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Abstract: Several strategies relying on kriging have recently been proposed for adap-
tively estimating contour lines and excursion sets of functions under severely limited
evaluation budget. The recently released R package KrigInv3 is presented and offers a
sound implementation of various sampling criteria for those kinds of inverse problems.
KrigInv is based on the DiceKriging package, and thus benefits from a number of op-
tions concerning the underlying kriging models. Six implemented sampling criteria are
detailed in a tutorial and illustrated with graphical examples. Different functionalities
of KrigInv are gradually explained. Additionally, two recently proposed criteria for
batch-sequential inversion are presented, enabling advanced users to distribute function
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1. Introduction

In many engineering fields, the use of metamodeling or surrogate modeling techniques
has become commonplace for dealing efficiently with time-consuming high-fidelity sim-
ulations. These techniques consist of replacing the expensive model by a simpler one,
based on a limited number of evaluations, in order to compute predictions and/or to
guide an evaluation strategy of the simulator. The KrigInv R package, available on
CRAN, was developed in this context. Its main goal is to propose evaluation strategies
dedicated to inversion (as defined later), based on a kriging metamodel.

Mathematically, the expensive simulator (or typically an objective function built
upon it) is considered here as a real-valued function f defined on a compact domain
X ⊂ R

d, often assumed to be a hyper-rectangle. We assume further that:

• No closed-form expression is available for f . The objective function is seen
as a “black-box” taking x ∈ X as input and returning f(x) without any other
information, such as gradients.

• The dimension of the input domain X is moderate. X is typically a compact
subset of Rd with d of the order of 10.

• We have a small evaluation budget. Evaluating f at any point x is assumed
to be slow or expensive, so our problem needs to be solved in only a few evaluations
of f : at most a few hundred, but, very often, much less.

• f can be evaluated sequentially. We usually dedicate a fraction of the budget
for the initial design of experiments and then evaluate sequentially f at well-chosen
points. The next point (or batch) to evaluate f at is chosen by optimizing a given
sampling criterion.

• Noisy simulators are handled. Our methods work in the setting where we do
not directly observe f(x) but rather f(x) + ε, where ε is a centered noise with
known (or previously estimated and plugged-in) variance.

In the setting described above, metamodeling techniques have already proven to be
efficient (see, e.g., Santner et al. (2003); Fang et al. (2006); Rasmussen and Williams
(2006); Forrester et al. (2008); Gramacy and Lee (2008); Marrel et al. (2008)). From a
set of n evaluation results {f(x1), . . . , f(xn)}, an approximated response surface can be
constructed, jointly with a measure of uncertainty at non-evaluated points, in order to
guide a sequential sampling strategy of f . This idea has led to the famous Efficient Global
Optimization (EGO) algorithm (Jones et al., 1998), where a kriging metamodel (Sacks
et al., 1989; Stein, 1999; Cressie, 1993) and the Expected Improvement (EI) criterion
are used to optimize an expensive function f . In the methods presented here, similar
concepts are used, except that our final aim is not to find the optimum of f . KrigInv

provides sequential sampling strategies aiming at solving the following inverse problems:
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• Estimating the excursion set Γ∗ = {x ∈ X : f(x) ≥ T}, where T is a fixed
threshold.

• Estimating the volume of excursion: α∗ := PX(Γ
∗), where PX is a given measure.

• Estimating the contour line C∗ := {x ∈ X : f(x) = T}.

Note that the second problem is often encountered as a probability of failure estimation
problem in the reliability literature (Bect et al., 2012), assuming that the input variables
are random, with known distribution. The three problems described above are quite
similar (a criterion dedicated to anyone of them is expected to perform fairly well on the
others) and in this paper we group them under the term inversion.

Estimating a probability of failure is classically done through classical Monte Carlo
sampling, or even refinements of Monte Carlo methods like subset sampling (Au and
Beck, 2001) or cross-entropy methods (Rubinstein and Kroese, 2004). These methods
are not adapted to our setting as they require too many evaluations of f . Some response
surface methods make parametric approximations of f (see, e.g. Kim and Na (1997),
Gayton et al. (2003)) or of the boundary of the excursion set {x : f(x) ≥ T} with
the so-called First and Second Order Reliability Methods (FORM and SORM, see e.g.
Zhao and Ono (1999)). Though they may provide an interesting alternative they are
not considered in KrigInv. Our non-parametric approach relies on a kriging metamodel
and on different sampling criteria available in the literature and described in Section 3.

An example of sequential inversion using kriging, widely developed in this paper,
is provided in Figure 1. In this example, f is the Branin-Hoo function, i.e. a two
dimensional function defined on [0, 1]2, available in the DiceKriging package (Roustant
et al., 2012). We fix a threshold T = 80. The real excursion set (assumed unknown)
is represented together with the excursion probability function (as defined in Section 2)
based on 12 function evaluations. Such excursion probability function is also represented
once 10 additional well-chosen points have been evaluated.

The paper is organised as follows. Section 2 introduces the excursion probability
function, which will be crucial for understanding the evaluation strategies. Section 3
presents the sampling criteria available in KrigInv, and Section 4 finally provides the
user with advanced settings like the choice of the integration points for criteria involving
numerical integration. An introduction to kriging and further details on the outputs of
an inversion are described in appendix, for the sake of brevity.

2. Kriging and excursion probability

The goal of this section is to recall a few necessary basics and notations in Gaussian
process modeling, and to illustrate the excursion probability function, onto which most
kriging-based inversion methods are built. In Gaussian process modeling, we assume that
f is a realization of a Gaussian random field ξ indexed by X. Considering the distribution
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Figure 1: Left: excursion set of the Branin-Hoo function above T = 80. Middle and
right: excursion probability function based on 12 and 22 evaluations of f .

of ξ knowing the event An := {ξ(x1) = f(x1), . . . , ξ(xn) = f(xn)}, the corresponding
conditional expectation yields an approximated response surface. Such approximation
is called kriging mean and is denoted by mn(x). At a non-evaluated point x, the un-
certainty on ξ(x) is handled through the kriging variance, s2n(x) and, as the conditional
random field ξ|An is still Gaussian, we have that L(ξ(x)|An) = N (mn(x), s

2
n(x)). Krig-

ing mean and variance can be calculated using the closed-form formulas (see, e.g. Chilès
and Delfiner (1999)) implemented in the DiceKriging package (Roustant et al., 2012).

In the Gaussian process framework, finding Γ∗ = {x ∈ X : f(x) ≥ T} or α∗ = PX(Γ
∗)

becomes an estimation problem. Since ∀x ∈ X, ξ(x) ∼ N (mn(x), s
2
n(x)), the excursion

probability,

pn(x) := P (ξ(x) ≥ T |An),

can be calculated in closed form:

P (ξ(x) ≥ T |An) = P

(
ξ(x)−mn(x)

sn(x)
≥

T −mn(x)

sn(x)

∣∣∣An

)

= Φ

(
mn(x)− T

sn(x)

)
,

where Φ(·) is the c.d.f. of the standard Gaussian distribution. The function pn(·) plays
a crucial role in solving the inversion problems described above (respectively, estimation
of Γ∗, α∗ and C∗). Indeed the three following estimators can be used (Bect et al. (2012)):

Γ̂ ={x ∈ X : pn(x) ≥ 1/2},

α̂ =

∫

X

pn(x)dx,

Ĉ ={x ∈ X : pn(x) = 1/2} = {x ∈ X : mn(x) = T}.
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It hence appears that the function pn(·) can be used as a classifier. In some sense, an
“ideal” kriging model for inversion would be able to perfectly discriminate the excursion
region, i.e. would give either pn(x) = 0 or 1 for all x ∈ X. We will see in the next section
that this idea is extensively used to build the sequential sampling strategies available in
KrigInv. Appendix B provides additional details on using a kriging model to obtain
relevant informations for inversion.

3. Package structure and sampling criteria

This section gives an exhaustive description of the sampling criteria available inKrigInv.
A sampling criterion aims at giving, at each iteration, a point or a batch of points for
evaluation. More precisely, all KrigInv algorithms share the following general scheme:

1. Evaluate f at an initial set of design points {x1, . . . ,xn}.

2. Build a first metamodel based on {f(x1), . . . , f(xn)}.

3. While the evaluation budget is not exhausted:

• choose the next design point xn+1, or batch of design points (xn+1, . . . ,xn+r),
by maximizing a given sampling criterion over Xr,

• evaluate f at the chosen design point(s),

• update the metamodel.

In KrigInv, the available sampling criteria are called using the functions EGI (stand-
ing for Efficient Global Inversion) and EGIparallel. The criteria are separated into
two categories: pointwise criteria, which involve only the conditional distribution of
ξ(xn+1)|An, and integral criteria, which involve a numerical integration over the whole
domain X.

Note that the integral criteria covered here are well suited for delivering batches of
r > 1 points, which is very useful in practice when several CPUs are available in parallel.

3.1. Pointwise sampling criteria

Three pointwise sampling criteria are available in KrigInv. These are criteria which
depend on a point xn+1 ∈ X and which evaluation mainly involves the computation
of mn(xn+1) and s2n(xn+1). For these three criteria, the sampled point is the point
where the value of the criterion is maximized. Criteria proposed by Ranjan et al.
(2008), Bichon et al. (2008) and Picheny et al. (2010) are reviewed in this section. The
main idea with these three criteria (respectively ranjan, bichon and tmse) is that the
interesting points xn+1 ∈ X to evaluate f at are the points having both a high kriging
variance and an excursion probability close to 1/2.

5



tmse criterion: The Targeted Mean Square Error criterion has been proposed by Picheny
et al. (2010). The idea is to decrease the Mean Square Error (i.e. the kriging variance)
at points where mn is close to T . The criterion consists in the following quantity:

tmse(xn+1) = s2n(xn+1)
1√

2π(s2n(xn+1) + ε2)
exp


−

1

2

(
mn(xn+1)− T√
s2n(xn+1) + ε2

)2

 , (1)

where ε ≥ 0 is a parameter that tunes the bandwidth of a window of interest around the
threshold T . In KrigInv, ε is equal to zero by default and can be modified using the
argument method.param of the EGI function, detailed in Section 3.3. High values of ε
make the criterion more exploratory, while low values concentrate the evaluations near
the contour line of the kriging mean, {x : mn(x) = T}. Unless the user wants to force
exploration of sparse regions, we recommend to use the default value ε = 0.

ranjan and bichon criteria: These two criteria (see, Ranjan et al. (2008), Bichon et al.
(2008)) depend on a parameter α which can also be set with themethod.param argument.
The default value for α is 1. Bect et al. (2012) provide the following common general
expression for these two criteria:

expr(x) = En

[(
(αsn(x))

δ − |T − ξ(x)|δ
)
+

]
, (2)

where En(·) := E(·|An), (·)+ := max(·, 0) and δ is an additional parameter equal to 1 for
the bichon criterion and 2 for the ranjan criterion. The goal is to sample a point xn+1

with a kriging mean close to T and a high kriging variance, so that the positive difference
between (αsn(xn+1))

δ and |T − ξ(xn+1)|
δ is maximal in expectation. The choice δ = 2

(ranjan criterion) should favour sparse regions, of high kriging variance. However, in
practice, these two criteria have very similar behaviours.
Calculations detailed in Bect et al. (2012) with δ = 1 and 2 respectively lead to the
following expressions, which, unlike Expression 2, can be computed easily from the
kriging mean and variance:

bichon(xn+1) = sn(xn+1)
[
α(Φ(t+)− Φ(t−))− t(2Φ(t)− Φ(t+)− Φ(t−))

−(2φ(t)− φ(t+)− φ(t−))
]
,

ranjan(xn+1) = s2n(xn+1)
[
(α2 − 1− t2)(Φ(t+)− Φ(t−))− 2t(φ(t+)− φ(t−))

+t+φ(t+)− t−φ(t−)
]
,

where φ is the p.d.f. of the standard Gaussian distribution, t := (mn(xn+1)−T )/sn(xn+1),
t+ := t+ α and t− := t− α.

Illustration: Figure 2 shows, on the 2d example introduced in Section 1, the excursion
probability function pn(·) after ten iterations based on these criteria. An example of
code generating these plots is given in Section 3.3. The sets of points evaluated with
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these criteria (circles) are rather similar and the criteria tend to evaluate points at the
boundary of the domain X. We recall that these criteria only depend on the marginal
distribution at a point xn+1. Consequently, they do not take into account the fact that
sampling at a point xn+1 may also bring useful information on the neighbourhood of
xn+1. Recently, Bect et al. (2012) showed that these pointwise criteria are outperformed
in applications by the integral sampling criteria presented in the next section. The price
to pay for such more efficient criteria will be a higher computation time.

Figure 2: Excursion probability after ten iterations of the tmse, ranjan and bichon
criterion. New evaluated points are represented by circles. The number associated with
each point corresponds to the iteration at which the point is evaluated.

3.2. Integral sampling criteria

The term “integral criteria” refers to sampling criteria involving numerical integration
over the design space X. We give here details on the three integral criteria available in
KrigInv. For the moment, two out of these three criteria can yield, at each iteration, a
batch of r observations in lieu of a unique point. Note that the corresponding multi-point
criteria have been shown to perform very well in applications (Chevalier et al., 2012).

All integral criteria presented here rely on the concept of Stepwise Uncertainty Re-
duction (SUR, see, e.g., Bect et al. (2012)). In short, the idea of SUR consists in defining
an arbitrary measure of uncertainty given n observations An, and seeking the point xn+1

(or batch (xn+1, . . . ,xn+r)) such that evaluating ξ(xn+1) (or (ξ(xn+1), . . . , ξ(xn+r))) re-
duces the most (in expectation) this uncertainty. Consequently, different definitions for
the term “uncertainty” will lead to different sampling criteria.

timse criterion: The Targeted Integrated Mean Square Error criterion (timse) was orig-
inally dedicated to contour line estimation (Picheny et al., 2010). It may easily be used
as well for the problem of estimating the excursion set or its volume. The timse criterion
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can be seen as the integral version of the tmse criterion. From the SUR point of view,
the uncertainty measure underlying timse is the following:

Uncertaintytimse :=

∫

X

tmse(x)PX(dx)

=

∫

X

s2n(x)
1√

2π(s2n(x) + ε2)
exp


−

1

2

(
mn(x)− T√
s2n(x) + ε2

)2

PX(dx)

=

∫

X

s2n(x)Wn(x)PX(dx),

where Wn(x) is a weight function and ε is a parameter with the same role as in the tmse
criterion. More details and interpretations of the weight function Wn(x) are available in
Picheny et al. (2010), Section 3.

The goal of the criterion is to sample a new point (or batch), in order to reduce
Uncertaintytimse. It can be shown that the expectation of the future uncertainty when
adding a batch of r points xn+1, . . . ,xn+r has a simple closed form expression:

timse(xn+1, . . . ,xn+r) :=

∫

X

s2n+r(x)Wn(x)PX(dx), (3)

where s2n+r(x) is the kriging variance at point x once the batch (xn+1, . . . ,xn+r) has
been added to the design of experiments. This variance (referred to as updated kriging
variance here) does not depend on the unknown ξ(xn+1), . . . , ξ(xn+r). Efficient formulas
to compute s2n+1(x) are given in Emery (2009). Also, Chevalier and Ginsbourger (2012)
give formulas to quickly compute s2n+r(x) when r > 1.

From Equation 3, we see that this criterion aims at reducing the kriging variance in
“interesting” regions. These regions are selected using the weight function Wn. This
weight is high when both mn is close to T and s2n is high. In Equation 3, the integral
over X is discretized in M integration points. The choice of these integration points is
an open option for the user of KrigInv. See Section 4.2 for more detail.

sur criterion: The sur criterion is introduced in Bect et al. (2012) and uses the following
definition of the uncertainty:

Uncertaintysur :=

∫

X

pn(x)(1− pn(x))PX(dx). (4)

This definition can be obtained with non-heuristic considerations (see, Bect et al. (2012))
but, intuitively, the uncertainty is low when pn(x) = 0 or 1 over the whole domain,
meaning that we are able to classify each point x ∈ X. The sampling criterion associated
with this definition of the uncertainty is:

sur(xn+1, . . . ,xn+r) := En

(∫

X

pn+r(x)(1 − pn+r(x))PX(dx)

∣∣∣Xn+1 = xn+1, . . . ,Xn+r = xn+r

)
, (5)
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where the condition Xn+1 = xn+1, . . . ,Xn+r = xn+r means that the next evaluation
points are xn+1, . . . ,xn+r. Computing Equation 5 for a batch of points (xn+1, . . . ,xn+r)
requires integrating both over X and over all possible responses (ξ(xn+1), . . . , ξ(xn+r)),
which may be quite impractical. In fact, Equation 5 can be simplified through the
following closed-form expression (see: Chevalier et al. (2012) for a complete proof):

sur(xn+1, . . . ,xn+r) =

∫

X

Φ2

((
a(x)
−a(x)

)
,

(
c(x) 1− c(x)

1− c(x) c(x)

))
PX(dx), (6)

where Φ2(·,Σ) is the c.d.f. of the centered bivariate Gaussian with covariance matrix Σ,
a(x) := (mn(x)− T )/sn+r(x) and c(x) := s2n(x)/s

2
n+r(x). With Equation 6, computing

efficiently the multi-point criterion involves an update formula for kriging variances, and
efficient numerical procedures to compute the bivariate Gaussian c.d.f. Φ2 (Genz, 1992).

jn criterion: The jn criterion, introduced in Bect et al. (2012), is an optimal sampling
criterion to estimate the excursion volume. The jn criterion can be naturally obtained
by considering the volume α of the random excursion set Γ = {x ∈ X : ξ(x) > T}. When
n observations are available, the uncertainty is defined as follows:

Uncertaintyjn :=Varn(α), (7)

where Varn(·) := Var(·|An). The associated sampling criterion is:

jn(xn+1, . . . ,xn+r) := En

(
Varn+r(α)

∣∣Xn+1 = xn+1, . . . ,Xn+r = xn+r

)
. (8)

The criterion samples a batch of points (xn+1, . . . ,xn+r) in order to decrease as much
as possible (in expectation) the future variance of the excursion volume. An analytical
expression allowing to compute efficiently Equation 8 is available in Chevalier et al.
(2012) and is not reproduced here. Note that in the current version of KrigInv this
criterion can be used with r = 1 only.

Evaluating jn involves an integral over X × X, which is more difficult to compute
than the integrals over X for the timse and sur criteria. Remarkably, jn often tends to
be more space-filling than sur. Compared to cheaper criteria, jn performs especially well
in cases where the excursion set has a complicated shape or is not connected. Indeed,
as the criterion focuses on the excursion volume, it tends to evaluate points which are
not too close to the boundary of the excursion set.

Illustration: Figure 3 shows the same plots as Figure 2 with the pointwise criteria re-
placed by the integral criteria timse, sur and jn, with r = 1. The plots are realized with
the default parameters for the integration and optimization methods (see: Section 4). In
this example, sur and timse show similar behaviours (the first three evaluations are al-
most the same), while jn tends to be slightly more exploratory. The jn criterion focuses
on the excursion volume. So when a point which is “far” from the current estimated
excursion region (the zone in white) has a non zero (say 0.01) excursion probability,
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it may be picked by the jn criterion because the event {ξ(x) > T}, even if it has a
low probability, would change considerably the volume of excursion. The converse is
also true: when a point with excursion probability of say 0.99 is far from the estimated
boundary, it may be picked for the same reasons. Comparing the results to Figure 2, a

Figure 3: Excursion probability after ten iterations of the timse, sur and jn criterion.
New evaluated points are represented by circles.

major difference is that no point is placed on the corners of the domain, while, for all the
pointwise criteria, three corners were explored. The boundaries of X are often sampled
by the pointwise criteria since those are regions with high kriging variance. However,
sampling at the boundary of X does not contribute as efficiently to the reduction of un-
certainty as sampling inside the design region. The unfortunate tendency of pointwise
criteria to sample on the boundaries of X partially explains the better performances of
integral criteria in general.

Figure 4 shows three iterations of the timse and sur parallel criteria, with r = 4
points evaluated at each iteration. As in the non-parallel case, sur and timse show
rather similar behaviours. The parallel sur and timse criteria tend to spread points on
the estimated boundary of the excursion set.

3.3. Using the criteria: the EGI and EGIparallel functions

EGI and EGIparallel are the two main functions of the KrigInv package. Users may
choose to rely on these two functions only, as they are interfacing with all the other
KrigInv functions. However, we export and provide a help file for all the coded func-
tions, including the low level ones that are normally only called via other functions. EGI
allows using criteria yielding one point per iteration while EGIparallel is dedicated to
batch-sequential strategies. A general example of using EGI follows:

n <- 12 ; fun <- branin

design <- data.frame(optimumLHS(n,k=2)) #initial design (a LHS)
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Figure 4: Excursion probability after three iterations based on the multi-point timse
and sur criteria. Explored design points are represented by circles.

response <- fun(design)

model <- km(formula=~1, design = design, response = response,

covtype="matern3_2")

T <- 80 ; iter <- 10

obj <- EGI(T=T,model=model,method="ranjan",fun=fun,

iter=iter,lower=c(0,0),upper=c(1,1))

print_uncertainty_2d(model=obj$lastmodel,T=T,new.points=iter,

main="10 iterations of the ranjan criterion")

EGI and EGIparallel take as argument a km object generated with the km function
of the DiceKriging package. This choice ensures that the user has a basic knowledge
of the DiceKriging package before using KrigInv. The other arguments relate to the
problem at hand, that is: the target function fun, the lower and upper bounds of the
hyper-rectangle X (lower and upper), the threshold T, the number of iterations iter
(each of them bringing 1 or r > 1 observations), the sampling criterion method, and
the number of points per batch batchsize (EGIparallel only). More advanced options,
related to the evaluation and optimization of the criteria, are described in Section 4.

EGI returns a list with several fields. One of them (lastmodel) is the last krig-
ing model obtained after all iterations. In our example we used this km object in a
print uncertainty call, displaying the excursion probability once the ten new points
are evaluated. Other important outputs include the newly sampled points, par, and the
value of f at these points, value.

The following example is a basic use of the EGIparallel function with three it-
erations. In this example, each iteration gives a batch of r = 4 points, for parallel
evaluations of f . The output of this code is provided in Figure 4 (right).
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#a km object called "model" is built as before (code not reproduced)

T <- 80 ; iter <- 3 ; r <- 4

obj <- EGIparallel(T=T,model=model,method="sur",fun=fun,

iter=iter,batchsize=r,lower=c(0,0),upper=c(1,1))

print_uncertainty_2d(model=obj$lastmodel,T=T,new.points=iter*r,

main="3 iterations of a parallel sampling criterion")

The two previous examples can be used with different sampling criteria by simply
changing the argument method of EGI or EGIparallel.

Remark 1. Other examples of use of EGIparallel (one in dimension 6 and one 2d−test
case in nuclear safety) are presented in Chevalier et al. (2012).

3.4. Elements of computational effort required by the strategies

In this section, we provide some elements related to the computational time required to
run the different sampling strategies. In general, the computational effort grows rapidly
with the dimension d of the input space X, because of three main effects.

• With kriging, the number of observations n often grows with the dimension, in
order to learn the covariance function and ensure a reasonable space filling. The
cost therefore grows accordingly because of the inversion of a n×nmatrix required
to compute kriging means and variances.

• The optimization in dimension d of any sampling criterion is more difficult and
requires evaluating the criterion at more locations.

• When an integral criterion is used, the number of integration points required to
compute the criterion with a good accuracy is higher.

Note that the computation time of all criteria described above is also marginally impacted
by d through the higher computing cost of the covariance function, e.g., when a separable
covariance function is chosen.

In Table 1, we show indicative computational time for evaluating the ranjan and sur
criteria (with r = 1), and the time required to maximize them over X. Three problems,
respectively in dimension two, six and twenty are considered. Default parameters are
used for optimization and integration. All models are based on standard Latin Hyper-
cube Sampling (LHS) designs. The number of design points for each problem is arbitrary
and quickly increases with the dimension. The 6D function is the classical benchmark
function hartman (Dixon and Szegö (1978)); the 20D function is the spherical func-
tion −

∑20
i=1(xi − 1/2)2. Note that the function themselves do not have any impact on

the computation time of the criteria. Only the dimension does. Times are given for a
workstation with a 2.53GHz CPU and 3GB of RAM.
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Table 1: Computation time (in seconds) required to evaluate and optimize pointwise
and integral criteria, on different test problems.

ranjan ranjan maximization sur sur maximization

Branin (2D), n = 12 pts < 0.001 0.65 0.0024 1.4
6D function, n = 60 pts < 0.001 4.1 0.005 10.4
20D function, n = 400 pts 0.008 82 0.025 133

On these examples, the computational effort increases quickly with dimension for
both criteria. This is due to the higher number of observations and also to the higher
number of points tested by the genoud optimizer (approximately 600, 3000 and 6000,
respectively, for the three problems). We see here that the practical interest of the
methods implemented in KrigInv depends on the time required to obtain design points.
Since it takes approximately two minutes in 20D to choose such a point, the use of the
sur criterion only makes sense if the evaluation time of f is several times slower.

Note that we recommend to use these algorithms only for dimensions d ≤ 20, even
though this limit is of course indicative. Indeed, while problem-dependent, the number
of observations n needed to accurately identify the excursion set may increase rapidly
with the dimension. This makes the use of kriging impractical because of the n × n
matrix inversion used in kriging which limits n to a few hundreds, or thousands at most.

4. Optimizing the performances of the sampling strategies with ad-

vanced options

This section describes the options available to the user for two major sub-problems of
the inversion problems tackled here. First, our sampling strategies usually require to
optimize a sampling criterion at each iteration. The question of choosing the optimiza-
tion method arises naturally. Second, for the criteria involving numerical integration,
the questions of the number and the choice of integration points are detailed.

4.1. Optimization of the sampling criteria

For a one-point criterion, finding x∗ ∈ Xmaximizing or minimizing the criterion amounts
to performing an optimization in dimension d. The options for such optimization are
detailed in Section 4.1.1. For a multi-point criterion, finding the optimal batch of r points
requires an optimization in dimension rd and can be impractical for high r or high d.
In that case, a heuristic optimization strategy consisting in r sequential optimizations
in dimension d is proposed and explained in Section 4.1.2.
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4.1.1. One-point criteria: discrete or continuous optimization

The optimcontrol argument of the EGI or EGIparallel functions allows to tune the
optimization of the selected sampling criterion. optimcontrol is a list with several fields.
The field method has two possible values: “discrete” for an optimization over a discrete
set of points or “genoud” (default) for a continuous optimization with a genetic algorithm
(Mebane and Sekhon, 2011).

When method is set to “discrete”, the user can manually set the field optim.points
to indicate which points will be evaluated. The new observation is chosen as the best
point over the discrete set. This may be useful if the user wants to optimize the criterion
over a discrete grid in dimension d (for small d) or if the user has a guess on the
location of the optimum. If optim.points is not set, 100d points are independently
chosen at random, with a uniform distribution. Alternatively, the genoud algorithm
(recommended option) optimizes a function by building generations of points spread on
the domain X, selecting the ones with the best f values and mutating them in order
to have a new generation of points to evaluate. The user has the possibility to tune
the parameters of the genoud algorithm, including the fields pop.size (default: 50d)
or max.generation (default: 10d) which are respectively the number of points in each
generation and the maximum number of generations. The maximum number criterion
evaluations is pop.size×max.generation.

4.1.2. Parallel criteria: standard or heuristic optimization

The optimization of the multi-point sampling criteria is not trivial. Instead of searching
for an optimal point xn+1 ∈ X, multi-point sampling criteria are looking for an optimal
batch of r points (xn+1, . . . ,xn+r) ∈ X

r. This optimization problem of dimension rd
and can be very challenging.

In KrigInv, the user can choose between two optimization scenarios using the field
optim.option of the optimcontrol list:

• Standard optimization in dimension rd, optim.option = 1 : the optimizer works
directly in dimension rd to find the optimal batch of r points.

• Heuristic optimization strategy (default), optim.option = 2 : this option applies the
following heuristic optimization strategy. First, find the point xn+1 optimizing the
criterion for r = 1. Then, consider xn+1 as fixed and find a point xn+2 optimizing
the criterion for r = 2. Iterate this procedure r times to finally obtain the batch
of points xn+1, . . . ,xn+r. Though this heuristic is clearly sub-optimal in theory,
it often outperforms the standard optimization when the dimension rd becomes
difficult to handle for the optimizer.

Similarly to the one-point case, the user can choose between continous and discrete
optimization. When continuous optimization (with genoud) is selected, the user can
choose between the standard and heuristic scenarios. For discrete optimizations, only
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the heuristic strategy is applied, as combinatorial explosion prevents from optimizing
over all the combinations of r points among the discrete set of points.

Figure 5: Excursion probability after five iterations of the multi-point timse criterion,
with two scenarios for the optimization. New evaluated points are represented by circles.

In Figure 5, we perform five iterations of the multi-point timse criterion with r = 4.
Here, we observe that brute force optimization (left) yields less satisfying results than the
heuristic strategy (right). Indeed, eight points are located far from the boundary, which
correspond to either poor local optima or premature termination of the optimization. On
the contrary (right), all the points but three are well spread on the estimated boundary
when the heuristic strategy is chosen.

To conclude this section, we would recommend to use either the heuristic optimization
strategy (default) or, if the user wants an optimization in dimension rd, to increase the
value of pop.size to at least 100rd (if affordable numerically).

4.2. Importance sampling for numerical integration

4.2.1. Integration options

The computation of the integral criteria presented in Equations 3, 5 and 8 involves
numerical integration. The integration domain is X for sur and timse, and X × X for
jn. Computing such integrals is not trivial as the evaluation cost of the integrand is
significant. Consequently, the integration points should be chosen carefully, especially
when the dimension is high, in order to accurately evaluate the criteria at reasonable
cost.

In KrigInv, three options are available for choosing integration points: fixed integra-
tion points (provided by the user), random integration points with uniform distribution,
or random integration points with an instrumental distribution. The integcontrol argu-
ment of EGI or EGIparallel is a list specifying how to build these integration points.
The most important fields in this list are integration.points and integration.weights in
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case the user decides to specify manually his own integration points and weights, ob-
tained from another procedure, or n.points and distrib to specify instead the number M
of integration points and the distribution to sample from. Possible values for distrib are
“sobol” (default) or “MC”, to use the Sobol sequence or a sample from a uniform dis-
tribution. Other (recommended) values are the names of the integral criteria: “timse”,
“sur” and “jn”. If the argument integcontrol is not set, the default setting is to take
100d integration points with the Sobol sequence.

Three instrumental distributions are available to compute the integrals present in
the timse, sur and jn criteria. We use the expressions “timse (respectively, sur or jn)
instrumental distribution” as each distribution is adapted to the corresponding sampling
criterion. These distributions were obtained by noting that the integrand of any criterion
(Equations 3, 5 and 8) may not depart much from the integrand of the corresponding
uncertainty measure. This suggests the use of the following instrumental densities h(·):

• timse criterion (one-point and multi-point): h(x) ∝ s2n(x)Wn(x)dPX(x),x ∈ X,

• sur criterion (one-point and multi-point): h(x) ∝ pn(x)(1− pn(x))dPX(x),x ∈ X ,

• jn criterion: h(z1, z2) ∝ pn(z1)pn(z2)dPX(z1)dPX(z2), (z1, z2) ∈ X× X.

When integcontrol$distrib=“timse”,“sur” or “jn”, KrigInv automatically builds integra-
tion samples from the corresponding distributions. The integration sample is renewed
at each iteration of the sequential inversion. We strongly recommend users to use these
instrumental distributions as they have been shown to considerably enhance the compu-
tation and the optimization of integral criteria in practice (Chevalier et al., 2012).

4.2.2. Sampling from the instrumental density

Sampling from the instrumental densities h(·) is not an easy task. Indeed, as the inversion
progresses, the region where the instrumental densities are strictly positive can become
very narrow and non-connected, which excludes a basic Markov Chain Monte-Carlo
approach.

For the moment, a simple procedure has been implemented to tackle this problem.
We explain it shortly in the particular case of the sur instrumental distribution. The
idea remains valid for the two other distributions. For sur, the idea consists in sampling
from a simpler discrete instrumental distribution:

∑N
j=1 pn(uj)(1 − pn(uj))δuj

, where
N is a large number and u1, . . . ,uN is an i.i.d sample of points with distribution PX.
Obtaining a weighted sample of M integration points from this discrete distribution is
not hard. A major drawback of this method, mentioned in Chevalier et al. (2012), is
that both M and N must tend to infinity to ensure the convergence to the integral.

InKrigInv, the user can modify the value ofN (default: 10M) in the integcontrol list
through the n.candidates field. A higher value of N entails a more precise instrumental
density and improves the quality of the integration sample (and thus the accuracy of the
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criterion computation). However, it also increases computation time. The distribution
PX of these N points (field init.distrib) is uniform by default. The user has the possibility
to specify manually the position of these N points if he wants a sample from a non-
uniform distribution PX. Note that when the jn criterion is used with the corresponding
jn instrumental distribution, points are sampled in X×X (and not X). If M integration
points in X (and not X × X) are imposed, KrigInv automatically creates a grid of M2

integration points in X×X. Users choosing the jn criterion are strongly encouraged not
to choose this expensive option and to rely on the jn instrumental distribution instead.

4.2.3. Illustration

We now illustrate the advantages of sampling from an instrumental density instead of
uniform sampling with our R example. The code below generates a sample of 1000
integration points from the sur distribution (i.e. a distribution with density h(x) ∝
pn(x)(1− pn(x))), and a sample of 1000 integration points from a uniform distribution.
The random samples are plotted on Figure 6.

#a km object is built as before (code not reproduced) from 12 obs.

#Sample of integration points from the "sur" distribution.

integcontrol <- list(n.points=1000,distrib="sur")

integ.outputs <- integration_design(integcontrol=integcontrol,d=2,

lower=c(0,0),upper=c(1,1),model=model,T=T)

print_uncertainty_2d(model=model,T=T,type="pn",show.points=FALSE,

main="one sample from the instrumental density")

points(integ.outputs$integration.points,pch=17,cex=2)

#Sample of integration points from the uniform distribution.

integcontrol <- list(n.points=1000,distrib="MC")

integ.outputs <- integration_design(integcontrol=integcontrol,d=2,

lower=c(0,0),upper=c(1,1))

print_uncertainty_2d(model=model,T=T,type="pn",show.points=FALSE,

main="one sample from uniform distribution")

points(integ.outputs$integration.points,pch=17,cex=2)

Table 2 compares the values of the sur criterion at point x = (0.2, 0.2) obtained using
the two sampling scheme (averaged over 1000 repetitions) to an accurate estimation of
the criterion based on 100000 points (using a Sobol sequence). We see that both methods
have no bias as, in average, the value of the sur criterion at point x is the actual exact
value. However, for a comparable computational cost, the evaluation of the criterion is a
lot more accurate if the sur distribution is chosen. Indeed, for different random samples
of 1000 integration points, the standard deviation of the value of the sur criterion at x
with the instrumental distribution is one order of magnitude smaller than with a uniform
distribution.
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Figure 6: Excursion probability after 12 initial evaluations of the Branin function with a
threshold T = 80. The set of triangles correspond to the sample used for the numerical
integration. Such a sample is distributed with an instrumental density proportional to
pn(x)(1 − pn(x)) (left) and uniformly (right).

Table 2: sur values based on different sampling schemes. Numbers in parenthesis are
standard deviations over 1000 repetitions.

MC (1000 pts) Instrumental distribution sur (1000 pts) Sobol (100000 pts)
6.04e-2 (2.4e-3) 6.04e-2 (3.3e-4) 6.04e-2

5. Conclusion and perspectives

The R package KrigInv offers sequential sampling strategies to estimate excursion sets,
probabilities of failure and contour lines of a real-valued expensive-to-evaluate function
by means of a kriging model. The goal of the present tutorial is to make the package
accessible to people who are not familiar with kriging, and to clearly emphasize the
strengths and limitations of such metamodel-based inversion methods.

From an end-user perspective, we would recommend to use a sampling criterion and
parameters that do an adapted trade-off between performance of the criterion and com-
putation time. If a single evaluation of f takes only a few seconds, pointwise criteria
can quickly provide interesting results. On the other hand, if evaluating f takes many
hours, it may be worth spending a few minutes to choose carefully the design points
with an integral criterion and a generous budget for both efficient integration and opti-
mization. Finally, if several CPUs are available to evaluate f simultaneously at different
points, the user can take advantage of the parallel sampling criteria. In that case, the
computational savings are likely to be very significant.

The current version of the KrigInv package can be further improved in different
ways. Allowing the users to use their own optimizer for selecting the best points accord-
ing to the proposed criteria may provide more flexibility to advanced users. Sequential
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Monte Carlo methods might improve the performances of criteria involving integrals.
Some of the sampling criteria implemented in the package (sur and jn) might be used in
the case where the objective function returns a multivariate output (Conti and O’Hagan,
2010; Paulo et al., 2012) or even a function (Hung et al., 2012; Rougier, 2008), provided
that pn(·) can be computed easily. Finally, new criteria involving random set consider-
ations are currently being studied and will be implemented in KrigInv in the longer
term.
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Appendix A. Kriging basics

The goal of this section is to provide a basic understanding of the kriging metamodel.
Well known references on kriging include Stein (1999); Cressie (1993). In kriging we
consider that f is a realization of a Gaussian process ξ. A key property in this setting
is that, when n observations An of ξ are available, the conditional process ξ|An is still
Gaussian. The unconditional covariance function k(·, ·) of ξ is assumed to be a known
symmetric positive definite function or kernel. The kriging mean at a point x ∈ X,
denoted by mn(x), is the best linear unbiased predictor of ξ(x) from the observations.
The conditional covariance from the n observations between two points x and x′, known
as kriging covariance, is denoted by kn(x,x

′), so that, finally, ξ|An ∼ GP (mn, kn).
In particular, for all x ∈ X, ξ(x) has a Gaussian distribution with mean mn(x) and
variance s2n(x) := kn(x,x). In simple kriging the unconditional mean function m(·) of ξ
is assumed to be zero. In the ordinary kriging setting, the mean function is assumed to
be an unknown constant µ. In that case, the kriging mean and covariance are given by:

mn(x) =µ̂+ k(x)⊤K−1(y − µ̂1) (A.1)

kn(x,x
′) =k(x,x′)− k(x)⊤K−1k(x′) +

(1− 1⊤K−1k(x))(1 − 1⊤K−1k(x′))1⊤K−11 , (A.2)
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where K is the n × n covariance matrix at the observations: Kij = k(xi,xj) and k(x)
is the vector of size n with ith entry equal to k(x,xi). 1 is the vector of size n with
components equal to one and µ̂ is the estimator of the trend from the n observations
y = (ξ(x1), . . . , ξ(xn))

⊤:

µ̂ =
1⊤K−1y1⊤K−11 . (A.3)

The reader is referred to Roustant et al. (2012), Section 2, for the exact expressions
of the kriging mean and variance in the more general universal kriging setting. The
knowledge of these formulas is not required as all the computations are transparently
performed in the DiceKriging package (Roustant et al., 2012). Such package allows
to compute easily kriging means and variances from the observations at any points x

through the construction of a km (kriging model) object.

Appendix B. Some outputs of an inversion

In this section, we describe what the actual outputs of an inversion can be. Indeed,
at the end of an inversion, it is obviously not enough to indicate only what the newly
evaluated points are. The function print uncertainty has been coded to settle this
issue.

This function is a wrapper around three functions, print uncertainty 1d, 2d and
nd, which are called depending on the dimension d of the domain X. The main feature
of this function is to plot the function pn(·) over the whole domain X. Such a task is
not difficult when d ≤ 2, but becomes more challenging when d > 2. A first example in
dimension one follows.

f <- function(x) return(x^2)

design <- matrix(c(0.1,0.3,0.4,0.9),ncol=1)

response <- f(design)

model1d <- km(formula=~1, design = design, response = response,

covtype="matern3_2")

print_uncertainty_1d(model=model1d,T=0.5,type="pn",

xlab="x",ylab="pn(x)",cex.lab=1.5,cex.points=3,

main="excursion probability",cex.main=1.5)

design.updated <- matrix(c(design,0.6,0.7,0.8),ncol=1)

response.updated <- f(design.updated)

model1d.updated <- km(formula=~1, design = design.updated,

response = response.updated,covtype="matern3_2")

print_uncertainty_1d(model=model1d.updated,T=0.5,type="pn",

xlab="x",ylab="pn(x)",cex.lab=1.5,cex.points=3,
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main="updated excursion probability",cex.main=1.5,

new.points=3,pch.points.end=19)

Figure B.7 gives the output of such code. In this example in dimension d = 1, the
unknown function is f(x) = x2. The threshold T is fixed to 0.5. As no domain X is
specified in the arguments of print uncertainty 1d, the default value [0, 1]d is used.
The plots on the right are generated using the DiceView package (Richet et al., 2012)
and represent the kriging mean and confidence intervals on the whole domain X. These
plots are useful to visualize our knowledge of the function f and the regions where f may
exceed the threshold T . The plots on the left give the value of the uncertainty function.
By default this function is defined as the function pn(·), but other definitions can be set
with the argument type. In the R example above we additionally evaluate f at points
0.6, 0.7, 0.8. The result is a better knowledge of the excursion set {x ∈ [0, 1] : f(x) > 0.5}
as one can see that, with these three new evaluations, pn(x) is equal to 0 or 1 on almost
all the domain.

Figure B.7: Two calls of the print uncertainty 1d function with two different km
objects

An example in dimension d = 2 on the Branin-Hoo function is already widely devel-
oped in this paper and is not reproduced here. In dimension d > 2 it is not trivial to
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represent the value of pn(x) on the whole domain X. Let x = (x(1), . . . , x(d)) ∈ X. The
print uncertainty nd function offers a pair plot with two possible options:

• option=“mean”: For all possible pairs of components 1 ≤ i < j ≤ d we plot the
two-dimensional function:

gij(u, v) =

∫

{x∈X: x(i)=u,x(j)=v}
pn(x)PX(dx),

• option=“max”: For all possible pairs of components 1 ≤ i < j ≤ d we plot the
two-dimensional function:

hij(u, v) = max
{x∈X: x(i)=u,x(j)=v}

pn(x).

Figure B.8 represents the output of the following R example, with a three-dimensional
function f .

f <- function(x) return( branin(c(x[1],x[2]) )*x[3] )

n <- 50 #high number of evaluations

T <- 80 #threshold

design <- data.frame(maximinLHS(n,k=3)) #initial design (a LHS)

response <- apply(X=design,MARGIN=1,FUN=f)

model3d <- km(formula=~1, design = design, response = response,

covtype="matern3_2")

print_uncertainty_nd(model=model3d,T=80,type="pn",option="max",

main="max excursion probability",cex.main=2,

levels=c(0.05,0.5,0.95),

nintegpoints=100,resolution=30)

print_uncertainty_nd(model=model3d,T=80,type="pn",option="mean",

main="average excursion probability",cex.main=2,

levels=c(0.05,0.5,0.95),

nintegpoints=100,resolution=30)

In Figure B.8 “max” (or “average”) excursion probability refers to a maximum (resp.
average) excursion probability with respect to d−2 variables. Note that the computation
performed in the print uncertainty nd function are very intensive. One can change
the arguments nintegpoints to control the number of integration points in the integral of
gij (or the maximum in hij) and resolution to tune the resolution of each image. Each
pixel corresponds to one evaluation of the function gij or hij .
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Figure B.8: Two calls of the print uncertainty nd function with two different options
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