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Abstract: Several strategies relying on kriging have recently been proposed for adap-
tively estimating contour lines and excursion sets of functions when the evaluation bud-
get is severely limited. Here we present the newly released R package KrigInv, offering
a sound implementation of most sampling criteria for those kinds of inverse problems.
KrigInv bases on the DiceKriging package, and thus benefits from a number of options
concerning the underlying kriging models. In this tutorial, the seven implemented sam-
pling criteria are presented and illustrated with graphical examples, and the different
functionalities of KrigInv are gradually explained. Additionally, two recently proposed
criteria for batch-sequential inversion are presented, enabling advanced users to dis-
tribute function evaluations in parallel on clusters or clouds of machines. We finally
discuss about the fine tuning of numerical integration and optimization procedures used
within the calculation and/or the optimization of the considered criteria.
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1. Introduction

In many engineering fields, the use of metamodeling, or surrogate modelling, techniques
has become commonplace for efficiently dealing with complex expensive-to-evaluate sim-
ulators. These techniques usually consist in replacing the expensive model by a simpler
one, based on a limited number of evaluations, in order to compute predictions and/or
to guide an evaluation strategy of the simulator. The KrigInv R package, available on
CRAN, was developed in this context. Its main goal is to propose evaluation strategies
dedicated to inversion (as defined later), based on a kriging metamodel.

Mathematically, the expensive simulator can often be considered as a real-valued
function f defined on a compact domain X ⊂ R

d. In the current version of the package,
X is usually a hyper-rectangle, which means that each of the d input variables has its
values in a user specified interval. Before detailing the inverse problems we want to solve
on f , let us first further precise our settings:

• No analytical expression is available for f . The function can simply be seen
as a “black-box” which takes x ∈ X as an input and returns f(x) without any
other information (gradient at point x or other).

• We have a small evaluation budget. Evaluating f at any point x is assumed
to be long or expensive, so that our problem needs to be solved with only a few
evaluations of f : at most a few hundreds, but, very often, much less.

• Noisy simulators are handled. Our methods work in the setting where we do
not directly observe f(x) but rather f(x) + ε, where ε is a centered noise with
known (or previously estimated) variance.

• f can be evaluated sequentially. We usually dedicate a fraction of the budget
for the initial design of experiments and then evaluate sequentially f at well-
chosen points. The choice of the next point (or batch of points) to evaluate is done
according to a sampling criterion, so that each “strategy” corresponds in fact to a
different criterion.

• The dimension of the input domain X is not large. X is a compact subset
of Rd where d is typically not higher than 20.

In the setting described above, metamodeling techniques have already proven to be
efficient. From a sample of n evaluations An := {f(x1), . . . , f(xn)}, an approximated
response surface can be constructed jointly with a measure of uncertainty at non evalu-
ated points in order to guide a sequential sampling strategy of f . This idea has led to the
famous EGO algorithm (Jones et al., 1998) where a kriging meta-model and an Expected

Improvement (EI) criterion were used to find the optimum of an expensive-to-evaluate
function. The EGO algorithm, implemented in the DiceOptim package (Roustant et al.,
2012) applies iteratively the following procedure: from a sample of n evaluations of f ,
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find the point x ∈ X maximizing the EI criterion, evaluate f at this point, update the
kriging meta-model with the new observation and move to the next iteration.

In this tutorial, we will use the same paradigm, except that our final aim is not to
find the optimum of f . The key difference between DiceOptim and KrigInv will lie in
the sampling criterion to optimize. KrigInv provides sampling strategies aiming at
solving the following inverse problems:

• Estimating the excursion set Γ∗ = {x ∈ X : f(x) ≥ T}, where T is a fixed threshold

• Estimating the volume of excursion: α∗ := PX(Γ
∗), where PX is a given measure.

• Estimating the contour line {x ∈ X : f(x) = T}

Note that the second problem is often encountered as a “probability of failure esti-
mation” problem in the reliability literature. The three problems described above are
quite similar (a criterion dedicated to one of them is expected to perform fairly well on
the others) and in this paper we group them under the term “inversion”. Estimating
a probability of failure is classically done through classical Monte Carlo sampling, or
even refinements of Monte Carlo methods like subset sampling (Au and Beck, 2001) or
cross-entropy methods (Rubinstein and Kroese, 2004). However these methods are not
adapted to our setting as they require too many evaluations of f . Response surface meth-
ods make parametric approximations of f (see, e.g. Kim and Na (1997), Gayton et al.
(2003) and the references therein) or of the boundary of the excursion set {x : f(x) ≥ T}
with the so-called First and Second Order Reliability Methods (FORM and SORM, see
e.g. Zhao and Ono (1999)). Though they may provide an interesting alternative to our
non-parametric approach, they are not considered in this package.

An example of inversion, widely developed in this paper is provided on Figure 1.
In this example, f is the Branin-Hoo function (a two dimensional function defined on
[0, 1]2, available in the DiceKriging package, Roustant et al. (2012)) and we fix a threshold
T = 80. The real (assumed unknown) excursion set is represented in white on the left
plot. A probability of excursion (as defined in Section 2) based on nine observations of
f is plotted in the middle plot and also on the right plot, once ten “well-chosen” points
have been added.

The paper is organised as follows. The next session introduces the excursion probabil-
ity function, which will be crucial for understanding the evaluation strategies. Section 3
presents the sampling criteria available in KrigInv, and Section 4 finally provides the
user with advanced settings like the choice of the integration points for criteria involving
numerical integration. An introduction to kriging and to the DiceKriging package and
further details on the outputs of an inversion are also available. For the sake of brevity
they are sent in the Appendix.
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Figure 1: Excursion set of the Branin-Hoo function, with a threshold T = 80 (left
plot). Middle and right plot give the excursion probability function based on 9 and 19
evaluations of f .

2. From kriging to the probability of excursion function

The goal of this section is to illustrate one of the most important outputs obtained with
kriging for inverse problems. Further details on kriging and on the DiceKriging package
(Roustant et al., 2012) are given in Appendix A. In kriging we consider that f is a sample
realization of a random field ξ that is assumed Gaussian for tractability. The observations
f(x1), . . . , f(xn) can be considered as observations of ξ and an approximated response
surface is constructed from them. Such approximation is called kriging mean and will
be denoted by mn(x). At a non evaluated point x, the uncertainty on ξ(x) is handled
trough the kriging variance, s2n(x) and, as the conditional field ξ|An is still Gaussian we
have that L(ξ|An) = N (mn(x), s

2
n(x)). The kriging mean and variance can be calculated

using closed form formulas implemented in DiceKriging.

For our inversion problem, the use of kriging allows us to have a probabilistic frame-
work and thus to replace the question of finding Γ∗ = {x ∈ X : f(x) ≥ T} or α∗ = PX(Γ

∗)
by the estimation or the set Γ = {x ∈ X : ξ(x) ≥ T} or its volume α = PX(Γ).
As ∀x ∈ X, ξ(x) ∼ N (mn(x), s

2
n(x)), one can calculate the excursion probability defined

as:

pn(x) := P (ξ(x) ≥ T |An).
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Indeed:

P (ξ(x) ≥ T |An) = P

(
ξ(x)−mn(x)

sn(x)
≥

T −mn(x)

sn(x)

∣∣∣An

)

= Φ

(
mn(x)− T

sn(x)

)

where Φ(.) is the c.d.f. of the standard Gaussian distribution. The pn(.) function can
be plotted in KrigInv with the print uncertainty function as detailed in Appendix B.
We will see in the next section that such excursion probability plays an important role
in the sequential sampling strategies available in KrigInv.

3. Package structure and sampling criteria

This section gives an exhaustive description of all the sequential sampling criteria avail-
able in KrigInv. These criteria are called via the EGI (which stands for Efficient Global
Inversion) and EGIparallel functions; which are the two most important functions for
the user. Our strategy usually relies on evaluating sequentially f at the point (or the
batch of r > 1 points for parallel criteria) maximizing or minimizing a chosen criterion.
The sampling criteria are separated in three categories.

• Pointwise criteria are non-parallel criteria which calculation at a point xn+1 ∈ X

only involves the conditional distribution of ξ(xn+1)|An.

• Integral criteria involve a numerical integration (and thus the calculation of kriging
means and/or variances on the whole domain X). These criteria have shown to be
more efficient but are also more computer intensive.

• Parallel sampling criteria can deliver an arbitrary number r > 1 of points to
evaluate in parallel. These criteria are useful in applications when many CPUs are
available to evaluate f at different points in parallel.

Examples and bibliography are provided for each criterion.

3.1. The EGI and EGIparallel functions

EGI and EGIparallel are the two most important functions of the KrigInv package. The
practitioner can use only these two functions, as they are doing the interface with all the
other coded functions in KrigInv. However, we decided to export and provide a help file
of all the coded functions, even the low level ones that are normally only called via other
functions. Such choice has been done to allow very advanced users to directly use pieces
of our code and also to help us maintaining and optimizing the low level functions. EGI

allows to use criteria providing one point to evaluate per iteration while EGIparallel is
dedicated to parallel criteria. For the moment, seven non-parallel criteria are available
and two parallel ones. A general example of use of EGI follows:
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set.seed(8) #for repeatability

n <- 9 #number of initial observations

fun <- branin

design <- data.frame(maximinLHS(n,k=2)) #initial design (a LHS)

response <- fun(design)

model <- km(formula=~1, design = design, response = response,

covtype="matern3_2")

T <- 80

iter <- 10

obj <- EGI(T=T,model=model,method="ranjan",fun=fun,

iter=iter,lower=c(0,0),upper=c(1,1))

print_uncertainty_2d(model=obj$lastmodel,T=T,new.points=iter,

levels=c(0.05,0.5,0.95),cex.points=2,cex.main=2,

main="10 iterations of the sampling criterion")

EGI and EGIparallel are taking directly in argument a km object, generated with
the km function of the DiceKriging package. This choice is voluntary as we wanted the
user to have a basic knowledge of the DiceKriging package before using KrigInv.

For each criterion, EGI performs iter iterations of the procedure described in the
introduction. A total of iter evaluations of f (in addition to the initial design) are
performed. The other important inputs of EGI are the vectors lower and upper (of size
d, the dimension of the input domain X) to set the lower and upper bounds of the hyper
rectangle X, the threshold T, the sampling criterion method and of course the target
function fun. More advanced options are described in Section 4.

EGI outputs a list with many fields. One of them ($lastmodel) is the last kriging
model obtained after these iterations. In our example we used this km object in a
print uncertainty call, allowing to see the excursion probability once the ten new points
are evaluated. Other important outputs include the newly sampled points, $par, and
the value of f at these points $value.

The following example is a basic use of the EGIparallel function with three iterations.
In this example, each iteration gives a batch of r = 4 points that are evaluated in parallel.

set.seed(8) #for repeatability

n <- 9 #number of initial observations

fun <- branin

design <- data.frame(maximinLHS(n,k=2)) #initial design (a LHS)

response <- fun(design)

model <- km(formula=~1, design = design, response = response,
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covtype="matern3_2")

T <- 80

iter <- 3

r <- 4

obj <- EGIparallel(T=T,model=model,method="sur",fun=fun,

iter=iter,batchsize=r,lower=c(0,0),upper=c(1,1))

print_uncertainty_2d(model=obj$lastmodel,T=T,new.points=iter*r,

levels=c(0.05,0.5,0.95),cex.points=2,cex.main=2,

main="3 iterations of the parallel sampling criterion")

The two previous examples can be used with different sampling criteria by simply
changing the argument method of the EGI or EGIparallel functions. We will now detail
and illustrate the principles of each criteria. Further details on the non-parallel criteria
are available in Bect et al. (2011). All the parallel criteria presented are recent criteria
detailed in Chevalier et al. (2012a).

3.2. Pointwise sampling criteria

Three pointwise sampling criteria are available in KrigInv. These are criteria which
depend on a point xn+1 ∈ X and which calculation only involves the computation of
mn(xn+1) and s2n(xn+1). For these three criteria, the sampled point is usually the point
where the value of the criterion is maximal. Computing and optimizing these criteria
is not computer intensive as it only requires few calls to the predict.km function of the
DiceKriging package (see Appendix A for one example of call to predict.km). Despite
their simplicity and easy computation, Bect et al. (2011) showed that these criteria are
less efficient than the integral criteria in terms of quickly estimating the true excursion
volume.

Criteria proposed by Ranjan et al. (2008), Bichon et al. (2008) and Picheny et al.
(2010) are reviewed in this section. The main idea with these three criteria (respectively
ranjan, bichon and tmse in the KrigInv package) is that the potentially interesting
points xn+1 ∈ X to evaluate are the points which have both a high kriging variance
and a probability of excursion close to 1/2. In KrigInv the implemented criterion not
only seek for points where pn(x) ≈ 1/2. They also want the kriging variance to be high
(which avoids clusters of points) and make a trade-off between these two conditions.

tmse criterion: The Targeted Mean Square Error criterion has been proposed by Picheny
et al. (2010). The idea is to decrease the Mean Square Error (i.e. the kriging variance)
at points where the kriging mean is close to T ). The criterion computes the following
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quantity:

tmse(xn+1) = s2n(xn+1)
1√

2π(s2n(xn+1) + ε2)
exp


−

1

2

(
mn(xn+1)− T√
s2n(xn+1) + ε2

)2

 (1)

where ε is a parameter of the criterion. It is a positive number (which can be equal to
zero) tuning the windows of interest around the threshold T . In Kriginv the parameter
is equal to zero by default and can be modified with the argument method.param of the
EGI function. High values for ε make the criterion more exploratory while low values
concentrate the evaluations near the expected contour line {ξ(x) = T}.

ranjan and bichon criteria: These two criteria (see: Ranjan et al. (2008), Bichon et al.
(2008) as well as Bect et al. (2011) for details) depend on a parameter α which can
also be set with the method.param argument. The default value for α is 1. A common
general expression (provided in Bect et al. (2011)) for these two criteria is the following:

expr(x) = En

[
((αsn(x))

δ − |T − ξ(x)|δ)+
]

(2)

where En(.) := E(.|An), (.)+ := max(., 0) and δ is an additional parameter which is
equal to one for the bichon criterion and two for the ranjan criterion.
Calculations (detailed in Bect et al. (2011)) with δ = 1 and 2 respectively lead to the
following criteria:

bichon(xn+1) = sn(xn+1)
[
α(Φ(t+)− Φ(t−))− t(2Φ(t)− Φ(t+)− Φ(t−))

−(2φ(t)− φ(t+)− φ(t−))
]

ranjan(xn+1) = s2n(xn+1)
[
(α2 − 1− t2)(Φ(t+)− Φ(t−))− 2t(φ(t+)− φ(t−))

+t+φ(t+)− t−φ(t−)
]

where φ is the p.d.f. of the standard Gaussian distribution, t := (mn(xn+1)−T )/sn(xn+1),
t+ := t+α and t− := t−α. An intuitive vision of these criteria can be obtained by look-
ing at Equation 2. The goal is to obtain a point xn+1 with a kriging mean close to T and
a high kriging variance, so that the distance between (αsn(xn+1))

δ and |T − ξ(xn+1)|
δ

is maximal in expectation.

Illustration: Figure 2 shows, on our 2d example with the Branin-Hoo function, the
excursion probability pn(.) after ten iterations of these criteria. This graph is generated
with the following code:

set.seed(8) #for repeatability

n <- 9 #number of initial observations

fun <- branin

design <- data.frame(maximinLHS(n,k=2)) #initial design (a LHS)

response <- fun(design)
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model <- km(formula=~1, design = design, response = response,

covtype="matern3_2")

T <- 80

iter <- 10

obj1 <- EGI(T=T,model=model,method="tmse",fun=fun,iter=iter,

lower=c(0,0),upper=c(1,1))

obj2 <- EGI(T=T,model=model,method="ranjan",fun=fun,iter=iter,

lower=c(0,0),upper=c(1,1))

obj3 <- EGI(T=T,model=model,method="bichon",fun=fun,iter=iter,

lower=c(0,0),upper=c(1,1))

text <- seq(1,nrow(theobj$par))

par(mfrow=c(1,3))

print_uncertainty_2d(model=obj1$lastmodel,T=T,new.points=iter,

levels=c(0.05,0.5,0.95),cex.points=5,main="tmse criterion",

cex.main=3,pch.points.end=19)

text(obj1$par[,1],obj1$par[,2], text,cex=3, pos=1)

print_uncertainty_2d(model=obj2$lastmodel,T=T,new.points=iter,

levels=c(0.05,0.5,0.95),cex.points=5,main="ranjan criterion",

cex.main=3,pch.points.end=19)

text(obj2$par[,1],obj2$par[,2], text,cex=3, pos=1)

print_uncertainty_2d(model=obj3$lastmodel,T=T,new.points=iter,

levels=c(0.05,0.5,0.95),cex.points=5,main="bichon criterion",

cex.main=3,pch.points.end=19)

text(obj3$par[,1],obj3$par[,2], text,cex=3, pos=1)

One can see that the points evaluated with these criteria (circles) are rather similar
and the criteria tend to evaluate points at the boundary of the domain X. We recall that
these criteria only depend on the marginal distribution at a point xn+1. Consequently,
they do not take into account the fact that sampling at a point xn+1 may also bring
useful information on the neighbourhood of xn+1. Recently, Bect et al. (2011) showed
that these pointwise criteria are outperformed in applications by the integral sampling
criteria presented in the next section. However, the price to pay for such more efficient
criteria will be a higher computation time.

3.3. Integral sampling criteria

The term “integral criteria” refers to sampling criteria involving numerical integration.
We here give details on the four integral criteria available in KrigInv. A review of these
criteria can again be found in Bect et al. (2011) as well as a general algorithm to compute
them. This algorithm was used in the first version of KrigInv and has now been widely
improved using closed form expression and formulas given in Chevalier et al. (2012a)
and Chevalier and Ginsbourger (2012). Note that these formulas not only improved the
implementation of existing criteria. They also allowed to compute criteria that were
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Figure 2: Probability of excursion after ten iterations of the tmse, ranjan and bichon

criterion. New evaluated points are represented by circles. The numbers associated with
these points correspond to the iteration number where the point is evaluated.

considered previously intractable. In addition they gave a very cheap access to the
parallel criteria detailed in the next section.

All the integral criteria presented here rely on the concept of Stepwise Uncertainty
Reduction. In short, the idea consists in defining an arbitrary measure of uncertainty
given n observations An and seeking for the point xn+1 such that evaluating ξ(xn+1)
reduces the most (in expectation) this uncertainty. Consequently, different definitions
for the term “uncertainty” will lead to different sampling criteria.

timse criterion: The Targeted Integrated Mean Square Error criterion (timse) is a sam-
pling criterion dedicated to contour line estimation (see: Picheny et al. (2010), Picheny
(2009) for details). It may easily be used as well for the problem of estimating the ex-
cursion set or its volume. The timse criterion can be seen as the integral version of the
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tmse criterion. Conditionally on An, we measure the uncertainty as follows:

Uncertaintytimse :=

∫

X

tmse(x)PX(dx)

=

∫

X

s2n(x)
1√

2π(s2n(x) + ε2)
exp


−

1

2

(
mn(x)− T√
s2n(x) + ε2

)2

PX(dx)

:=

∫

X

s2n(x)Wn(x)PX(dx)

where Wn(x) is a weight function and ε is a parameter with the same role as in the tmse

criterion. More details and interpretations on the weight function Wn(x) are available
in Picheny et al. (2010), Section 3. As explained in the previous paragraph, the goal of
the criterion is to sample a new point in order to reduce Uncertaintytimse. Then, the
initial expression of the criterion is:

timse(xn+1) := En

(∫

X

s2n+1(x)Wn+1(x)PX(dx)
∣∣Xn+1 = xn+1

)
(3)

where the conditioning Xn+1 = xn+1 means that the next evaluation point is xn+1.
Equation 3 involves, at first sigh, the computation of a double integral over R × X.
However, a calculation shows that it can be considerably simplified with the following
closed form expression:

timse(xn+1) =

∫

X

s2n+1(x)Wn(x)PX(dx) (4)

This expression is much simpler to compute and can be deduced from the law of total
expectation. For the computation of Equation 4, the integral over X is discretized in M
integration points. The choice of these integration points is an open option for the user
of KrigInv. More details are given in Section 4.1. The timse criterion is one of the two
criteria with an implemented parallel version as detailed in Section 3.4.

Note: In all this tutorial s2n+1(x) will be called “updated kriging variance” at point
x. sn+1(x) is the kriging variance at point x once xn+1 has been added to the design of
experiments. Note that this variance does not depend on the unknown ξ(xn+1). On the
contrary, the updated kriging mean, mn+1(x) depends on ξ(xn+1) and is then random
when we only have n observations. Efficient formulas to compute mn+1(x) and s2n+1(x)
are given in Emery (2009). To go beyond, Chevalier and Ginsbourger (2012) gives
formulas to compute updated kriging means and variances when r > 1 observations are
added simultaneously. These formulas are used for computing the parallel criteria.

imse criterion The imse criterion is a criterion which is not dedicated to inversion. It
corresponds to the timse criterion without the weight Wn(x).

imse(xn+1) =

∫

X

s2n+1(x)PX(dx) (5)
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The criterion is a space filling criterion which aims at decreasing the kriging variance on
the whole domain X. We decided to include such criterion in KrigInv, even if the criterion
is not dedicated to inversion, because the time to code it was neglectable (we just had
to set Wn(x) equal to one) and because it can be used as a benchmark criterion.Indeed,
comparing the performances of a given criterion against the performances of the imse

criterion helps quantifying the gain or loss obtained with a well chosen criterion compared
to a standard space filling criterion.

sur criterion: The sur criterion is introduced in Bect et al. (2011). Two slightly different
ideas can lead to this sampling criterion. We briefly detail them and the reader is referred
to Bect et al. (2011), Chevalier et al. (2012a) for more details. The first idea is to consider,
at a point x ∈ X, the random variable 1ξ(x)>T which, conditional on An, is equal to one
with probability pn(x) and zero with probability 1−pn(x). The variance of this random
variable is pn(x)(1 − pn(x)) so that the following expression can be used as a measure
of global uncertainty:

Uncertaintysur :=

∫

X

pn(x)(1 − pn(x))PX(dx) (6)

As explained in Bect et al. (2011), this uncertainty measure can also be obtained by con-
sidering the random variable V ar(α|An) where α is the volume of the random excursion
set and by applying the Cauchy-Schwartz inequality to obtain exactly Equation 6 as a
bound for this variance.

The uncertainty being defined, the corresponding sampling criterion becomes:

sur(xn+1) := E

(∫

X

pn+1(x)(1 − pn+1(x))PX(dx)
∣∣Xn+1 = xn+1

)
(7)

This criterion samples the point which decreases the most, in expectation, the integrated
variance of the classifier 1ξ(x)>T . The goal of the criterion is to obtain excursion prob-
abilities equal to 0 or 1 in all the domain X, meaning that all the domain is classified.
A lot of effort has been dedicated to the efficient and quick computation of Equation 7.
We give in Section 3.4 a formula allowing such efficient computation which applies for
both the parallel and non-parallel sur criteria. The sur criterion is indeed one of the
two criteria with a parallel version available.

jn criterion This criterion is also introduced in Bect et al. (2011) but was considered
intractable. Indeed, its computation involves - a priori - conditional simulations of Gaus-
sian Processes. Recently, Chevalier et al. (2012a) gave analytical formulas allowing such
computations without any conditional simulation. These formulas even allow to com-
pute a parallel criterion, but for the moment only the non-parallel criterion is available
in KrigInv.

The jn criterion can be naturally obtained by considering the random set Γ = {x ∈
X : ξ(x) > T} and its random volume α = PX(Γ). When n observations are available,
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the uncertainty is defined as follows:

Uncertaintyjn :=Varn(α) (8)

Where Varn(.) := Var(.|An). The associated sampling criterion is:

jn(xn+1) := E
(
Varn+1(α)

∣∣Xn+1 = xn+1

)
(9)

In short, the criterion samples a point xn+1 in order to decrease as much as possible
(in expectation) the future variance of the excursion volume. The analytical expression
allowing to efficiently compute Equation 9 is available in Chevalier et al. (2012a) and
is not reproduced here. It consists in an integral over X × X. This integral is still
difficult to compute with a good accuracy. In theory the criterion is better than the sur

criterion for the problem of estimating the excursion volume. In practice, because of
the difficulties to compute this integral, the current version of the jn criterion provides
roughly the same performances as the sur criterion, but at a higher computational cost
(see: Chevalier et al. (2012a), section 4.1 for details and comparisons).

illustration: Figure 3 shows the same plot than in Figure 2 with the pointwise criteria
replaced by the integral criteria timse, sur and jn. The plots are realized with the
default parameters for the integration and optimization methods (see: Section 4). In this
example sur and timse show similar behaviours (the three first evaluations are almost the
same) while jn tends to be a bit more exploratory. The jn criterion is interested in the
volume of the random set Γ. So when a point which is “far” from the current estimated
excursion region (the zone in white) has a non zero (say 0.01) excursion probability, it
may be picked by the jn criterion because the event {ξ(x) > T}, even if it has a low
probability, would change considerably the volume of excursion. This explains why jn

does not usually try to sample at the expected boundary of the excursion set. Up to a
change of the method argument of EGI, the R code for obtaining Figure 2 is similar with
the code given in the previous section on pointwise criteria. Thus we do not reproduce
it here.

3.4. Parallel sampling criteria

The use of parallel sampling criteria arises when many CPUs are available to evaluate
the simulator f at different locations. Instead of evaluating points one by one (using
only one CPU), it is often useful to have a sampling criterion providing r > 1 points
at each iteration for sampling. For optimization problems a heuristic parallel criterion
has already been proposed by Ginsbourger et al. (2010). In short, it consists in using a
non-parallel criterion r times per iteration. When a point xn+k, (k < r) is selected, an
arbitrary value (a “lie”) is assumed for ξ(xn+k). Then a point ξ(xn+k+1) is selected with
the non parallel criterion, and so on until we have selected r points xn+1, . . . ,xn+r. The
r points are then evaluated, the kriging model is updated and we move on to the next
iteration. This heuristic is implemented for optimization problems in the DiceOptim
package (Roustant et al., 2012) and is named “Constant Liar”.
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Figure 3: Probability of excursion after ten iterations of the timse, sur and jn criterion.
New evaluated points are represented by circles.

For inversion problems the constant liar heuristic would be a possible alternative.
However, two efficient criteria (that do not require any “lie”) have been derived and
implemented: timse and sur. These criteria can be used in KrigInv using the EGIparallel

function.

parallel timse criterion The parallel timse criterion was introduced in Picheny (2009).
Like in all Stepwise Uncertainty Reduction strategies, the idea is to sample the batch of
r points that will in expectation decrease the most a given measure of uncertainty. The
criterion writes as follows:

timse(xn+1, . . . ,xn+r) := En

(∫

X

s2n+r(x)Wn+r(x)PX(dx)

∣∣∣Xn+1 = xn+1, . . . ,Xn+r = xn+r

)
(10)

Noting again (using the total expectation law) that ∀x ∈ X, En(Wn+r(x)) = Wn(x) we
obtain the simplified expression:

timse(xn+1, . . . ,xn+r) =

∫

X

s2n+r(x)Wn(x)PX(dx) (11)
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This criterion was not implemented before as it involves the computation of updated
kriging variances s2n+r(x) at different integration points. The current implementation
relies on formulas given and proven in Chevalier and Ginsbourger (2012), enabling con-
siderable computational savings.

parallel sur criterion The natural parallel extension of the sur criterion is:

sur(xn+1, . . . ,xn+r) := En

(∫

X

pn+r(x)(1 − pn+r(x))PX(dx)

∣∣∣Xn+1 = xn+1, . . . ,Xn+r = xn+r

)
(12)

Computing Equation 12 for one batch of points (xn+1, . . . ,xn+r) requires a priori to
compute an integral over X for all the possible responses (ξ(xn+1), . . . , ξ(xn+r)). Then,
we deal with a integral on R

r×X which is quite impractical. In fact, it is possible, like in
the timse criterion, to get rid of the integral over Rr (corresponding to the expectation).
Indeed, we have the following analytical expression (see: Chevalier et al. (2012a) for a
complete proof):

sur(xn+1, . . . ,xn+r) =

∫

X

Φ2

((
a(x)
−a(x)

)
,

(
c(x) 1− c(x)

1− c(x) c(x)

))
PX(dx) (13)

where:

• Φ2(.,M) is the c.d.f. of the centered bivariate Gaussian with covariance matrix M

• a(x) := (mn(x)− T )/sn+r(x),

• c(x) := s2n(x)/s
2
n+r(x)

With Equation 13, the computation of the parallel criterion only involves efficient calcu-
lations of updated kriging variances. Note that very efficient numerical procedures exist
to compute the bivariate Gaussian c.d.f. Φ2. In KrigInv we use the pbivnorm package
(Kenkel, 2011) which wraps the Fortran code written by Alan Genz (Genz, 1992).

illustration: Figure 4 shows three iterations of the timse and sur parallel criteria, with
r = 4 points evaluated at each iteration. Like in the non parallel case, sur and timse

show rather similar behaviours.

4. Optimizing the performances of the sampling criteria with advanced

options

This section describes the options available to the user for two major sub-problems
of our inversion problems. First, for the criteria involving numerical integration, the
question of the number and the choice of integration points is detailed. Second, our
sampling strategy usually implies to optimize a sampling criterion. The question of the
optimization method arises naturally.
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Figure 4: Probability of excursion after three iterations of the parallel timse and sur

criterion. New evaluated points are represented by circles.

4.1. Importance sampling for numerical integration

4.1.1. Instrumental densities and example

The computation of all integral and parallel criteria presented in this paper (Equations 4,
5, 7, 9, 11 and 12) involves a numerical integration. The integration domain is X for all
the criteria, except for jn where it is X×X. Computing these integrals is not trivial, as
the cost to evaluate the integrand is significant. Indeed, one needs to calculate kriging
variances at each integration point. Consequently, the integration points should be
chosen carefully.

A classical solution to approximate numerical integrals is to draw a random sample
of integration points distributed with an instrumental distribution. As explained in
Chevalier et al. (2012a), Appendix B, a quite natural idea for choosing such distribution
is to remark that the integrand of a criterion may not depart much from the integrand of
the corresponding uncertainty measure. This suggests to use the following instrumental
densities:

• timse criterion (non-parallel and parallel): h(x) ∝ s2n(x)Wn(x)PX(x), x ∈ X

• sur criterion (non-parallel and parallel): h(x) ∝ pn(x)(1 − pn(x))PX(x), x ∈ X

• jn criterion: h(z1, z2) ∝ pn(z1)pn(z2)PX(z1)PX(z2), (z1, z2) ∈ X× X
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KrigInv can automatically build integration samples from these distributions through the
integcontrol argument of the EGI and EGIparallel functions. We strongly recommend
the user to use these instrumental distributions as they have been shown to considerably
improve the performances of the integral criteria (Chevalier et al., 2012a).

The integcontrol argument is a list specifying how to build the integration points.
The most important fields in this list are:

• $integration.points and $integration.weights in case the user wants to fill in man-
ually his own integration points and weights, obtained from another procedure.

• otherwise, $n.points and $distrib to specify the number of integration points and
the distribution to sample from. Possible values for distrib are the names of the
integral criteria: imse, timse, sur and jn. It is also possible to use the Sobol
sequence (sobol) or random integration points with a uniform distribution (MC ).

integcontrol is used in the integration design function, which is a function called by EGI

or EGIparallel when integral or parallel criteria are used. A detailed example follows:

set.seed(8) #for repeatability

n <- 9 #number of initial observations

fun <- branin

design <- data.frame(maximinLHS(n,k=2)) #initial design (a LHS)

response <- fun(design)

model <- km(formula=~1, design = design, response = response,

covtype="matern3_2")

T <- 80

iter <- 20

integcontrol <- list(n.points=1000,distrib="sur")

#first, we plot one sample of integration points

#distributed with the "sur" distribution

#this sample is used only for the first iteration !

integ.outputs <- integration_design(integcontrol=integcontrol,d=2,

lower=c(0,0),upper=c(1,1),model=model,T=T,)

print_uncertainty_2d(model=model,T=T,type="pn",show.points=FALSE,

levels=c(0.05,0.5,0.95),cex.main=2,

main="one sample of integration points")

points(integ.outputs$integration.points,pch=17,cex=2)

#then we run 20 iterations of the sur criterion with and without

#this intrumental distribution
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obj1 <- EGI(T=T,model=model,method="sur",fun=fun,iter=iter,

lower=c(0,0),upper=c(1,1),integcontrol=integcontrol)

obj2 <- EGI(T=T,model=model,method="sur",fun=fun,iter=iter,

lower=c(0,0),upper=c(1,1),integcontrol=NULL)

#finally we plot the function pn(1-pn) after the 20 evaluations

par(mfrow=c(1,2))

print_uncertainty_2d(model=obj1$lastmodel,T=T,type="sur",

levels=c(0.05,0.5,0.95),new.points=iter,

main="sur criterion, instrumental distribution",

cex.main=2,pch.points.end=20,cex.points=4)

print_uncertainty_2d(model=obj2$lastmodel,T=T,type="sur",

levels=c(0.05,0.5,0.95),new.points=iter,

main="sur criterion, Monte Carlo integration",

cex.main=2,pch.points.end=20,cex.points=4)

In this example, we start again from our initial design of experiments of nine evaluations
of the Branin function. Before running 20 iterations of the non-parallel sur criterion,
we set the integcontrol argument in order to have, at each iteration, a sample of 1000
integration points distributed with the sur distribution, i.e. a distribution with density
h(x) ∝ pn(x)(1−pn(x)). The random sample is plotted on Figure 5, but the user has to
keep in mind that the sample is renewed at each iteration. In practice, the use of these
samples gives us a better estimate of the exact value of the sur criterion.

We run two different inversions using the same sampling criteria (sur). One inversion
is run with the instrumental distribution and one with the default parameters. By default
(if integcontrol is null), the Sobol sequence is used to build the integration points, and
the number of integration points is 100∗d, where d is the dimension of the input domain
X. Finally, we call the print uncertainty 2d function (Figure 6), but, instead of plotting
the pn(.) function (default option) we set the argument type=“sur” to plot instead
the sur uncertainty, i.e. the function pn(.)(1 − pn(.)). Recall that the goal of the sur

criterion is to reduce as much as possible Uncertaintysur :=
∫
pn(1 − pn)dPX . In our

example, the first call to print uncertainty 2d returns (in addition to the plot) the value∫
pn(1 − pn)dPX ≈ 0.0043. Such value is the remaining “uncertainty” at the end of

the inversion and is computed by default with a 200 × 200 grid of integration points.
The second call to print uncertainty 2d returns approximately 0.0049. This means that
the use of the instrumental distribution managed to improve the performance of the sur
criterion because the uncertainty has been much more reduced during the inversion. The
price paid for such improvement is a slightly more computer intensive criterion. Indeed,
we used more integration points (1000 vs 200) and the cost to generate a random sample
with the instrumental density is not negligible.
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Figure 5: Excursion probability after nine intial evaluations of the Branin function with
a threshold T = 80. The set of triangles correspond to the sample used for the numerical
integration in the first iteration of the sur criterion. Such sample is distributed with an
instrumental density proportional to pn(x)(1 − pn(x))

4.1.2. Sampling from the instrumental density

Sampling from the instrumental density is not an easy task. Figure 6, obtained from
the previous example, clearly shows that, as the inversion progresses, the region where
pn(x)(1 − pn(x)) is non zero becomes very narrow. This is a major issue as pn(x)(1 −
pn(x)) is precisely (up to a multiplicative factor) the instrumental density we want to
sample from, when we use the sur criterion.

For the moment a simple procedure has been implemented to tackle this problem
but it has some limitations that we are going to exhibit. The main idea consists in sam-
pling from a simpler discrete instrumental distribution:

∑N
i=1 pn(uj)(1 − pn(uj))δuj

where N is a large number and u1, . . . ,uN is an i.i.d sample of points with distri-
bution PX. Sampling from this discrete distribution is not hard, as we simply have
to “pick” M integration points among these N points (with replacement) and calcu-
late the proper weights. The major drawback of this method is that, when then size
M of the sample increases, the calculation of the non parallel sur criterion will con-
verge to 1

N

∑n
i=1 En(pn+1(uj)(1 − pn+1(uj))), which can depart from the true integral∫

X
En(pn+1(u)(1 − pn+1(u)))PX(du). As mentioned in Chevalier et al. (2012a), both M

and N must tend to infinity to ensure the convergence to the integral. Let us illustrate
this limitation with an R example:

set.seed(8) #for repeatability

n <- 200 #a lot of initial evaluations !
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Figure 6: Plot of pn(x)(1−pn(x)) (i.e. the integrand in Uncertaintysur after 20 iterations
of the sur criterion with and without the instrumental density. We have Uncertaintysur ≈
0.43 for the first plot and ≈ 0.49 for the second. The use of the instrumental distribution
managed to improve the rate of decrease of Uncertaintysur.

fun <- branin

design <- data.frame(maximinLHS(n,k=2)) #initial design (a LHS)

response <- fun(design)

model <- km(formula=~1, design = design, response = response,

covtype="matern3_2")

T <- 80

integcontrol <- list(n.points=1000,distrib="sur")

integ.outputs <- integration_design(integcontrol=integcontrol,d=2,

lower=c(0,0),upper=c(1,1),model=model,T=T,)

print_uncertainty_2d(model=model,T=T,type="pn",show.points=FALSE,

levels=c(0.05,0.5,0.95),cex.main=4,

main="one sample of 1000 (!) integration points")

points(integ.outputs$integration.points,pch=17,cex=5)

The output of such code is given on Figure 7. We can see that, if the region where
pn(x)(1−pn(x)) is extremely narrow, we are not able to obtain a sample of points which is
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well spread on the boundary of the excursion set. In that case, our discrete instrumental
density does not approximate well the ideal instrumental density because a minority of
the N points u1, . . . ,uN (distributed uniformly) are actually on the boundary. Here the
few points on the boundary are selected many times to obtain a sample of M points and
in the end the sample of M = 1000 points consists in only 41 different points.

Figure 7: Plot of pn(x)(1 − pn(x)) after 200 evaluations of f . The excursion set is well
identified. The triangles correspond to a sample of 1000 integration points for computing
the sur criterion. Only 41 different points are present. Some of them are selected many
times.

The user can modify the value of N (default: 10∗M) in the integcontrol list through
the $n.candidates field. A higher value for N enables to have a more precise instrumental
density and improves the quality of the integration sample (and thus the performances
of the criterion). However this also increases the computation time for simulating such
sample. The distribution PX of these N points (field $init.distrib) is uniform by default.
The user has the possibility to fill in manually the position of these N points if he wants
to use a sample obtained from a non uniform distribution PX.

Note that, in all the examples given above, we can replace the sur instrumental
distribution by a timse instrumental distribution (i.e. proportional to s2n(x)Wn(x)) and
use the timse sampling criterion instead of sur. When the jn criterion is used, with the
corresponding jn instrumental distribution, a sample of points in X× X (and not X) is
built. It is stored as a 2M×d matrix. If jn is used and if M integration points in X (and
not X×X) are imposed, KrigInv automatically creates a grid of M2 integration points in
X×X. The users of the jn criterion are strongly encouraged to use the jn instrumental
distribution. Indeed, the default integration parameters correspond to 100×d integration
points in X and thus, if jn is used, 10000× d2 points in X×X, which is both suboptimal
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and computer intensive.

To conclude this section we want to emphasize that our goal was to propose a simple
procedure (with a low computational cost) to obtain a sample from an instrumental
distribution which improves the accuracy of the numerical integration and the perfor-
mances of algorithms based on integral criteria. The advanced user who already has his
own procedures (like Sequential Monte Carlo methods) to generate samples of integra-
tion points can use them via the fields $integration.points and $integration.weights of
the integcontrol argument.

4.2. Tuning the optimizer

In this section we detail the available options regarding the optimization of the sampling
criteria available in KrigInv. For each non-parallel criterion, finding x∗ ∈ X maximizing
or minimizing the criterion amounts to performing an optimization in dimension d. The
options for such optimization are detailed in Section 4.2.1. Optimizing a parallel crite-
rion, which delivers r > 1 points at each iteration, requires an optimization in dimension
r × d and can be impractical for high r and/or d. In that case a heuristic optimiza-
tion strategy (consisting in r sequential optimizations in dimension d) is proposed and
explained in Section 4.2.2.

4.2.1. Discrete or continuous optimization

The optimcontrol argument of the EGI or EGIparallel functions has been introduced
to detail the parameters of the optimization of the selected sampling criterion. Like
integcontrol, optimcontrol is a list with several fields. We made that choice in order
to have a flexible code which does not require any change in the arguments of EGI or
EGIparallel when a new functionality is released.

The most important field in the optimcontrol argument is the $method field. The two
possible values are “discrete” for an optimization on a discrete set of points (each point
will be evaluated) or “genoud” (default) for an optimization with a genetic algorithm
(Mebane and Sekhon, 2011). In short, the genoud algorithm searches the optimum of a
function by building “generations” of points spread on the domain X, selecting the most
interesting ones, applying “mutations” to them in order to have a new “generation” of
points to evaluate. The algorithm stops when no improvement of the current optimum
has been observed from one generation to another, or when a maximum number of
generations is reached.

When optimcontrol$method = “discrete”, the user can set manually the field optim-

control$optim.points to indicate which points will be evaluated. This may be useful if
the user wants to optimize the criterion on a discrete grid in dimension d or if the user
has a guess on the location of the optimum. If optimcontrol$optim.points is not set,
100 ∗ d points will be chosen randomly.
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When optimcontrol$method = “genoud” (recommended and default option), the user
has the possibility to tune the parameters of the genoud algorithm. The user might
play on optimcontrol$pop.size (default: 50 ∗ d) or optimcontrol$max.generation (default:
10∗d) which are respectively the number of points in each generation and the maximum
number of generations. The maximum number of points where the criterion is evaluated
is pop.size ∗max.generation.

Remark : An interesting option, not coded yet in KrigInv would be to directly pass
the optimizer as a field in optimcontrol. This may be particularly interesting if the user
wants to use his own optimization procedure.

4.2.2. heuristic optimization of parallel criteria

As explained before the optimization of the parallel sampling criteria is not a trivial
operation. Instead of searching an optimal point xn+1 ∈ X to evaluate, parallel sampling
criteria are looking for an optimal batch of r points (xn+1, . . . ,xn+r) ∈ X

r. This
optimization problem is of dimension r ∗ d and can be very difficult.

In KrigInv, two options are proposed to compute such optimization. The user can
set one of these two options using the field optimcontrol$optim.option. The options are:

• Brute force optimization in dimension r ∗ d, optimcontrol$optim.option = 1 : the
optimizer works directly in dimension r ∗ d to find the optimal batch of r points.

• Heuristic optimization strategy (default), optimcontrol$optim.option = 2 : this
option applies an heuristic optimization strategy. First, we find the point xn+1

optimizing the criterion for r = 1. Then we consider xn+1 as fixed and find the
point xn+2 optimizing the criterion for r = 2. We iterate this procedure r times to
finally obtain the batch of points xn+1, . . . ,xn+r. Though this heuristic is clearly
sub-optimal in theory, it often performs better than the previous option when the
optimization in dimension r ∗ d becomes too difficult for our optimizer.

When a continuous optimization (with genoud) is selected, the user can choose between
these two options. However, for discrete optimizations, only the heuristic strategy is
applied for the moment as combinatorics prevents from testing all the combinations of
r points among the discrete set of points for optimization. A possible option in the
discrete case, not implemented, is to compute the criterion on a discrete set of batches
of r points directly entered by the user.

Let us illustrate the two optimization strategies on our main example:

set.seed(8)

n <- 9

fun <- branin

design <- data.frame(maximinLHS(n,k=2))

response <- fun(design)

23



model <- km(formula=~1, design = design, response = response,

covtype="matern3_2")

T <- 80

iter <- 5

batchsize <- 4

method <- "timse"

integcontrol <- list(distrib="timse",n.points = 500)

optimcontrol1 <- list(method="genoud",optim.option=1)#optim in dim. r*d

optimcontrol2 <- list(method="genoud",optim.option=2)#r optims in dim. d

obj1 <- EGIparallel(T=T,model=model,method=method,method.param=0,

fun=fun,iter=iter,lower=c(0,0),upper=c(1,1),batchsize=batchsize,

integcontrol=integcontrol,optimcontrol=optimcontrol1)

obj2 <- EGIparallel(T=T,model=model,method=method,method.param=0,

fun=fun,iter=iter,lower=c(0,0),upper=c(1,1),batchsize=batchsize,

integcontrol=integcontrol,optimcontrol=optimcontrol2)

vect.text <- sort(rep(c(1:iter),times=batchsize))

par(mfrow=c(1,2))

print_uncertainty_2d(model=obj1$lastmodel,T=T,new.points=iter*batchsize,

levels=c(0.05,0.5,0.95),cex.points=3,cex.main=2.5,

main="timse parallel, optim.option 1",

pch.points.end=20)

text( obj1$par[,1],obj1$par[,2], vect.text,cex=3, pos=3)

print_uncertainty_2d(model=obj2$lastmodel,T=T,new.points=iter*batchsize,

levels=c(0.05,0.5,0.95),cex.points=3,cex.main=2.5,

main="timse parallel, optim.option 2",

pch.points.end=20)

text( obj2$par[,1],obj2$par[,2], vect.text,cex=3, pos=3)

The output of this code is shown in Figure 8. We perform five iterations of the parallel
timse criterion with r = 4. This criterion is used with the two different options for
optimization in order to make a performance comparison. After the 20 new evaluations
of f , Uncertaintytimse is approximately the same in both cases. However, one can see
that some points sampled at the iteration 3 and 4 are not very appropriate on the left
plot (brute force optimization option). Indeed, two points who are already far from the
excursion set are sampled. This is due to the increasing difficulty of the optimization in
dimension r ∗ d. On plot on the right, at iteration 5, all the points are well spread on
the boundary. This is due to the much simpler optimization in dimension 2 (and not
4 ∗ 2). To conclude with this example, we would recommend to either use the heuristic
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optimization strategy (default) or, if the user wants an optimization in dimension r ∗ d,
to increase to value of optimcontrol$pop.size to a value of at least 100 ∗ r ∗ d.
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Figure 8: Probability of excursion after five iterations of the parallel timse criterion, with
two strategies for the optimization. New evaluated points are represented by circles.

5. Conclusion and perspectives

The R package KrigInv proposes sequential sampling strategies to estimate excursion
sets, probabilities of failure, or contour lines of a real valued expensive-to-evaluate func-
tion. Our goal in this tutorial was to make the package accessible to people who are
not familiar with kriging and to clearly emphasize the strengths and limitations of such
metamodel-based inversion methods. From an end user perspective, we would recom-
mend to use a sampling criterion and parameters that do an adapted trade-off between
performance of the criterion and computation time. If one evaluation of f takes only
a few seconds, pointwise criteria can provide quickly interesting results. On the other
hand, if evaluating f takes many hours we think that it is worth to spend a few minutes
for choosing carefully the points to evaluate with an integral criterion and a generous
budget for both efficient integration and optimization. Finally, if evaluating f is very ex-
pensive and several CPUs are available to evaluate f simultaneously at different points,
the user can take advantage of the parallel sampling criteria. In that last case, the
computational savings are usually very significant.

The current version of the KrigInv package can be further improved in different
ways. Allowing the user to use his own optimizer selecting the best points according to
the proposed criteria may provide more flexibility to advanced users. Sequential Monte
Carlo methods for computing numerical integrals might improve the performances of the
criteria involving integrals. Finally new criteria involving random set considerations are
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currently being studied (Chevalier et al., 2012b) and might be implemented in KrigInv
in the longer term.
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Appendix A. kriging basics and DiceKriging package

The goal of this section is to provide both a basic understanding of the kriging metamodel
and the use of the DiceKriging Roustant et al. (2012) package. In kriging we consider
that f is a sample realization of a Gaussian process ξ. A key property in this setting
is that, when n observations An of ξ are available, the conditional process ξ|An is still
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Gaussian. The unconditional covariance function k(., .) of ξ is assumed to be a known
symmetric positive definite function or kernel. The kriging mean at a point x ∈ X is
the best linear unbiased predictor of ξ(x) from the observations. It is given by a linear
combination of the observations:

mn(x) :=

n∑

i=1

λ
(n)
i (x)ξ(xi) (A.1)

where λ
(n)
i (x) is the so called kriging weight of the observation ξ(xi) for the prediction

of ξ(x) at time n. The conditional covariance from the n observations between two
points x and x′, known as kriging covariance, is denoted by kn(x,x

′), so that, finally,
ξ|An ∼ GP (mn, kn). In particular, for all x ∈ X, ξ(x) has a Gaussian distribution with
mean mn(x) and variance s2n(x) := kn(x,x). In simple kriging the unconditional mean
function m(.) of ξ is assumed to be equal to zero.

In the ordinary kriging setting, the mean function is assumed to be an unknown
constant µ. In that case the kriging means and covariances are given by:

mn(x) =µ̂+ k(x)⊤K−1(y − µ̂1) (A.2)

kn(x,x
′) =k(x,x′)− k(x)⊤K−1k(x′) +

(1− 1⊤K−1k(x))(1 − 1⊤K−1k(x′))1⊤K−11 (A.3)

where K is the n × n covariance matrix at the observations: Kij = k(xi,xj) and k(x)
is the vector of size n with ith entry equal to k(x,xi). 1 is the vector of size n with
components equal to one and µ̂ is the estimator of the trend from the n observations
y = (ξ(x1), . . . , ξ(xn))

⊤. Such estimator is:

µ̂ =
1⊤K−1y1⊤K−11 (A.4)

Note that µ̂ is generally not equal to the empirical mean of the observations. It would be
only if K is the identity matrix, i.e. if all the covariances between pairs of observations
were equal to zero.

The reader is referred to Roustant et al. (2012), section 2, to have the exact expres-
sions of the kriging mean and variance in the more general universal kriging setting.
The knowledge of these formulas is not mandatory as all the calculations are properly
performed in the DiceKriging package. Such package allows to calculate easily kriging
means and variances from the observations at any points x through the construction of
a km (kriging model) object. A basic example in R follows:

library(KrigInv) #load the KrigInv package. This also loads DiceKriging

set.seed(8) #for repeatability

n <- 9 #number of initial observations

fun <- branin

design <- data.frame(maximinLHS(n,k=2)) #initial design (a LHS)
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response <- fun(design)

model <- km(formula=~1, design = design, response = response,

covtype="matern3_2")

This example builds a km object in the ordinary kriging setting (through the argument:
formula = ˜ 1) from a total of 9 observations of the Branin-Hoo function, defined on
[0, 1]2. The design of experiments is a random Latin Hypercube and the covariance
kernel is here chosen to be a Matérn covariance (see: Roustant et al. (2012) section 2.3),
with parameters estimated by Maximum Likelihood (default option in the km function).
A km object contains many attributes and some of them are shown below.

> model@n #number of obs.

[1] 9

> model@X #design

X1 X2

[1,] 0.02691433 0.09051475

[2,] 0.73489353 0.95450509

[3,] 0.60823798 0.69764721

[4,] 0.32446329 0.48851542

[5,] 0.40901931 0.36662441

[6,] 0.98558763 0.30332389

[7,] 0.84909828 0.58394416

[8,] 0.18643957 0.78057086

[9,] 0.47438045 0.19057932

> model@y #responses

X1

[1,] 223.015625

[2,] 196.410178

[3,] 83.415296

[4,] 20.757648

[5,] 15.357283

[6,] 5.001443

[7,] 67.250818

[8,] 6.840793

[9,] 5.139093

> model@trend.coef #estimated value for beta

[1] 103.1385

> model@covariance@sd2 #cov. param.: variance of the stationary process

[1] 10314.56

> model@covariance@range.val #cov. param.: range parameters values

[1] 0.3874881 0.6214903
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As explained in this tutorial, the use of kriging allows to calculate easily an excursion
probability pn(x) := P (ξ(x) > T |An). In our example, at the point x = (0.5, 0.5) we
obtain:

T <- 80

x <- matrix(c(0.5,0.5),nrow=1)

obj <- predict(object=model,newdata=x,type="UK")

pnorm((obj$mean - T)/obj$sd)

[1] 0.01303135

The excursion probability at this point is approximately 1.3%. The pn(.) function can be
plotted using the R function print uncertainty. Figure A.9 is the output of the following
code:

print_uncertainty(model=model,T=T,cex.points=4,nlevels=4,

main="pn(x) everywhere",cex.main=5,cex.contourlab=4)

Figure A.9: Excursion probability calculated with kriging, from nine evaluations of f ,
with a threshold T = 80.

Appendix B. Some outputs of an inversion

We here would like to describe what the actual outputs of an inversion can be. Indeed, it
is obviously not enough to indicate, after having consumed the evaluation budget, what
the newly evaluated points are. The function print uncertainty has been coded to settle
this issue.
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This function is a wrapper of three functions, print uncertainty 1d, 2d and nd

which are called depending on the dimension of the domain X. The main feature of
this function is the plot of the function pn(.) on the whole domain X. Such task is not
difficult when d ≤ 2, but becomes more challenging when d > 2. A first example in
dimension one follows:

f <- function(x) return(x^2)

design <- matrix(c(0.1,0.3,0.4,0.9),ncol=1)

response <- f(design)

model1d <- km(formula=~1, design = design, response = response,

covtype="matern3_2")

print_uncertainty_1d(model=model1d,T=0.5,type="pn",

xlab="x",ylab="pn(x)",cex.lab=2,cex.points=3,

main="excursion probability",cex.main=2)

design.updated <- matrix(c(design,0.6,0.7,0.8),ncol=1)

response.updated <- f(design.updated)

model1d.updated <- km(formula=~1, design = design.updated,

response = response.updated,covtype="matern3_2")

print_uncertainty_1d(model=model1d.updated,T=0.5,type="pn",

xlab="x",ylab="pn(x)",cex.lab=2,cex.points=3,

main="updated excursion probability",cex.main=2,

new.points=3,pch.points.end=19)

Figure B.10 gives the output of such code. In this example in dimension d = 1, the
unknown function f is f(x) = x2. The threshold T is fixed to 0.5. As no domain X

is specified in the arguments of print uncertainty 1d, the default value for X is [0, 1]d.
The plots on the left are generated using the DiceView Richet et al. (2012) package and
give the kriging mean and confidence intervals on the whole domain X. These plots
help seeing our knownledge on the function f and and regions where f may exceed the
threshold T . The plots on the right give the value of the “uncertainty” on X. By default
the “uncertainty” is defined as the function pn(.), but other definitions can be set with
the argument type and are in Section 4. In the R example above we decide to do three
additional evaluations of f at points 0.6, 0.7, 0.8. The result is a better knowledge of
the excursion set {x ∈ [0, 1] : f(x) > 0.5} as one can see that, with these three new
evaluations, pn(x) is equal to 0 or 1 on almost all the domain.

An example in dimension d = 2 is already given in Figure A.9, on the Branin-Hoo
function. In dimension d > 2 it is not trivial to represent the value of pn(x) on the
whole domain X. Let us denote x = (x(1), . . . , x(d)). We decided to propose, with the
print uncertainty nd function, a pair plot with two possible options:
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Figure B.10: Two calls of the print uncertainty 1d function with two different km objects

• option=“mean”: For all possible pairs of components 1 ≤ i < j ≤ d we plot the
two dimensional function:

gij(u, v) =
1

PX({x : x(i) = u, x(j) = v})

∫

{x: x(i)=u,x(j)=v}
pn(x)PX(dx)

• option=“max”: For all possible pairs of components 1 ≤ i < j ≤ d we plot the two
dimensional function:

hij(u, v) = max
{x: x(i)=u,x(j)=v}

pn(x)

The output of the following R example, with a three dimensional function f , are
given on Figure B.11.

f <- function(x) return( branin(c(x[1],x[2]) )*x[3] )

n <- 50 #high number of evaluations
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T <- 80 #threshold

design <- data.frame(maximinLHS(n,k=3)) #initial design (a LHS)

response <- apply(X=design,MARGIN=1,FUN=f)

model3d <- km(formula=~1, design = design, response = response,

covtype="matern3_2")

print_uncertainty_nd(model=model3d,T=80,type="pn",option="max",

main="max excursion probability",cex.main=2,cex.lab=2,

levels=c(0.05,0.5,0.95),nintegpoints=100,resolution=30)

print_uncertainty_nd(model=model3d,T=80,type="pn",option="mean",

main="average excursion probability",cex.main=2,cex.lab=2,

levels=c(0.05,0.5,0.95),nintegpoints=100,resolution=30)

Note that the calculation of the gij and hij functions is quite computer intensive.
One can control the arguments nintegpoints to control the number of integration points
for computing the integral of gij (or to compute the max in hij) and resolution to control
the resolution of each image (each pixel corresponding to one calculation of the function
gij or hij).
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Figure B.11: Two calls of the print uncertainty nd function with two different options
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