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1 French Aerospace Lab (ONERA), Chemin de la Hunière, 91 761 Palaiseau, France

2 Institut de Physique de Rennes UMR 6251, Université de Rennes 1, Campus de Beaulieu,
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Abstract: We address an original statistical method for unsupervised

identification and concentration estimation of spectrally interfering gas

components of unknown nature and number. We show that such spectral

unmixing can be efficiently achieved using information criteria derived

from the Minimum Description Length (MDL) principle, outperforming

standard information criteria such as AICc or BIC. In the context of

spectroscopic applications, we also show that the most efficient MDL

technique implemented shows good robustness to experimental artifacts.
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6. J. Kasparian, M. Rodriguez, G. Méjean, J. Yu, E. Salmon, H. Wille, R. Bourayou, S. Frey, Y. André, A. Mysy-
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1. Introduction

Air pollution monitoring in the atmosphere has motivated the development of many active op-

tical instruments based on absorption spectroscopy. Ideally, a single instrument should be able

to detect and quantify numerous gas species. It is therefore appropriate to use an illumina-

tion source that can cover a large spectral range. Two kinds of sources can be used, which

are: i) narrow-line lasers with broad tunability, and ii) instantaneous broadband sources. Both

families have demonstrated high potential for measurement of multi-components gas mixtures

in the atmosphere. Narrow-line tunable lasers have been used in multi-wavelength systems



like DIfferential Absorption Lidars (DIAL) [1, 2] and Tunable-Diode Laser Absorption Spec-

troscopy (TD-LAS) [3]. Instantaneous broadband sources have been used in various experi-

ments schemes such as Differential Optical Absorption Spectroscopy (DOAS) [4], open-path

active Fourier-Transform InfraRed (FTIR) spectroscopy [5], white-light filament-induced spec-

troscopy [6], and more recently, supercontinuum fiber laser spectroscopy [7, 8]. These various

techniques share a common experimental design which is sketched in Fig.1.

All these techniques provide multi-spectral absorption data that can be processed by mul-

tivariate statistical analysis in order to characterize the gas mixture. When the number and

nature of the chemicals are a priori known, efficient algorithms can be designed to estimate

their concentrations [9, 10, 11]. However, in many practical cases, the number, nature, and

concentration of gas components are all unknown. In such situations, the same algorithms are

inclined to overfit signal noise by assigning non-zero concentrations to many gas species in the

fixed list of expectable gases (all of them being estimated at the same time). This results in

complex and often unrealistic gas diagnosis. To avoid this, it is necessary to design unsuper-

vised methods enabling simultaneous gas selection and concentration estimation. In this paper,

we use the powerful concept of Minimum Description Length (MDL) principle to tackle this

problem. We illustrate the potential of the method for spectral unmixing of several chemicals in

the mid-infrared range. This spectral range is of particular interest for air pollution monitoring,

as many industrial and greenhouse gases exhibit strong absorption lines in this band.

In broad outline, the MDL principle is based on the idea that the best model describing the

measured data must minimize the code length needed to describe the data and to encode the

model itself [12]. Such a principle has already been applied in various domains, such as social

sciences [13], biology [14] or radar signal processing [15] for instance. For the first time to the

best of our knowledge, we show that this principle can be used for spectroscopic applications.

More precisely, the approach presented in this paper allows unsupervised spectral unmixing



of gas mixtures to be simply operated, with detection performances that outperform standard

information criteria.

This paper is organized as follows: in the next section, we present the physical situation

considered, and the principle of the MDL-based spectral unmixing algorithm is detailed. In

section 3, we present and analyze some simulation results, allowing us to quantitatively com-

pare the performance of the MDL-based approaches with standard methods. We also analyze

the robustness of the proposed method when experimental outliers occur in the measurement

process. Finally, the conclusion and perspectives of the paper are given in Section 4.

Fig. 1. Illustration of an absorption spectroscopy experiment using an active broadband

illumination or tunable laser source.

2. Principle of unsupervised spectral unmixing algorithm

2.1. Posing of the problem

Before presenting the principle of the unsupervised spectral unmixing method addressed in

this paper, let us detail the physical model that will be considered in the following. In most of

absorption spectroscopy experiments, one is interested in measuring a vector X containing in-

tensity measures on M spectral slits (or wavelengths) not necessarily adjacent. In the presence

of absorbing gas species, these spectral measurements reveal specific absorption patterns de-

pending on the nature and concentration of the chemicals encountered by the probe light beam.



These spectral absorption patterns are superimposed with the spectral baseline of the active

illumination source. The vector X of the measured intensities is linked to the K-dimensional

vector c containing the gases concentrations c = [c1, . . . ,cK ]
T through the following equation

X =
(

a0ue−Huc
)

∗ g, (1)

where g denotes the spectral slit (or laser linewidth) convolution function, which is assumed

known in the following. In this equation, a0u denotes the baseline spectrum, and the M ×K

matrix Hu = [hu1,h2, . . . ,huK ] contains the unconvolved high-resolution absorption spectra of

the K gas species. For the sake of simplicity, we will only consider in this paper the case of

small absorption optical depths (i.e., Huc ≪ 1). Moreover, we assume that the baseline a0 is

varying slowly with respect to both the absorption lines and the convolution function widths. In

such conditions, the measured intensities can be written,

X = a0e−Hc, (2)

where the matrix H = [(hu1 ∗ g),(hu2 ∗ g), . . . ,(huK ∗ g)] contains the convolved absorption

spectra of the K gas species, and where the convolved spectral baseline a0 is assumed known,

either from instrumental calibration or with a precise radiometric model of the illumination

source. More accurate models involving deconvolution procedures, as well as the influence of

a possible resolution mismatch between the instrument and the model are outside the scope of

this paper, but could deserve investigation in future work.

The noisy experimental intensity measures over the M spectral slits, obtained for instance

with a dispersive spectrometer or a FTIR spectrometer, will be denoted X̃ in the remaining of

this paper. It is a common procedure to use the logarithm of the measured data so as to obtain

a linear regression model of the following form:

Ỹ = ln X̃ = b0 −H · c+n, (3)



with b0 = lna0, and where the M-dimensional zero-mean random vector n allows us to model

the experimental noise. We assume that the noise contribution to the measured signal Ỹ can

be correctly accounted for with a Gaussian additive model. We also assume independence be-

tween the noise affecting two distinct spectral slits, i.e., 〈ni n j〉 = 0 if i 6= j. For such a linear

regression model, the usual estimator is ĉ = (HHT )−1HT (Ỹ−b0) and is usually referred to as

the Minimum Mean Squared Error (MMSE) estimator since it minimizes the Residual Sum of

Squares RSS = (Ỹ− Ŷ)T (Ỹ− Ŷ), with Ŷ = b0 −Hĉ.

Under the hypothesis of Gaussian fluctuations and if the noise variance is not assumed a

priori known during the estimation procedure, it can be shown [16] that this quantity is related

to the loglikelihood ℓỸ(Ỹ|H) of the observed data through the following equation

ℓỸ(Ỹ|H) = lnPỸ(Ỹ|H) =−
M

2
lnRSS+ ct, (4)

where ct denotes an additive constant independent of the measured data. It can be noted that

this last equation shows that the MMSE is also the Maximum Likelihood (ML) estimator under

Gaussian fluctuations.

2.2. Model selection

The issue of model selection arises in many practical situations. For the problem at hand, two

questions have to be answered: how many gas components (regressors) do we need to describe

the experimental data, and which regressors have to be selected in the linear regression model

of Eq.(3) to best explain the observations ? Without any model selection step, the most exhaus-

tive regression model would include any gas species presenting characteristic absorption lines

within the spectral range considered, and may lead to misleading and imprecise (if not incor-

rect) results, mostly due to overfitting of the noise. To avoid such undesirable situations, many

penalization methods have been proposed among which we can cite the Akaike Information

Criterion (AIC) [18], the Bayesian Information Criterion (BIC) [19], the Risk Inflation Crite-



rion (RIC) [20], etc. These so-called information criteria make it possible to introduce sparsity

constraints in the regression model, by selecting the solution (i.e., the regressor matrix H) which

minimizes −ℓỸ(Ỹ|H)+C , with a different penalization term C depending on the information

criterion considered. It can be noted however that since the loglikelihood is proportional to the

logarithm of the RSS, up to an additive constant independent of the selected regression model

[16], the model selection can be operated equivalently by minimizing M/2lnRSS+C .

Let us briefly recall two of the classical information criteria, which will be used in the re-

maining of the paper as benchmarks to assess the quality of the proposed MDL-based methods.

The simplest is the Akaike Information Criterion (AIC) [18], which introduces a penalization

term equal to the number K of regressors included in the model. In the case of samples of lim-

ited size, this penalization term can be refined and is usually referred to as AICc and will be

denoted C (a) in the following, with [16]

C
(a) =

M

2

1+K/M

1− (K+ 2)/M
. (5)

We shall also consider the well-known Bayesian Information Criterion (BIC) [19], whose pe-

nalization term reads

C
(b) =

K

2
lnM. (6)

Other information criteria can be found in abundance in the literature, which may suggest

that an appropriate “most efficient” criterion at hand can be designed for a given statistical

problem. Among various attempts to build a general theoretical framework to interpret model

complexity, the Minimum Description Length (MDL) principle introduced by Rissanen [12] is

an interesting and fruitful approach. The MDL principle is based on the underlying idea that

the best description of the data will be given by the model leading to the shortest code length

(expressed in bits or in nats (1 nat= ln2 bits)) needed to both describe the data given the model,

and to encode the model itself [12, 16].



It is interesting to note that one of the simplest forms of the MDL, the so-called two-stage

description length, is intimately related to the BIC. Indeed, assuming a M-dimensional data

described with a probability density function (Pdf) parametrized with a K-dimensional vector

θ , it can be shown that the code length (in nats) needed to describe the data is given by the

negative loglikelihood (−ℓ(Ỹ|θ )) [12, 16]. In addition, the code length needed to describe such

a model with K parameters can be shown to be equal to approximately K/2lnM [12, 16]. From

this result, it can thus be seen that minimizing the two-stage MDL boils down to applying a

BIC penalization.

More recently, sophisticated forms of the MDL principle have been proposed, with a constant

effort towards loosening the assumptions held on the observed data. We shall focus in the

following on two MDL approaches whose expressions are recalled below. Detailed theoretical

foundings of these MDL theories can be found in Refs [12, 16, 21].

Mixture MDL and g-prior (gMDL): Within the framework of mixture MDL [21], a prior

distribution is assigned to the vector parameter θ . With a specific choice of the prior distribution

(Zellner’s g-prior), one obtains the so-called gMDL for which the criterion to minimize has the

following closed form expression [16]:

min















M
2

lnRSS+C (g) if F > 1

M
2

ln(Ỹ−b0)
T (Ỹ−b0) otherwise,

(7)

where F = (M −K)
[

(Ỹ−b0)
T (Ỹ−b0)−RSS

]

/K RSS is the standard F-ratio for testing the

null model containing the spectral baseline only. The penalization term C (g) in Eq.(7) is given

in [16] and can be written

C
(g) =

K

2
lnF +

M

2
ln

M

M−K
. (8)

Normalized Maximized Likelihood (nMDL): Lastly, we shall be interested in the recently

proposed Normalized Maximized Likelihood form of the MDL [22]. This approach has proved



efficient in various practical problems and has shown several optimality properties [12, 16].

For the statistical problem considered in this paper, the nMDL theory suggests to introduce the

following penalization terms [12]:

• For a model including the baseline only:

C
(n) =

M

2
ln

2π

M
+

1

2
ln

M

2
+ ln ln

b

a
. (9)

• In any other cases:

C
(n) =

K

2
lnF +

1

2
lnK(M −K)+

K

2
lnM+

M

2
ln

2π

M−K
+ 2lnln

b

a
− ln2+Lc, (10)

where Lc denotes the code length needed for encoding the model. Following Rissanen,

we use the code length

Lc = min

{

Kmax,
[

ln
K!(Kmax −K)!

Kmax!
+ lnK + log2 ln(eKmax)

]

}

(11)

for a selection among Kmax potential regressors contained in the spectral database.

It must be noted that the nMDL approach requires the hyperparameters a and b to be estimated.

According to Rissanen’s indications [12], the estimator of the hyperparameter a is given by

the RSS obtained with the most exhaustive model (i.e. Kmax regressors included) while the

estimator of the hyperparameter b is the RSS obtained with the less exhaustive model (i.e.

baseline only).

2.3. Stepwise algorithm for unsupervised spectral unmixing

Whatever the criterion selected, the determination of the optimal model requires an exhaustive

search among all possible models which is computationally intensive if the number of potential

regressors Kmax is important. Instead of carrying out extensive operational research techniques

such as branch & bound for instance, we implement a stepwise search algorithm for the sake
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Fig. 2. (a) Example of simulated noisy data with S-SNR=6.3 dB (blue curve) superimposed

with the true spectrum (black curve) and baseline (green dashed curve). (b)-(f) Comparison

of the reconstructed signal after various steps of nMDL-based stepwise model selection

(red dotted curve) with the true spectrum (black curve).

of computation rapidity. We use a forward stepwise algorithm with an initialization state con-

taining the baseline only. At each step of the algorithm, the regressor (i.e., the gas species)

that most diminishes the criterion is included in the model, until any further increase in the

model complexity leads to an increase of the criterion. An example of iterative model selection

is illustrated in Fig.2. At each step of the algorithm implementing nMDL criterion, the corre-

sponding reconstructed signal is plotted in red dashed curve, and can be compared with the

signal obtained with the true model (black curve).

Since we are concerned with absorption spectroscopy applications, we also implement a

modified version of the algorithm so as to include a positivity constraint in the estimation results

by rejecting models leading to physically unwanted negative concentration values.



It can be noted that this algorithm could be further refined for future developments by in-

cluding backward elimination steps to reduce the risk of reaching local minima. Nevertheless,

as will be shown in the next section, the algorithm implemented here is sufficient to compare

the quality of the MDL approaches and standard information criteria such as AICc and BIC for

unsupervised spectral unmixing of gas components.

3. Implementation and comparison of MDL-based information criteria

3.1. Simulated absorption spectroscopy experiment

We simulated a typical absorption spectroscopy experiment by numerically generating spectral

measurements over M = 400 adjacent spectral slits, spanning between 3.2 and 3.6 µm, with

a simulated instrumental spectral resolution of 2.3 nm (Gaussian slit function). The physical

situation considered in this experiment consisted of a spectrally uniform illumination propa-

gated through a gas mixture with 4 components: O3 (6000 ppm.m), NO2 (500 ppm.m), CH4

(70 ppm.m) and H2CO (30 ppm.m), where the numerical values in brackets correspond to their

respective path-length integrated concentration.

The model selection was operated with the stepwise algorithm presented above from a spec-

tral database containing Kmax = 16 gas species, including the 4 gases of the “true” model and

12 spectrally interfering species (such as H2O, N2O, NH3, HCl, etc.) with significant absorp-

tion strength within the spectral range considered. The strong spectral overlap of the database

species can be checked in Fig.3, where the absorption spectra of 8 gas species (among 16 in the

spectral database) are plotted. In this figure, the spectra are convolved with a Gaussian kernel to

match the spectral resolution of the instrument considered in the simulated experimental data.

To account for experimental/detection noise, M statistically independent realizations of

Gaussian random noise with variance σ2 were added to the absorption spectra generated over

M spectral slits. Varying the noise variance allowed us to simulate experiments with different



values of the Signal to Noise Ratio (SNR), usually defined in the context of additive Gaussian

noise as the ratio of the flat baseline value to the noise standard deviation σ . However, this

quantity is poorly adapted to assess the difficulty of the estimation problem considered, since it

only depends on the active illumination power, and does not depend on the absorption strength

of the gas mixture to be detected. We thus introduce another figure of merit, denoted S-SNR

for spectral SNR, and defined as:

S-SNR =

√

1
M
(b0 −Y)T (b0 −Y)

σ
=

√

1
M

cT HT Hc

σ
. (12)

In this expression, the numerator can be interpreted as the root mean square of the absorption

signal b0 −Y = Hc from which the nature and concentration of the gas components have to

be estimated. An increase of the gas mixture concentrations accentuates the spectral absorption

patterns in the measured spectrum, thus leading to an easier identification/estimation. In that

case, it can be seen from the above definition that the S-SNR value is correspondingly increased.

An example of simulated noisy data is given in Fig.2.a for a S-SNR=6.3 dB.

Fig. 3. Absorption spectra of the 4 gas components present in the mixture (red curves)

and of 4 other chemicals of the spectral database (black and green curves) with resolution

2.3 nm. The green curve corresponds to the absorption spectrum of HCl, which is used in

section 3.4 to simulate anomalous measurements (outliers).



3.2. Simulation results

The results of the numerical simulations are summarized in Table 1, where the percentage of

correct model selections is given for the 4 information criteria compared in this paper and

for different SNRs. For each physical situation considered, this percentage is evaluated over

R = 5.103 realizations of the selection/estimation task on statistically independent simulated

data. Two situations were considered according to whether light has undergone absorption from

the gas mixture or not.

This table clearly reveals that in the context of unsupervised spectral unmixing, the MDL

approaches implemented outperform the classical information criteria such as AICc or BIC,

for reasonably high values of the SNR. This general result can be refined by observing that

when the gas mixture is present, the nMDL is by far the most efficient criterion, with less

than 2% erroneous selected models when S-SNR ≥ 6.3 dB, while the standard BIC selects

approximately 17% erroneous models in the same conditions and AICc is strongly ineffective,

leading to a large majority of erroneous selections. For lower values of the signal to noise

ratio (S-SNR <4.3 dB) however, the percentage of correct models selected by nMDL strongly

diminishes, and better performance is obtained with BIC. As for the gMDL approach, it can be

noted that this criterion outperforms BIC for high SNRs (S-SNR≥ 9.8 dB), but the advantage

quickly drops out as the SNR decreases.

To complement this analysis, it is interesting to focus on the distribution of the size of the

selected models. In Fig. 4.a, the histogram of the selected models sizes is plotted for the 4

criteria and for a S-SNR=6.3 dB. This figure reveals a clear tendency for AICc to overfit the

noise patterns, thus leading to strongly overestimated model sizes. If the size distributions for

BIC and gMDL are very similar, with approximately 16% of overestimated models (K = 5),

it is however interesting to note that nMDL appears very efficient at avoiding overfitting, with

only 1% of overestimated selections and 0.4% of selections with only K = 3 components.



Table 1. Percentage of correct models selected by the stepwise algorithm with four infor-

mation criteria (AICc, BIC, gMDL, nMDL) and for various values of the SNR.

With gas mixture No gas mixture

S-SNR AICc BIC gMDL nMDL AICc BIC gMDL nMDL

20.3 dB 16.5 83.6 96.0 >99.9 11.1 81.5 98.8 93.6

14.3 dB 18.6 83.7 92.8 99.9 11.0 80.3 99.2 93.1

9.8 dB 18.5 83.8 87.6 99.8 10.3 81.7 99.0 93.6

6.3 dB 17.7 83.1 80.8 98.9 10.6 82.0 99.0 92.3

4.3 dB 18.0 82.5 76.6 90.0 10.0 81.8 99.0 94.0

2.0 dB 16.4 74.0 63.5 53.5 10.8 81.7 98.9 92.8

This property has already been addressed in Ref.[12] and remains valid in the less favorable

situations of low SNRs where nMDL is outperformed by BIC: when S-SNR=2 dB, nMDL

leads to only 53.5% of correct models but more than 99% of the remaining selections have an

underestimated size (K = 3) and the “missing” gas component is always H2CO. In the context

of absorption spectroscopy, this behavior seems interesting since it decreases the probability

of erroneously detecting a gas component in excess and thus strengthens the confidence in the

components selected with nMDL.
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Fig. 4. Histograms of the number of regressors selected by AICc, BIC, gMDL and nMDL

criteria for S-SNR=6.3 dB, (a): with a 4-components gas mixture; (b): without gas mixture.



Let us now analyze the second physical situation considered in the simulations where the

illumination beam does not undergo any absorption. In this situation, it appears clearly again

that MDL approaches lead to better results, when compared with standard criteria such as AICc

and BIC. Once again, this result can be interpreted from the ability of MDL approaches to avoid

overfitting, which can also be checked on the histograms of Fig.4.b. With approximately 99%

of correct models, the gMDL criterion leads to the lowest probability of false alarm Pfa ≃

1− 0.99 = 1%, which we define as the probability of detecting any gas mixture when there is

not. On this particular point, the nMDL criterion appears less efficient with a Pfa ≃ 6.5%.

From the above results, an interesting strategy for a practical implementation could be to use

the gMDL criterion to test the null hypothesis. In case this hypothesis is rejected, the algorithm

could switch to the nMDL criterion, which showed the best performance for model selection.

In the next subsection, we analyze how a positivity-constrained implementation of the stepwise

algorithm influences the previous results.

3.3. Influence of a positivity constraint

As stated in section 2.3, we also implemented a positivity-constrained version of the stepwise

algorithm to provide physically acceptable results in the context of absorption spectroscopy. As

can be checked in Table 2, such a constraint noticeably improves the quality of model selection

with all the criteria considered. For instance, with a S-SNR=6.3 dB, the positivity-constrained

algorithm selects 42.4% of correct models with AICc, 91.2% with BIC, 90.2% with gMDL and

99.3% with nMDL. When there is no gas mixture, the proportion of erroneous rejection of the

null model hypothesis also diminishes whatever the criterion considered.

It can be noticed however that the performance of nMDL is less influenced by this constraint

than the other criteria. This property may indicate that the nMDL criterion is intrinsically ef-

ficient at avoiding non-physical results in the context addressed here, even if no positivity-



Table 2. Percentage of correct models selected by the stepwise algorithm implementing a

positivity constraint on the regression coefficients (i.e., on the gas components concentra-

tions).

With gas mixture No gas mixture

S-SNR AICc BIC gMDL nMDL AICc BIC gMDL nMDL

20.3 dB 40.0 92.6 98.4 >99.9 31.2 89.2 99.4 96.9

6.3 dB 42.4 91.2 90.2 99.3 28.6 89.3 99.50 97.0

4.3 dB 40.8 90.4 87.0 90.6 29.2 88.0 99.4 97.1

2.0 dB 41.6 81.8 77.6 57.3 29.1 88.8 98.4 96.9

constraint is applied to the algorithm.

3.4. Influence of outliers

To complete our analysis, we study the influence of measurement outliers. In practical situations

of in-field experiments, many sources of measurement artifacts may exist, and it is likely that

some amount of anomalous measures may occur. It is thus interesting to check the robustness

of the implemented methods to the occurrence of outliers.

For that purpose, simulations were carried out in the same physical conditions as in the

previous section, but the simulated data were generated in that case from the averaging of N =

20 independent measures. Among these N = 20 measures, we included a varying proportion of

outliers, corresponding to the simulated noisy absorption spectrum of a single interferent gas

species (HCl [80 ppm.m]), whose absorption spectrum is represented in green curve in Fig.3.

The results obtained are summarized in Table 3, where the percentage of correct models is

given for a S-SNR=6.3 dB on the averaged signal. Once again, it can be clearly seen that in

the context of spectral unmixing of interfering gas species, the nMDL criterion outperforms the

other methods, with still 90% of correct models for a significant amount of outliers (20%). It



Table 3. Percentage of correct models selected by the stepwise algorithm with a S-

SNR=6.3 dB for a varying proportion of measurement outliers.

With gas mixture No gas mixture

% outliers AICc BIC gMDL nMDL AICc BIC gMDL nMDL

0 % 17.7 83.1 80.8 98.9 10.6 82.0 99.0 92.3

5% 13.7 80.0 75.7 97.4 8.3 77.1 98.1 93.8

20 % 7.3 62.2 53.6 90.1 5.2 59.7 92.4 93.9

can also be noted that the inclusion of outliers does not influence the Pfa obtained with nMDL

(approximately 1−0.933≃ 6,7%) while this quantity noticeably decreases when other criteria

are implemented.

4. Conclusion

In this paper, we presented an original technique for unsupervised spectral unmixing of multiple

gas species. More precisely, we have shown that two Minimum Description Length approaches

can be successfully implemented in a stepwise model selection algorithm. Applied on spectro-

scopic data, this algorithm allows one to estimate the number, nature and concentration of the

components of an unknown gas mixture without requiring ajustment of any parameter.

In the context addressed in this paper, numerical simulations have demonstrated that the

MDL approaches outperform the standard information criteria tested (AICc, BIC). When a

gas mixture is present within the path of the illumination beam, the gMDL approach does not

provide great improvement in comparison to classical BIC, but we illustrated its efficiency in

avoiding false alarms when no gas mixture is present. However, the most promising results for

a practical implementation were obtained with the Normalized Maximized Likelihood (nMDL)

approach, which seems to be a very interesting alternative to standard criteria, and can still

be implemented with a simple algorithm. The nMDL criterion strongly outperforms the other



methods for reasonable values of the SNR and provides the best robustness to measurements

artifacts.

A promising perspective to this work is the opportunity to apply this method to experimental

spectroscopic data due to recent development in our laboratories of appropriate mid-infrared

powerful sources with broadband spectrum [23], or with highly tunable operating wavelength

[24]. It must be noted that this approach is not limited to the case of absorption spectroscopy,

and could be also applied in many situations requiring spectral unmixing (Raman spectroscopy,

hyperspectral data processing, etc.). A further analysis of the influence of the spectral resolu-

tion and of the noise model would be also a useful theoretical continuation of this work, as

well as the study of detection performances. A comparison of the MDL-based model selection

techniques presented in this paper with other parsimonious model selection methods such as

the lasso approaches [25, 26] is another interesting perspective.


