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Abstract. In this paper we propose an analytical description of different
kinds of digital circles that appear in the literature and especially in
digital circle recognition algorithms.

1 Introduction

Digital primitive recognition is an important topic for the digital geometry and
pattern recognition communities. Two of the most basic primitives have been
intensively studied, the digital straight line and the digital circle, and many dif-
ferent recognition algorithms have been proposed. One of the key elements in
recognizing a digital primitive is actually knowing what object is recognized.
This is not as obvious at it seems. Firstly, there are many ways of defining a
digital primitive for a given Euclidean one. This means that depending on the
considered definition, a same set of pixels can be recognized as a digital prim-
itive or not. Most recognition algorithms provide parameters of the Euclidean
primitive and the corresponding digital primitive is implicit. This makes any
comparison between different algorithms hard because different sets are recog-
nized. Secondly, there is the actual problem of the definition of a digital primitive.
A digital primitive that is only defined as the result of an algorithm or implicitly
by a set of properties does not easily allow a global mathematical description.

An analytical description of a digital primitive is interesting for several rea-
sons: it provides a simple way of verifying whether a point or a set of points
belongs to the primitive or not, it often provides generalizations that cannot be
easily derived from an algorithm. For instance, the Bresenham circle has been
defined for integer coordinate centers and integer radii as the result of a dig-
itization algorithm. As we will see, its analytical description straightforwardly
extends the previous definition to non integer centers and radii. Extensions to
higher dimensions are also possible. Although we don’t consider that in this
paper, it is one of the perspectives of this paper.

J-P. Reveillès [1] proposed an analytical description for the digital straight
lines in 1991. Most, if not all, the digital straight segment recognition algorithms
recognize a connected subset of a kind or another of Reveillès digital straight



lines. In the different digital circle recognition algorithms, there are various dig-
ital circle definitions proposed without any analytical characterization. In this
paper, we propose analytical definitions of most digital circles, i.e. each digital
circle is defined as the solution of a system of analytical inequalities.

After a short recall on digital analytical models and the analytical descrip-
tion of the Andres circle, we propose an analytical description of the supercover,
standard and näıve circles. In the same way, we propose an analytical descrip-
tion of the digital circles defined as the boundary of the Gauss digitization of
Euclidean circles. We end the paper with a discussion.

2 Digital Analytical Circle Description

In this section, we propose analytical descriptions for several definitions that
appear in digital circle recognition algorithms.

2.1 Recall on Digital Analytical Models

We consider here digital analytical models based on a distance d. Let us consider
a Euclidean object E. The digitization Dd(E) of E according to the digital
analytical model associated to d is defined by:

Dd(E) =

{

p ∈ Z
2|d(p,E) ≤ 1

2

}

.

This global definition is particularly interesting because several digitization mod-
els can be derived with respect to the classical distances such as the Manhattan
distance d1, the Euclidean distance d2 or the Tchebychev distance d∞. There are
also some basic properties that are very useful when constructing digital objects
such as, for E,F two Euclidean objects, Dd(E ∪ F ) = Dd(E) ∪Dd(F ) (see [2]
for more details on the supercover analytical model).

There is an equivalent definition that involves a structuring element: the unit
sphere Bd(1) of diameter one for the distance d. The morphological definition
can be written as follow:

Dd(E) = (E ⊕Bd(1))
⋂

Z
2

where A⊕B = {a+ b, a ∈ A, b ∈ B} is the Minkowski sum.

The Euclidean region E ⊕Bd(1) is called the offset region. The Pythagorean
model is based on the d2 distance, the supercover model is based on the d∞
distance and the naive model on the d1 distance. These models respectively
define the Andres, supercover and closed naive digital circles.

In the following subsections, we focus on the analytical models of the Eu-
clidean circle of center (xo, yo) ∈ R

2 and radius R ∈ R
+, denoted by C (xo, yo, R),

and we derive analytical definitions of the above-mentioned digital circles from
their morphological definitions.



2.2 Andres Circle

The Andres circle, which is based on the Euclidean distance, has been proposed
in all dimensions by Andres [3]. In two dimensions, it is defined as follows:
(x, y) ∈ Z

2 belongs to the Andres circle of center (xo, yo) and radius R if and
only if:

(R− 1

2
)2 ≤ (x− xo)

2 + (y − yo)
2 < (R+

1

2
)2

Note that in this definition, xo, yo and R are not integers. If we consider a
closed definition with ≤ on both inequalities for the Andres circle then it is easy
to see that it is associated to the distance d2:

(C ⊕B2(1))
⋂

Z
2

The recognition of Andres circles can be solved by annulus fitting, which is a
problem that has been extensively studied by the computational geometry com-
munity [4]. More recently, people of the digital geometry community have also
considered the problem of annulus fitting in the case of Andres circles corrupted
by noise [5].

2.3 Supercover Circles

The supercover model is based on the d∞ distance. In two dimensions, the corre-
sponding structuring element is the unit square B∞(1), which is the axis-aligned
closed unit square, i.e. B∞(1) = {(x, y) ∈ R

2|max (|x|, |y|) ≤ 1

2
}.

The supercover model is very well adapted for linear objects and every linear
object can be described analytically in this model [2]. However, it can also be
applied on pieces of C2 curves where the slope of the tangent monotonously
increases or decreases like in circle quadrants. For instance, let us consider the
circular arc A of the circle C(0, 0, R) between the angles 0 to π

2
. The offset region

A⊕B∞(1) is the union between the closed unit squares centered on (0, R) and
(R, 0) at both ends of A, and the region bounded by the translation of A by the
vector ( 1

2
, 1

2
), the translation of A by the vector (− 1

2
,− 1

2
), the straight segment

joining (− 1

2
, R− 1

2
) and ( 1

2
, R+ 1

2
), the straight segment joining (R− 1

2
,− 1

2
) and

(R+ 1

2
, 1

2
) (fig. 1.a).

Due to symmetries, the offset region of the three other quadrants is defined
in the same way so that each point of C ⊕ B∞(1) either lies in one of the four
closed unit squares centered in (0, R), (R, 0), (0,−R), (−R, 0) or belongs to one
of the four disks of radius R and center (− 1

2
,− 1

2
), ( 1

2
, 1

2
), (− 1

2
, 1

2
), ( 1

2
,− 1

2
), but

not to both of them (fig. 1.b).

We can thus derive an analytical description of the supercover circle:
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Fig. 1. Construction of the offset region used to define the supercover of a circle.

Proposition 1 (Supercover of a circle). A point (x, y) ∈ Z
2 belongs to the

supercover circle C∞(xo, yo, R) =
(

(C ⊕B∞(1)) ∩ Z
2

)

, if and only if:

|y − yo| ≤ 1

2
and |(|x− xo| −R)| ≤ 1

2

or
|x− xo| ≤ 1

2
and |(|y − yo| −R)| ≤ 1

2

or

R2 − 1

2
− (|x− xo|+ |y − yo|) ≤ (x− xo)

2 + (y − yo)
2 ≤

R2 − 1

2
+ (|x− xo|+ |y − yo|)

Proof. The first part of the analytical description corresponds to the squares
at the cardinal points and is obvious. We get the last part of the analytical
description by developing and applying axial symmetries to the equations for the
first quadrant (x−xo− 1

2
)2+(y−yo− 1

2
)2 ≥ R2 and (x−xo+

1

2
)2+(y−yo+

1

2
)2 ≤

R2. ⊓⊔

The supercover of C∞(0, 0, 5) and C∞( 1
2
, 1

2
, 5) are respectively depicted in

fig. 2.a and b.
Note that Lincke proposed another interpretation of this result based on

mathematical morphology operations [6][fig. 4].
Note in addition that Nakamura and Aizawa, based on a cellular scheme,

defined a digital disk [7] that is actually a supercover disk. The outer border of
their digital disk is thus also the outer border of a supercover circle.

2.4 Standard Analytical Circles

The standard model has been defined only for linear primitives in [8]. In the
supercover model, when the Euclidean object passes through a point p com-
posed only of half-integer coordinates, there is a bubble, i.e. four digital points
that are the vertices of the axis-aligned closed unit square centered on p. For
instance, the supercover of the point

(

1

2
, 1

2

)

is composed of the digital points



(a) (b)

Fig. 2. The supercover of C∞(0, 0, 5) (a) and C∞( 1
2
,

1

2
, 5) (b) is depicted with black

disks.

{(0, 0); (0, 1); (1, 0); (1, 1)}. Similarly, in fig. 2.b, the points (5+ 1

2
, 1

2
), (4+ 1

2
, 3+ 1

2
),

(3+ 1

2
, 4+ 1

2
), ( 1

2
, 5+ 1

2
) (only for the first quadrant) are lying on C( 1

2
, 1

2
, 5) and

are thus center of bubbles.
There can be two different definitions of standard circles depending if we

remove the outer or inner border of the offset region C ⊕B∞(1). The analytical
description of the outer standard circle C

+
∞(xo, yo, R) is obtained by replacing

|x− xo| ≤ R+ 1

2
by |x− xo| < R+ 1

2
, |y − yo| ≤ R+ 1

2
by |y − yo| < R+ 1

2
and

(x−xo)
2+(y−yo)

2 ≤ R2− 1

2
+(|x−xo|+|y−yo|) by (x−xo)

2+(y−yo)
2 < R2− 1

2
+

(|x−xo|+|y−yo|) in the analytical description of the supercover circle (the outer
border is removed). Similarly, the analytical description of the inner standard
circle C−

∞(xo, yo, R) is obtained by simply replacing R2− 1

2
−(|x−xo|+|y−yo|) ≤

(x−xo)
2+(y−yo)

2 by R2− 1

2
− (|x−xo|+ |y−yo|) < (x−xo)

2+(y−yo)
2 in the

supercover circle definition (the inner border is removed). The inner standard
circle C

−
∞( 1

2
, 1

2
, 5) is depicted in fig. 3.a.

Most of the bubbles are removed in the standard model (compare for instance
fig. 2.b and fig. 3.a). However, neither the outer nor the inner standard circles are
always simply 4-connected because it may remain a bubble around one of the four
cardinal points (like in fig. 3.a). The inner standard circle is however interesting
because it corresponds to the Kovalevsky circle [9], denoted by K(xo, yo, R) and
defined as the set of points of half-integer coordinates (x, y) ∈ (Z+ 1

2
)× (Z+ 1

2
)

that belongs to the boundary of the dilatation of the Gauss digitization of the
interior of of C(xo, yo, R) by B∞(1), i.e. the boundary of {(i, j) ∈ Z

2|(i− xo)
2 +

(j − yo)
2 ≤ R2} ⊕B∞(1).

In fig. 3.b, the Gauss digitization of C(0, 0, 5) is depicted with black disks.
The gray area is its dilatation by B∞(1). Kovalevsky circle is depicted with red
disks lying along the boundary of the gray area.

Proposition 2. The point (x, y) ∈ Z
2 belong to C

−
∞(xo +

1

2
, yo +

1

2
, R) if and

only if the point (x− 1

2
, y − 1

2
) belongs to K(xo, yo, R).



(a) (b)

Fig. 3. The inner standard analytical circle C
−

∞
( 1
2
,

1

2
, 5) is depicted in (a) with black

disks. The Kovalevsky circle K(0, 0, 5) is depicted in (b) with big disks along the bound-
ary of the gray area. Note that C

−

∞
( 1
2
,

1

2
, 5) and K(0, 0, 5) are similar objects up to a

translation.

Proof. Firstly, we will prove that if the point (x− 1

2
, y− 1

2
) belong to K(xo, yo, R),

then the point (x, y) belongs to C
−
∞(xo +

1

2
, yo +

1

2
, R) (i) and secondly, we will

prove that if the point (x− 1

2
, y− 1

2
) does not belong to K(xo, yo, R), then (x, y)

does not belong to C
−
∞(xo +

1

2
, yo +

1

2
, R).

Let us shortly denote by C the circle of center (xo, yo) ∈ R
2 and radius

R ∈ R
+. For all points p(x, y) ∈ (Z+ 1

2
)× (Z+ 1

2
), the four vertices of p⊕B∞(1)

are points of Z2. Those that are enclosed by C or lie on C are referred as foreground
points, the others are referred as background points.

(i) For all points p(x− 1

2
, y− 1

2
) ∈ K(xo, yo, R), at least one vertex of p⊕B∞(1)

is a foreground point and at least one is a background point, because p is assumed
to belong to K(xo, yo, R). As a consequence, C must intersect p ⊕ B∞(1) and
by duality C ⊕ B∞(1) contains p. Note that since C cannot pass through any
background point, p does not belong to the inner border of C ⊕B∞(1) (if any),
but is either in its interior or is lying on the outer border. Since this membership
is preserved under translation, (x, y) belongs to C

−
∞(xo +

1

2
, yo +

1

2
, R).

(ii) For all points p(x− 1

2
, y− 1

2
) /∈ K(xo, yo, R), the four vertices of p⊕B∞(1)

are either all foreground points or all background points. In the last case, C does
not intersect p⊕B∞(1) and by duality C⊕B∞(1) does not contain p and we are
done. In the first case, C may pass through one of the foreground points and p
may thus lie in the inner border of C ⊕B∞(1) (which always exists in this case).
Since the inner border of the offset region is removed in the standard model
and since the incident relations are preserved under translation, (x, y) does not
belong to C

−
∞(xo +

1

2
, yo +

1

2
, R). ⊓⊔

Due to this proposition, the recognition algorithm of Kovalevsky [9] provides
a way of recognizing inner standard circles.



2.5 Closed Näıve and Näıve Analytical Circles

The näıve model, introduced in [10], is based on the d1 distance. In two di-
mensions, the corresponding structuring element is the unit square B1(1), which

is a square of side size
√
2

2
and with a 45◦ rotation compared to B∞(1), i.e.

B1(1) = {(x, y) ∈ R
2|(|x|+ |y|) ≤ 1

2
}.

The analytical description of the closed näıve circle is therefore very similar
to the one of the supercover circle (compare the offset region defining a closed
näıve circle in fig. 4.a and the one defining a supercover circle in fig. 1.b).

Proposition 3 (Closed näıve circle). A point (x, y) ∈ Z
2 belongs to the

closed näıve circle C1(xo, yo, R) =
(

(C ⊕B1(1)) ∩ Z
2

)

, if and only if:

|(x− y)− (xo − yo)| ≤ 1

2
and

∣

∣|x+ y − (xo + yo)| −R
√
2
∣

∣ ≤ 1

2

or

|(x+ y)− (xo + yo)| ≤ 1

2
and

∣

∣|x− y − (xo − yo)| −R
√
2
∣

∣ ≤ 1

2

or

R2 − 1

4
−max(|x− xo|, |y − yo|) ≤ (x− xo)

2 + (y − yo)
2

≤ R2 − 1

4
+ max(|x− xo|, |y − yo|)

Proof. The proof of this proposition is very similar to the proof of proposition
1. The last part of the equations is obtained by developing and applying the
corresponding symmetries to (x−xo− 1

2
)2+(y− yo)

2 ≥ R2 and (x−xo+
1

2
)2+

(y − yo)
2 ≤ R2. ⊓⊔

Similarly to the two definitions of standard circles, it is possible to define an
inner näıve circle, denoted by C

−
1 (xo, yo, R), and an outer näıve circle, denoted

by C
+
1 (xo, yo, R), by removing the inner or outer border of the of the offset

region C ⊕B1(1). Due to this convention, when C crosses a point of coordinates
(x + 1

2
, y) in the first octant, C−

1 does not contain (x, y), whereas C
+
1 does not

contain (x + 1, y). For instance, in fig. 4.b, we can see the closed näıve circle
C1(

1

4
, 1

4
, 7

2
). The Euclidean circle C crosses the points of coordinates (−1, 3+ 1

2
),

(3 + 1

2
,−1), (−2,−2− 1

2
) and (−2− 1

2
,−2) (clockwise from the top-left point),

which implies that the points (−2, 3), (0, 4), (4, 0), (3,−2), (−2,−3), (−2,−2)
and (−3,−2) have three 8-neighbors. However, C−

1 (
1

4
, 1

4
, 7

2
) (resp. C+

1 (
1

4
, 1

4
, 7

2
))

is simply 8-connected because it does not contain the points (−1, 3), (3,−1),
(−2,−2) (resp. (−1, 4), (4,−1), (−2,−3) and (−3,−2)).

An inner or outer näıve circle may nonetheless not always be simply 8-
connected because sharp corners may occur at octant boundaries (fig. 4.c). Ex-
actly the same thing happens for Bresenham circles [11] as it is well known (see
for instance [12][section 5]) because of the following proposition:

Proposition 4 (Bresenham Circle). Bresenham circle is a closed, inner and
outer näıve circle.



(a) (b) (c)

Fig. 4. Offset region defining a closed näıve circle (a). A closed näıve circle C1(
1

4
,

1

4
,

7

2
)

(b). Bresenham circle of radius 4 that is not simply 8-connected (c).

Proof. Let us assume that xo, yo, R are integers. A Bresenham circle is a closed
8-connected digital curve that is the digitization of C(xo, yo, R). Moreover, its
points are the closest ones to C(xo, yo, R) [13]. As such it corresponds to the
näıve digitization model.

Moreover no point
(

x± 1

2
, y
)

or
(

x, y ± 1

2

)

, with (x, y) ∈ Z
2, belongs to a

Euclidean circle that has a center of integer coordinates and an integer radius.
The closed, inner and outer näıve models of such circles are thus identical and
corresponds to their Bresenham digitization. ⊓⊔

This proposition shows that the analytical description we propose for näıve
circles is an extension of the Bresenham circles to arbitrary centers and radii. If
we consider that the natural extension of the Bresenham circle corresponds to the
circles that are simply 8-connected except around octant boundaries, then the
outer näıve circle is the best choice. This corresponds to the definition proposed
by Pham [14] (see [15]). Note that there is a slight mistake in the starting point
in Pham’s generation algorithm. This type of mistake is difficult to spot with a
generation algorithm. One advantage of an analytical definition is that it can be
used to test such algorithms.

Several papers have dealt with the problem of recognizing näıve circles: the
paper of Pham [14] in 1992 for outer näıve circles and the papers of Sauer [16]
in 1993 and Damaschke [17] in 1995 for Bresenham circles.

3 Gauss Type Digitized Circles

In this section, we propose two analytical definitions that do not directly rely
on the global model presented in section 2.1 but that are very similar.

Definition 1 (d1-Gauss circle). A point (x, y) belongs to the d1-Gauss circle
G∞ (xo, yo, R) if and only if:

R2 − 2max (|x− xo|, |y − yo|)− 1 < (x− xo)
2 + (y − yo)

2 ≤ R2



Definition 2 (d∞-Gauss circle). A point (x, y) belongs to the d∞-Gauss circle
G1 (xo, yo, R) if and only if:

R2 − 2(|x− xo|+ |y − yo|)− 1 < (x− xo)
2 + (y − yo)

2 ≤ R2

It is easy to sketch the region where the points of G1(xo, yo, R) or G∞

(xo, yo, R) lie (it is bounded by circular arcs in fig. 5).

(a) (b)

Fig. 5. Illustration of G1(0, 0, 3.5) in (a) and G∞(0, 0, 3.5) in (b).

These digital circles actually correspond to the boundary of the Gauss digi-
tization of C. More precisely:

Proposition 5. The d1-Gauss (resp. d∞-Gauss) circle G1(xo, yo, R) (resp. G∞

(xo, yo, R)) is the set of points of the Gauss digitization of the interior of C(xo, yo, R),
denoted by DG(C), such that their 4-(resp. 8-)neighborhood is not totally included
in DG(C).
Proof. We will focus on G1(xo, yo, R) because the proof about G∞(xo, yo, R)
is the same. Firstly (i), we will prove that if p ∈ G1(xo, yo, R), then the 4-
neighborhood of p is not totally included in DG(C) and secondly (ii), we will
prove that if p /∈ G1(xo, yo, R), then either the 4-neighborhood of p is totally
included in DG(C) or not included at all.

(i) For all p(x, y) ∈ G1(xo, yo, R), (x−xo)
2+(y−yo)

2 ≤ R2 and therefore p ∈
DG(C). Let us now assume that p lies in the first octant, i.e. (x−xo) > (y−yo) ≥
0. On the one hand (x+1−xo)

2+(y−yo)
2 = (x−xo)

2+(y−yo)
2+2(x−xo)+1.

On the other hand (x−xo)
2+(y−yo)

2 > R2−2(x−xo)−1 due to definition 1. As
a result, (x+1−xo)

2+(y−yo)
2 > R2, i.e. (x+1, y) /∈ DG(C). Due to symmetries,

we can conclude that the 4-neighborhood of p is not totally included in DG(C)
for all p(x, y) ∈ G1(xo, yo, R).

(ii) For all p(x, y) /∈ G1(xo, yo, R), two cases must be distinguished. If p /∈
DG(C), we are done. Otherwise, let us assume that p lies in the first octant, i.e.
(x− xo) > (y− yo) ≥ 0. Since (x− xo)

2 + (y− yo)
2 ≤ R2 − 2(x− xo)− 1 in that

case, we have (x + 1 − xo)
2 + (y − yo)

2 < R2, i.e. (x + 1, y) ∈ DG(C). Due to
symmetries, we can conclude that the 4-neighborhood of p is totally included in
DG(C) in that case and we are done. ⊓⊔



The d1-Gauss circles, also referred as circles digitized under Kim scheme in
[7, 18, 14], appear in many different recognition algorithms [19–21, 18, 22, 23].

4 Discussion and perspectives

In this paper we have presented analytical inequalities describing the supercover,
inner and outer standard, closed näıve, inner and outer näıve, d1- and d∞-Gauss
circles.

Fiorio et. al. [24] proposed an analytical characterization for standard and
näıve circles that is very close to the one we are proposing here. They obtained
their formula based on differential considerations and thus obtained only the
last part of the analytical descriptions. Geometrically, the offset region involved
in their approach is only made up with four disks without any square. In ad-
dition, the Euclidean circle whose parameters are the same as the ones of the
standard or näıve circle is not perfectly centered within the offset region. There-
fore, their approach could not be used to characterize existing digital circles (like
Kovalevsky circle) as we did in this paper.

Having an analytical characterization has many advantages: it provides a
way of verifying if a given set of digital points is a given digital circle or a
subset of such a digital circle, it provides a way of verifying the correctiveness of
digital circle generation algorithms. Furthermore, our approach leads to a unified
framework for digital circle recognition algorithms based on linear programming
techniques. The only exception is Andres circles that can be handled through
algorithms based on annulus fitting.

Let Σ be a set of n digital points. Is Σ a given digital circle C(xo, yo, R)
(where C ∈ {C∞,C−

∞,C+
∞,C1,C

−
1 ,C

+
1 ,G∞,G1}) ?

We give below a general scheme in two steps in order to solve the recognition
problem using linear programming. This approach is not new and has been used
in [17] for Bresenham circles, but we extend it to all the above-mentioned digital
circles.

The first step consists in setting a straight segment joining a point s and a
point t to each digital point p ∈ Σ, such that C(xo, yo, R) intersects [st] if and
only if p belongs to C(xo, yo, R). This step can be easily performed if the octant
(with respect to (xo, yo)) where each p ∈ Σ lies is known. We do not provide
further details due to lack of space, but the octant of all p ∈ Σ can be deduced
from Σ in linear time. The straight segments assigned to each digital point of
C∞(0, 0, 5) (a), C1(0.5, 0.5, 3.5) (b) and G1(0, 0, 3) (c) are depicted in fig. 6. Note
that s is not included for C ∈ {C+

∞,C+
1 } in [st], whereas t is not included in [st]

for C ∈ {C−
∞,C−

1 ,G∞,G1} (see fig. 6.c for instance).

In the second step, the sets of points s ∈ S and t ∈ T provide the constraints
of a convex program that be translated into a linear one [21, 17] and can then
be solved in linear-time using Megiddo prune and search technique [25] or in
expected linear-time using Seidel randomized technique [26].



(a) (b) (c)

Fig. 6. Constraints assigned to each digital point of C∞(0, 0, 5) (a), C1(0.5, 0.5, 3.5)
(b) and G1(0, 0, 3) (c).

That’s why all the recognition algorithms that appear in the literature [19–
21, 18, 9, 14, 16, 27, 22, 23] are all techniques of solving a unique linear program.
The difference lies in the manner of solving the problem.

In [21, 17], a 3D point belonging to the intersection of 2n half-spaces in the
parameters space is searched with Megiddo algorithm. In the space that is dual to
the parameters space, a plane separating two sets of n 3D points is searched using
tools coming from computational geometry [22]. In [18, 9, 14, 27, 23] a 2D point
belonging to the intersection of n2 half-planes is searched in the original plane
using either brute-force algorithms [9, 14, 27] or tools coming from computational
geometry [18, 23].

One of the main perspective of this paper is of course the extensions that
analytical descriptions allow: extension to thick digital circles (by considering
structuring elements Bd(k) with k > 1) and extension to higher dimensions,
which seems possible but not trivial. Another perspective is the extension to
more complex algebraic curves [28].
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