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Abstract. This paper deals with the Simplified Generalized Perpendic-
ular Bisector (SGBP) presented in [1, 2]. The SGPB has some interesting
properties that we explore. We show in particular that the SGPB can be
used for the recognition and exhaustive parameter estimation of noisy
discrete circles. A second application we are considering is the error es-
timation for a class of rotation reconstruction algorithms.

Keywords: Simplified Generalized Perpendicular Bisector - Adaptive Pixel
Size - Generalized Reflection Symmetry - Rotation Reconstruction.

1 Introduction

In this paper we are discussing properties and applications of the Simplified
Generalized Perpendicular Bisector (SGPB) that has been introduced in [1, 2].
The SGPB is an extension of the classical notion of perpendicular bisector.
The Generalized Perpendicular Bisector (GPB) for two 2D regions A and B is
defined as the union of the perpendicular bisectors of all the couple of points
(p, q) where p and q are respectively points of the regions A and B. The regions
we are going to focus on are pixels. The boundary of a GPB between two pixels
is composed of line segments and parabola segments. In order to simplify the
computational aspects, the SGPB has been introduced. It is only composed of
straight line segments. Contrary to a 2D perpendicular bisector, the GPB and
SGPB are not lines but surfaces. Bisectors between points and curves or between
two curves have also been discussed in detail in the literature [3, 4] but to our
best knowledge, no definition for the bisector between two coplanar surfaces such
as pixels has been proposed before [1].

The SGPB has some interesting properties and can be useful in several dif-
ferent applications mainly when noisy data is considered. The first application
we present is the adaptive pixel SGPB and its use for noisy circle recognition.
This is similar to the idea presented in [5] for discrete straight lines. The second
application concerns the parameter estimation of rotations. For this, the Gener-
alized Perpendicular Symmetry transform is introduced. We use this to examine
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(a) (b) (c)

Fig. 1. The exact perpendicular bisector (a) and the approximation (b) where the
parabolic pieces have been dropped by extending the straight lines (c). The generalized
bisector is slightly reduced.

the rotation estimation algorithm recently proposed by Fontjine et al. [6] and
illustrate its behaviour for noisy data.

The paper is organized as follow: section 2 recalls some properties of the
SGPB. The section 3 is devoted to the SGBP and the adaptive pixel size SGBP.
In particular some of its properties are highlighted and an application to noisy
circle recognition is provided. The next section deals with the symmetry rela-
tively to a SGPB and its application to rotation parameter estimation.

2 Definition and properties of the SGBP [1, 2]

As mentioned in the introduction, the Generalized Perpendicular Bisector (GPB)
between two 2D regions A and B (see Figure.1(a)) is defined as the union of the
perpendicular bisectors of all the couples of points (p, q) where p (resp. q) belongs
to the regions A (resp. B). In our case we are considering bounded connected
regions since we focus on regions that are pixels (that may have different sizes).

By definition, points of the perpendicular bisector are equidistant to both
points p and q. Thus a particular point r on the perpendicular bisector is the
center of a hypersphere that passes through p and q. Hence, we can set an
alternative definition of the GPB. Let S1 and S2 be two bounded connected
regions and X an Euclidean point of Rn. Let dimin

(X) = minY ∈Si
(d(X,Y )),

dimax
(X) = maxY ∈Si

(d(X,Y )) where d is the usual Euclidean distance. Every
Euclidean point X ∈ R

n such that:

[d1min
(X), d1max

(X)]
⋂

[d2min
(X), d2max

(X)] 6= ∅ (1)

belongs to the GPB of S1 and S2 (see Figure 1(a)). The boundary of the GPB
between two pixels is composed of line segments and parabola segments. The
parabola segments can be easily removed by extending the line segments. This
defines the Simplified GPB (SGPB) (See Figure 1(b,c)). Another way of consid-
ering this is simply to state that the minimum distance to a pixel is approximated
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Fig. 2. (a) Simplified Generalized Perpendicular Bisector and Simplified Generalized
Circumcenter of three adaptive pixels ; (b) The 6 border segments and the 4 half-lines
of a SGPB {Di}i∈[1,10] and its characteristic points {Pi}i∈[1,8] (D1 = D10 and D5 = D6).
The line bundle F8 and the line beam beam(P4,P5).

by the distance to the closest vertex of the pixel rather than to the closest vertex
or edge. In other words, the SGPB of two pixels P1 and P2 of size respectively
λ1 and λ2 is given by the following equations:

SGPB(P1, P2) =
{

(x, y) ∈ R
2,

(
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2
+
(
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}.
The SGPB between two pixels P1 and P2 is bounded by line segments and

half-lines as shown in the Figure 2(b).

Proposition 1. The boundary of 2D-Simplified Generalized Perpendicular Bi-
sector between two pixels (x1, y1) of size λ1 and (x2, y2) of size λ2 is composed
by at most 10 line segments and half-lines.

The proof of this proposition is straightforward.
Let us introduce some concepts and notations useful for the purpose of this

section. Let {Di}i∈[1,10] be the border segments and half-lines of SGPB(P1, P2).
Let {Pi}i∈[1,8] be the characteristic points of SGPB(P1, P2): i.e. Pi belongs to
the border of the SGPB(P1, P2) and we organize in such a way that Pi = Di ∩
Di+1 if i ∈ [1; 4] and Pi = Di+1∩Di+2 if i ∈ [5; 8] (see Figure 2(b)). D1,D10,D5,D6

are the support lines for the half-lines on the border of the SGPB(P1, P2). In
fact, as the following lemma shows half-lines are linked two by two:

A first immediate property is given by following lemma:

Lemma 1. Let A(a1, a2) of size λA and B(b1, b2) of size λB be two pixels such
as ai ±

λA

2 6= bi ±
λB

2 . The border segments D1 and D10 are supported by the
same line and this is also the case for segments D5 and D6.
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Fig. 3. Dual of Three SGPB corresponding to three pixels.

The proof of this lemma is straightforward using formula (1). It is also easy
to see that in case ai ±

λA

2 = bi ±
λB

2 then D1 and D10 or D5 and D6 are not
equal but parallel.

2.1 Dual of a SGPB

It is easy to determine if a point belongs to a SGPB but not so for a straight line
although the SGPB is defined as a union of straight lines. One way of handling
this problem is to consider the dual of a SGPB. The dual (see [7] for more details)
of the perpendicular bisector between Euclidean points A(xa, ya) and B(xb, yb)

is defined as the point (xb−xa

ya−yb
,
x2

a
−x2

b
+y2

a
−y2

b

2(ya−yb)
) for yA − yB 6= 0. In the case where

yA − yB = 0 we have a point at the infinity.

Proposition 2. The dual of a SGPB is a convex polygon of at most 8 vertices
and 8 edges. At most two vertices may be at the infinite and the corresponding
edges of the dual polygon are in this case vertical.

Proof. The boundary of the SGPB is formed of straight lines segments and half-
lines. The dual is therefore a polygon. It is easy to see that this polygon is
convex. Let us consider two points A and B on the boundary of the dual of a
SGPB. These two points correspond to two straight lines LA and LB that belong
to the SGPB. The intersection point I between LA and LB corresponds to the
straight line AB in the dual. The point I is inside the SGPB. All the straight
lines passing through I form two bundles delimited by LA and LB with one of
them containing only lines that are inside the SGPB since LA and LB are inside
the SGPB. The other bundle contains lines that are outside the SGPB. A point
outside the segment [AB] and not inside the polygon corresponds to a straight
line that does not belong to the SGPB and thus to the bundle that contains
lines that do not belong to the SGPB. The points that belong to the segment
[AB] correspond therefore to straight lines of the bundle that contain only lines
inside the SGPB. All the points of [AB] are therefore inside the polygon and
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this proves that the polygon is convex. The number of vertices and edges of the
polygon is an immediate result of Proposition 1. �

Determining if a straight line belongs to the SGPB can therefore easily be
determined in O(1).

3 Adaptive Pixel SGPB and noisy circle recognition

In [5] some of the authors considered a straight line recognition method that takes
into account noise by locally increasing the size of the various pixels. Using a
resizing function [5] and a local noise estimator (for example the one proposed by
Lachaud and al. [?]), pixel sizes are adaptively increased according to the local
perturbation on the straight line. The size increased pixels are called Adaptive
Pixels [5]. The idea here is to do exactly the same with the SGPB for noisy circle
recognition purposes.

First, let us introduce the Simplified Generalized Circumcenter (SGC) of
a set of n finite and connected regions S = (Si)i∈[1,n]. It is defined as the
intersection of the SGPB of every two regions of the set (see Figure 2(a)) :

SGC(S) =
⋂

i,j∈[1,n],i<j

(SGPB(Si, Sj)).

Theorem 1. Each point of the Simplified Generalized Circumcenter corresponds
to the center of at least one circle that intersects all the Adaptive Pixels.

Proof. The proof is similar to the one of Theorem 1 presented in [1]: Each point
of the SGC obtained by the intersection of adaptive pixel SGBP s corresponds
to an intersection of radii intervals (dimension 1) for every two adaptive pixels.
A direct application of Helly’s Theorem tell us that there exists at least one
common radius to all these intervals and thus at least one circle of this radius
centered on the SGC point that intersects all the adaptive pixels. �

Proposition 3. Let us consider a set of adaptive pixels Pi of various sizes. The
dual of all the straight lines crossing the duals of all the SGPB of every pair of
pixels Pi and Pj is the dual of the Simplified Generalized Circumcenter.

This proposition is an immediate consequence of the definition of the SGC
and the definition of our notion of dual.

3.1 Application to noisy circle recognition

On the Figure 4, we can see a Bresenham circle of radius 5 with misplaced and
missing pixels. The SGC can be seen in the middle of the different adaptive
pixels. One circle example (the center is marked by a black dot in the SGC)
is shown. Each pixel size is increased according to a local noise estimator. The
algorithm is the same as for regular circles presented in [1]. The SGPB of each
couple of pixels (with the new sizes) is computed and their intersection provides a
set of possible circle centers, the Simplified Generalized Circumcenter (SGC). A
further computation provides for each point of the SGC, the interval of possible
circle radii that correspond to circles intersecting all the size increased pixels.
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Fig. 4. Circle parameters exhaustive estimation with noisy data.

4 Generalized Reflection Symmetry and biased rotation
parameter estimation

As a second application, we show how the SGPB helps to visualize the errors
that occur when noisy data are used in the rotation reconstruction algorithm
recently proposed by Fontijne et al. [6]. For this we are going to introduce a
generalization of the reflection symmetry.

4.1 Bundles and Strips

We define the line bundle Fi as the set of lines∆ that pass through Pi with slopes
in the interval [slope(Di), slope(Di+1)] (or [slope(Di+1), slope(Di+2)] according
to the values of i) as shown in the Figure 2(b). We also define a line strip
strip(Pi,Pj) by the set of parallel lines bordered by ∆i ∈ M passing through
Pi for i ∈ [1; 4] and ∆j ∈ M passing through Pj for j ∈ [5; 8] as shown in the
figure 2(b).

A line in the SGPB can either be characterized as a point inside the dual
of the SGPB or by using bundles Fi and strips. Considering a line D in the
SGPB two cases are possible. In the first case, the line D passes through Pi

then D belongs to Fi. In the second case the line D does not pass through Pi

then there exists Pj and Pk such that a translate D′ of D passes through Pj and
another translate D′′ of D passes through Pk. In this latter case, D belongs to
strip(Pj ,Pk) (see figure 2(b)). This leads to a second characterization of a line
inside a SGPB:
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Property 1 (Lines in the SGPB) Every line in the SGPB belongs either to
a bundle Fi or is included in a strip strip(Pk,Pl)

Furthermore, we have the additional property:

Property 2 The union of the 8 bundles covers the GPB.

Proof. Let X a point of the GPB. Since the border of the GPB is composed
of two convex polylines ∂C1 and ∂C2, there exists two lines ∆1 and ∆2 which
passes through X and respectively p1 ∈ ∂C1 and p2 ∈ ∂C2. Obviously, p1 and
p2 ∈ Pi. �

Generalized Reflection Symmetry for a pixel. When considering the per-
pendicular bisector B of two points p and q, it is obvious that p is the image of q
and q the image of p through a reflection symmetry of axis B. Let us define the
Generalized Reflection Symmetry GRS(P1, P2) of a point as the union of the
reflection symmetries of axis the straight lines in the SGPB of two pixels P1 and
P2. Not surprisingly, the image of a pixel P3 by a GRS(P1, P2) is not a pixel.
Let us characterize the obtained region denoted CGRS(P1,P2)(P3) (See figure 6).

P1

dmin(m1, P2)
dmax(m1, P2)

m1 = (x1, y1)

◦(x2, y2)
P2

Pj

Pi

∆i

∆j

P

(a) (b)

Fig. 5. (a) Image of the pixel P2 by a partial bundle from m1; (b) image of the pixel
P by the strip(∆i, ∆j)

By construction, a point p of CGRS(P1,P2)(P3) is the symmetric of a point p3
belonging to the pixel P3 with respect to a line ∆ that belongs to SGPB(P1, P2).
More formally, this can be written as:

CGRS(P1,P2)(P3) = {p ∈ R
2/∃p3 ∈ P3, ∃∆ ∈ SGBP (P1, P2), p = sym(p3, ∆)}

where sym(p3, ∆) denotes the reflection symmetry of the point p3 with respect
to the line ∆. Hence, the following characterization of a point belonging to
CGRS(P1,P2)(P3) is obtained:
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Fig. 6. (a) Generalized Reflection Symmetry of a pixel (12,16) relatively to a SGPB
between the pixel (0,0) and (3,4); (b) Image of a pixel by a GRS. The obtained shape
is composed of ring pieces; (c) Symmetric of a pixel P3 with respect to the lines ∆1

and ∆2.

Definition 1 (GRS of a pixel). Let P1 and P2 be two pixels centered in
(x1, y1) and (x2, y2) and the associated SGPB(P1, P2). Let CGRS(P1,P2)(P3) be
the image of the pixel P3 by GRS(P1, P2). A point (x, y) belongs to CGRS(P1,P2)(P3)
if the following assertions are true:

(i) ∃(x′, y′) such that (x3 − 0.5 ≤ x′ ≤ x3 +0.5) and (y3 − 0.5 ≤ y′ ≤ y3 +0.5)

(ii) (x, y) can be written as (−2ac−a2x′+b2x′
−2aby′

a2+b2
, −2bc−2abx′+a2y′

−b2y′

a2+b2
) such

that (x2,
−c−ax2

b
), (x1,

−c−ax1

b
), (−by1−c

a
, y1), (

−by2−c
a

, y2) satisfy the dis-
tance law (1).

Let us detail a way to construct the GRS of a pixel. The image of a pixel
P3 by a complete1 line bundle passing through a point p is a ring centered in p
defined by the circles centered in p with radii dmin(p, P3) and dmax(p, P3). In our
case, the bundle is not complete2, the result is then a piece of ring (see Figure
5(a)). Let Pi and Pj be the images of the pixel P by the two lines which define
a strip. The image of the pixel P by this line strip is the strip bounded by the
images of the pixel relatively to the line passing through the centers of Pi and
Pj as shown in the Figure 5(b).

Let P3 be the pixel of which the image is to be computed. The lines Dj are
the lines bounding the SGPB(P1, P2) and Pi the characteristic points of the
SGPB(P1, P2). Let Ij be the images of P3 by Dj . Since D1 = D10 and D5 = D6

(lemma 1), there are only eight different images. Then we consider the images
of P3 by the whole line bundle Fi that passes through Pi = Dl ∩ Dm. These
images are the ring pieces starting with Il, ending with Im of internal radius
dmin(Pi, P3) and external radius dmax(Pi, P3). We therefore obtain eight ring

1 Complete means all the line passing through the point.
2 That means the slopes of the lines are included between slopemin and slopemax.
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pieces that form a closed object (since D1 = D10 and D5 = D6) as shown in the
Figure 6(b).

The last building step consist in integrating the images of P3 by all the
possible strips that are included in the SGPB(P1, P2). This leads to a second
characterization of the shape CGRS(P1,P2)(P3) :

Characterization 1 (GRS of a pixel) A point belongs to the image of a pixel
P3 by the GRS(P1, P2) between the pixel P1 and P2 if and only if it belongs to the
set points defined by the eight pieces of rings centered in Pi for 1 ≤ i ≤ 4 of radius
dmin(Pi1≤i≤4

, P3) and centered in Pi for 5 ≤ i ≤ 8 of radius dmax(Pi5≤i≤8
, P3),

where the Pi are the characteristic points of the SGBP.

The angular arc between the extrema of the region (as defined below) CGRS(P1,P2)(P3)
gives us an upper bound of “noise” that is added to a pixel when its im-
age by a GRS is computed. Let consider the lines ∆1 and ∆2 that are the
supports of the half-lines D1 and D5 (see Figure 6(c)). They intersect at the
point O = (x1+x2

2 , y1+y2

2 ). On Figure 6(c), the symmetric squares ABDC and
EFGH of the square abdc by the lines ∆1 and ∆2 are the extrema of the region
CGRS(P1,P2)(P3). As the lines ∆1 and ∆2 belong to the bundle of lines that pass
through the point O, the squares ABDC and EFGH are contained in the ring
centered in O formed by the circles C1 and C2 of radii R1 = dmin(O,P3) and
R2 = dmax(O,P3). Since B and H belong to C1 and C, F belong to C2, the
points A, D, G and E belong to the circle centered in O of radius R3 = R1+R2

2 .
Then, the angular length between the extrema of CGRS(P1,P2)(P3) is given by

(β + 2θ)(R1+R2
2 ), β and θ respectively denote the angles between the lines Oa

and Od and the lines ∆1 and ∆2.

4.2 Rotation reconstruction using the SGPB

In this section, the rotation reconstruction algorithm proposed by Fontijne et
al. [6] is adapted to noisy data using the SGPB. This algorithm is based on the
Cartan-Dieudonné theorem [8] that decomposes nD rotations into reflections.
Methods based on this approach [9, 6] need exact point correspondences and
suffer from noisy data.

However, rotation reconstruction methods from point correspondences are
used in many application domains such as Computer Vision or body movement
analysis. Different approaches can be found in the literature [10, 11, ?]. Their
drawbacks are the impossibility to extend them in dimension higher than two or
the subtle geometrical model and computations they need. A simple algorithm
based on the decomposition of nD rotations into planar rotations has been devel-
oped by some of the authors and it has been shown to be rather robust against
noisy data [12, 13]. But, contrary to the Fontijne et al. [6] algorithm, this ap-
proach is not well suited when the data are acquired incrementally.

The purpose of this section is to give some hints on how the SGPB could help
to develop an adapted version of the Fontijne et al. [6] algorithm to noisy data.
For this first attempt, only dimension two is explored but as SGPB is defined
for any dimension, extension to nD is expected.
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R2

R1

p1 p′1

p2

p′2

R1(p2)

(a) (b)

Fig. 7. (a) Reconstructing a 2D-rotation. Note that p′1 is contained in R2, hence p′1 =
R2(p

′

1) = R2(R1(p1)). The rotation R = R2(R1(.)) is a rotation about the intersection
of R1 and R2. (b) Reconstruction of a noisy 2D-rotation.

Rotation reconstruction algorithm. To reconstruct the rotation R from n
points pi and their correspondences p′i = R(pi) the algorithm proposed in [6]
works by finding successive reflections using the Cartan-Dieudonné theorem [8].
Hence, for each i, we have p′i = R(pi) = Rk(· · ·R2(R1(pi)) · · · ) with k = ⌊n

2 ⌋,
where Ri are the reflections3.

The Ri are determined incrementally as perpendicular bisectors. The first
reflection R1 is determined as the perpendicular bisector of p1 and p′1, the second
reflection R2 is the perpendicular bisector of R1(p2) and p′2.

By construction, the reflections have the property that their composition
does not move previously aligned points. For example, as

p′1 = R1(p1) = R(p1) = Rk(· · ·R2(R1(p1)) · · · )

we must have Rk(· · ·R2(p
′
1) · · · ) = p′1.

The Figure 7 illustrates the algorithm in dimension two. It must be noted
that p′1 = R1(p1) is on the line R2 and it is the center of circle passing through
R1(p2) and p′2. Now, replacing the perpendicular bisectors with the SGPB could
help to adapt the algorithm of Fontijne et al. [6] to noisy data.

Adaptation of the rotation reconstruction algorithm to noisy data.
The algorithm described in the previous section supposes that exact point cor-
respondences are provided. However, in the case of noisy data, the reflections
became hard to determine. To deal with noisy data, the idea is to replace points

3 In this section, Ri denotes indistinguishably the reflection and the line that deter-
mines the reflection.
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by n-dimensional pixels and to introduce the SGPB into the reflection deter-
mination process. The expected result is a class of rotations that fit the input
data.

Principle of the algorithm (see Figure 7(b)). First the points pi and their cor-
responding points p′i are replaced by n-dimensional pixels Pi and P ′

i . Then, the
SGPB M1 = SGPB(P1, P

′
1) (corresponding to R1 in the exact case) is deter-

mined. Using M1, the region CGRS(P1,P
′
1
)(P2) is computed. This region corre-

sponds to R1(p2) in the exact case.
In order to restrict CGRS(P1,P

′
1
)(P2), we use the property that a circle centered

on p′1 passing through p′2 and R1(p2) exists (see figure 7(a)). In the pixel case this
means that we have to consider the set S of all circles centered on points of P ′

1

passing through P ′
2. So region of interest for the next step is CGRS(P1,P

′
1
)(P2)∩S.

Now, the SGBP (CGRS(P1,P
′
1
)(P2)∩S, P ′

2) is computed (see Figure 7(b)). The
obtained region must also be restricted with the set L of lines that pass through
P ′
1 while in the exact case the bisector R2 passes through p′1 (see Figure 7(a)).
This finally determines the region M2 = SGBP (CGRS(P1,P

′
1
)(P2)∩S, P ′

2)∩L
corresponding R2 in the exact case. In higher dimension, this process is continued
with next point correspondences.

At the end of the algorithm we obtain a class of rotations that are determined
by lines chosen in the sequence of the Mi, 1 ≤ i ≤ n.

At present, we only have experienced this process in dimension 2 and we
face efficiency problems for computing the SGBP between a pixel and a complex
region such as the CGRS(P1,P

′
1
)(P2). Currently, we are working on this efficiency

problem and also on the extension of this algorithm to higher dimension.

5 Conclusion

In this paper, we studied the Simplified Generalized Perpendicular Bisector and
its properties: whereas the classical euclidean 2D perpendicular bisector (and all
the commonly used medial axis notions), the SGPB of two regions is a 2D surface
that collects all the perpendicular bisector of any couple of points of both regions.
We have particularly defined the SGPB between two pixels of different sizes. The
SGPB is useful to obtain an exhaustive parameter estimation of noisy circles.
We have also characterized the lines in the SGPB by showing that the dual of a
SGPB is a convex polygon and we have defined a new operation: the Generalized
Reflection Symmetry which is a symmetry relatively to a SGPB. This operation
allows us to adapt the algorithm of Fontijne et al. [6] to reconstruct rotations
while taking noisy data into account. In future works, the GPB will be further
studied. There are various notions of discrete bisector that have been proposed.
They are, among other applications, used to analyze and filter medial axis [14,
15] where the medial axis of a Jordan curve is in any point equidistant to its
borders. These notions of discrete bisectors are discrete curves. How these notions
are linked to the Generalized Bisector is one the question we would like to
investigate. Especially the links with Voronöı diagrams, medial axis and skeletons
seems promising. An extension in higher dimension will also be investigated.
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