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Abstract—Considerable attention has been paid during the last
decade to navigation systems based on the use of visual optic
flow cues, especially for guiding autonomous robots designed to
travel under specific lighting conditions. In the present study, the
performances of two visual motion sensors used to measure a
local 1-D angular speed, namely (i) a bio-inspired 2-pixel motion
sensor and (ii) an off-the-shelf mouse sensor, were tested for
the first time in a wide range of illuminance levels. The sensors’
characteristics were determined here by recording their responses
to a purely rotational optic flow generated by rotating the sensors
mechanically and comparing their responses with an accurate
rate gyro output signal. The refresh rate, a key parameter for
future optic flow-based robotic applications, was also defined and
tested in these two sensors. The bio-inspired 2-pixel motion sensor
was found to be more accurate indoors whereas the mouse sensor
was found to be more efficient outdoors.

Index Terms—Elementary motion detector (EMD), Optic-flow,
Insect Vision, Mouse sensor, Micro-aerial vehicle (MAV), Test
bench.

I. INTRODUCTION

Several optic flow-based navigation systems have been de-

veloped during the past decade for use onboard terrestrial and

aerial robots. Many methods of measuring the visual angular

speed have been used for robotic purposes, including the “time

of travel” scheme [1] which has been implemented using off-

the-shelf photodiodes on both a terrestrial robot [2] and several

tethered flying robots [3], [4]. During the past few years,

some teams have started using off-the-shelf computer mouse

sensors as optic flow sensors. Recently, Chan et al. [5] have

partly characterized sensors of this kind, which have also been

mounted onboard terrestrial [6], [7] and aerial [8], [9] robotic

platforms navigating under constant lighting conditions.

However, very few robotic studies have been published so

far to our knowledge in which visual motion sensors have

been fully characterized, especially under several decades of

illuminance. To fill this gap, we recently developed means

of testing the reliability of visual motion sensors in terms of

their resolution, accuracy, sensitivity, and invariance to contrast

in real environments under a large range of illuminance

conditions [10], [11]. In this study, our custom-made motion

sensor was compared for the first time with an off-the-shelf

mouse sensor, as mouse sensors are being increasingly used in

robotic applications as optic flow sensors [9]. It was therefore

proposed to determine and compare the output signals obtained

with:

• a custom-made, bio-inspired 2-pixel motion sensor [11]

based on a combination of (i) an off-the-shelf linearly pre-

Figure 1. General processing architecture on which the bio-inspired 2-
pixel motion sensor was based. The output signals emitted by two adjacent
pixels were first filtered spatially, via the Gaussian angular sensitivity of
the pixels. The two signals were then filtered with an analog band-pass
filter with cut-off frequencies of 20Hz and 116 Hz and again with a digital
second-order low-pass filter with a cut-off frequency of 30 Hz, before being
thresholded to determine the angular speed ωTimeOfTravel. The “time of
travel” scheme previously developed at Franceschini’s laboratory [1], [13] was
used to measure the angular speed. The overall processing was carried out on
a microcontroller (dsPIC 33FJ128GP804) at a sampling frequency of 2 kHz
(adapted from [11]).

amplified photodiode array called LSC produced by the

company IC-HAUS and (ii) the “time of travel” scheme

for processing the angular speed, ωTimeOfTravel.

• an off-the-shelf mouse sensor ADNS-9500 purchased

from Avago, ωMouse .

The characteristics of the two motion sensors tested were

determined here by recording their responses (ωTimeOfTravel,

ωMouse) to a purely rotational optic flow generated by rotating

the sensors mechanically. In the case of a stationary envi-

ronment, the rotational optic flow ω, which is by definition

independent of the distance from the sensors to the surround-

ing objects [12], can be directly compared with the rate gyro

output signal denoted Ωgyro.

II. DESCRIPTION OF THE VISUAL MOTION SENSORS

A. Bio-inspired 2-pixel motion sensor

The front end of the bio-inspired motion sensor was based

on an off-the-shelf photodiode array called LSC (a component

available from iC-Haus) consisting of a row of six pixels with

on-chip pre-amplification. Two adjacent pixels separated by an

inter-receptor angle ∆ϕ were combined with a classical fixed-

gain photocurrent amplifier and used to process the angular

speed, based on the “time of travel” scheme [1], [13]. The

output signals emitted by these two adjacent pixels were

filtered spatially by defocusing the lens (Sparkfun SEN-00637,

focal length 2 mm, f-number 2.8) of the sensor in order to

give the pixels a similar Gaussian angular sensitivity to that

of the fly [14]. These signals were then filtered temporally

using a band-pass filter and thresholded to determine the



Figure 2. a-b) Picture of the indoor and outdoor scenes where the visual
motion sensors were tested. Distances to the surrounding objects are given
below. c) Picture of the sensor board consisting of, the bio-inspired 2-pixel
motion sensor, the ADNS-9500 mouse sensor, an illuminance sensor based
on a single elementary photodiode, a Bluetooth module and a rate gyro.

angular speed ωmeas, defined as the ratio between the constant

inter-receptor angle ∆ϕ and the time ∆t elapsing between

the first and second thresholded signals (see figure 1). More

details about this processing system can be found in [11]. We

recently designed a stand-alone version of this bio-inspired

visual motion sensor (involving a set of 5 neighboring 2-pixel

motion sensors) that weighs only 1g in all and consumes 75mA

[15].

B. Mouse sensor (ADNS-9500)

The ADNS-9500 is a high performance mouse sensor with

a frame rate of up to 11750 frames/s, which usually works

with a LASER light source. It was equipped here with a

Philips CAX100 collimator lens (f=10mm). In a stand-alone

version, an overall optic flow sensor device of this kind based

on this mouse sensor would probably weigh less than 2g

and consumes 40mA. The sensor communicated with the

microcontroller via SPI bus. The angular speed of the ADNS

mouse sensor, which evolved linearly with its output, is given

by the following equation

ωMouse = 0.025×OutputADNS (1)

where OutputADNS is the sensor output, and ωmouse is

the angular speed expressed in °/s. This coefficient, which was

computed to obtain the best correlation between the angular

speed measured by the mouse sensor and the reference angular

speed Ωgyro, depends of the focal length of the optical lens

f, the frequency of the mouse sensor’s readout fR/O and the

resolution of the sensor (CPI) expressed in counts per inch.

In all the experiments, the data were collected with a readout

frequency of fR/O = 25Hz and the CPI was left at its default

value, 1620.

The quality of the measurements given by the sensor can be

assessed using the SQUAL value, which is a register giving the

number of valid features detected by the sensor in the current

frame. The number of features is given by the equation (2).

Number of features = SQUAL× 4 (2)

III. EXPERIMENTAL SETUP

The two visual motion sensors were tested indoors and

outdoors (see figure 2(a-b)) by comparing their output signals

(ωTimeOfTravel, ωMouse) with the angular speed (Ωgyro)

Figure 3. Static characteristics of the visual motion sensors indoors assessed
by applying 30-deg/s steps (each lasting 15 s) to the rotational speed from
60 to 300 deg/s. (a, b, c) Static characteristics of the bio-inspired 2-pixel
motion sensor. (e, f, g) Static characteristics of the ADNS mouse sensor.
With both sensors, the linearity error decreased with the illuminance. In all
these experiments, the bio-inspired 2-pixel motion sensor proved to be more
accurate and linear than the mouse sensor.

measured by a rate gyro (Analog Devices; ADIS 16100),

which can be used to measure angular speeds in the 0–300-

deg/s range. The sensor board was connected to a dc motor via

a belt, which made it possible to finely adjust the mechanical

angular speed of the board in the 60 to 300 deg/s range.

The static and dynamic responses of the visual motion

sensors were measured indoors with several background il-

luminance values:

• 100 lux corresponding to a dim artificial light.

• 400 lux corresponding to artificial light and a small

amount of sunlight from the windows.

• 3,500 lux corresponding to a large amount of sunlight

from the windows.

The background illuminance values were measured in lux by

a digital luxmeter (Roline; RO-1332), which gives only an

estimate of the overall environmental illuminance. The static

responses of the sensors were assessed by applying a series of

15-second 30- deg/s steps at a rotational speed ranging from

60 to 300 deg/s. To test the dynamic characteristics of the

sensors, a 3x50-s stimulus was applied, during which variably

long periods of constantly increasing and decreasing velocities

ranging between 60 and 300 deg/s were imposed.

IV. INDOOR PERFORMANCES OF THE VISUAL MOTION

SENSORS

A. Static angular speed characteristics

Figure 3 gives the static characteristics of the two sensors

tested indoors, as assessed by applying 30- deg/s steps (lasting

15 s) to the rotational speed from 60 to 300 deg/s. The

background illuminance ranged between 100 and 3,500 lux.

With each visual motion sensor, the mean standard deviation

of the data and the linearity error were computed as explained

in [11].



Figure 4. a) Dynamic response of the bio-inspired 2-pixel motion sensor,
ωTimeOfTravel (blue dots). The sensor can be seen here to have rotated,
giving a triangular pattern of variation (red) involving a series of velocity
ramps ranging between 60°/s and 300°/s with different slopes under three dif-
ferent lighting conditions. Despite the strong illuminance variations, the bio-
inspired 2-pixel motion sensor followed the rotational angular speed faithfully.
The difference between the measured local motion and the angular velocity
measured by the rate gyro Ωgyro was used to compute the standard deviation
of the error under each environmental condition. b) Dynamic response of the
mouse sensor, ωMouse (blue dots) superimposed on the reference angular
speed Ωgyro measured by the rate gyro. Only measurements differing from
zero were plotted. c) Dynamic response of an illuminance sensor based on
the use of a single photodiode to measure the effective illuminance of the
scene scanned by the visual motion sensors. Strong variations were observed
because the light was mainly provided by a single window.

As shown in Figure 3, the output of the bio-inspired 2-

pixel motion sensor showed a smaller linearity error rate and

less dispersion than that of the mouse sensor, which gave a

smaller angular speed than the rotational speed imposed on

the board. The mouse sensor was designed for use with a

LASER; and it was therefore found to be less accurate at

low illuminance values than at high ones, even when a large

amount of natural light was coming through the windows. The

relatively poor linearity of the mouse sensor was only due to

the wide dispersion of the data because the mouse sensor’s

measurement errors were always smaller than the actual value

of the angular speed.

B. Dynamic characteristics of the visual motion sensors

The indoor dynamic responses of both visual motion sensors

are shown in figure 4. The angular speed measured (blue

points) is superimposed on the reference angular speed Ωgyro

(red). Despite the continuous changes in the illuminance which

can be seen to have occurred in figure 4(c), the response

of the bio-inspired 2-pixel motion sensor faithfully obeyed

the triangular law imposed on the rotational speed of the

board and the dispersion was low. With the mouse sensor, the

dispersion increased at low illuminance levels, as can be seen

in figure 4(b). The refresh rates of the two sensors were also

analyzed, as this is a key parameter in robotic applications. The

refresh rate frefresh of the bio-inspired 2-pixel motion sensor

was defined as the number of new measurements divided

by the duration of the experiment at each illuminance level,

whereas the refresh rate of the mouse sensor was defined as the

number of new measurements differing from zero per second.

Figure 5. SQUAL value of the mouse sensor (ADNS-9500) during the
dynamic experiment indoors. The SQUAL value gives the number of valid
features detected by the sensor in the current frame.

As can be seen in figure 4(a), the refresh rate of the bio-

inspired 2-pixel motion sensor in which the “time of travel”

scheme was implemented was found to strongly depend on

the illuminance, and decreased from 10Hz to 2.54Hz between

3,500lux and 100lux. The refresh rate of the mouse sensor,

on the other hand, was found to be practically independent of

the illuminance, and to be greater than that of the bio-inspired

2-pixel motion sensor.

As the SQUAL value gives the number of valid features

detected by the sensor in the current frame, it was recorded

during the dynamic experiment, as shown in figure 5. As was

to be expected, the SQUAL value obtained was often very

low (<10), which indicates that the sensor did not detect a

sufficiently large number of valid features during the last time-

step to achieve a good level of measurement accuracy. The

accuracy of the angular speed measurements could certainly

be improved by using the sensor output only when the SQUAL

value is high enough. Since the large variations observed in

the SQUAL values were probably due to the use of a lens with

a high F-number, the use of a lens with a smaller F-number

should improve the performances of the sensor.

V. OUTDOOR PERFORMANCES OF THE VISUAL MOTION

SENSORS

When incorporated into a desktop mouse, the mouse sensor

is exposed to the strong light emitted by a LASER diode.

The mouse sensor’s performances could therefore be expected

to improve when it was placed in a high illuminance setting.

The mouse sensor’s dynamic responses were measured in the

outdoor environment (see figure 2(b)) on a sunny day under

10000Lux lighting conditions, as shown in figure 6(a). As

was to be expected, the dispersion of the data obtained with

the mouse sensor was found to be very low (<±10Hz) and

the refresh rate was equal to the readout frequency. As can

be seen in figure 7, the SQUAL value was always greater

than 60 in this case, which means that the sensor computed

the angular speed based on a large number of valid features.

The outdoor performances of our 2-pixel motion sensor are

described in greater detail in [11]. The results obtained here

show that the mouse sensor gives better performances under

high illuminance conditions than our 2-pixel motion sensor.

But the performances of the latter sensor have been improved

in recent studies, where the median value of the outputs of five

2-pixel visual motion sensors pointing in different directions

were combined and refreshment rates as high as 50Hz and a

dispersion of only ± 10°/s were obtained in indoor tests [15].



Figure 6. a) Outdoor dynamic response of the mouse sensor, ωMouse, under
10000Lux lighting conditions. At high illuminance levels, the data obtained
with the mouse sensor showed little dispersion, and the maximum refresh rate
possible at this R/O frequency (25Hz). b) Dynamic response of the illuminance
sensor.

Figure 7. SQUAL value of the mouse sensor (ADNS-9500) during the
dynamic experiment outdoors.

VI. CONCLUSION

In this study, comparisons were made for the first time

between the performances of two visual motion sensors used to

measure a local 1-D angular speed: a recently developed sensor

based on linearly amplified pixels, and a mouse sensor. We

showed that our bio-inspired 2-pixel motion sensor in which

the “time of travel” scheme was implemented is robust to

changes in the illuminance in terms of linearity and dispersion.

The angular speed computed indoors by the ADNS 9500

mouse sensor showed important dispersion because too few

valid features were detected. However, this mouse sensor gave

really accurate, linear and frequently refreshed motion sensing

performances under high illuminance conditions, which con-

firms that this optical sensor is suitable for use on outdoor

flying robots. The refresh rates of the two sensors were also

analyzed and found to depend slightly on the illuminance

in the case of the mouse sensor. In the bio-inspired 2-pixel

motion sensor in which the “time of travel” scheme was

implemented, the refresh rate was found to strongly depend

on the illuminance, but it proved to be suitable for robotic

applications where the illuminance is greater than a few

hundred Lux, and could therefore be used to pilot the attitude

of Micro-Air Vehicles [4]. These findings show that this bio-

inspired 2-pixel motion sensor can compete satisfactorily with

a 900-pixel mouse sensor in terms of its robustness to changes

in the illuminance occuring indoors and outdoors, and that it

therefore provides a valid alternative to mouse sensors which

yield only one scalar measurement per axis of displacement.
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