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Dense classes of multivariate extreme value distributions

Anne-Laure Fougères Cécile Mercadier John P. Nolan

15 June 2012

Abstract

In this paper, we explore tail dependence modelling in multivariate extreme value distributions. The
measure of dependence chosen is the scale function, which allows combinations of distributions in a very
flexible way. The correspondences between the scale function and the spectral measure or the stable
tail dependence function are given. Combining scale functions by simple operations, three parametric
classes of laws are (re)constructed and analyzed, and resulting nested and structured models are discussed.
Finally, the denseness of each of these classes is shown.

Keywords: multivariate extreme value distribution; extremal dependence; max-stable; dependence function;
logistic distributions; models for multivariate extremes.

1 Introduction

Modelling the tail dependence is a main challenge in multivariate extreme value distributions. The studies in
this area started with the bivariate characterizations of Tiago de Oliveira [1958], Geffroy [1958], Sibuya [1960],
while multivariate representations were established by de Haan and Resnick [1977] and Pickands [1981]. In
this article, the focus is on parametric and semiparametric models of extreme value distributions. This topic
has been initiated by Gumbel [1960], Tiago de Oliveira [1980], Galambos [1987] and Tawn [1988]. Different
reviews of parametric multivariate extreme value models are given by Coles and Tawn [1991], Joe [1997],
Kotz and Nadarajah [2000] and Beirlant et al. [2004, Section 9.2.2], among others.

Our presentation will be done in terms of Fréchet margins, but other choices are possible and would lead
to equivalent expressions. To illustrate these choices through the literature, one can refer e.g. to Tiago de
Oliveira [1980] or Fougères et al. [2009], who worked with Gumbel marginal distributions, whereas de Haan
and Resnick [1977] or Klüppelberg and May [2006] chose Fréchet margins, and Pickands [1981] or Tawn [1988]
considered exponential margins.

The representation of multivariate extreme value distributions given by Pickands [1981] involves a spectral
measure which underlines the main directions of dependence with a natural interpretation. Later, Huang
[1992] introduced the so-called stable tail dependence function to model this dependence. It is entirely
determined by the spectral measure, and has several properties such as homogeneity and convexity, see e.g.
Beirlant et al. [2004, Section 8.2.2]. Other tools have been defined in the literature, as the Pickands [1981]
dependence function A in the bivariate setting.

In the present paper, a generalization of the stable tail dependence function is introduced, that will be
called the scale function. Both notions are close, and roughly speaking defined through the logarithm of
the cumulative distribution function. The main difference between these two measures of dependence is
that some information from the margins is contained in the scale function. For instance, the stable tail
dependence function evaluated at each unit basis vector is equal to one, whereas the scale function at the
unit basis vectors equals the corresponding margin scale. As a consequence, one may see the scale function as
an unnormalized version of the stable tail dependence function. At first glance, the notion of scale function
would seem perhaps unnatural. However, we have three reasons to work with this tool. The first one is that
it makes it easier to construct classes of multivariate extreme value distributions by combining other ones.
Renormalizing complicates these constructions and masks the essential structure. The second reason comes
from the estimation point of view. When one constrains the search to guarantee a (normalized) stable tail
dependence function, we force exact agreement at each unit axis vector. This is somewhat artificial, since in
any practical problem, the marginals are normalized based on a sample, and thus the scaling of components
is inexact. This enforced match at the margins might cause a poorer fit globally. The third reason is based
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on the result of de Haan [1978], who proved that for any vector following an extreme value distribution, its
max-projection along any direction is univariate Fréchet, and conversely. More precisely, one can check that
the scale of the univariate max-projection is given by the scale function evaluated at this direction. As a
consequence, the estimation of the dependence is reduced to a sequence of univariate estimations through the
estimation of max-projection scales. This topic will be addressed in a forthcoming companion paper. Note
that such a method was previously used (with min-projections and under exponential margins) by Pickands
[1981] and several other authors.

The main goal of this paper is to revisit already known multivariate extreme value models using their
scale functions, and to define new models by combining these scale functions. The focus is on parametric
and semiparametric classes that may be defined in any dimension, that are proved to be dense, and that are
computationally tractable. Dealing with models in high dimension induces inference difficulties, that can be
helpfully reduced by considering some parametric or semiparametric classes. A denseness property of such
classes is a valuable argument to counter the idea that parametric forms are too reductive. Three classes
of multivariate extreme value distributions are scrutinised: the well-known model obtained from discrete
spectral measures, the generalized logistic model and the piecewise polynomial spectral density model.

The rest of this paper is laid out as follows. Section 2 introduces the scale function and gives its properties
and connections with classical measures of dependence. Section 3 defines the three classes mentioned above,
states useful properties of these classes, and discusses resulting nested and structured models. A simple
intuitive way to quantify how close two multivariate extreme value distributions are to each other is described
in Section 4, where the three classes are shown to be dense. The last section contains all the proofs.

2 Joint dependence

In this section, we examine two different ways to describe the dependence in multivariate extreme value
models. The first one is the well-known spectral measure. The second is the scale function. We present their
definitions in the context of unnormalized Fréchet margins.

Throughout the paper, d represents the dimension and is assumed to be greater than or equal to two.
Let X = (X1, X2, . . . , Xd)

T be a d-dimensional random vector, with multivariate extreme value distribution
function denoted by G. We will assume X has Fréchet margins with a common shape parameter, so that

Gi(xi) = P(Xi ≤ xi) = exp

(
−

(
σi

xi − µi

)ξ
)

for any i = 1, . . . , d and any xi > µi, where the shape parameter ξ and the scales σi are some positive real
numbers and where the locations µi are real numbers.

2.1 Spectral measure

Let ‖·‖ denote any norm on R
d andW

d
+ be the positive simplex in R

d, that is to sayW
d
+ = {x ∈ R

d
+, ‖x‖ = 1}.

According to the Representation Theorem of Pickands [1981], there exists a unique finite positive measure
H on W

d
+ such that

G(x) = P(X ≤ x) = exp

(
−

∫

Wd
+

(
d∨

i=1

wi

(xi − µi)ξ

)
H(dw)

)
,

for any x > µ. The previous formula holds true for any choice of norm on R
d, so that the uniqueness of the

measure H is with respect to this choice. Thus for a given norm one can use the notation X ∼ Fr(ξ,µ, H(·)).
Note that the measure H corresponds to an unnormalized version of the spectral measure often used in the
literature. Indeed, we have ∫

Wd
+

wiH(dw) = σξ
i ,

whereas the usual normalized spectral measure H̃ is defined such that
∫

Wd
+

wiH̃(dw) = 1.
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See Lemma 1(d) to get the relationship between H and H̃. The introduction of this unnormalized spectral
measure is motivated by the fact that it is more convenient to construct and combine classes of multivariate
extreme value distributions as we do in this paper.

When there is no ambiguity we drop the dependence on d and write just W+ for W
d
+. The change of

norm formula is ∫

W
‖·‖a
+

f(w)H‖·‖a
(dw) =

∫

W
‖·‖b
+

f

(
w

‖w‖a

)
‖w‖a
‖w‖b

H‖·‖b
(dw).

See Beirlant et al. [2004, page 264].

2.2 Scale function

We define on R
d
+ the scale function as follows

σ(u) =

(∫

W+

(
d∨

i=1

wiu
ξ
i

)
H(dw)

)1/ξ

, (1)

which allows to write the distribution function G as

G(x) = P (X ≤ x) = exp
(
−σξ((x− µ)−1)

)
, (2)

for any x > µ. This shows that the only way that the spectral measure enters into the distribution of X is
through the scale function. As a consequence, the notation X ∼ Fr(ξ,µ, σ(·)) can be used equivalently to
X ∼ Fr(ξ,µ, H(·)).

As already noticed in the introduction, the use of the scale function is motivated by several arguments.
Since we do not have normalization constraints, the combination or construction of classes of multivariate
extreme value distributions becomes simpler. Another argument comes from what we call max-projection.
Assume that the locations of the margins are all equal to zero, so that we focus on multivariate extreme value
distribution Fr(ξ,µ = 0, σ(·)). For any u = (u1, . . . , ud)

T ∈ R
d
+ \ {0}, define the univariate max projection

M(u) =
d∨

i=1

uiXi. (3)

Then, for all t > 0 equation (2) implies that

P(M(u) ≤ t) = P(u1X1 ≤ t, . . . , udXd ≤ t) = exp
(
−t−ξσξ(u)

)
,

which means that M(u) has a univariate Fréchet distribution Fr(ξ, µ = 0, σ(u)). This shows efficiently how
the dependence measure in a d-dimensional context may be reduced to a collection of one dimensional scale
values (for each u).

Remark 1.
The argument given above was shown by de Haan [1978], who proved the following equivalence: X is a
random vector such that max-projections (3) are univariate Fréchet for all u ∈ [0,∞)d \ {0} if and only if X
is multivariate Fréchet. This will be a useful tool throughout the proofs of the paper.

Next we express the total mass of the spectral measure in terms of the scale function. The result depends
on the norm chosen for the unit simplex. For the ℓ1-norm, the simplex is W+ = {w ∈ [0, 1]d,

∑d
j=1 wj = 1}

and the total mass of the spectral measure is

H(W+) =

∫

W+

1H(dw) =

∫

W+

d∑

j=1

wjH(dw) =

d∑

j=1

∫

W+

wjH(dw) =

d∑

j=1

σξ
j .

For the ℓ∞-norm, W+ = {w ∈ [0, 1]d,maxj=1...,d wj = 1}, so
∨d

j=1 wj = 1 and thus

H(W+) =

∫

W+

1H(dw) =

∫

W+

d∨

j=1

wj H(dw) = σ(✶)ξ.
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For a function h : Rd → R and a setB = {i1, i2, . . . , ik} ⊂ {1, 2, . . . , d}, define ∂|B|h/∂Bu = ∂kh/∂ui1 · · · ∂uik .
Using this notation, the following result expresses the density of a multivariate Fréchet distribution in terms
of the scale function.

Proposition 1.
Let X ∼ Fr(ξ,µ = 0, σ(·)). If ∂dσ/∂u1 · · · ∂ud exists, then X has a density g(x), and that density is given by

g(x) = G(x)




d∏

j=1

xj




−2
∑

π∈Π

(−1)|π|+d
∏

B∈π

∂|B|σξ

∂Bu
(x−1), x > 0 ,

where Π is the set of all partitions of {1, . . . , d} and the product is over all of the blocks B of a partition
π ∈ Π. The number |π| denotes the number of blocks of the partition and the cardinality of each block is
denoted by |B|.

Remark 2.
An alternative expression of the density is

g(x) = G(x)D12···d(x),

where Dj(x) := −∂σξ(x−1)/∂uj = ξx−2
j σξ−1(x−1)∂σ/∂uj(x

−1) for j = 1, . . . , d and the D terms with
multiple subscripts are defined recursively by D12···k(x) = D12···(k−1)(x)Dk(x) + ∂D12···(k−1)(x)/∂uk. Indeed,
proceed by recursive differentiation:

∂G(x)/∂x1 = ∂ exp(−σξ(x−1)/∂x1 = G(x)D1(x) .

If ∂k−1G(x)/∂x1 · ∂xk−1 = G(x)D12...(k−1)(x) then

∂kG(x)/∂x1 · ∂xk = G(x)Dk(x) +G(x)∂D12...(k−1)(x)/∂xk = G(x)D12...k(x) .

2.3 Links with classical tools and properties

In the following lines, we will focus on multivariate extreme value distributions with µ = 0. A dependence
measure often used in the literature is the so-called stable tail dependence function ℓ(·) introduced by Huang
[1992]. As already mentioned in the introduction, we will prefer to make use of the scale function σ(·).
Indeed, in addition to the statistical arguments, the construction of new models is simplified by using σ(·)
instead of ℓ(·). The link between the two functions is given by the following relation

σ(u1, · · · , ud) = ℓ1/ξ
(
(σ1u1)

ξ, · · · , (σdud)
ξ
)
,

for each u ∈ R
d
+. Note in particular that if X has standard Fréchet margins with shape parameter ξ = 1,

then σ(·) and ℓ(·) are the same. Also, V (u) = σξ(u) is the well known exponent function of de Haan and
Resnick [1977]. It will sometimes be simpler to visualize the ξ-normalized version of σ defined by

σ⋆(u) = σξ(u1/ξ) =

∫

W+

(
d∨

i=1

wiui

)
H(dw).

As will be seen later, this is the scale function of the Fréchet random vector Xξ, which has shape parameter
ξ = 1 and the same spectral measure H as X (see Lemma 1(b)). The following properties of the scale function
are inherited from those of ℓ(·) (see Beirlant et al. [2004, page 257] for a review).

(σ1) σ(r ·) = rσ(·), so that knowing σ(·) on W+ determines σ(·) everywhere;

(σ2) σ(ei) = σi is the scale of Xi when ei is the i-th standard unit vector;

(σ3) (σξ
1u

ξ
1 ∨ · · · ∨ σξ

du
ξ
d)

1/ξ ≤ σ(u) ≤
(
σξ
1u

ξ
1 + · · ·+ σξ

du
ξ
d

)1/ξ
;

(σ4) σ⋆(·) is convex.
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Properties (σ1 – σ4) are valid for any choice of norm on R
d. They characterize a scale function in dimension

d = 2, but not when d > 2.

Several basic operations allow us to combine multivariate extreme value distributions and stay within the
class of multivariate extreme value distributions. In the following results, we describe how scale functions and
spectral measures combine when this is done. While several of these facts are known, it seems useful to collect
them in one place, expand the list, and see how the scale function is a useful way to represent combinations
of max-stable laws. For two random vectors Y and Z the notation Y ∨ Z is used for the componentwise
maximum.

Lemma 1.
Consider Y a d-dimensional Fr(ξY, µY, σY(·)) and Z a k-dimensional Fr(ξZ, µZ, σZ(·)) two independent
Fréchet random vectors.

(a) Assume d = k and X = Y ∨Z with ξY = ξZ = ξ and µY = µZ = 0. Then, X ∼ Fr(ξX, µX, σX(·)) with
ξX = ξ, µX = 0,

HX = HY +HZ

and for u ∈ R
d
+,

σX(u) = (σξ
Y(u) + σξ

Z(u))
1/ξ.

(b) Assume X = Yp with µY = 0. Then, X ∼ Fr(ξX, µX, σX(·)) with ξX = ξY/p, µX = 0,

HX = HY

and for u ∈ R
d
+,

σX(u) = (σY(u1/p))p.

(c) Assume X = cY with scalar c > 0. Then, X ∼ Fr(ξX, µX, σX(·)) with ξX = ξY, µX = cµY,

HX = cξYHY

and for u ∈ R
d
+,

σX(u) = c σY(u).

(d) Assume X = cY = (c1Y1, . . . , cdYd) with vector c having all ci > 0 and µY = 0. Then one has
X ∼ Fr(ξX, µX, σX(·)) with ξX = ξY, µX = 0 and for u ∈ R

d
+,

σX(u1, . . . , ud) = σY(c1u1, . . . , cdud).

If Y has a discrete spectral measure HY(·) =
∑m

j=1 hY,jδwY,j
(·), then X has a discrete spectral measure

HX(·) =
∑m

j=1 hX,jδwX,j
(·), where hX,j = ‖vj‖hY,j, wX,j = vj/‖vj‖ with vj = (cξ1wY,j,1, . . . , c

ξ
dwY,j,d).

If Y has spectral density hY(·) on W+ defined here for the ℓ1-norm, then HX is also continuous with
density

hX(w) = ‖c−ξw‖−(d+1)

(
d∏

i=1

ci

)−ξ

hY

(
c−ξw

‖c−ξw‖

)
.

If the spectral measure of Y is a sum of a continuous and a discrete part, then the linear transformation
cY acts on each piece separately according to the rules above.

(e) Assume X = S1/ξYY where S is a positive β-stable random variable such that E[e−tS ] = exp(−tβ).
Assume also that S and Y are independent and that µY = 0. Then X ∼ Fr(ξX, µX, σX(·)) with
ξX = βξY, µX = 0 and σX(·) = σY(·).

(f) Assume X = (YT ;ZT )T with ξY = ξZ = ξ and µY = µZ = 0. Then X is a (d + k)-dimensional

Fr(ξ,µ = 0, σX(·)) with σξ
X(u) = σξ

Y(u1, . . . , ud) + σξ
Z(ud+1, . . . , ud+k) for each u ∈ R

d+k
+ and spectral

measure HX = HY ×HZ.
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The combination of (b) and (d) can be used for standardizing: if Y ∼ Fr(ξ, 0, σY(·)) then the random vector
X =

(
(Y1/σY(e1))

ξ, . . . , (Yd/σY(ed))
ξ
)
has standard Fréchet margins and its scale function is a stable tail

dependence function.

The next result generalizes Lemma 1(a) when Y and Z are dependent.

Lemma 2.
Assume V = (V1, . . . , V2d)

T ∼ Fr(ξV,0, σV(·)) and (YT ;ZT ) := (V1, . . . , Vd, Vd+1, . . . , V2d). Then X :=
Y ∨ Z ∼ Fr(ξX,0, σX(·)), where ξX = ξV and σX(u) = σV((uT ;uT )T ) for each u ∈ R

d
+.

Moreover, if V has a discrete spectral measure HV(·) =
∑m

j=1 hjδwj
(·) on W

2d
+ , then the spectral measure for

X is discrete with

HX(·) =

m∑

j=1

h̃jδw̃j
(·),

where w̃j = tj/‖tj‖ ∈ W
d
+, h̃j = hj‖tj‖ and tj = (wj,1

∨
wj,d+1, wj,2

∨
wj,d+2, . . . , wj,d

∨
wj,2d)

T ∈ [0, 1]d.

For a d-by-m matrix A and a vector v ∈ R
m, define the max product of A and v to be the vector in R

d

given as follows

A×max v :=
(
∨m
j=1a1jvj , . . . ,∨

m
j=1adjvj

)T
. (4)

Lemma 3.
Let Y be an m-dimensional Fr(ξ,0, σY(·)) random vector and let A be a d-by-m matrix of nonnegative
real numbers. Then X = A ×max Y is a d-dimensional Fr(ξ,0, σX(·)) with σX(u) = σY(AT ×max u)
for each u ∈ R

d
+. If Y has a discrete spectral measure HY(·) =

∑n
j=1 hjδwj

(·) on W
m
+ , then X has

the discrete spectral measure HX(·) =
∑n

j=1 h̃jδw̃j
(·) on W

d
+, where w̃j = tj/‖tj‖, h̃j = hj‖tj‖, and

tj = (∨m
i=1wj,ia

ξ
1i,∨

m
i=1wj,ia

ξ
2i . . . ,∨

m
i=1wj,ia

ξ
di)

T ∈ R
d.

Remark 3.
The operation given in Lemma 3 is another way to obtain several results from Lemma 1 and 2. More
specifically,

- Taking A = diag(c1, . . . , cd) gives A×max Y = (c1Y1, . . . , cdYd) and Lemma 3 implies Lemma 1(d).

- Letting V be 2d-dimensional and A = (I; I) be a d-by-2d matrix, A×max V gives Lemma 2.

- If XT = (YT ;ZT ) where Y and Z are independent, setting A = (I; I) be a d-by-2d matrix, then
A×max X = Y ∨ Z, and Lemma 3 combined with Lemma 1(f) implies Lemma 1(a).

- More general combinations are possible. As an illustration, consider two independent Fréchet random
vectors with same shape parameter, namely Y of dimension d and Z of dimension k. Combining Lemma
1(f) and Lemma 3 shows that for positive constants ci, the random vector defined by




c1 0 · · · 0 0 0 0 · · · 0
0 c2 · · · 0 c3 0 0 · · · 0
1 1 · · · 1 1 1 1 · · · 1
0 0 · · · 0 0 0 0 · · · c4
0 c5 · · · 0 0 c6 c7 · · · 0




×max

(
Y
Z

)
=




c1Y1
c2Y2 ∨ c3Z1(

∨d
i=1Yi

)
∨
(
∨k
j=1Zj

)

c4Zk

c5Y2 ∨ c6Z2 ∨ c7Z3




follows a 5-dimensional Fréchet distribution.

Since both triplets (ξ, µ,H) and (ξ, µ, σ) characterize the multivariate extreme value distribution G, one
can wonder about the link between these representations. If the spectral measure H is known, then the scale
σ(·) is known by (1). Conversely, knowing σ(·) determines the spectral measure H, but there is no explicit
formula for H in general. However, in specific cases (e.g the discrete spectral model) one can recognize the
form of σ(·) and identify H.

In the bivariate case, we introduce the unnormalized Pickands’ function by

B(t) = σ(1− t, t) , (5)
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for each t ∈ [0, 1], while the ξ-normalized definition is

B⋆(t) = σ⋆(1− t, t). (6)

In this case, we identify the simplex W+ with the interval [0, 1]. The next result states the extension of
Beirlant et al. [2004, Equation (8.47)] to our unnormalized framework. Note that it uses arguments mainly
contained in Pickands [1981, Theorem 3.1].

Lemma 4.
Assume that X is Fr(ξ,µ = 0, H(·)) or Fr(ξ,µ = 0, σ(·)) for d = 2. Then for t ∈ (0, 1)

H([0, t]) = B⋆′(t) + σξ
1 ,

where B⋆′ should be interpreted as the right derivative of the function defined by (6). The point masses are

H({0}) = B⋆′(0) + σξ
1 ,

H({1}) = −B⋆′(1) + σξ
2.

Before ending the section, we present a way to simplify the computation of the density of differentiable
multivariate Fréchet models by reducing to the case ξ = 1.

Lemma 5.
Let Y ∼ Fr(ξ,µ = 0,HY) and assume the existence of a density gY(·). Then the random vector X = Yξ is
Fr(1,µ = 0,HY) and it has density for x > 0 given by

gX(x) = ξ−d

(
d∏

k=1

xk

)(1/ξ)−1

gY(x1/ξ) .

3 Classes of multivariate extreme value distributions

In this section, we describe several classes of multivariate extreme value distributions. Among these models
only one is non differentiable; two can be easily simulated and all of them lead to parametric or semi-
parametric forms for the scale function. We also study the closure property of these models under the
operations introduced in Lemmas 1, 2 and 3. Analogous results for general multivariate extreme value
distributions can be found e.g. in [Resnick, 1987, page 253] and [Beirlant et al., 2004, page 267].

3.1 Discrete spectral measures

Max-stable distributions with discrete spectral measures have been consider by multiple authors (see e.g.
Deheuvels [1983] or Einmahl et al. [2011]), and this section is mostly a collection of previously known facts.
At the end of this subsection, we discuss some reasons why it is worth examining this class. Letm be a positive
integer, {h1, . . . , hm} some non-negative real numbers and wj = (wj,1, . . . , wj,d)

T for j = 1, . . . ,m elements
of the simplex W+ for a given norm ‖ · ‖. If the spectral measure is discrete, say H(·) =

∑m
j=1 hjδwj

(·), then

the scale functions are, for u ∈ R
d
+,

σ(u) =




m∑

j=1

hj

(
∨d
i=1wj,iu

ξ
i

)



1/ξ

and

σ⋆(u) =

m∑

j=1

hj
(
∨d
i=1wj,iui

)
.

The model based on discrete spectral measure is the most tractable and works in any dimension. In Propo-
sition 4 of Section 4 we give a simple proof of the fact that this class is dense.
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The vertices of the piecewise linear scale function have value

σ(wk) =




m∑

j=1

hj

(
∨d
i=1wj,iw

ξ
k,i

)



1/ξ

,

for each k = 1, · · · ,m, which can be written as σ(wk)
ξ =

∑m
j=1 hjMk,j for Mk,j := ∨d

i=1wj,iw
ξ
k,i. This

directly gives a linear system for the powered-values of the scale functions at the vertices in terms of the
weights: 



σ(w1)
ξ

σ(w2)
ξ

...
σ(wm)ξ


 =M




h1
h2
...
hm




where M is the m-by-m matrix M = [Mk,j ]. If the matrix M is invertible, knowing σξ(·) at the vertices
completely determines the discrete spectral measure.

Lemma 6.
The class of multivariate Fréchet distributions with discrete spectral measures is closed under the operations
(a), (b), (c), (d) and (f) of Lemma 1, and under the operations of Lemmas 2 and 3.

As an example of multivariate Fréchet distribution with discrete spectral measure, consider a single point
mass, thus σ⋆(u) = h1(∨

d
i=1w1,iui). In a bivariate setting, σ⋆(·) restricted to the unit simplex is the V-shaped

function B⋆(t) = σ⋆(1− t, t). The function B⋆ has one vertex at the point t = w1,1, see Figure 1 (a). When
the dimension is three or more the graph of the function is still a V-shaped function, i.e. a flat-sided cone with
vertex at a point. When there are m point masses, the function σ⋆(·) is the sum of m V-shaped functions.
In particular, if the dimension is d = 2 it is piecewise linear with vertices at (wj , σ

⋆(wj)) and end points
(ei, σ

⋆(ei)), i = 1, . . . , d. See Figure 1 (b).
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(a) (b)

Figure 1: The ξ-normalized Pickands’ function B⋆ with upper and lower bounds from condition (σ3).
(a) d = 2, m = 1, w1 = (0.4, 0.6)T and h1 = 1.

(b) d = 2, m = 3, w1 = (0.2, 0.8)T , w2 = (0.5, 0.5)T , w3 = (0.9, 0.1)T , h1 = 1, h2 = 3 and h3 = 2.

One nice feature of the discrete model for the multivariate extreme value distribution is that it is straight-
forward to simulate. Let Z = (Z1, . . . , Zm)T be composed by m independent and identically distributed
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univariate Fréchet(ξ, µ = 0, σ = 1) and let A = [aij ] be a d-by-m matrix with non-negative entries. Then it
can be seen easily that

X := A×max Z =
(
∨m
j=1a1jZj ,∨

m
j=1a2jZj , . . . ,∨

m
j=1adjZj

)T
(7)

is Fr(ξ,µ = 0, H(·)) with discrete spectral measure H having mass hj = ‖aξ·j‖ at point wj = aξ·j/hj , where
a·j denotes the j’s column of A. See also Stephenson [2003, Theorem 1] for similar considerations. The
discrete spectral measure is thus a model that can be constructed from a sequence of m independent factors
Z1, . . . , Zm. In applications, this model arises as the attractor of the so-called “factor model”, often used
in practice (see for example Einmahl et al. [2008, 2011] for more details). One can e.g. think of d lines of
insurance, say X1, . . . , Xd, where each line may be affected in different ways by storms, the severity of which
is modeled by Zi, for i = 1, . . . ,m. It may also be possible in certain situations to find a small number of
factors Z1, . . . , Zm that give a good description of a high dimensional problem, i.e. m << d.
The discrete spectral measure model allows a nice understanding of the main directions of dependence. As
shown in the previous section, one can frequently get closed form expressions for combinations of max-stable
vectors with discrete spectral measures. This allows one to explicitly see how some operation affects the
spectral measure, which may not be clear for a general spectral measure.
The scale function σ(·) will not be differentiable if H is a discrete spectral measure with mass on the interior
of W+, so the density g(·), obtained by differentiating (2), will not exist. The non-differentiability of the
scale function causes the cumulative distribution function G to have “creases” along the rays where there
are point masses, which is why the density does not exist. Hence discrete spectral measures correspond to
non-smooth distributions, which may not be appropriate for some problems. The next two classes of models
lead to smooth scale functions, and hence they will have a density g(·).

3.2 Generalized logistic mixtures

Several models have been defined combining positive stable distributions and extreme value distributions.
For earlier results, see Coles and Tawn [1991, §4.2], as well as Hougaard [1986], Crowder [1989], Tawn [1990].
More recently, Fougères et al. [2009] unified the results in the previous papers and used them to construct
structured models, e.g. max-stable time series. The key point is to produce dependent Fréchet distributions
by mixing independent Fréchet components with independent sum-stable scales. In the latter paper, the
focus is on the fact that in these models, both conditional and unconditional distributions are extreme value
distributions. The following result allows more general dependence in the terms of the mixture distribution.
Note that the results Fougères et al. [2009] were mainly stated in terms of Gumbel margins and it assumed a
restricted form for the sum-stable vector; here we use Fréchet margins and an arbitrary positive sum-stable
vector.
In the following, a positive multivariate stable distribution with index α is the law of a positive random
vector S = (S1, . . . , Sd)

T with Laplace transform

E[e−<u,S>] = exp(−cαγ
α(u)) ,u ∈ R

d
+

where cα = sec(πα/2) and

γα(u) =

∫

S+

< u, s >α Λ(ds) . (8)

In the previous display, α ∈ (0, 1) and S+ is the first orthant of the unit sphere in the Euclidean norm, and Λ
denotes a positive and finite measure on S+. We will say that S = (S1, . . . , Sd)

T is a positive α-stable random
vector with sum-stable spectral measure Λ. See Samorodnitsky and Taqqu [1994, Proposition 1.2.12]. Note
that each margin of S is a positive α-stable random variable with E[e−tSj ] = exp(−cαt

αγα(ej)). Moreover,
note that any positive linear combination of components of S is a univariate positive α-stable random variable.

Theorem 1.
Let Z1, . . . , Zd be independent and identically distributed univariate Fréchet (ξ, µ = 0, σ = 1), and Z =
(Z1, . . . , Zd)

T . Let α ∈ (0, 1) and S = (S1, . . . , Sd)
T be a positive α-stable random vector with sum-stable

spectral measure Λ that is independent of Z1, . . . , Zd. Then the random vector

X := S1/ξ · Z = (S
1/ξ
1 Z1, . . . , S

1/ξ
d Zd)

T (9)
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is Fr(αξ,µ = 0, σ(·)) with scale function for u ∈ R
d
+

σαξ(u) = cαγ
α(uξ), (10)

where the right hand side is given by (8).

The class of multivariate extreme value distributions with scale function defined by (10) will be called a
generalized logistic mixture or generalized logistic model. Several properties may be pointed out. It is clear
that it is available for any dimension. This model is differentiable and we state the general expression of its
density in Proposition 2. Moreover we prove that it is a dense subset (possibly with only a few terms) in
Theorem 5. The Gumbel case of Fougères et al. [2009] is obtained if we take logarithms of each component.
In the Fréchet setting, the stable terms Si are random scales of the original Zi. In the Gumbel case we have

Vi := logXi =Wi +
1

ξ
logSi,

for i = 1, . . . , d, where Wi = logZi are independent and Gumbel distributed. Several interpretations of this
Gumbel shifted model are given in Fougères et al. [2009].

Remark 4.
It is interesting to examine the result stated in Theorem 1 in terms of the margins. Consider one of the

components, say Z1S
1/ξ
1 . The tail behaviors of the two terms are P(Z1 > x) ∼ x−ξ and P(S

1/ξ
1 > x) ∼ x−αξ.

By Breiman’s lemma (see e.g. Resnick [2007, section 7.3.2]), the heavier tail dominates in the product, so
we get X1 in the domain of attraction of a Fréchet distribution with index αξ, since α < 1. The fact that we
get exactly a Fréchet law is a pleasing algebraic fact. If we started with terms with the same tails, but not
exactly of the same type, the product would be in the domain of attraction of a Fréchet law with index αξ.

By construction, one can simulate generalized logistic vectors X as soon as one can simulate positive α-
stable random vectors S. We know how to simulate positive α-stable random vector S with discrete spectral
measure Λ (a dense subset); see Modarres and Nolan [1994]. If the stable random vector S has a discrete
sum-stable spectral measure Λ(·) =

∑m
j=1 λjδsj (·), then the scale function of Fréchet X is, for u ∈ R

d
+,

σ(u) =


cα

m∑

j=1

λj〈u
ξ, sj〉

α




1/(αξ)

. (11)

The generalized logistic model with discrete sum-stable spectral measure Λ recovers several models intensively
studied in the literature. The best known classes are the logistic model and the mixed model, respectively
introduced by Gumbel [1960] and Tawn [1988]. Note that our definitions may slightly differ from those of the
literature. This comes from the normalization. When the margins are normalized, mass points are added on
the axes (corresponding to independent components) so that the scale of each margin is one.

• In the case of one mass only, the above reduces to σ(u) = (
∑d

i=1(uivi)
ξ)1/ξ where vi = cαλ1s

1/ξ
1,i . For

ξ = 1/α, we identify the scale function of an (unnormalized) simple asymmetric logistic distribution.
The particular mass λ1 = dα/cα and location s1 = 1/d(1, . . . , 1)T give the symmetric logistic case:

σ(u) = (
∑

i u
1/α
i )α.

• When several point masses are present in the measure Λ (m > 1), the scale function (11) is a mixture
of asymmetric logistic terms.

• When we take a more general sum-stable spectral measure Λ, e.g. with a continuous density, we obtain
a larger class of asymmetric logistic mixtures.

This subclass of multivariate Fréchet distributions is stable under some transformations. More precisely, one
gets the following result.

Lemma 7.
The class of generalized logistic distributions is closed under the operations (a), (b), (c), (d) and (e) of
Lemma 1.
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Remark 5.
In all generality the generalized logistic mixtures is not closed under the operation (f) of Lemma 1. However,
consider X = (YT ;ZT )T with ξY = ξZ = ξ and two generalized logistic mixtures given by Y = S1/ξU ·U and
Z = T1/ξV ·V. In the special case where ξU = ξV and αS = αT, (S

T ;TT )T is a (d+ k)-dimensional positive
αS-stable random vector with stable spectral measure ΛS × ΛT, so that X is a generalized logistic mixture.

The generalized logistic model is differentiable, as already pointed out in Coles and Tawn [1991, §4.1] for
the asymmetric logistic mixture model. The form of the density function is specified in the next result.

Proposition 2.
Under the assumption of Theorem 1, X is a continuous random vector with cumulative distribution function
G(x) = exp

(
−cαγ

α(x−ξ)
)
for x > 0. Its density is

g(x) =

{
∑

π∈Π

(−1)|π|+d
∏

B∈π

∂|B|I(x)

∂Bx

}
×G(x) , (12)

with
∂|B|I(x)

∂Bx
:= cα

α!

(α− |B|)!
ξ|B|

∫

S+

(
〈x−ξ, s〉α−|B|

∏

i∈B

six
−ξ−1
i

)
Λ(ds) ,

where in the expression (12) the sum is over Π the set of all partitions of {1, . . . , d} and the product is over
all of the blocks B of a partition π ∈ Π. The number |π| denotes the number of blocks of the partition and
the cardinality of each block is denoted by |B|.

The previous result is now illustrated for the discrete sum-stable spectral measure: Λ(·) =
∑m

j=1 λjδsj (·),

where sj = (sj1, . . . , sjd)
T ∈ S+. In this case, for each x > 0, one has

∂|B|I(x)

∂Bx
= cα

α!

(α− |B|)!
ξ|B|

m∑

j=1

λj〈x
−ξ, sj〉

α−|B|
∏

i∈B

sji x
−ξ−1
i .

We restrict in the following to the 2-dimensional model of generalized logistic mixtures in order to establish
the relation between the stable spectral measure Λ and the max-stable spectral measure H, or its density
denoted h.

Proposition 3.
Let X be a bivariate generalized logistic random vector defined by (9). The density of the associated spectral
measure H is given, for any t ∈ [0, 1], by

h(t) = cα(1/α− 1)(t(1− t))1/α−2

∫

S+

((1− t)1/αs1 + t1/αs2)
α−2s1s2Λ(ds).

When Λ is discrete with a single point mass at s = (s1, s2) with mass λ we obtain

h(t) = cαλ(1/α− 1)(t(1− t))1/α−2((1− t)1/αs1 + t1/αs2)
α−2s1s2.

This corresponds to the bivariate asymmetric logistic model of Tawn [1988] with ψ
1/α
i = cαsiλ for i = 1, 2.

It does not appear to be possible to allow dependence of the Fréchet terms Z1, . . . , Zd in the Theorem 1
in general. However, we present now a particular case, when S is totally dependent, where dependence in the
Zi’s is allowed. Let Z = (Z1, . . . , Zd)

T be a multivariate Fréchet Fr(ξ,µ = 0, σZ(·)). Let S = Sv where S is
a positive α-stable random variable such that E[e−tS ] = exp(−tα) and v = (v1, . . . , vd)

T is a deterministic
vector of S+. Then X defined by (9) is Fr(αξ,µ = 0, σX(·)) with, for each u ∈ R

d
+,

σαξ
X (u) = σαξ

Z (v
1/ξ
1 u1, . . . , v

1/ξ
d ud).

This results from the combination of the operations (d) and (e) of Lemma 1.
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3.3 Piecewise polynomial spectral densities

Klüppelberg and May [2006] consider polynomials defined on the whole simplex as models for the bivari-
ate Pickands’ function. In contrast, here we consider spectral measures H(·) in arbitrary dimensions that
are absolutely continuous with densities h(·) that are piecewise polynomial. This model has five attractive
properties. First, using a piecewise definition allows one to spread mass locally, not forcing a global descrip-
tion. Second, it has tractable computational properties. Third, we can estimate it even in high dimension
(if the number of pieces is not too large). Fourth, it gives a dense family in arbitrary dimensions. And
finally, this model is smooth in the sense that its distributions have densities. An open question is to find an
interpretation of this class, and to find a way to simulate from it.

In two dimensions, one can explicitly compute the scale function for a piecewise polynomial spectral
density. We identify again the simplex with the interval [0, 1]. We start with a monomial wk on an interval.
Let k ∈ (−1,∞) (not necessarily an integer), 0 ≤ a < b ≤ 1 and define for u ∈ [0, 1]

αk(u; a, b) =

∫ b

a

[(1− u)w ∨ u(1− w)]wkdw.

Lemma 8.
The function αk has the following expression

αk(u; a, b) =





c1(1− u) u ≤ a

c2u
k+2 − c3u+ c4 a < u < b

c5u u > b,

where

c1 = c1(k, a, b) =
bk+2 − ak+2

k + 2
,

c2 = c2(k) =
1

k + 1
−

1

k + 2
, c3 = c3(k, a, b) = c1(k, a, b) +

ak+1

k + 1
, c4 = c4(k, b) =

bk+2

k + 2
,

c5 = c5(k, a, b) =
bk+1 − ak+1

k + 1
− c1.

Let us make some comments on the previous coefficients. The first remark is that all the ci’s are positive.
Also, there are relationships among these parameters so that the function αk(·; a, b) is continuous:

{
αk(a

−; a, b) = αk(a
+; a, b) = c1(1− a)

αk(b
−; a, b) = αk(b

+; a, b) = c5b

and differentiable:
{
α′
k(a

−; a, b) = α′
k(a

+; a, b) = −c1

α′
k(b

−; a, b) = α′
k(b

+; a, b) = c5.

The second derivative of αk(·; a, b) does not exist at the join points a and b, whatever the value of k. Visually,
αk(·; a, b) is a cone, with straight line segments to the left of a and to the right of b, and a rounded vertex
given by a power function of degree (k + 2) in the interval [a, b]. Note that if k ≥ 0, the scale function is
smooth and hence the corresponding bivariate extreme value distribution has a density.
Using these terms as building blocks, we can explicitly evaluate the scale function for a piecewise polynomial
spectral density. Let 0 ≤ a1 < a2 < · · · < am+1 ≤ 1 and w ∈ [0, 1]. If a piecewise polynomial spectral density
is given by

h(w) =

m∑

j=1

pj(w)1(aj ,aj+1](w) =

m∑

j=1

(
N∑

k=0

bk,jw
k

)
1(aj ,aj+1](w) ,

then the scale function is, for each (u1, u2) ∈ R
2
+,

σ(u1, u2) =




m∑

j=1

{
N∑

k=0

bk,j

(
uξ1 + uξ2

)
αk

(
uξ2

uξ1 + uξ2
; aj , aj+1

)}


1/ξ

.
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Figure 2 illustrate piecewise linear spectral densities h and the corresponding ξ-normalized Pickands’ functions

B⋆(t) =
∑m

j=1

{∑N
k=0 bk,jαk (t; aj , aj+1)

}
.
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Figure 2: A piecewise linear spectral density (left) and the corresponding Pickands’ function B⋆ (right) for
m = 5, N = 1, a = (0, 0.2, 0.4, 0.6, 0.8, 1)T , b0,· = (0.6, 0,−0.4, 0.2,−1)T and b1,· = (−3, 0, 1, 0, 1.5)T . Note
that B∗(t) is piecewise cubic on (0,0.2), (0.4,0.6) and (0.8,1); quadratic on (0.6,0.8); and linear on (0.2,0.4).

The explicit formula for the scale function gives an explicit formula for the distribution function. This in
turn gives an explicit formula for the density g(x). This can be done directly, or using Proposition 1. In the
case ξ = 1 and µ = 0, the expressions are:

G(x1, x2) = exp(−σ(x−1
1 , x−1

2 ))

g(x1, x2) =
∂2G

∂x1∂x2
(x) =

G(x)

x21x
2
2

[
∂σ

∂u1
(x−1

1 , x−1
2 )

∂σ

∂u2
(x−1

1 , x−1
2 )−

∂2σ

∂u1∂u2
(x−1

1 , x−1
2 )

]

where σ(u1, u2) =

m∑

j=1

N∑

k=0

bk,j (u1 + u2)αk

(
u2

u1 + u2
; aj , aj+1

)
,

∂σ

∂u1
(u1, u2) =

m∑

j=1

N∑

k=0

bk,j

[
αk

(
u2

u1 + u2
; aj , aj+1

)
−

u2
u1 + u2

α′
k

(
u2

u1 + u2
; aj , aj+1

)]
,

∂σ

∂u2
(u1, u2) =

m∑

j=1

N∑

k=0

bk,j

[
αk

(
u2

u1 + u2
; aj , aj+1

)
+

u1
u1 + u2

α′
k

(
u2

u1 + u2
; aj , aj+1

)]
,

∂2σ

∂u1∂u2
(u1, u2) = −

u1u2
(u1 + u2)3

m∑

j=1

N∑

k=0

bk,jα
′′
k

(
u2

u1 + u2
; aj , aj+1

)
.

Figure 3 shows a simple example of these formulas.

The previous definition may be extended to higher dimensions. Any polynomial p of degree less or equal
to N can be written as

p(w) =
∑

k1+...+kd≤N

bkw
k

where k = (k1, . . . , kd) is a multi-index of non-negative integers and wk = wk1

1 w
k2

2 . . . wkd

d . Let ∆1, . . . ,∆m

be a partition of W+ ⊂ R
d by convenient sets, say (d − 1)-simplices. We define the piecewise polynomial
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Figure 3: The cumulative distribution function G for a piecewise constant spectral density h(w) =
1[1/3,2/3](w) (left) and its corresponding density g (right). Note that the vertical scale is cut at height
0.1 for display purposes.

spectral density by

h(w) =

m∑

j=1

pj(w)1∆j
(w).

We require that the polynomial pj is non-negative on ∆j . The multivariate Fréchet distribution with piecewise
polynomial spectral density h corresponds to the scale function

σ(u) =




m∑

j=1

∫

∆j

(
d∨

i=1

uξiwi

)
pj(w)dw




1/ξ

, u ∈ R
d
+ ,

with the ξ-normalized version given by

σ⋆(u) =

m∑

j=1

∫

∆j

(
d∨

i=1

uiwi

)
pj(w)dw.

Lemma 9.
The class of multivariate Fréchet distributions with piecewise polynomial spectral density is closed under the
operations (a), (b), (c), (d) and (f) of Lemma 1.

For a vector u of Rd
+, let us introduce the set Tℓ(u) =

{
w ∈ W+,∨

d
i=1uiwi = uℓwℓ

}
for ℓ = 1, . . . , d. The

Tℓ’s are closed (d−1)-dimensional polytopes, overlapping only along edges that form (d−2) dimensional sets.
These sets cover W+, and since we are only considering continuous spectral measures, these intersections
have no mass, and we can regard {Tℓ, ℓ = 1, . . . , d} as a partition of W+. (If an exact partition is required
when dealing with a non-continuous H, one can eliminate the overlap: for ℓ > 1 replace Tℓ with Tℓ−∪j<ℓTj .)
We have

σ⋆(u) =

m∑

j=1

d∑

ℓ=1

uℓ




∑

k1+...+kd≤N

bj,k

∫

∆j∩Tℓ(u)

wℓw
kdw


 .

We remark that ∆j ∩ Tℓ(u) is a (d − 1)-dimensional polytope in W+. By triangulation techniques one
may obtain a partition of ∆j ∩ Tℓ(u) into (d− 1)-dimensional simplices. With some further simplifications,
numerical computation is then possible since exact formulas exist for integrating a polynomial on a simplex.
See for instance Baldoni et al. [2011, Corollary 20]. The details of the computational method will be presented
in a related paper dealing with the estimation procedure for these models.
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3.4 Structured and nested models

In this section we discuss classes of multivariate extreme value distributions that are structured in some way.
Rather than considering X as a general d-dimensional random vector, we assume that there is some specified
way the joint distribution is defined, generally through some fixed structure among a subset of components.
In the model building process, this fixed structure will be naturally imposed by specific types of dependence,
like a temporal or a spatial dependence, as we will consider in the following paragraphs. Throughout this
section, the Zi’s are independent and identically distributed univariate Fréchet variables.

Structured models

First, we revisit Fougères et al. [2009], where classes of stable mixtures were considered, and extend some
ideas. As mentioned above, the framework of temporal dependence is common in practice, and one is often
interested in modelling a dependence on the “past” using a time series. In the linear setting, there is a well
developed theory of ARMA and more general models; here we describe extreme value time series models
based on discrete spectral measures and generalized logistic models.

For a univariate time series model with a discrete spectral measure, define Xt = ∨m
k=0akZt−k, for t ∈

{1, . . . , d}. This can be equivalently written as in (7) in terms of a (m+ d)-vector of Zi’s, and a d-by-(m+ d)
matrix of coefficients A that has a band structure. Note that in this case, the discrete spectral measure H of
the series (X1, . . . , Xd) is supported on (m+ 1) dimensional faces of the d-dimensional unit simplex, with a
fixed structure. One can extend this concept for a multivariate time series with a discrete spectral measure:
this is essentially the M4 process as introduced by Smith and Weissman [1996], see for example Zhang and
Smith [2004].

Introducing time series models via generalized logistic distributions was done in an univariate framework
in Fougères et al. [2009], with the stable terms were the sum of a finite number of “past” terms: Xt = StZt,
where St =

∑m
k=0 akTt−k and Ti are independent and identically distributed univariate positive stable. Note

that in this case the stable spectral measure is discrete and is supported on (m+1) dimensional faces of the
unit sphere, again with a fixed structure. In matrix form, this model can be presented as follows. Consider
the stable discrete spectral measure Λ(·) =

∑m
j=0 λjδsj (·). It corresponds to the spectral measure of the stable

vector S = PT for T = (T0, . . . , Tm)T and P = [Pij ] a matrix of size d× (m+ 1), where P·j its jth-column

satisfies P·j = λ
1/α
j sj . Note that one can also extend this construction to multivariate time series.

Let us now consider the framework of spatial dependence: A similar idea can be used in spatial models,
where only the nearby components are dependent. Let t = (t1, . . . , tk)

T be an index of locations on a lattice
T k. Let N0 be a fixed neighborhood of 0. For the discrete spectral measure case, define Xt = ∨j∈N0

ajZt+j

for some positive constants aj. This can again be rewritten as in (7). Note that similarly, the generalized
logistic case was defined in Fougères et al. [2009]: Xt = StZt, where St =

∑
j∈N0

ajZt+j.

Another construction of spatial models is to build distributions on a graph: Suppose G is a graph with
nodes {vi : i = 1, . . . ,m} and adjacency matrix A: ai,j = 1 if node i and j are connected, otherwise
ai,j = 0; we do not require A to be symmetric. We will write i ∼ j if i is connected to j. We can define a
multivariate Fréchet distribution on G in several ways. For a discrete spectral model, define Xi = ∨j∼ibi,jZj .
A similar definition can be used for the generalized logistic distributions, considering Xi = SiZi, where
Si =

∑
j∼i bi,jZj . An application of this type of models in an environmental framework is to look at a river

system, where one models water flow at multiple locations. In this situation, the nodes can be the measuring
sites, and node i is connected to node j if i is immediately downstream from j. Here the generalized logistic
model may be appropriate, as the height at one point is likely connected to the sum of factors from the
upstream sites.

Nested models

Nested models are ones where there is a chain of classes of models {An, n = 1, . . . , N} (for N ≤ ∞) with
An ⊂ An+1. This means that if a spectral measure H ∈ An, then H ∈ An+1. Equivalently, this can be stated
in terms of scale functions: if σ(·) ∈ An then σ(·) ∈ An+1. This may be useful for model selection, where
some criteria is used to decide whether to use a more complex model. For each of the three classes discussed
in the paper, there are two natural ways to do this. The first way is

- For discrete spectral measures, let An be the set of finite discrete spectral measures with n-point masses.
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- For generalized logistic models, let An be the set of generalized logistic models with stable random
vector S having support with n-point masses.

- For piecewise polynomial models, let An be the set of max-stable distributions arising from piecewise
polynomial spectral densities of degree n.

The second way is more specific:

- For discrete spectral measures, let {Bn} be sets of points in W+ with Bn ⊂ Bn+1 and An the set of
finite discrete spectral measures with support Bn. For example the Bn’s could be successive refinements
of a grid.

- For generalized logistic models, let {Bn} be a nested set of points in S+. Then define An as the
generalized logistic models with stable random vector S having support Bn.

- For piecewise polynomial models, let {Bn} be a nested collection of partitions of W+ and define An as
the set of max-stable distributions arising from piecewise polynomial spectral densities on Bn.

4 Metrics for multivariate extreme value distributions

Throughout this section we consider multivariate Fréchet distributions Fr(ξ,µ = 0, σ(·)) satisfying the as-
sumption

σ0 := inf
u∈W+

σ(u) > 0. (13)

This infimum measures how close the distribution is to singular: σ0 is zero if and only if one or more of
the margin scales are zero, which is equivalent to have a distribution concentrated on a lower dimensional
subspace of Rd. If ξ = 1 and all σi > 0, then two lower bounds are

σ(u) ≥

∥∥∥∥
(

1

σ1
, . . . ,

1

σd

)∥∥∥∥
−1

≥
mini=1,...,d σi

‖1‖
.

The first inequality comes from the left side of (σ3) which is minimized at u⋆ =
(

1
σ1
, . . . , 1

σd

)
/
∥∥∥
(

1
σ1
, . . . , 1

σd

)∥∥∥,
the second inequality follows from the first and σj ≥ mini=1,...,d σi. As a consequence, a sufficient condition
to get (13) is to assume that all the margins are non trivial or equivalently that the distribution has full
dimension. In terms of the spectral measure H, σi > 0 if and only if H({w : wi > 0}) > 0. Thus σ0 > 0 if
and only if H({w : wi > 0}) > 0 for all i = 1, . . . , d.

The ideas in this section are adapted from the sum-stable case in Nolan [2010]. Our main result is
the following. It says that if two multivariate Fréchet distributions have similar scale functions, then their
cumulative distribution functions are uniformly close.

Theorem 2.
Let X ∼ Fr(ξ,µX = 0, σX(·)) and Y ∼ Fr(ξ,µY = 0, σY(·)) both satisfying (13) and with respective cumula-
tive distribution functions GX and GY. If

sup
u∈W+

|σξ
X(u)− σξ

Y(u)| ≤ δ

for some 0 < δ < σξ
0, then

sup
x∈Rd

|GX(x)−GY(x)| ≤
2δ

σξ
0

,

where σ0 = min{infu∈W+
σX(u), infu∈W+

σY(u)}.

The next result rephrases the preceding result in terms of spectral measures: if two Fréchet distributions
have similar spectral measures, then their distributions are close. More precisely, consider a norm ‖ · ‖ on R

d.
Let HX and HY be two spectral measures on W+ associated to this norm. Define the extended Prokorov
metric π∗ by

π∗(HX, HY) = π

(
HX

HX(W+)
,

HY

HY(W+)

)
+ |HX(W+)−HY(W+)| ,

16



where π is the Prokorov metric on the space of probability measures on W+. In particular, π∗(HX, HY) will
be small when HX and HY have total mass about the same and their normalizations to probability measures
are close in the Prokorov metric.

Theorem 3.
Let X ∼ Fr(ξ,µX = 0, HX(·)) and Y ∼ Fr(ξ,µY = 0, HY(·)) both satisfying (13) and with respective
cumulative distribution functions GX and GY. If

π∗(HX, HY) ≤ δ

for some 0 < δ < σξ
0/(K

2(1 +K2)), then

sup
x∈Rd

|GX(x)−GY(x)| ≤ 2K2(1 +K2)δ/σξ
0 ,

where σ0 = min{infu∈W+
σX(u), infu∈W+

σY(u)} and K = K∞,‖·‖ satisfies ‖x‖∞ ≤ K‖x‖ for any x ∈ R
d.

We now show that the models based on discrete spectral measures, defined in Section 3.1, are dense.

Proposition 4.
Let X ∼ Fr(1,µ = 0, H(·)) satisfying (13) and with cumulative distribution function G. For any ǫ > 0, there
exists a cumulative distribution function Gdisc, associated to a multivariate Fréchet with discrete spectral
measure with a finite number of point masses, uniformly close to G:

|G(x)−Gdisc(x)| ≤ ǫ for all x ∈ R
d.

Note that this result has been proved in the minima setting by Deheuvels [1983]. The next proposition presents
the denseness property for the generalized logistic mixtures, studied in Section 3.2. A similar result when
d = 2 has been independently obtained by H. Rootzén, A. Rudvik, and C. Borrell (private communication).

Proposition 5.
Let X ∼ Fr(1,µ = 0, H(·)) satisfying (13) and with cumulative distribution function G. For any ǫ > 0, there
exists a cumulative distribution function Glog, associated to a generalized logistic mixture, uniformly close to
G:

|G(x)−Glog(x)| ≤ ǫ for all x ∈ R
d.

Remark 6.
Let emphasize that the generalized logistic distribution Glog defined in Proposition 5 depends on ǫ. Indeed,
the proof shows that for every ǫ, Glog is constructed using (9) in terms of a positive multivariate stable
distribution with index α = α(ǫ) and sum-stable discrete spectral measure Λ = Λ(ǫ) with a finite number of
point masses.

Finally, the equivalent formulation for the piecewise polynomial spectral densities, introduced in Section 3.3,
is given.

Proposition 6.
Let X ∼ Fr(1,µ = 0, H(·)) satisfying (13) and with cumulative distribution function G. For any ǫ > 0,
there exists a cumulative distribution function Gpp, associated to a piecewise polynomial spectral measure,
uniformly close to G:

|G(x)−Gpp(x)| ≤ ǫ for all x ∈ R
d.

The preceding propositions offer three different approximations of any multivariate Fréchet distribution,
and therefore of any multivariate extreme value distribution after well chosen marginal transformations. In
practice, there is no abstract reason to choose one of these models over another. It is unlikely that one will
be able to distinguish between these classes with real data, unless there is a massive data set. However, the
choice of a model can be based on some physical understanding of the situation where the data is obtained,
or on arguments such as parsimony, existence of a density, etc. For example, in higher dimensions, it may be
preferable to use a generalized logistic model with a few terms that gives a smooth model, than a discrete
spectral measure with many terms.
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5 Proofs

Proof of Proposition 1: We use the differentiation of a function of the form exp(φ(x)). More precisely,
we apply the fact that

∂d

∂x1 . . . ∂xd
exp(φ(x)) = exp(φ(x))

∑

π∈Π

∏

B∈π

∂|B|φ(x)

∂Bx
.

In our case φ(x) = −σξ(x−1) so that

∂|B|φ(x)

∂Bx
=

(
∏

i∈B

1

x2i

)
(−1)1+|B| ∂

|B|σξ

∂Bx
(x−1)

which allows to conclude since
∏

B∈π(−1)1+|B| = (−1)|π|+d.

Proof of Lemma 1: Throughout this proof, u = (u1, . . . , ud)
T ∈ R

d
+ \ {0} is arbitrary and t > 0.

(a) Following Remark 1, it suffices to prove that any max-projection as defined by (3) is univariate Fréchet.
Consider the random variable ∨d

i=1uiXi. By independence of Y and Z, we have

P(∨d
i=1uiXi ≤ t) = P

(
∨d
i=1ui max(Yi, Zi) ≤ t

)

= P (Y1 ≤ t/u1, . . . , Yd ≤ t/ud, Z1 ≤ t/u1, . . . , Zd ≤ t/ud)

= P (Y1 ≤ t/u1, . . . , Yd ≤ t/ud)P (Z1 ≤ t/u1, . . . , Zd ≤ t/ud)

= exp
(
−σξ

Y(u1t
−1, . . . , udt

−1)
)
exp

(
−σξ

Z(u1t
−1, . . . , udt

−1)
)

= exp
(
−t−ξ

{
σξ
Y(u) + σξ

Z(u)
})

.

The previous equality also implies that ξX = ξ and σξ
X(·) = σξ

Y(·) + σξ
Z(·). The equality HX = HY + HZ

follows easily from the integral representation of the scale function given by (1).
(b) Again consider a max-projection ∨d

i=1uiXi. We have

P(∨d
i=1uiXi ≤ t) = P

(
∨d
i=1uiY

p
i ≤ t

)

= P

(
Y1 ≤ (t/u1)

1/p, . . . , Yd ≤ (t/ud)
1/p
)

= exp
(
−σξ

Y(u
1/p
1 t−1/p, . . . , u

1/p
d t−1/p)

)

= exp
(
−t−ξ/pσξ

Y(u1/p)
)
.

We deduce that X is a multivariate Fréchet random vector with ξX = ξ/p and σ
ξ/p
X (u) = σξ

Y(u1/p). Again the
equality HX = HY is a direct consequence of the combination of (1) with the relation of the scale functions.
(c) Let ∨d

i=1uiXi be a max-projection. For simplicity, we write ξ for ξY. We have

P(∨d
i=1uiXi ≤ t) = P

(
∨d
i=1uicYi ≤ t

)
= P (Y1 ≤ (t/{cu1}), . . . , Yd ≤ (t/{cud})) = exp

(
−σξ

Y(cu1t
−1, . . . , cudt

−1)
)

= exp
(
−t−ξcξσξ

Y(u)
)
.

It yields X is a multivariate Fréchet random vector with ξX = ξ and σξ
X(·) = cξσξ

Y(·). We obtain HX = cξHY

by combining (1) with the relation between the scale functions.
(d) Let ∨d

i=1uiXi be a max-projection. For simplicity, we write ξ for ξY. Then

P(∨d
i=1uiXi ≤ t) = P

(
∨d
i=1uiciYi ≤ t

)
= P (Y1 ≤ t/{u1c1}, . . . , Yd ≤ t/{udcd})

= exp
(
−σξ

Y(u1c1t
−1, . . . , udcdt

−1)
)
= exp

(
−t−ξσξ

Y(uc)
)
.

This implies that X is a multivariate Fréchet random vector with ξX = ξ and σX(u) = σY(uc).
We first focus on the discrete case. From the equalities given above,

σξ
X(u) = σξ

Y(uc) =
m∑

j=1

hY,j

d∨

i=1

wY,j,i(ciui)
ξ =

m∑

j=1

hY,j

d∨

i=1

(wY,j,ic
ξ
i )u

ξ
i ,
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which allows us to conclude by identifying the sum in the exponent with σξ
X(u) =

∑m
j=1 hX,j ∨

d
i=1 wX,j,iu

ξ
i .

For the continuous case, substituting w = vc−ξ/‖vc−ξ‖ shows

σξ
X(u) = σξ

Y(cu) =

∫

W+

d∨

i=1

wi(ciui)
ξhY(w)dw =

∫

W+

d∨

i=1

(wic
ξ
i )u

ξ
ihY(w)dw

=

∫

W+

d∨

i=1

(vi/‖vc
−ξ‖)uξihY(vc−ξ/‖vc−ξ‖)J(v)dv

=

∫

W+

d∨

i=1

viu
ξ
ihY(vc−ξ/‖vc−ξ‖)J(v)/‖vc−ξ‖dv

where J(v) is the Jacobean of the transformation. Thus X has a spectral density given by

hX(v) = hY(vc−ξ/‖vc−ξ‖)J(v)/‖vc−ξ‖.

Calculations as in Coles and Tawn [1991, Theorem 2] show J(v) = ‖vc−ξ‖−d
∏d

i=1 c
−ξ
i , so

hX(v) = hY(vc−ξ/‖vc−ξ‖) ‖vc−ξ‖−(d+1)
d∏

i=1

c−ξ
i .

(e) For simplicity, we write ξ instead of ξY. The distribution of ∨d
i=1uiXi is

P(∨d
i=1uiXi ≤ t) = P(u1Y1S

1/ξ ≤ t, . . . , udYdS
1/ξ ≤ t)

= P(Y1 ≤ tS−1/ξ/u1, . . . , Yd ≤ tS−1/ξ/ud)

= ES

[
P(Y1 ≤ ts−1/ξ/u1, . . . , Yd ≤ ts−1/ξ/ud)|S = s

]

= ES

[
exp(−σξ

Y(u1s
1/ξ/t, . . . , uds

1/ξ/t))|S = s
]

= ES

[
exp(−t−ξsσξ

Y(u))|S = s
]

= E

[
exp(−t−ξSσξ

Y(u))
]
= exp(−t−βξσβξ

Y (u)) .

This allows us to conclude that ξX = βξ and σX(·) = σY(·).
(f) By independence of Y and Z, write

P (X ≤ x) = P (Y1 ≤ x1, . . . , Yd ≤ xd, Z1 ≤ xd+1, . . . , Zk ≤ xd+k)

= P (Y1 ≤ x1, . . . , Yd ≤ xd)P (Z1 ≤ xd+1, . . . , Zk ≤ xd+k)

= exp(−σξ
Y(1/x1, . . . , 1/xd)) exp(−σ

ξ
Z(1/xd+1, . . . , 1/xd+k))

= exp(−
[
σξ
Y(1/x1, . . . , 1/xd) + σξ

Z(1/xd+1, . . . , 1/xd+k)
]
).

Hence σξ
X(u) = σξ

Y(u1, . . . , ud) + σξ
Z(ud+1, . . . , ud+k). To obtain the announced form of HX , just proceed by

identification through the following set of equalities:

∫

W+
d+k

(
d+k∨

i=1

uξiwi

)
HX(dw) = σξ

X(u) = σξ
Y(u1, . . . , ud) + σξ

Z(ud+1, . . . , ud+k)

=

∫

W+
d

(
d∨

i=1

uξi si

)
HY(ds) +

∫

W+
k

(
k∨

i=1

uξd+iti

)
HZ(dt)

=

∫

W+
d+k

(
d+k∨

i=1

uξiwi

)
(HY ×HZ)(dw).
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Proof of Lemma 2: Let us show that for any a = (a1, . . . , ad)
T > 0, the max-projection ∨d

i=1aiXi is
univariate Fréchet. For any positive real number t

P(∨d
i=1aiXi ≤ t) = P (Y1 ∨ Z1 ≤ t/a1, . . . , Yd ∨ Zd ≤ t/ad)

= P(Y1 ≤ t/a1, . . . , Yd ≤ t/ad, Z1 ≤ t/a1, . . . , Zd ≤ t/ad)

= P(V1 ≤ t/a1, . . . , Vd ≤ t/ad, Vd+1 ≤ t/a1, . . . , V2d ≤ t/ad)

= exp
[
−σξV

V (a1/t, . . . , ad/t, a1/t, . . . , ad/t)
]

= exp
[
−t−ξVσξV

V ((aT ;aT )T )
]
.

Hence X ∼ Fr(ξ,0, σX(·)) where ξX = ξV and σX(u) = σV((uT ;uT )T ).
In the case of a discrete spectral measure, one can check that

σX(u) = σV((uT ;uT )T ) =

m∑

j=1

((
∨d
i=1uiwj,i

)
∨
(
∨d
i=1uiwj,i+d

))
hj

=

m∑

j=1

(
∨d
i=1ui(wj,i ∨ wj,i+d)

)
hj

=

m∑

j=1

(
∨d
i=1ui

tj,i
‖tj‖

)
hj‖tj‖ =

m∑

j=1

(
∨d
i=1uiw̃j,i

)
h̃j .

Proof of Lemma 3: To show that X is a d-dimensional Fréchet random vector, we check that all univariate
max-projections are univariate Fréchet. Let u ≥ 0 be a d-dimensional vector, and consider the distribution
of ∨d

k=1ukXk. For any positive real number t

P(∨d
i=1uiXi ≤ t) = P(Xi ≤ t/ui, i = 1, . . . , d) = P(∨m

j=1aijYj ≤ t/ui, i = 1, . . . , d)

= P (Yj ≤ t/(aijui), j = 1, . . . ,m, i = 1, . . . , d)

= P(Yj ≤ t min
i=1,...,d

{1/(aijui)}, j = 1, . . . ,m) = P(Yj ≤ t/ max
i=1,...,d

{aijui}, j = 1, . . . ,m)

= exp

(
−σξ

Y( max
i=1,...,d

{ai1ui}/t, . . . , max
i=1,...,d

{aimui}/t)

)

= exp
(
−t−ξσξ

Y(AT ×max u)
)
.

This shows that X is multivariate Fréchet with ξX = ξ and σX(u) = σY(AT ×maxu). When HY(·) is discrete
as given in the statement of the Lemma,

σξ
X(u) = σξ

Y(AT ×max u) =

n∑

j=1

(
∨m
i=1wj,i(∨

d
k=1ak,iuk)

ξ
)
hj

=

n∑

j=1

(
∨d
k=1(∨

m
i=1wj,ia

ξ
k,i)u

ξ
k

)
hj =

n∑

j=1

(
∨d
k=1tj,ku

ξ
k

)
hj

=

n∑

j=1

(
∨d
k=1(tj,k/‖tj‖)u

ξ
k

)
hj‖tj‖ =

n∑

j=1

(
∨d
k=1w̃j,ku

ξ
k

)
h̃j .

Proof of Lemma 4: From Lemma 1, we know that if X is Fr(ξ,µ = 0, H(·)) then its ξ−th power X⋆ = Xξ

is Fr(1,µ = 0, H(·)). The spectral measure H doesn’t change. One can also say that X⋆ is Fr(1,µ = 0, σ⋆(·))
where the scale function is

σ⋆(u) = σξ(u1/ξ).

Moreover, the unnormalized Pickands’ function on [0, 1] is

B⋆(t) = σ⋆(1− t, t) = t

∫ t

0

(1− w)dH(w) + (1− t)

∫ 1

t

wdH(w).
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Following the steps of Pickands [1981, Theorem 3.1] or Beirlant et al. [2004, pages 268-269] we have

∫ 1

t

wdH(w) =

∫ 1

t

(w − 1 + 1)dH(w) = H((t, 1])−

∫ 1

t

(1− w)dH(w)

= σ⋆
1 + σ⋆

2 −H([0, t])− σ⋆
2 +

∫ t

0

(1− w)dH(w) = σ⋆
1 −H([0, t]) +

∫ t

0

(1− w)dH(w) .

It yields

B(t) = t

∫ t

0

(1− w)dH(w) + (1− t)

(
σ⋆
1 −H([0, t]) +

∫ t

0

(1− w)dH(w)

)

=

∫ t

0

(1− w)dH(w) + (1− t) (σ⋆
1 −H([0, t])) .

Now
∫ t

0
(1− w)dH(w) =

∫ t

0
H([0, u])du+ (1− t)H([0, t]) , so that B⋆(t) =

∫ t

0
H([0, w])dw + (1− t)σ⋆

1 . Then

H([0, t]) = B⋆′(t) + σ⋆
1 , H({0}) = B⋆′(0) + σ⋆

1 , and H({1}) = −B⋆′(1) + σ⋆
2 where σ⋆

i = σ⋆(ei) = σξ
i and B⋆′

should be interpreted as its right derivative.

Proof of Lemma 5: Use the transformation Y 7→ Yξ and the fact that the corresponding Jacobean is∏d
k=1

(
x
(1/ξ)−1
k /ξ

)
.

Proof of Lemma 6: Let Y ∼ Fr(ξY, µY, σY(·)) and Z ∼ Fr(ξZ, µZ, σZ(·)) be independent Fréchet random
vectors with discrete spectral measures denoted HY(·) and HZ(·). From Lemma 1 one knows the formula of
HX. It is clear that
(a) HX(·) = HY(·) +HZ(·)
(b) HX(·) = HY(·)
(c) HX(·) = cξYHY(·)
(f) HX(·) = HY(·)×HZ(·)
all remain discrete spectral measures on the simplex W+. The argument for the case (d) is given in details
in its statement. Lemmas 2 and 3 give the result in their statements.

Proof of Theorem 1: We will prove that for any vector a = (a1, . . . , ad)
T ∈ R

d
+ \ {0}, the max-projection

∨d
i=1aiXi follows a univariate Fréchet distribution. Using the independence of the Zi’s, and the Laplace

transform of the positive random vector S (since α < 1), we can write for any positive real number t

P(∨d
i=1aiXi ≤ t) = P(∨d

i=1aiS
1/ξ
i Zi ≤ t) = ES

[
P(Z1 ≤ t/(a1S

1/ξ
1 ), . . . , Zd ≤ t/(adS

1/ξ
d ))

]

= ES

[
d∏

i=1

exp
(
−(t/{aiS

1/ξ
i })−ξ

)]
= ES

[
exp

(
−

d∑

i=1

t−ξaξiSi

)]

= ES

[
exp

(
−〈t−ξaξ,S〉

)]
= exp

[
−cαt

−αξγα(aξ)
]
.

This proves that X is multivariate Fréchet with ξX = αξ and σξX
X (a) = cαγ

α(aξ).

Proof of Lemma 7: Let Y ∼ Fr(αξ,0, σY(·)) and Z ∼ Fr(αξ,0, σZ(·)) be independent Fréchet random
vectors constructed as follows. For U1, . . . , Ud, V1, . . . , Vd independent and identically distributed univariate

Fréchet (ξ, µ = 0, σ = 1), we set Y = (S
1/ξ
1 U1, . . . , S

1/ξ
d Ud) and Z = (T

1/ξ
1 V1, . . . , T

1/ξ
d Vd) where S and T are

positive α-stable random vectors with sum-stable spectral measure ΛY and ΛZ respectively. One has

σαξ
Y (u) = cαγ

α
Y(uξ) = cα

∫

S+

〈uξ, s〉αΛY(ds)

σαξ
Z (u) = cαγ

α
Z(u

ξ) = cα

∫

S+

〈uξ, s〉αΛZ(ds) .

The componentwise maximum operation (a) gives σαξ
X (u) = σαξ

Y (u) + σαξ
Z (u) = cα

∫
S+

〈u, s〉α{ΛY +ΛZ}(ds).

The power transformation (b) yields σ
αξ/p
X (u) = σαξ

Y (u1/p) = cα
∫
S+

〈uξ/p, s〉αΛY(ds). The multiplication

by a positive scalar as in (c) implies σαξ
X (u) = cαξσαξ

Y (u) = cα
∫
S+

〈uξ, s〉α{cαξΛY}(ds). The componentwise
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multiplication (d) considers X = (c1Y1, ..., cdYd) that can be written as X = T1/ξ ·U = (T
1/ξ
1 U1, ..., T

1/ξ
d Ud)

where T = (cξ1S1, . . . , c
ξ
dSd). Since T is a positive α-stable random vector as soon as S is a positive α-

stable random, we conclude that X is a generalized logistic mixture from its stochastic representation. The
multiplication by a sum-stable as in (e) gives

X = S1/(αξ)Y = (S1/(αξ)S
1/ξ
1 U1, . . . , S

1/(αξ)S
1/ξ
d Ud) = (T

1/ξ
1 U1, . . . , T

1/ξ
d Ud) ,

with T := S1/αS = (S1/αS1, . . . , S
1/αSd). Note that if S is positive univariate β-stable random variable and

S is a positive α-stable random vector, with S and S being independent, then T is a positive (βα)-stable
random vector. Again the stochastic representation allows to conclude.

Proof of Proposition 2: We use again the differentiation formula

∂d

∂x1 . . . ∂xd
exp(φ(x)) = exp(φ(x))

∑

π∈Π

∏

B∈π

∂|B|φ(x)

∂Bx
,

with φ(x) = −cαγ
α(x−ξ) = cα

∫
S+

〈x−ξ, s〉αΛ(ds) so that

∂|B|φ(x)

∂Bx
= (−1)1+|B| ∂

|B|I(x)

∂Bx

which allows to conclude since
∏

B∈π(−1)1+|B| = (−1)|π|+d.

Proof of Proposition 3: We apply Lemma 4. In this setting, we have

σ⋆(u) = σαξ(u1/(αξ)) = cαγ
α(u1/α)

and σ⋆
i = cα

∫
S+
sαi Λ(ds) for i = 1, 2. We get successively

B⋆(t) = σ⋆(1− t, t) = cαγ
α((1− t)1/α, t1/α),

B⋆′(t) = cα

∫

S+

(
(1− t)1/αs1 + t1/αs2

)α−1 (
−(1− t)1/α−1s1 + t1/α−1s2

)
Λ(ds),

and h(t) = cα(1/α− 1)(t(1− t))1/α−2
∫
S+

((1− t)1/αs1 + t1/αs2)
α−2s1s2Λ(ds).

Proof of Lemma 8: The kernel k(u,w) = (1− u)w ∨ u(1− w) is always a V-shaped function with vertex
at u = w. In particular, if u ≤ a, then k(u,w) = (1− u)w and

gp(u; a, b) =

∫ b

a

(1− u)wwpdw = (1− u)

∫ b

a

wp+1dw = (1− u)c1 ,

where c1 = (bp+2 − ap+2)/(p+ 2).

Likewise, if u ≥ b, then k(u,w) = u(1 − w) and gp(u; a, b) =
∫ b

a
u(1 − w)wpdw = uc5, where c5 =

(bp+1 − ap+1)/(p+ 1)− (bp+2 − ap+2)/(p+ 2).
For a < u < b, the kernel k(u,w) = u(1 − w) on (a, u), while k(u,w) = (1 − u)w on (u, b). Hence for

u ∈ (a, b),

gp(u; a, b) =

∫ u

a

u(1− w)wpdw +

∫ b

u

(1− u)wwpdw

= u

(
wp+1

p+ 1
−
wp+2

p+ 2

)∣∣∣∣
u

a

+ (1− u)

(
wp+2

p+ 2

)∣∣∣∣
b

u

= up+3

(
1

p+ 2
−

1

p+ 2

)
+ up+2

(
1

p+ 1
−

1

p+ 2

)
+ u

(
−
bp+2

p+ 2
−
ap+1

p+ 1
+
ap+2

p+ 2

)
+
bp+2

p+ 2

so that gp(u; a, b) = c2u
p+2 − c3u+ c4.

Proof of Lemma 9: Let Y ∼ Fr(ξY, µY, σY(·)) and Z ∼ Fr(ξZ, µZ, σZ(·)) be independent Fréchet
random vectors with piecewise polynomial spectral densities denoted hY(w) =

∑mY

j=1 pY,j(w)1∆Y,j
(w) and
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hZ(w) =
∑mZ

j=1 pZ,j(w)1∆Z,j
(w). From Lemma 1 one knows the formula of HX. It is clear that

(a) hX(·) = hY(·) + hZ(·)
(b) hX(·) = hY(·)
(c) hX(·) = cξYhY(·)

(d) hX(v) = hY(vc−ξ/‖vc−ξ‖) ‖vc−ξ‖−(d+1)
∏d

i=1 c
−ξ
i

(f) hX = hY × hZ
all remain piecewise polynomial spectral densities on the simplex W+.
Proof of Theorem 2: For any x ∈ R

d,

|GX(x)−GY(x)| =
∣∣∣exp(−σξ

X(x−1))− exp(−σξ
Y(x−1))

∣∣∣

= exp(−σξ
X(x−1))

∣∣∣1− exp(−
[
σξ
Y(x−1)− σξ

X(x−1)
]
)
∣∣∣

≤ exp(−σξ
0‖x

−1‖ξ)
∣∣∣1− exp

(
−‖x−1‖ξ

[
σξ
Y(x−1/‖x−1‖)− σξ

X(x−1/‖x−1‖)
])∣∣∣

≤ exp(−σξ
0‖x

−1‖ξ)max{exp(δ‖x−1‖ξ)− 1, 1− exp(−δ‖x−1‖ξ)}

≤ exp(−σξ
0‖x

−1‖ξ)
(
exp(δ‖x−1‖ξ)− exp(−δ‖x−1‖ξ)

)
.

Some calculus shows that g(t) := e−σξ
0
t(eδt − e−δt) has a maximum at t⋆ = 1/(2δ) ln((σξ

0 + δ)/(σξ
0 − δ)), and

g(t⋆) = 2δ

σξ
0
−δ

(
σξ
0
+δ

σξ
0
−δ

)−(σξ
0
+δ)/(2δ)

≤ (2δ)/σξ
0. Applying this to the bound above gives the result.

Proof of Theorem 3: The kernel function k(w,u) = ∨d
i=1u

ξ
iwi is Hölder continuous in the first variable:

|k(w1,u)− k(w2,u)| ≤ K2‖w1 −w2‖ uniformly in u ∈ W+. Therefore, Lemma 4.2 of Nolan [2010] implies

|σξ
X(u)−σξ

Y(u)| ≤ K2(1+K2)π∗(HX, HY) ≤ K2(1+K2)δ for any u ∈ W+, where the last inequality follows
from the assumption. Applying Theorem 2 finishes the proof.

Proof of Proposition 4: Let the simplex W+ ⊂ R
d
+ be partitioned into uniformly small pieces ∆1, . . . ,∆m,

e.g. satisfying Vold−1(∆j) = Vold−1(W+)/m. Let pj be a “midpoint” of ∆j , and define

Hdisc,m(·) =

m∑

j=1

H(∆j)δpj
(·).

This measure will be close to the original spectral measure H in the extended Prokorov metric π∗, so applying
Theorem 3 gives the result.

Proof of Proposition 5: We already know from Proposition 4 that the discrete spectral measures give
a dense class: for any positive ǫ, there exists Gdisc such that |G − Gdisc| < ǫ. If σdisc denotes its associated
scale function, then it can be written as

σdisc(u) =




m∑

j=1

σj,disc(u
ξ)




1/ξ

with σj,disc(u) = ∨d
i=1hjwj,iui; see the first lines of Section 3.1. In terms of random vectors, what precedes

can be expressed as follows: X ∼ Fr(ξ,0, σdisc) can be generated by

X = max{Y
1/ξ
1 , . . . ,Y1/ξ

m }

with Yj ∼ Fr(1,0, σj,disc). As a consequence, the result of Proposition 5 will follow from Theorem 2 as
soon as there exists a scale function σj,log from a generalized logistic mixture close enough to σj,disc. Indeed,
the inverse operation will use the fact that the class of generalized logistic distributions is closed under
the previous transformations, as stated in Lemma 7. One can check that such a scale function exists since
σj,log(u) := (

∑d
i=1(hjwj,iui)

α)1/α converges to ∨d
i=1hjwj,iui as α ↓ 0.

Proof of Proposition 6: Consider a fine partition ∆1, . . . ,∆m of W+ as already defined in the proof of
Proposition 4. Let hpp be the piecewise constant spectral density defined by

hpp(w) =

m∑

j=1

H(∆j)1∆j
(w).
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This density corresponds to an spectral measure Hpp for which π⋆(H,Hpp) is arbitrarily small.
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