 — 221, 1995.

N. Megiddo. Linear-time algorithms for linear programming in > and related
problems. SIAM Journal on Computing, 12(4):759-776, 1983.

J. O’Rourke, S.R. Kosaraju, and N. Megiddo. Computing circular separability.
Discrete and Computational Geometry, 1:105-113, 1986.

E. Rouche, C. de Comberousse, and H. Poincare. Traité de géométrie. Edition
Jacques Gabay, 1900. tomes I et II, Te edition, Reprint: 1997.

T. Roussillon, S. Sivignon, and L. Tougne. On three constrained versions of
the digital circular arc recognition problem. In 15-th International Conference
on Discrete Geometry for Computer Imagery (DGCI09), pages 34-45. Springer,
20009.

M. Smid and R. Janardan. On the width and roundness of a set of points in the
plane. International Journal of Computational Geometry, 9(1):97-108, 1999.

R. Zrour, K. Kenmochi, H. Talbot, L. Buzer, Y. Hamam, I. Shimizu, and A. Sug-
imoto. Optimal consensus set for digital plane fitting. In Proceedings of 3DIM’09
ICCV Satellite Workshop, pages 1817-1824, 2009.



