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Distortion elements for surface homeomorphisms

E. Militon

1er juillet 2012

Abstract

Let S be a compact orientable surface and f be an element of the group Homeo0(S) of homeo-

morphisms of S isotopic to the identity. Denote by f̃ a lift of f to the universal cover S̃ of S. In this

article, the following result is proved: if there exists a fundamental domain D of the covering S̃ → S

such that

lim
n→+∞

1

n
dnlog(dn) = 0,

where dn is the diameter of f̃n(D), then the homeomorphism f is a distortion element of the group

Homeo0(S).

1 Introduction

Given a compact manifold M , we denote by Diffr0(M) the identity component of the group of Cr-
diffeomorphisms of M . A way to understand better this group is to try to describe the subgroups of this
group. In other words, given a group G, does there exist an injective group morphism from the group G
to the group Diffr0(M)? If, for this group G, we can answer affirmatively to this first question, one can
try to describe the group morphisms from the group G to the group Diffr0(M) as best as possible (ideally
up to conjugacy but this is often an unattainable goal). The concept of distortion element, which we will
define, allows to obtain rigidity results on group morphisms from G to Diffr0(M) and will give us very
partial answers to these questions.

Let us give now the definition of distorsion elements. Remember that a group G is finitely generated if
there exists a finite generating set S: any element g in this group is a product of elements of S and their
inverses, g = sǫ11 s

ǫ2
2 . . . sǫn where the si’s are elements of S and the ǫi are equal to +1 or −1. The minimal

integer n in such a decomposition is denoted by lS(g). The map lS is inverse invariant and satisfies the
triangle inequality lS(gh) ≤ lS(g) + lS(h). Therefore, for any element g in the group G, the sequence

(lS(g
n))n∈N is subadditive, so the sequence ( lS(g

n)
n

)n converges. When the limit of this sequence is zero,
the element g is said to be distorted or a distortion element in the group G. Notice that this notion does
not depend on the generating set. In other words, this concept is intrinsic to the group G. The notion
extends to the case where the group G is not finitely generated by saying that an element g of the group
G is distorted if it belongs to a finitely generated subgroup of G in which it is distorted. The main interest
of the notion of distortion is the following rigidity property for groups morphisms: for a group morphism
ϕ : G → H , if an element g is distorted in the group G, then its image under ϕ is also distorted. In
the case where the group H does not contain distortion element other than the identity element in H
and where the group G contains a distortion element different from the identity, such a group morphism
cannot be an embedding: the group G is not a subgroup of H .

Let us give now some simple examples of distortion elements. In any group G, the torsion elements,
i.e. those of finite order, are distorted. In free groups and free abelian groups, the only distorted element
is the identity element. The simplest examples of groups which admit a distortion element which is not
a torsion element are the Baumslag-Solitar groups which have the following presentation : BS(1, p) =<
a, b | bab−1 = ap >. Then, for any integer n : bnab−n = ap

n

. Taking S = {a, b} as a generating set of this
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group, we have lS(a
pn) ≤ 2n+1 and the element a is distorted in the group BS(1, p) if |p| ≥ 2. A group G

is said to be nilpotent if the sequence of subgroups (Gn)n∈N of G defined by G0 = G and Gn+1 = [Gn, G]
(this is the subgroup generated by elements of the form [gn, g] = gngg

−1
n g−1, where gn ∈ Gn and g ∈ G)

stabilizes and is equal to {1G} for a sufficiently large n. A typical example of nilpotent group is the
Heisenberg group which is the group of upper triangular matrices whose diagonal entries are 1 and other
entries are integers. In a nilpotent non-abelian group N , one can always find three distinct elements a, b
and c different from the identity such that [a, b] = c and the element c commutes with a and b. In this

cas, we have cn
2

= [an, bn] so that, in the subgroup generated by a and b (and also in N), the element c is

distorted: l{a,b}(c
n2

) ≤ 4n. A general theorem by Lubotzky, Mozes and Raghunathan implies that there
exist distortion elements (and even elements with a logarithmic growth) in some lattices of higher rank
Lie groups, for instance in the group SLn(Z) for n ≥ 3. In the case of the group SLn(Z), one can even
find a generating set consisting of distortion elements. Notice that, in mapping class groups (see [7]) and
in the group of interval exchange transformations (see [19]), any distorted element is a torsion element.

Let us consider now the case of diffeomorphisms groups. The following theorem has led to progress
on Zimmer’s conjecture. Let us denote by S a compact boundaryless surface endowed with a probability
measure area with full support. Finally, let us denote by Diff1(S, area) the group of C1-diffeomorphisms
of the surface S which preserve the measure area. Then, we have the following statement:

Theorem. (Polterovich [20], Franks-Handel [11]) If the genus of the surface S is greater than one, any
distortion element in the group Diff1(S, area) is a torsion element.

As nilpotent groups and SLn(Z) have some non-torsion distortion elements, they are not subgroups of
the group Diff1(S, area). In the latter case, using a property of almost simplicity of the group SLn(Z),
one conclude even that a group morphism from the group SLn(Z) to the group Diff1(S, area) is "almost"
trivial (its image is a finite group). Franks and Handel proved actually a more general result on distorsion
elements in the case where the measure area is any borelian probability measure which allows them to
prove that this last statement is true for any measure area with infinite support. They also obtain similar
results in the cases of the torus and of the sphere. A natural question now is to wonder whether these
theorems can be generalized in the case of more general diffeomorphisms or homeomorphisms groups (with
no area-preservation hypothesis).

Unfortunately, one may find lots of distorted elements in those cases. The most striking example of
this phenomenon is the following theorem by Calegari and Freedman:

Theorem. (Calegari-Freedman [5]) For an integer d ≥ 1, every homeomorphism in the group Homeo0(Sd)
is distorted.

In the case of a higher regularity, Avila proved in [2] that any diffeomorphism in Diff∞
0 (S1) for which

arbitrarily large iterates are arbitrarily close to the identity in the C∞ sense (such an element will be said
to be recurrent) is distorted in the group Diff∞

0 (S1): for instance, the irrational rotations are distorted.
Using Avila’s techniques and a local perfection result (due to Haller, Rybicki and Teichmann [15]), I
obtained the following result (see [18]):

Theorem 1. For any compact boundaryless manifold M , any recurrent element in Diff∞
0 (M) is distorted

in this group.

For instance, irrational rotations of the 2 dimensional sphere or rotations of the d-dimensional torus
are distorted. More generally, we get distortion elements on any manifold which admits a circle action.
Notice that, thanks to the Anosov-Katok method (see [14] and [8]), we can build recurrent elements in
the case of the sphere or of the 2-dimensional torus which are not conjugate to a rotation. Anyway, we
could not hope for a result analogous to the theorem by Polterovich and Franks and Handel as we will see
that the Baumslag-Solitar group BS(1, 2) embeds in the group Diff∞

0 (M) for any manifold M (this was
indicated to me by Isabelle Liousse).

Identify the circle S1 with R∪{∞}. Consider then the (analytical) circle diffeomorphisms a : x 7→ x+1
and b : x 7→ 2x. The relation bab−1 = a2 is satisfied and, therefore, the two elements a and b define an
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action of the group BS(1, 2) on the circle. By thickening the point at infinity (i.e. by replacing the point at
infinity with an interval), we have a compactly-supported action of our group on R. This last action can be
made C∞. Finally, by a radial action, we have a compactly-supported C∞ action of this Baumslag-Solitar
group on Rd and, by identifying an open disc of a manifold to Rd, we get an action of the Baumslag-Solitar
group on any manifold. This gives some non-recurrent distortion elements in the group Diff∞

0 (M) for any
manifold M . In the case of diffeomorphisms, it is difficult to approach a characterization of distortion
element as there are many obstructions to be a distortion element (for instance, the differential cannot
grow too fast along an orbit, the topological entropy of the diffeomorphism must vanish). On the contrary,
in the groups of surface homeomorphisms, there is only one obstruction known to be a distortion element.
We will describe it in the next section.

In this article, we will try to characterize geometrically the set of distortion elements in the group of
homeomorphisms isotopic to the identity of a compact orientable surface. The description we will obtain
will come from a result valid on any manifold, which connects the notion of distortion element with the
fragmentation, i.e. how to decompose a given homeomorphism as a product of homeomorphisms supported
in discs: this topic is treated in the third section. In this way, we obtain a theorem that has a major
drawback: it uses the fragmentation length which is not well understood except in the case of spheres.
Thus, we will try to connect this fragmentation length to a more geometric quantity: the diameter of
the image of a fundamental domain under a lift of the given homeomorphism. It is not difficult to prove
that the fragmentation length dominates this last quantity: this will be treated in the fourth section
of this article. However, conversely, it is more difficult to show that this last quantity dominates the
fragmentation length. In order to prove this, we will make a distinction between the case of surfaces with
boundary (section 5), which is the easiest, the case of the torus (section 6) and the case of higher genus
closed manifolds (section 7). The last section of this article gives examples of distortion elements in the
group of homeomorphisms of the annulus for which the growth of the diameter of a fundamental domain
is "fast".

2 Notations and results

Let M be a manifold, possibly with boundary. We denote by Homeo0(M) (respectively
Homeo0(M,∂M)) the identity component of the group of compactly-supported homeomorphisms of M
(respectiveley of the group of homeomorphisms of M which pointwise fix a neighbourhood of the boundary
∂M of M). Given two homeomorphisms f and g of M and for a subset A of M , an isotopy between f
and g relative to A is a continuous path of homeomorphisms (ft)t∈[0,1] which pointwise fix A such that
f0 = f and f1 = g. If A is the empty set, it is called an isotopy between f and g.

In what follows, S is a compact orientable surface, possibly with boundary, different from the disc and
from the sphere. We denote by Π : S̃ → S the universal cover of S. The surface S̃ is seen as a subset
of the euclidean plane R2 or of the hyperbolic plane H2 so that deck transformations are isometries for
the euclidean metric or the hyperbolic metric. We endow the surface S̃ with this metric. In what follows,
we identify the fundamental group Π1(S) of the surface S with the group of deck transformations of the
covering Π : S̃ → S. If A is a subset of the hyperbolic plane H2 (respectively of the euclidean plane R2),
we denote by δ(A) the diameter of A for the hyperbolic distance (respectively the euclidean distance).

For a homeomorphism f of S, a lift of f is a homeomorphism F of S̃ which satisfies Π ◦ F = f ◦ Π.
For an isotopy (ft)t∈[0,1], a lift of (ft)t∈[0,1] is a continuous path (Ft)t∈[0,1] of homeomorphisms of S̃ such
that, for any t, the homeomorphism Ft is a lift of the homeomorphism ft. For a homeomorphism f in
Homeo0(S), we denote by f̃ a lift of f obtained as the time 1 of a lift of an isotopy between the identity
and f which is the identity for t = 0. If moreover the boundary of S is non-empty and the homeomorphism
f is in Homeo0(S, ∂S), the homeomorphism f̃ is obtained by lifting an isotopy relative to the boundary
∂S. If there exists a disc D embedded in the surface S which conatins the support of the homeomorphism
f , we require moreover that the support of f̃ is included in Π−1(D). Notice that the homeomorphism f̃
is unique except in the cases of the groups Homeo0(T2) and Homeo0([0, 1]× S1).

Definition 2.1. We call fundamental domain of S any compact connected subset D of S̃ which satisfies
the two following properties:
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– Π(D) = S;
– for any deck transformation γ in Π1(S) different from the identity, the interior of D is disjoint from

the interior of γ(D).

The main theorem of this article is a partial converse to the following property (observed by Franks
and Handel in [11], lemma 6.1):

Proposition 2.1. Denote by D a fundamental domain of S̃ for the action of Π1(S).
If a homeomorphism f in Homeo0(S) (respectively in Homeo0(S, ∂S)) is a distortion element of Homeo0(S)
(respectively of Homeo0(S, ∂S)), then:

lim
n→+∞

δ(f̃n(D))

n
= 0.

Remark In the case where the surface considered is the torus T2 or the annulus [0, 1]×S1, the conclusion
of this proposition is equivalent to saying that the rotation set of f has only one point.

Proof. Let f be a distortion element in Homeo0(S) (respectively in Homeo0(S, ∂S)). Denote by G =
{g1, g2, . . . , gp} a finite subset of Homeo0(S) (respectively of Homeo0(S, ∂S)) such that:

– the homeomorphism f belongs to the group generated by G.

– the sequence ( lG(fn)
n

)n≥1 converges to 0.
We then have a decomposition of the form:

fn = gi1 ◦ gi2 ◦ . . . ◦ giln

where ln = lG(f
n). This imply the following equality:

I ◦ f̃n = g̃i1 ◦ g̃i2 ◦ . . . ◦ g̃iln

where I is an isometry of S̃. Let us take M = max1≤i≤p, x∈S̃ d(x, g̃i(x)). Then, for any two points x and
y of the fundamental domain D, we have:

d(f̃n(x), f̃n(y)) = d(I ◦ f̃n(x), I ◦ f̃n(y))

≤ d(I ◦ f̃n(x), x) + d(x, y) + d(I ◦ f̃n(y), y)
≤ lnM + δ(D) + lnM

which imply the proposition, by sublinearity of the sequence (ln)n∈N.

The main theorem of this article is the following:

Theorem 2.2. Let f be a homeomorphism in Homeo0(S) (respectively in Homeo0(S, ∂S)). If:

lim
n→+∞

δ(f̃n(D))log(δ(f̃n(D)))

n
= 0,

then f is a distortion element in Homeo0(S) (respectively in Homeo0(S, ∂S)).

Remark The hypothesis of this theorem is in fact purely topological, as we will see in this article.
Moreover, the hypothesis of this theorem is independent from the fundamental domain D chosen, which
proves that this hypothesis is conjugation-invariant.

The proof of this theorem will occupy the next five sections. In order to make it, we need a new notion.

Let M be a compact d-dimensional manifold. We will call closed ball of M the image of the closed
unit ball by an embedding from Rd to the manifold M . Take:

Hd =
{

(x1, x2, . . . , xd) ∈ RN , x1 ≥ 0
}

.
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We will call closed half-ball of M the image of B(0, 1) ∩Hd by an embedding p : Hd →M such that:

p(∂Hd) = p(Hd) ∩ ∂M.

Let us fix a finite family U of closed balls or closed half-balls whose interiors cover M . Then, by the frag-
mentation lemma (see [9] or [4]), there exists a finite family (fi)1≤i≤n of homeomorphisms in Homeo0(M),
each with support included in one of the sets of U , such that:

f = f1 ◦ f2 ◦ . . . ◦ fn.

We denote by FragU(f) the minimal integer n in such a decomposition: it is the minimal number of factors
necessary to write f as a product (i.e. composition) of homeomorphisms supported each in one of the
balls of U .

Let us come back to the case of a compact surface S and denote by U a finite family of closed discs or of
closed half-discs whose interiors cover S. We will now describe the different steps of the proof of theorem
2.2. This one has two parts. One part of the proof consists in checking that the quantity FragU (f) is
almost equal to δ(f̃(D)):

Theorem 2.3. There exist two real constants C > 0 and C′ such that, for any homeomorphism g in
Homeo0(S):

1

C
δ(g̃(D0))− C′ ≤ FragU (g) ≤ Cδ(g̃(D0)) + C′.

In the case where the boundary of the surface S is nonempty, let us denote by S′ a submanifold of S
homeomorphis to S, included in the interior of S and which is a retract by deformation of S. We denote
by U a family of closed balls of S whose reunion of the interiors cover S′.

Theorem 2.4. There exist two real constants C > 0 and C′ such that, for any homeomorphism g in
Homeo0(S, ∂S) supported in S′:

1

C
δ(g̃(D0))− C′ ≤ FragU (g) ≤ Cδ(g̃(D0)) + C′.

The lower bound of the fragmentation length is not difficult: it is treated in the next section in which
we will also see that the quantity FragU is essentially independent from the cover U chosen. The upper
bound is on the other hand a lot more technical. In the proof of this bound, we distinguish three cases:
the case of surfaces with boundary (section 5), the case of the torus (section 6) and the case of higher
genus compact boundaryless surfaces (section 7). The proof seems to depend strongly on the fundamental
group of the surface considered. In particular, it is easier in the case of surfaces with boundary whose
fundamental group is free. In the case of the torus, the proof is a little tricky and, in the case of higher
genus closed surfaces, the proof is more complex and uses Dehn algorithm for small-cancellation groups
(surface groups in this case).

Let us explain now the second part of the proof. Denote by M a compact manifold and U a finite
family of closed balls or half-balls whose interiors cover M . In section 4, we will prove the following
theorem which asserts that, for a homeomorphism f in Homeo0(M), if the sequence FragU(f

n) does not
grow too fast with n, then the homeomorphism f is a distortion element:

Theorem 2.5. If

lim
n→+∞

FragU (f
n).log(FragU(f

n))

n
= 0,

then the homeomorphism f is a distortion element in Homeo0(M).

Moreover, in the case of a manifold M with boundary, if U is a finite family of closed balls included in
the interior of M whose interiors cover the support of a homeomorphism f in Homeo0(M,∂M), this last
theorem remains true in the group Homeo0(M,∂M). This section uses a technique by Avila (see [2]).

The theorem 2.2 follows then clearly from these two theorems.
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The last section will be dedicated to the proof of the following result which shows that proposition 2.1
is optimal :

Theorem 2.6. Let (vn)n≥1 be a sequence of positive real numbers such that:

lim
n→+∞

vn
n

= 0.

Then there exists a homeomorphism f in Homeo0(R/Z× [0, 1],R/Z× {0, 1}) such that:

1. ∀n ≥ 1, δ(f̃n([0, 1]× [0, 1])) ≥ vn;

2. the homeomorphism f is a distortion element in Homeo0(R/Z× [0, 1],R/Z× {0, 1}).

This theorem means that being a distortion element gives no clues on the growth of the diameter of a
fundamental domain other than the sublinearity of this growth. This remark remains true for any surface
S: it suffices to embed the annulus R/Z× [0, 1] in any surface S and to use this last theorem to see it.

3 Quasi-isometries

In this section, we will prove tha lower bound in theorems 2.3 and 2.4. More precisely, we will prove
these theorems after admitting the following propositions whose proof will be made in sections 5, 6 and 7.

Proposition 3.1. There exists a finite cover U of S by closed discs and half-discs as well as real constants
C ≥ 1 and C′ ≥ 0 such that, for any homeomorphism g in Homeo0(S):

FragU(g) ≤ CdiamD(g̃(D0)) + C′.

Here is a version of the previous proposition in the case of the group Homeo0(S, ∂S).

Proposition 3.2. Fix a subsurface with boundary S′ of S which is included in the interior of S, is a
retract by deformation of S and is homeomorphic to S. There exist a finite cover U of S′ by closed discs
included in the interior of S as well as real constants C ≥ 1 and C′ ≥ 0 such that, for any homeomorphism
g in Homeo0(S) supported in S′:

FragU(g) ≤ CdiamD(g̃(D0)) + C′.

In order to prove these theorems, we will need some notations. As in the last section, let us denote by
S a compact surface. Two maps a, b : Homeo0(S) → R are quasi-isometric if and only if there exist real
constants C ≥ 1 and C′ ≥ 0 such that:

∀f ∈ Homeo0(S),
1

C
.a(f)− C′ ≤ b(f) ≤ C.a(f) + C′.

Let us consider a fundamental domain D0 of S̃ for the action of the group Π1(S) which satisfies the
following properties (see figure 1) :

– If the surface S is boundaryless and is of genus g, the fundamental domain D0 is a closed disc
bounded by a 4g-gone with geodesic edges;

– if the surface S has a nonempty boundary, the fundamental domain D0 is a closed disc bounded
by a polygone with geodesic edges such that any edge of this polygone which is not included in ∂S̃
connects two edges included in ∂S̃.

Let us take:
D = {γ(D0), γ ∈ Π1(S)} .

For fundamental domains D and D′ in D, we denote by dD(D,D
′)+1 the minimal number of fundamental

domains met by a path which connects the interior of D to the interior of D′. The map dD is a distance
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∂S̃

∂S̃
∂S̃

∂S̃

Case of the torus Case of the torus with one hole Case of the genus 2 closed surface

D0 D0 D0

Figure 1: The fundamental domain D0

on D. We now give a more algebraic interpretation of this quantity. Denote by G the finite set of deck
transformations in Π1(S) which send D0 to a polygon in D adjacent to D0, i.e. which has a common edge
with D0. The subset G is then symmetric and is a generating set of Π1(S). Notice that the map

dG : Π1(S)×Π1(S) → R
(ϕ, ψ) 7→ lG(ϕ

−1ψ)

is a distance on the group Π1(S). We then have, for any couple (ϕ, ψ) of deck transformation in the group
Π1(S):

lG(ϕ
−1ψ) = dD(ϕ(D0), ψ(D0)).

One can see it by noticing that dD is invariant under the action of the group Π1(S) and by proving by
induction on lG(ψ) that:

lG(ψ) = dD(D0, ψ(D0)).

Given a compact subset A of S̃, we call discrete diameter of A the following quantity:

diamD(A) = max

{

dD(D,D
′),

{

D ∈ D, D′ ∈ D
D ∩A 6= ∅, D′ ∩ A 6= ∅

}

.

For a fundamental domain D1 in D, we call éloignement de A par rapport à D1 la quantité suivante :

elD1(A) = max

{

dD(D1, D),

{

D ∈ D
D ∩ A 6= ∅

}

.

Notice that, in the case where D1 ∩ A 6= ∅, we have:

elD1(A) ≤ diamD(A) ≤ 2elD1(A).

The aim of this section is to prove the following statement after admitting proposition 3.1:

Proposition 3.3. The following maps Homeo0(S) → R are quasi-isometric for any finite family U of
closed balls or half-balls whose interiors cover the surface S and for any fundamental domain D of S̃ for
the action of the fundamental group of S:

– the map FragU ;
– the map g 7→ δ(g̃(D));
– the map g 7→ diamD(g̃(D0)).

In particular, for two finite covers U and U ′ as above, the maps FragU and FragU ′ are quasi-isometric and,
for two fundamental domains D and D′, the maps f 7→ δ(f̃(D)) and g 7→ δ(g̃(D′)) are quasi-isometric.

When the boundary of the surface S is nonempty, we have an analogous proposition in the case of
the group Homeo0(S, ∂S). As in the last section, let us denote by S′ a submanifold with boundary of S
homeomorphic to S, included in the interior of S, and which is a retract by deformation of S, and by U
a finite family of closed balls included in the interior of S and whose union of the interiors contains S′.
Finally, let us denote by GS′ the group of homeomorphisms in Homeo0(S, ∂S) which are supported in S′.
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Proposition 3.4. The following maps GS′ → R are quasi-isometric for any fundamental domain D of S̃
for the action of the fundamental group of S :

– the map FragU ;
– the map g 7→ δ(g̃(D));
– the map g 7→ diamD(g̃(D0)).

The proof of this proposition is quite the same as the proof of the previous one: that is why we will
not make it.

These two propositions directly imply theorems 2.3 and 2.4.

Proof. Let us prove first that, for any two fundamental domains D and D′, the maps g 7→ δ(g̃(D)) and
g 7→ δ(g̃(D′)) are quasi-isometric. Let us take:

{γ1, γ2, . . . , γp} = {γ ∈ Π1(S), D
′ ∩ γ(D) 6= ∅} .

Notice that:

D′ ⊂

p
⋃

i=1

γi(D)

and the right-hand side is arc-connected. We then have:

g̃(D′) ⊂

p
⋃

i=1

g̃(γi(D)).

The above lemma imply then that:
δ(g̃(D′)) ≤ pδ(g̃(D)).

As the fundamental domains D and D′ play symmetric roles, this implies that the maps g 7→ δ(g̃(D)) and
g 7→ δ(g̃(D′)) are quasi-isometric.

Lemma 3.5. Let X be an arc-connected metric space. Let (Ai)1≤i≤p be a family of closed subsets of X
such that:

X =

p
⋃

i=1

Ai.

In this case, we have:
δ(X) = sup

x∈X,y∈X
d(x, y) ≤ p max

1≤i≤p
δ(Ai).

Proof. Let x and y be two points in X . By arc connectedness of X , there exists an integer k between 1
and p, an injection σ : [1, k] ∩ N → [1, p] ∩ N and a sequence (xi)1≤i≤k+1 of points in X which satisfy the
following properties:

– x1 = x and xk+1 = y.
– for any index i between 1 and k, the points xi and xi+1 both belong to Aσ(i).

We then have:

d(x, y) ≤
k
∑

i=1

d(xi, xi+1)

≤
k
∑

i=1

δ(Aσ(i))

≤ p max
1≤i≤p

δ(Ai).

This last inequality implies the lemma.

Let us show now that, for two finite families U and U ′ as in the statement of the proposition, the maps
FragU and FragU ′ are quasi-isometric. The proof of this fact requires the two following lemmas.
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Lemma 3.6. Let ǫ > 0. Let us denote by B the unit closed ball of Rd. there exists an integer N ∈ N
such that any homeomorphism in Homeo0(B, ∂B) can be written as a composition of at most N homeo-
morphisms in Homeo0(B, ∂B) ǫ-close to the identity.

Lemma 3.7. Let M be a compact manifold and {U1, U2, . . . , Up} be an open cover of M . There ex-
ist ǫ > 0 and an integer N ′ > 0 such that, for any homeomorphism g in Homeo0(M) (respectively in
Homeo0(M,∂M)) ǫ-close to the identity, there exist homeomorphisms g1, . . . , gN ′ in Homeo0(M) (respec-
tively in Homeo0(M,∂M)) such that:

– each homeomorphism gi is supported in one of the Uj’s;
– g = g1 ◦ g2 ◦ . . . ◦ gN ′ .

The lemma 3.6 is a consequence of lemma 5.2 in [3] (notice that the proof works in dimension higher
than 2). The lemma 3.7 is classical. It is a consequence of the proof of theorem 1.2.3 in [4]. These two
lemmas imply that,for an open cover of the disc D2, there exists an integerN such that any homeomorphism
in Homeo0(D2, ∂D2) can be written as a composition of at most N homeomorphisms supported each in
one of the open sets of the covering. Now, for an element U in U , we denote by U ∩ U ′ the cover of U by
the intersections of the elements of U ′ with U . The application of the last lemma to the ball U with the
cover U ∩ U ′ gives us a constant NU . Let us denote by N the maximum of the NU , where U varies over
U . We then directly obtain that, for any homeomorphism g:

FragU ′(g) ≤ NFragU(g).

As the two covers U and U ′ play symmetric roles, the fact is proved. Notice that this fact is true in any
dimension.

Using a quasi-isometry between the metric spaces (Π1(S), dS) and S̃ (see [13]), we will prove the
following lemma which implies that the last two maps in the proposition are quasi-isometric:

Lemma 3.8. There exist constants C ≥ 1 and C′ ≥ 0 such that, for any compact subset A of S̃:

1

C
δ(A)− C′ ≤ diamD(A) ≤ Cδ(A) + C′.

Proof. Let us fix a point x0 in the interior of D0. The map:

q : Π1(S) → S̃
γ 7→ γ(x0)

is a quasi-isometry for the distance dG and the hyperbolic distance on S̃ (see [13]). We notice that, for
a compact subset A of S̃, the number diamD(A) is equal to the diameter of q−1(B) for the distance dG ,
where

B =
⋃

{D, D ∈ D D ∩ A 6= ∅} .

We deduce that there exist constants C1 ≥ 1 and C′
1 ≥ 0 independent from A such that:

1

C1
δ(B)− C′

1 ≤ diamDD (A) ≤ C1δ(B) + C′
1.

The following inequality allows then to conclude:

δ(B)− 2δ(D0) ≤ δ(A) ≤ δ(B).

We now prove that, for any cover U as in the statement of the proposition, there exist constants C ≥ 1
and C′ ≥ 0 such that, for any homeomorphism g in Homeo0(S):

1

C
diamD(g̃(D0))− C′ ≤ FragU(g).

Let us fix such a family U . We will need the following lemma that we will prove later:
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Lemma 3.9. There exists a constant C > 0 such that, for any compact subset A of S̃ and any homeo-
morphism g supported in one of the sets in U , we have:

diamD(g̃(A)) ≥ diamD(A)− C.

Take k = FragU (g) and:
g = g1 ◦ g2 ◦ . . . ◦ gk,

where each homeomorphism gi is supported in one of the elements of U . We then have:

I ◦ g̃ = g̃1 ◦ g̃2 ◦ . . . ◦ g̃k,

where I is a deck transformation (and an isometry). The lemma 3.9 combined with an induction implies
that:

2 = diamD(g̃
−1
k ◦ . . . ◦ g̃−1

1 ◦ g̃(D0)) ≥ diamD(g̃(D0))− kC,

as the homeomorphisms g̃i commute with I. Therefore :

FragU (g) ≥
1

C
diamD(g̃(D0))−

2

C
.

We obtained the lower bound wanted.

Proof of lemma 3.9. For an element U in U , we denote by Ũ a lift of U , that is to say a connected
component of Π−1(U). Let us take:

M(U) = diamD(Ũ).

This quantity does not depend on the lift Ũ chosen. We denote by M the maximum of the M(U), for U
in U .

We denote by Ug an element in U which contains the support of g. Let us consider two fundamental
domains D and D′ which meet A and which satisfy the following relation:

dD(D,D
′) = diamD(A).

Let us take a point x in D ∩ A and a point x′ in D′ ∩ A. If the point x belongs to Π−1(Ug), we denote

by Ũg the lift of Ug which contains x. Then the point g̃(x) belongs to Ũg and a fundamental domain D̂
which contains the point g̃(x) is at most at distance M from D (for dD). Hence, in any case, there exists
a fundamental domain D̂ which contains the point g̃(x) and is at distance at most M from D. Similarly,
there exists a fundamental domain D̂′ which contains the point g̃(x′) and is at distance at most M from
D′. Therefore:

dD(D̂, D̂′) ≥ dD(D,D
′)− 2M.

We deduce that:
diamD(g̃(A)) ≥ diamD(A)− 2M,

which is what we wanted to prove.

Thus, to conclude the proof of proposition 3.3, it suffices to prove proposition 3.1.

It suffices now to find a finite family U for which proposition 3.1 or 3.2 holds. We will distinguish the
following cases. A section is devoted to each of them:

– the surface S has a nonempty boundary (section 5).
– the surface S is the torus (section 6).
– the surface S is boundaryless of genus greater than one (section 7).

The proof of propositions 3.1 and 3.2, in each of these cases, consists in putting back the boundary of
g̃(D0) close to the boundary of ∂D0 by composing by homeomorphisms supported each in the interior
of one of the balls of a well-chosen cover U . Most of the time, after composing by a homeomorphism
supported in the interior of one of the balls of U , the image of the fundamental domain D0 will not meet
faces which were not met before the composition. However, it will not be always possible, which explains
the technicality of parts of the proof. Then, we will have to assure that, after composing by a uniformly
bounded number of homeomorphisms supported in interiors of balls of U , the image of the boundary of
D0 will be strictly closer to D0 than before.
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4 Distortion and fragmentation on manifolds

In this section, M is a compact d-dimensional manifold, possibly with boundary. Let us fix a finite
family U of closed balls or half-balls ofM whose interiors coverM . For a homeomorphism g in Homeo0(M),
we denote by aU(g) the minimum of the quantities l.log(k), where there exists a finite sequence of l
homeomorphisms (fi)1≤i≤l in Homeo0(M), each supported in one of the elements of U , with:

♯ {fi, 1 ≤ i ≤ l} = k

and:
g = f1 ◦ f2 ◦ . . . ◦ fl.

The aim of this section is to prove the following proposition:

Proposition 4.1. Let f be a homeomorphism in Homeo0(M). We have:

lim
n→+∞

aU(f
n)

n
= 0

if and only if the homeomorphism f is a distortion element in Homeo0(M).

We have an analogous statement in the case of the group Homeo0(M,∂M) which we will give now.
Denote by M ′ a submanifold with boundary of M homeomorphic to M , included in the interior of M and
which is a retract by deformation of M . We denote by U a family of closed balls of M whose interiors
cover M ′. For a homeomorphism g in Homeo0(M,∂M) with support included in M ′, we define aU(g) the
same way as before. We have the following statement:

Proposition 4.2. Let f be a homeomorphism in Homeo0(M,∂M) supported in M ′. We have:

lim
n→+∞

aU(f
n)

n
= 0

if and only if the homeomorphism f is a distortion element of Homeo0(M,∂M).

As aU (f) ≤ FragU(f).log(FragU (f)), These last propositions clearly imply theorem 2.5 and the remark
below the theorem.

Proof of the converse in propositions 4.1 and 4.2. Let us prove first proposition 4.1. If the homeomor-
phism f is a distortion element, we denote by S the finite set which appears in the definition of a distortion
element. We write then each of the homeomorphisms in S as a product of homeomorphisms supported
in one of the sets of U . We denote by S′ the (finite) set of homeomorphisms which appear in such a
decomposition. Then the homeomorphism fn is a composition of ln elements of S′, where ln is less than
a constant independent from n times lS(f

n). In this case, as the element f is distorted, limn→+∞
ln
n

= 0
and:

aU(f
n) ≤ log(card(S′))ln.

Therefore:

lim
n→+∞

aU (f
n)

n
= 0.

In the case of proposition 4.2, the only new difficulty is the following: the elements of S are not necessarily
supported in the reunion of the balls of U . In order to solve this problem, let us take a homeomorphism
h in Homeo0(M,∂M) which is equal to the identity on M ′ and which sends the union of the supports
of elements of S in the union of the interiors of the balls of U . It suffices then to consider the finite set
hSh−1 instead of S in order to conclude.
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The propositions 4.1 and 4.2 will be used in this form only for the proof of theorem 2.6 (construction of
the exemple). In order to prove theorem 2.2, we just needed theorem 2.5 which is weaker. Notice that, if
U is the cover of the sphere by two neighbourhoods of the hemispheres, the map FragU is bounded by 3 on
the group Homeo0(Sn) of homeomorphisms of the n-dimensional sphere isotopic to the identity (voir [5]).
This is a consequence from the annulus theorem by Kirby (see [16]) and Quinn (see [21]). This remark
implies that the following theorem by Calegari and Freedman (see [5]) is a consequence from theorem 2.5:

Theorem 4.3 (Calegari-Freedman [5]). Any homeomorphism in Homeo0(Sn) is a distortion element.

The proof of proposition 4.1 is based on the following lemma, whose proof uses a technique of Avila
(see [2]):

Lemma 4.4. Let (fn)n∈N be a sequence of homeomorphisms of Rd (respectively of Hd) supported in
B(0, 1) (respectively in B(0, 1)∩Hd). There exists a finite set S of compactly-supported homeomorphisms
of Rd (respectively of Hd) such that:

– for any natural number n, the homeomorphism fn belongs to the group generated by S;
– lS(fn) ≤ 14.log(n) + 14.

This lemma is not true anymore for a higher regularity: It makes a crucial use of the fact that, given
a sequence of homeomorphisms (hn) supported in the unit ball B(0, 1), one can store all the information
in this sequence in one homeomorphism the following way. For any integer n, let us denote by gn a
homeomorphism which sends the unit ball on a ball Bn such that the balls Bn are pairwise disjoint and
have a diameter which converges to 0. It suffices then to consider the homeomorphism

∞
∏

n=1

gnhng
−1
n

which stores the information contained in the sequence (hn). Such a construction is not possible in the
case of a higher regularity.

Remark There are two main differences between this lemma and the one stated by Avila:
– Avila’s lemma deals with a sequence of diffeomorphisms which converges sufficiently fast (in the C∞

sense) to the identity whereas, here, any sequence of homeomorphisms is considered;
– the upper bound is logarithmic and not linear.

Remark This lemma is optimal in the sense that, if the homeomorphisms fn are pairwise distinct, the
growth of lS(fn) is at least logarithmic. Indeed, if the generating set S contains k elements, there are at

most kl+1−1
k−1 homeomorphisms whose length with respect to S is less than or equal to l.

Before proving lemma 4.4, let us see why this lemma implies propositions 4.1 and 4.2.

Proof of the direct implication in propositions 4.1 and 4.2. Suppose that:

lim
n→+∞

aU (f
n)

n
= 0.

Let
U = {U1, U2, . . . , Up}

and, for any integer i between 1 and p, ϕi an embedding from Rd to M which sends the closed ball B(0, 1)
onto Ui if Ui is a closed ball or an embedding from Hd to M which sends the closed half-ball B(0, 1)∩Hd

onto Ui if Ui is a closed half-ball. For any natural number n, let ln and kn be two positive integers such
that:

– aU (f
n) = lnlog(kn);

– there exists a sequence (f1,n, f2,n, . . . , fkn,n) of homeomorphisms in Homeo0(M), each supported in
one of the elements of U such that fn is the composition of ln homeomorphisms of this family.

Let us consider an increasing injective function σ : N∗ → N∗ which satisfies:

∀n ∈ N∗,
lσ(n)(C.log(

∑n
i=1 kσ(i)) + C′)

σ(n)
≤

1

n
,
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where the constants C and C′ are given by lemma 4.4. In order to build such a map, it suffices to proceed
by induction and to use the following fact:

lim
n→+∞

lnlog(kn)

n
= 0.

Take a bijective map:

ψ : N∗ →

{

(i, σ(j)) ∈ N∗ × N∗,

{

i ≤ kσ(j)
j ∈ N∗

}

such that, if ψ(n1) = (i1, σ(j1)), ψ(n2) = (i2, σ(j2)) and σ(j1) < σ(j2), then n1 < n2. In this case, we
have:

ψ−1(i, σ(j)) ≤

j
∑

l=1

kσ(l).

Denote τi,j an integer between 1 and p such that:

supp(fi,j) ⊂ Uτi,j .

Apply then lemma 4.4 to the sequence of homeomorphisms

ϕ−1
τψ(n)

◦ fψ(n) ◦ ϕτψ(n)
.

Let us denote by S the finite set given by lemma 4.4. Let Si be the finite set of homeomorphisms supported
in Ui of the form ϕi ◦ s ◦ ϕ

−1
i , where s is a homeomorphism in S and

S ′ =

p
⋃

i=1

Si.

By lemma 4.4, we then have:
∀n ∈ N∗, lS′(fψ(n)) ≤ Clog(n) + C′.

But the homeomorphism fσ(n) can be decomposed the following way:

fσ(n) = g1 ◦ g2 ◦ . . . ◦ glσ(n)
,

where each of the homeomorphisms gi belongs to the set:

{

f1,σ(n), f2,σ(n), . . . , fkσ(n),σ(n)

}

.

Thus:
lS′(fσ(n)) ≤ lσ(n)(Clog( max

1≤i≤kσ(n)

ψ−1(i, σ(n))) + C′).

Therefore:
lS′(fσ(n))

σ(n)
≤
lσ(n)(C.log(

∑n
i=1 kσ(i)) + C′)

σ(n)
≤

1

n

end the homeomorphism f is a distortion element of Homeo0(M) (respectively of Homeo0(M,∂M)).

Let us now prove lemma 4.4. The proof will require two lemmas that we state now.

Let a and b be the two generators of the free semigroup L2 on two generators and, for two compactly
supported homeomorphisms f and g of Rd, let ηf,g be the semigroup morphism from L2 to the group of
homeomorphism of Rd defined by ηf,g(a) = f and ηf,g(b) = g.

Lemma 4.5. There exist compactly supported homeomorphisms s1 and s2 of Rd such that:

∀m ∈ L2, m
′ ∈ L2, m 6= m′ ⇒ ηs1,s2(m)(B(0, 2)) ∩ ηs1,s2(m

′)(B(0, 2)) = ∅

and the diameter of ηs1,s2(m)(B(0, 2)) converges to 0 when the length of m tends to infinity.
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Figure 2: Lemma 4.5

Lemma 4.6. Let f be a homeomorphism in Homeo0(Rd). There exist then two homeomorphisms g and
h in Homeo0(Rd) such that:

f = [g, h],

where [g, h] = g ◦ h ◦ g−1 ◦ h−1.

This last lemma is classical and seems to appear for the first time in [1]. We give now a proof of it.

Proof. Denote by ϕ a homeomorphism in Homeo0(Rd) whose restriction to B(0, 2) is defined by:

B(0, 2) → Rd

x 7→ x
2

For any natural number n, let

An =

{

x ∈ Rd,
1

2n+1
≤ ‖x‖ ≤

1

2n

}

.

Let f be an element in Homeo0(RN ). As any element in Homeo0(RN ) is conjugate to an element with
support included in the interior of A0, we may suppose that the homeomorphism f is supported in the
interior of A0. We define then g ∈ Homeo0(Rd) by:

– g = Id outside B(0, 1).
– for any natural number i, g|Ai = ϕifϕ−i.
– g(0) = 0.

Then:
f = [g, ϕ].

These two lemmas are still true if we replace Rd with Hd and B(0, 2) with B(0, 2) ∩Hd.

Before proving lemma 4.5, let us prove lemma 4.4 with the help of these two lemmas.

Proof of lemma 4.4. We make the proof in the case of homeomorphisms of Rd. The case of the half-space
can be treated the same way. For an element m in L2, let l(m) be the length of m as a word in a and b.
Let

N∗ → L2

n 7→ mn

be a bijective map which satisfies:
l(mn) < l(mn′) ⇒ n < n′.
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ϕ

ϕ

ϕ

A0

A1

A2

Figure 3: Proof of lemma 4.6 : description of the homeomorphism ϕ

This last condition forces the following inequality:

l(mn) = l ⇔ 2l ≤ n < 2l+1.

For instance, for any natural number n:

l(mn) ≤ log2(n).

Let s1 and s2 be the homeomorphisms in Homeo0(Rd) given by lemma 4.5. Let s3 be a homeomorphism
in Homeo0(Rd) supported in the ball B(0, 2) which satisfies:

s3(B(0, 1)) ∩B(0, 1) = ∅.

We denote by Bn the closed ball ηs1,s2(mn)(B(0, 1)). By lemma 4.6, there exist homeomorphisms gn and
hn supported in B(0, 1) such that fn = [gn, hn].

... ...

x0

ηs1,s2(m1)(B(0, 2))

B0 B′

0

ηs1,s2(m2)(B(0, 2))

ηs1,s2(m3)(B(0, 2))
ηs1,s2(mn)(B(0, 2))

ηs1,s2(mn)(B(0, 2))

Bn B′

n

λn

Figure 4: Notations in the proof of lemma 4.4
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We define the homeomorphism s4 by:

{

∀n ∈ N∗, s4|Bn = ηs1,s2(mn) ◦ gn ◦ ηs1,s2(mn)
−1

s4 = Id sur Rd −
⋃

n∈N∗

Bn

and the homeomorphism s5 by:

{

∀n ∈ N∗, s5|Bn = ηs1,s2(mn) ◦ hn ◦ ηs1,s2(mn)
−1

s5 = Id sur Rd −
⋃

n∈N∗

Bn .

Let S = {sǫi , i ∈ {1, . . . , 5} et ǫ ∈ {−1, 1}}. Let

{

λn = ηs1,s2(mn) ◦ s3 ◦ ηs1,s2(mn)
−1

B′
n = λn(Bn)

Notice that the balls Bn and B′
n are disjoint and included in ηs1,s2(mn)(B(0, 2)). Notice also that the

homeomorphism s4◦λn◦s
−1
4 ◦λ−1

n (respectively s5◦λn◦s
−1
5 ◦λ−1

n , s−1
4 ◦s−1

5 ◦λn◦s5◦s4◦λ
−1
n ) fixes the points

outside Bn ∪B′
n, is equal to ηs1,s2(mn) ◦ gn ◦ ηs1,s2(mn)

−1 (respectively to ηs1,s2(mn) ◦ hn ◦ ηs1,s2(mn)
−1,

ηs1,s2(mn)◦ g−1
n ◦h−1

n ◦ ηs1,s2(mn)
−1) on Bn and to λn ◦ ηs1,s2(mn)◦ g−1

n ◦ ηs1,s2(mn)
−1 ◦λ−1

n (respectively
to λn ◦ ηs1,s2(mn) ◦ h−1

n ◦ ηs1,s2(mn)
−1 ◦ λ−1

n , λn ◦ ηs1,s2(mn) ◦ hn ◦ gn ◦ ηs1,s2(mn)
−1 ◦ λ−1

n ) on B′
n.

Therefore, the homeomorphism
[s4, λn][s5, λn][s

−1
4 s−1

5 , λn]

is equal to ηs1,s2(mn) ◦ fn ◦ ηs1,s2(mn)
−1 on Bn and fixes the points outside Bn. Thus:

fn = ηs1,s2(mn)
−1[s4, λn][s5, λn][s

−1
4 s−1

5 , λn]ηs1,s2(mn).

The homeomorphism fn hence belongs to the group generated by S and:

lS(fn) ≤ 2lS(ηs1,s2(mn)) + 6lS(λn) + 8
≤ 2lS(ηs1,s2(mn)) + 12lS(ηs1,s2(mn) + 14)
≤ 14log2(n) + 14.

Proof of lemma 4.5. We start by proving the lemma in the case of homeomorphisms of R. By a perturba-
tive argument (as in [12]), one can find two compactly-supported homeomorphisms ŝ1 and ŝ2 of R which
satisfy the following property:

∀m ∈ L2, m
′ ∈ L2, m 6= m′ ⇒ ηŝ1,ŝ2(m)(0) 6= ηŝ1,ŝ2(m

′)(0).

One can even find homeomorphisms ŝ1 and ŝ2 as close as we want to two given compactly-supported
homeomorphisms of R. It suffices then, the same way as in Denjoy’s construction, to replace each point
of the orbit of 0 under L2 with an interval with positive length to obtain the property wanted. This ends
the proof in the one-dimensional case. In the case of a higher dimension, denote by f and g the two
homeomorphisms of R that we obtained in the one-dimensional case. Let [−M,M ] be an intervall which
contains the support of each of these homeomorphisms.
Let us treat now the case of Rd. The homeomorphism:

Rd → Rd

(x1, x2, . . . , xd) 7→ (f(x1), f(x2), . . . , f(xd))

preserves the cube [−M,M ]d. Let s1 be a homeomorphism of Rd with support included in [−M−1,M+1]d

which is equal to the above homeomorphism on [−M,M ]d. Denote by s2 a homeomorphism obtained the
same way from the homeomorphism g. Using the fact that the ball centered on 0 of radius 2 of Rd is
included in the cube [−2, 2]d and the fact the diameters of the sets

ηs1,s2(m)([−2, 2]d) = (ηf,g(m)([−2, 2]))d
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Figure 5: The different homeomorphisms which appear in the proof of lemma 4.4
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converge to 0 when the length of the word m tends to infinity, we have the wanted property. The case
of the half-spaces Hd can be treated the same way by considering compactly-supported homeomorphisms
which are equal to homeomorphisms of the form

R+ × Rd−1 → R+ × Rd−1

(t, x1, x2, . . . , xd−1) 7→ ( t2 , f(x1), f(x2), . . . , f(xd−1))

in a neighbourhood of 0.

5 Case of surfaces with boundary

Suppose that the boundary of the surface S is nonempty. Let us prove now proposition 3.2. By
considering a cover by half-discs, one can prove, with the same techniques as below, proposition 3.1 in the
case where the boundary of S is nonempty. The details of this last case are analogous to what follows:
they are left to the reader.

Recall that, in section 3, we have chosen a "nice" fundamental domain D0. Let Ã be the set of edges
of the boundary ∂D0 which are not included in the boundary of S̃ and let:

A =
{

Π(β), β ∈ Ã
}

.

For any edge α in A, let us consider a closed disc Vα, which does not meet the boundary of the surface
S, whose interior contains α∩ S′ and such that there exists a homeomorphism ϕα : Vα → D2 which sends
the set α∩ Vα to the horizontal diameter of the unit disc D2. Chose sufficiently thin discs Vα so that they
are pairwise disjoint. Let U1 be a closed disc which contains the union of the discs Vα. Let U2 be a closed
disc of S which meets no edge in A, i.e. included in the interior of the fundamental domain D0, and which
satisfies the two following properties:

– the surface S′ is included in the interior of
⋃

α∈A

Vα ∪ U2.

– for any edge α in A, the set U2 ∩ Vα is homeomorphic to a closed disc.
Let U = {U1, U2}.

∂S̃

∂S̃

∂S̃

∂S̃

U2

Vα1

Vα2

Vα1

Vα2

Figure 6: Notations in the case of surfaces with boundary

In order to prove the inequality in the case of the group Homeo0(S, ∂S), we need the two following
lemmas:
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Lemma 5.1. Let g be a homeomorphism in Homeo0(S, ∂S) supported in the interior of
⋃

Vα ∪ U2. We
suppose that elD0(g̃(D0)) ≥ 2. There exist homeomorphisms g1, g2 and g3 in Homeo0(S, ∂S) supported
respectively in the interior of

⋃

Vα, U2 and
⋃

Vα such that the following property is satisfied:

elD0(g̃3 ◦ g̃2 ◦ g̃1 ◦ g̃(D0)) ≤ elD0(g̃(D0))− 1.

Lemma 5.2. Let g be a homeomorphism in Homeo0(S, ∂S) supported in the interior of
⋃

Vα ∪ U2. If
elD0(g̃(D0)) = 1, then:

FragU (g) ≤ 6.

End of the proof of proposition 3.2. Let k = elD0(g̃(D0)). By lemma 5.1, after composition of g̃ by 3(k−1)
homeomorphisms , each supported in one of the discs of U , we get a homeomorphism f1 supported in
⋃

α∈A

Vα ∪ U2 with:

elD0(f̃1(D0)) = 1.

We apply then lemma 5.2 to the homeomorphism f1:

FragU (f1) ≤ 6.

Therefore:
FragU(g) ≤ 3(elD0(g̃(D0))− 1) + 6.

However, as D0 ∩ g̃(D0) 6= ∅, because the homeomorphism g pointwise fixes a neighbourhood of the
boundary of S:

elD0(g̃(D0)) ≤ diamD(g̃(D0)).

Hence:
FragU (g) ≤ 3diamD(g̃(D0)) + 3.

This finshes the proof.

Notice that we indeed proved the following more precise proposition:

Proposition 5.3. Let g be a homeomorphism in Homeo0(S, ∂S) supported in the interior of
⋃

α∈A

Vα ∪U2.

Then:
FragU (g) ≤ 6diamD(g̃(D0)) + 6.

Proof of lemma 5.1. Let us give first the properties of the homeomorphisms g1, g2 and g3 which will
satisfy the property wanted. Let us give an idea of the action of these homeomorphisms "with the
hands". If we look at the pieces of the face g̃(D0) which are the furthest from D0, the homeomorphism g1
repulse them back to the open set U2, the homeomorphism g2 repulse them outside the open set U2 and
the homeomorphism g3 make them exit from the fundamental domain of D in which these pieces were
included (see figure 7). Let us precise now what we just explained.

We take for g1 a homeomorphism supported in
⋃

α∈A

Vα such that:

– the homeomorphism g1 pointwise fixes Π(∂D0);
– for any edge α and any connected component C of Vα ∩ g(Π(∂D0)) which does not meet Π(∂D0),

we have:
g1(C) ⊂ U2.

One can build such a homeomorphism g1 by taking the time 1 of the flow of a well-chosen vector field
which vanishes on Π(∂D0).

We take for g2 a homeomorphism supported in U2 which satisfies the following property: for any edge
α in A and for any connected component C of Ů2 ∩ g1 ◦ g(Π(∂D0)) whose two ends (i.e. the points of
the closure of C which do not belong to C) belong to Vα, the set g2(C) is included in V̊α. Let us explain
how such a homeomorphism g2 can be built. We will need the following elementary lemma which is a
consequence of Schönfliess theorem:

19



∂S̃

∂S̃

∂S̃

∂S̃

U2

g̃(∂D0)

g1

g2

g2g3

g3

g1

g2

Figure 7: Illustration of the proof of lemma 5.1

Lemma 5.4. Let c1 : [0, 1] → D2 and c2 : [0, 1] → D2 be two injective curves which are equal in a
neighbourhood of 0 and in a neighbourhood of 1 and which satisfy the following properties:

– c1(0) = c2(0) ∈ ∂D2 and c1(1) = c2(1) ∈ ∂D2;
– c1((0, 1)) ⊂ D2 − ∂D2 and c2((0, 1)) ⊂ D2 − ∂D2.

Then, there exists a homeomorphism h in Homeo0(D2, ∂D2) such that:

∀t ∈ [0, 1], h(c1(t)) = c2(t).

Corollary 5.5. Let (ci)1≤i≤l and (c′i)1≤i≤l be two finite sequences of injective curves [0, 1] → D2 of the
closed disc D2 such that:

– for any index 1 ≤ i ≤ l, the maps ci and c′i are equal in a neighbourhood of 0 and of 1;
– the curves ci are pairwise disjoint, as the curves c′i;
– for any index i, the points ci(0) and ci(1) belong to the boundary of the disc;
– for any index i, the sets ci((0, 1)) and c′i((0, 1)) are included in D2 − ∂D2.

Then there exists a homeomorphism h in Homeo0(D2, ∂D2) such that, for any index 1 ≤ i ≤ l:

∀t ∈ [0, 1], h(ci(t)) = c′i(t).

Proof of the corollary. It suffices to use the lemma and an induction.

Let us notice first that only a finite number of connected components of Ů2 ∩ g1 ◦ g(Π(∂D0)) is not
included in one of the open disc V̊α. We denote by C the set of such connected components with both ends
in a same disc of the form Vα, for an edge α in A. Let us fix now an edge α in A. Let C be a connected
component in C whose both ends belong to Vα. We denote by δC : [0, 1] → D an injective path included
in V̊α ∩U2 which is equal to the path C in a neighbourhood of δ(0) and of δ(1). The construction is made
in such a way that the family of paths (δC)C∈C contains pairwise disjoint paths. We apply then the last
corollary in the disc U2 to the families of paths (C)C∈C and (δC)C∈C to have the homeomorphism g2 that
we wanted.

Finally, let g3 be a homeomorphism supported in
⋃

α∈A

Vα which satisfy, for any edge α in A, the

following properties:
– for any connected component C of V̊α∩g2◦g1◦g(Π(∂D0)) whose both ends are in the same connected

component of Vα − α, we have g3(C) ∩ α = ∅;
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– the homeomorphism g3 pointwise fixes any other connected component of V̊α ∩ g2 ◦ g1(Π(∂D0)).
The construction of the homeomorphism g3 can be made the same way as the construction of the home-
omorphism g2. In what follows, we will not give details anymore on this kind of construction.

We claim that for homeomorphisms g1, g2 and g3 which satisfy the above properties satisfy also the
conclusion of lemma 5.1. This will come from the two following claims.

Claim 1. The set of fundamental domains in D which meet g̃3 ◦ g̃2 ◦ g̃1 ◦ g̃(D0) is included in the set
of fundamental domains of D which meet g̃(D0).

If h is a homeomorphism in Homeo0(S, ∂S), we will say that a fundamental domain D in D is extremal
for h̃ if it meets h̃(D0) and it satisfies:

dD(D,D0) = elD0(h̃(D0)).

Affirmation 2. The fundamental domains D in D which are extremal for g̃ do not meet g̃3 ◦ g̃2 ◦ g̃1 ◦
g̃(D0).

Let us admit for the moment these two claims and let us prove lemma 5.1.

Claim 1 implies that:
elD0(g̃3 ◦ g̃2 ◦ g̃1 ◦ g̃(D0)) ≤ elD0(g̃(D0)).

Suppose that we have an equality in the above inequality. Then there exists a fundamental domain D in
D which is extremal for g̃ and which meets g̃3 ◦ g̃2 ◦ g̃1 ◦ g̃(D0). This is a contradiction with claim 2. This
proves the lemma.

Let us prove now claim 1.
To begin with, notice that, for a homeomorphism h in Homeo0(S, ∂S), the set of fundamental domains
of D met by h̃(D0) is equal to the set of fundamental domains of D met by h̃(∂D0) as the interior of a
fundamental domain cannot contain a fundamental domain.
As the homeomorphisms g̃1 and g̃2 both pointwise fix

⋃

D∈D

∂D, the set of elements of D met by g̃2 ◦ g̃1 ◦

g̃(∂D0) is equal to the set of elements of D met by g̃(∂D0). Therefore, it suffices to prove the following
inclusion:

{D ∈ D, g̃3 ◦ g̃2 ◦ g̃1 ◦ g̃(∂D0) ∩D 6= ∅} ⊂ {D ∈ D, g̃2 ◦ g̃1 ◦ g̃(∂D0) ∩D 6= ∅} .

Let D be a fundamental domains which belongs to the left-hand set in the above inclusion. Let x̃ be
a point in g̃2 ◦ g̃1 ◦ g̃(∂D0) which satisfies: g̃3(x̃) ∈ D.

If the point x̃ belongs to the fundamental domain D, then the fundamental domain D belongs to

{D′ ∈ D, g̃2 ◦ g̃1 ◦ g̃(∂D0) ∩D
′ 6= ∅} .

Hence, let us suppose that the point x̃ does not belong to the fundamental domain D. As the homeomor-
phism g3 is supported in

⋃

β∈A

Vβ , there exists an edge α in A such that the point Π(x̃) belongs to the disc

Vα. Let Ṽα be the lift of the disc Vα which contains x̃. By construction of the homeomorphism g̃3, the

point x̃ belongs to a connected component C̃ of g̃2 ◦ g̃1(∂D0) ∩
˚̃Vα whose both ends are in the interior of

a same fundamental domain D′ in D. Let us recall that the connected components which are not of this
kind are fixed by the homeomorphism g3. By definition of g̃3, we then have

g̃3(x̃) ∈ g̃3(C̃) ⊂ D̊′

and, by hypothesis,
g̃3(x̃) ∈ D.

Thus, The two fundamental domains D′ and D are the same and, as the fundamental domain D′ meets
C̃ ⊂ g̃2 ◦ g̃1 ◦ g̃(∂D0), the fundamental domain D belongs to the set

{D ∈ D, g̃2 ◦ g̃1 ◦ g̃(∂D0) ∩D 6= ∅} .
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We come now to the proof of claim 2. As in section 3, let

G = {ai, i ∈ {1, . . . , P}} ∪
{

a−1
i , i ∈ {1, . . . , P}

}

be the generating set of the group Π1(S) which consist in the deck transformations which send the
fundamental domain D0 on a fundamental domain in D adjacent to D0. As, in the case under discussion,
the surface S has a nonempty boundary, the group Π1(S) is the free group generated by {a1, a2, . . . , ap}.
Let Dex be a fundamental domain in D which is extremal for g̃. In particular, we have:

dD(Dex, D0) = elD0(g̃(D0)).

Let us denote by γ the deck transformation which sends D0 to Dex. The element γ of the group Π1(S)
can be written uniquely as a reduced word on elements of G :

γ = s1s2 . . . sn

where the si belong to the generating set G and n = dD(Dex, D0). Every fundamental domain in D
adjacent to Dex is of the form γ(s(D0)), where s is an element in G. If the element s is different from s−1

n ,
we have:

dD(γ(s(D0)), D0) = lG(γs) = n+ 1 > n = elD0(g̃(∂D0)).

Thus, the inly face adjacent to Dex which meets g̃(∂D0) is γ ◦ s−1
n (D0). We denote by α̃ the edge which

belongs to the fundamental domains γ ◦ s−1
n (D0) and Dex. The ends of any connected component of

g̃(∂D0) ∩Dex are in α̃. These connected component do not meet the other edges of ∂Dex. Let Ṽα̃ be the
lift of VΠ(α̃) which contains α̃. We claim that:

g̃1 ◦ g̃(∂D0) ∩Dex ⊂ Ṽα̃ ∪ Ũ2,

where Ũ2 is the lift of U2 which is included in Dex. Let us justify this last claim. For a point x̃ in
Dex ∩ g̃(∂D0) ∩ Π−1(Vβ) − Ṽα̃, where β is an edge in A, the connected component of g̃(∂D0) ∩ Π−1(V̊β)
which contains x̃ does not meet the set Π−1(β). The point g̃1(x̃) belongs hence to U2, by construction of
g1. As, moreover, the homeomorphism g̃1 preserves the following sets:

Ũ2 − (
⋃

β∈A

Π−1(Vβ)) et Ṽα̃,

the claim is proved.

We notice also that:
g̃2 ◦ g̃1 ◦ g̃(∂D0) ∩Dex ⊂ ˚̃Vα̃.

Indeed, the ends of any connected component of g̃1 ◦ g̃(∂D0) ∩
˚̃U2 belong to Ṽα̃.

Let us prove now that:
g̃3 ◦ g̃2 ◦ g̃1 ◦ g̃(∂D0) ∩Dex = ∅.

Let C be a connected component of g̃2 ◦ g̃1 ◦ g̃(∂D0) ∩
˚̃Vα̃. As

g̃2 ◦ g̃1 ◦ g̃(∂D0) ∩Dex ⊂ ˚̃Vα̃,

the ends of C do not belong to D̊ex ∩ Ṽα̃ but to γ ◦ s−1
n (D0)∩ Ṽα̃ which is the other connected component

of Ṽα̃ − α̃ (the ends of C do not belong to α because elD0(g̃(D0)) = dD(Dex, D0) ≥ 2). By construction
of the homeomorphism g3, we have then:

g̃3(C) ⊂ γ ◦ s−1
n (D̊0).

Thus, the set g̃3(C) is disjoint from Dex, which concludes the proof of the second claim.

Proof of lemma 5.2. For any edge α̃ in Ã, we denote by Dα̃ the fundamental domain in D which satisfies:

D0 ∩Dα̃ = α̃.
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Let us fix an edge α̃ of Ã. As elD0(g̃(D0)) = 1, the curve g̃(α̃) does not meet fundamental domains in
D adjacent to Dα̃ and different from D0: these fundamental domains are at distance 2 from D0. Let us
show moreover that, if β̃ is an edge of Ã different from α̃, then

g̃(α̃) ∩Dβ̃ = ∅.

Otherwise, we would have
g̃(Dα̃) ∩Dβ̃ 6= ∅,

for an edge β̃ different from α̃. Let us denote by s the deck transformation which sends D0 to Dα̃. Then:

2 = dD(Dα̃, Dβ̃) = dD(D0, s
−1(Dβ̃)).

Moreover, we have
g̃(s(D0)) ∩Dβ̃ 6= ∅

hence
g̃(D0) ∩ s

−1(Dβ̃) 6= ∅.

It is in contradiction with the hypothesis

elD0(g̃(D0)) = 1.

Thus, for any edge α̃ in Ã, we have:
g̃(α̃) ⊂ D̊α̃ ∪ D̊0 ∪ α̃.

For an edge α̃ in Ã, we denote by Ṽα̃ the lift of VΠ(α̃) which contains the edge α̃.

On va maintenant construire des homéomorphismes g1 et g2 supportés respectivement dans
⋃

α∈A

Vα et

U2 tels que :

∀α̃ ∈ Ã, g̃2 ◦ g̃1 ◦ g̃(α̃) ⊂
˚̃Vα̃ ∪ α̃.

∂S̃

∂S̃

∂S̃

∂S̃

Ũ2,0

α

g̃(α̃)

Ũ2,α

g̃1

g̃1

g̃1

g̃2

g̃2

Figure 8: Proof of lemma 5.2: the homeomorphisms g1 and g2

As in the proof of lemma 5.1, we build homeomorphisms g1 and g2 which satisfy the following properties:
– the homeomorphism g1 is supported in

⋃

α∈A

Vα and pointwise fixes ∂D0;

– for any edge α in A and any connected component C of g(Π(∂D0))∩ V̊α which does not meet α, we
have g1(C) ⊂ U2;
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– the homeomorphism g2 is supported in U2;
– for any connected component C of g1 ◦ g(Π(∂D0)) ∩ Ů2 whose ends belong to a same connected

component of Vα − α, for an edge α in A, we have g2(C) ⊂ V̊α.
Let us denote by Ũ2,0 the lift of the disc U2 included in D0 and, for any edge α̃ in Ã, Ũ2,α̃ the lift of the
disc U2 included in Dα̃. By the same techniques as in the proof of lemma 5.1, we have, for any edge α̃ in
Ã:

g̃1 ◦ g̃(α̃) ⊂
˚̃U2,0 ∪ Ṽα̃ ∪ ˚̃U2,α̃

and
g̃2 ◦ g̃1 ◦ g̃(α̃) ⊂

˚̃Vα̃.

We will now build homeomorphisms g3 and g4 of S supported respectively in
⋃

α∈A

Vα and U2 such that,

for any edge α̃ in Ã, the homeomorphism g̃4 ◦ g̃3 ◦ g̃2 ◦ g̃1 ◦ g̃ pointwise fixes ∂Ṽα̃.

We consider for g3 a homeomorphism supported in
⋃

α∈A

Vα which satisfies the following properties:

– the homeomorphism g3 pointwise fixes g2 ◦ g1 ◦ g(α);
– for any connected component C of g2 ◦ g1 ◦ g(∂Vα) ∩ V̊α, we have: g3(C) ⊂ Ů2.

Then, the set g3 ◦ g2 ◦ g1 ◦ g(∂Vα)∆∂Vα is included in Ů2.

We impose that the homeomorphism g4 is supported in U2 and satisfies the following property: the
homeomorphism g4 is equal to (g3◦g2◦g1◦g)−1 on the closed set g3◦g2◦g1◦g(∂Vα). The construction of g3
has enabled the construction of g4 with the above properties. Thus, as the homeomorphism g4◦g3◦g2◦g1◦g
pointwise fixes

⋃

α∈A

∂Vα, the map g5 : S → S, which is equal to g4◦g3◦g2◦g1◦g on
⋃

α∈A

Vα and to the identity

outside this set, is a homeomorphism of S supported in
⋃

α∈A

Vα. Let then g6 = (g5 ◦ g4 ◦ g3 ◦ g2 ◦ g1 ◦ g)−1.

The homeomorphism g6 is then supported in U2 and we have:

g = g−1
1 ◦ g−1

2 ◦ g−1
3 ◦ g−1

4 ◦ g−1
5 ◦ g−1

6 .

This implies that FragU(g) ≤ 6, which proves the lemma.

6 Case of the torus

In this section, we prove proposition 3.1 in the case of the torus T2 = R2/Z2. We set D0 = [0, 1]2

and the covering Π is given by the projection R2 → R2/Z2. We denote by A0 (respectively A1, B0, B1)
the closed annulus [− 1

4 ,
1
2 ] × R/Z ⊂ T2 (respectively [ 14 , 1] × R/Z, R/Z × [− 1

4 ,
1
2 ], R/Z × [ 14 , 1]). For an

integer i, we denote by Ãi0 (respectively Ãi1, B̃
i
0, B̃

i
1) the band of the plane [i− 1

4 , i+
1
2 ]×R (respectively

[i+ 1
4 , i+ 1]× R, R× [i− 1

4 , i+
1
2 ], R× [i + 1

4 , i + 1]). Finally, for i ∈ Z and j ∈ {0, 1}, we denote by α̃ij
(respectively β̃ij) the curve

{

i+ j
2

}

× R (respectively R×
{

i+ j
2

}

). The cover U of the torus T2 that we
consider is the following:

U =
{

I × J, I, J ∈
{[

− 1
4 ,

1
2

]

,
[

1
4 , 1

]}}

= {Aj ∩Bj′ , j, j′ ∈ {0, 1}} .

For a compact subset A of R2, we set:

length(A) = card
{

(i, j) ∈ Z× {0, 1} , α̃ij ∩ A 6= ∅
}

and:
height(A) = card

{

(i, j) ∈ Z× {0, 1} , β̃ij ∩ A 6= ∅
}

.

Let us notice that, for any compact subset A of R2, we have:

{

length(A) ≤ 2diamD(A)
height(A) ≤ 2diamD(A)

.
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Let us fix a homeomorphism g in Homeo0(T2) and a lift g̃ of g. Let imax,α ∈ Z and jmax,α ∈ {0, 1}
(respectively imax,β and jmax,β) be the integers which satisfy:

imax,α +
1

2
jmax,α = max

{

i+
1

2
j, g̃(D0) ∩ α̃

i
j 6= ∅

}

(respectively:

imax,β +
1

2
jmax,β = max

{

i+
1

2
j, g̃(D0) ∩ β̃

i
j 6= ∅

}

).

We consider the couple (iα, jα) (respectively (iβ , jβ)) so that the interior of the band Ãiαjα (respectively

B̃
iβ
iα

) contains the curve α̃
imax,α
jmax,α

= α̃max (respectively β̃
imax,β
jmax,β

= β̃max). Suppose that height(g̃(D0)) > 3

or that length(g̃(D0)) > 3. Notice that the connected components of Åjα ∩ g(Π(∂D0)) can be split into
two classes:

– on the one hand, the connected component which are homeomorphic to R which will be called regular
connected component of Åjα ∩ g(Π(∂D0));

– on the other hand, there exists at most one connected component homeomorphic to the union of two
transverse straight lines in R2. This is the connected component which contains the point g(0, 0).
We will call it singular connected component of Åjα ∩ g(Π(∂D0)).

We claim then that one of the two following cases is then realized.

First case. There exists a connected component C̃ of Π−1(Åjα) ∩ g̃(∂D0) such that:

– the ends of C̃ belong to two different connected component of the boundary of Π−1(Ajα).

– height(C̃) ≤ 3.
Second case. There exists a connected component C̃ of Π−1(B̊jβ ) ∩ g̃(∂D0) such that:

– the ends of C̃ belong to two different connected component of the boundary of Π−1(Bjβ ).

– length(C̃) ≤ 3.

Let us prove that one of these two cases is realized. Suppose first that the length of g̃(D0) is greater
than 3. Then, there exists a connected component C̃ of Π−1(Åjα )∩ g̃(∂D0) whose ends belong to different

boundary compnents of Π−1(Ajα). If the first case is not realized, the height of C̃ is greater than 3.

Then, there exists a connected component C̃′ of B̊jβ ∩ C̃ whose ends belong to two different connected

components of the boundary of Bjβ . In this case, the length of the component C̃′ is at most 1: the second
case is realized. Finally, if the length of g̃(D0) is smaller or equal to 3 and the height of this compact is
greater than 3, then any connected component of Π−1(B̊jβ )∩ g̃(∂D0) satisfies the properties of the second
case.

The following two lemmas will allow us to conclude the proof of proposition 3.1 in the case of the
2-dimensional torus.

Lemma 6.1. In the first case above, there exists a homeomorphism h supported in Ajα which satisfies the
following properties:

– if p2 : R2 → R denotes the projection on the second coordinate, we have:

sup
x∈R2

∣

∣

∣
p2 ◦ h̃(x) − p2(x)

∣

∣

∣
< 3;

– height(h̃ ◦ g̃(D0)) ≤ height(g̃(D0));
– length(h̃ ◦ g̃(D0)) ≤ length(g̃(D0))− 1.

We have of course a symmetric statement in the second case.

Lemma 6.2. There exists a constant C′ > 0 such that, for any homeomorphism g in Homeo0(T2) which
satisfy the following properties:

{

largeur(g̃(D0)) ≤ 3
hauteur(g̃(D0)) ≤ 3

,

we have:
FragU(g) ≤ C′.
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Proof of proposition 3.1 in the case of the torus T2. Using the case of the annulus treated by proposition
5.3, we see that there exists a constant C > 0 such that, for any homeomorphism h supported in Ajα
(respectively in Bjβ ) with

sup
x∈R2

∣

∣

∣
p2 ◦ h̃(x)− p2(x)

∣

∣

∣
< 3

(respectively

sup
x∈R2

∣

∣

∣
p1 ◦ h̃(x) − p1(x)

∣

∣

∣
< 3),

we have:
FragU (h) ≤ C.

Using lemma 6.1, we see that after composition of the homeomorphism g by at most

C.(max(hauteur(g̃(D0))− 3, 0) + max(largeur(g̃(D0))− 3, 0)

homeomorphisms with support included in one of the discs of U , we obtain a homeomorphism f1 which
satisfies the hypothesis of lemma 6.2:

FragU (f1) ≤ C′.

Therefore:
FragU (g) ≤ 4CdiamD(g̃(D0)) + C′.

The proposition is proved in the case of the torus T2.

Let us now turn to the proof of the two above lemmas.

Proof of lemma 6.1. Suppose we are in the first case (the proof in the second case is identical). We
consider a homeomorphism h supported in Ajα which satisfies the following three properties:

1. for any regular connected component C of g(Π(∂D0)) ∩ Åjα whose both ends belong to the same
connected component of Ajα , we have:

h(C) ∩Π(α̃
imax,α
jmax,α

) = ∅

and, if we denote by C̃ the lift of C which is included in g̃(∂D0) and by qmin and qmax the ends of
C̃ with p2(qmin) < p2(qmax), then:

p2(h̃(C̃)) = [p2(qmin), p2(qmax)];

2. the homeomorphism h fixes the projection of any connected component of g̃(∂D0)∩Π−1(Åjα) whose
ends belong to different connected components of the boundary of Π−1(Ajα );

3. If the point g(0, 0) belongs to Åjα , we add the following third condition. Let C0 be the singular

connected component of g(Π(∂D0))∩ Åjα . If there exists a lift C̃0 of the component C0 which meets
g̃(∂D0) and the curve α̃max, we impose the following condition. Let us denote by C1, C2, C3 and
C4 the connected component of C0 − {g(0, 0)}. Only three of these connected components admit a
lift included in g̃(D0) which meets the interior of Ãiαjα : for the last connected component, the two

lifts of this one included in g̃(D0) are necessarily included in the interior of Ãiα−1
jα

. We may suppose

that these three connected components are C1, C2 and C3. Let C̃1, C̃2 and C̃3 be the respective lifts
of C1, C2 and C3 so that these three lifts have a common end q̃. For an integer i between 1 and 3,
let q̃i be the end of C̃i different from the point q̃. We may suppose that:

p2(q̃1) < p2(q̃2) < p2(q̃3).

Then, for any integer i between 1 and 3, we add the following condition:

h(Ci) ∩ α̃max = ∅.

Moreover:
p2(h̃(C̃1)) = [p2(q̃1), p2(q̃2)],

p2(h̃(C̃2)) = {p2(q̃2)} ,

p2(h̃(C̃3)) = [p2(q̃2), p2(q̃3)].
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We claim that such a homeomorphism h satisfies the wanted properties. First, the existence of a connected
component C̃ of Π−1(Åjα) ∩ g̃(∂D0) whose ends belong to two different connected components of the

boundary of Π−1(Ajα) and whose height is less than or equal to 3 (and therefore sup p2(C̃)−inf p2(C̃) ≤ 2)
and the fact that that the homeomorphism h pointwise fixes the projection ofthis connected component
imply that:

sup
x∈R2

∣

∣

∣
p2 ◦ h̃(x) − p2(x)

∣

∣

∣
< 3.

The condition on the ordinates of the images by h of the connected component of Åjα ∩ g(Π(∂D0)) imply
that:

hauteur(h̃ ◦ g̃(D0)) ≤ hauteur(g̃(D0)).

Finally, by construction, the set h̃ ◦ g̃(D0) does not meet the curve α̃
imax,α
jmax,α

and meets only curves of the

form α̃ij already met by the set g̃(D0). Thus:

length(h̃ ◦ g̃(D0)) ≤ length(g̃(D0))− 1.

Le lemme 6.1 est démontré.

Proof of lemma 6.2. During this proof, we will often use the following result, which is a direct conse-
quence of proposition 3.2 in the case of the annulus. There exists a constant λ > 0 such that, for any
homeomorphism η in Homeo0(T2) supported in Å0 or in Å1 which satisfies:

hauteur(η̃(D0)) ≤ 12,

we have:
FragU (η) ≤ λ.

To sart with, notice that the inequality largeur(g̃(D0)) ≤ 3 implies the inequality largeur(g̃(α̃0
0)) ≤ 1.

Indeed, suppose that largeur(g̃(α̃0
0)) > 1. As one of the edges of the square ∂D0 is included in α̃0

0 and as
the curve g̃(α̃1

0) meets two curves among the α̃ij that g̃(α̃0
0) does not meet, we have:

largeur(g̃(D0)) ≥ largeur(g̃(α̃0
0)) + 2 > 3.

Now, let g be a homeomorphism which satisfies the hypothesis of lemma 6.2. We denote by n(g̃(α̃0
0))

the number of connected components of
⋃

i,j

∂Ãij met by the path g̃(α̃0
0). As the length of g̃(α̃0

0) is less

than or equal to 1, then n(g̃(α̃0
0)) ≤ 3. We will now prove that, after if necessary composing g by

a homeomorphism whose fragmentation length with respect to U is less than or equal to 3λ, we may
suppose that n(g̃(α̃0

0)) = 0.

Suppose that n(g̃(α̃0
0)) > 0. Choose a couple (i0, j0) ∈ Z × {0, 1} such that: the set g̃(D0) meets Ãi0j0

butbut meets only one connected component of the boundary of Ãi0j0 that we denote by ci0,j0 . Let Ãi1j1 be

the unique band among the Ãij whose interior contains the curve ci0,j0 . We have then: j1 6= j0.

For instance, the band Ãi0j0 can be the rightmost band met by the path g̃(α̃0
0).

First case. We suppose that the set g̃(D0) meets the two connected components of the boundary of
Ãj1i1 . We consider a homeomorphism h in Homeo0(T2) with support included in the interior of Aj0
which satisfies the following properties:
– for any connected component C̃ of g̃(∂D0)∩Π−1(Aj0) which is not included in the interior of Aj1 ,

we have:
{

h(Π(C̃)) ⊂ Åj1
p2(h(Π(C̃))) ⊂ p2(Π(C̃))

;

– the homeomorphism h pointwise fixes the other connected components of g(Π(∂D0)) ∩ Aj0 ;

– supx∈R2

∣

∣

∣
p2 ◦ h̃(x)− p2(x)

∣

∣

∣
< 2;
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Notice that the penultimate condition is compatible with the other ones. Indeed, as the height of
g̃(D0) is less than or equal to 3, then, for any connected component C̃ of g̃(∂D0) ∩ Π−1(Aj0 ), we

have: hauteur(C̃) ≤ 3. Therefore, we can choose h so that the support of h is included in a disjoint
union of discs which have a height less than or equal to three. For such a homeomorphism h, the
following properties are satisfied:







FragU (h) ≤ λ

n(h̃ ◦ g̃(α̃0
0)) < n(g̃(α̃0

0))

height(h̃ ◦ g̃(D0)) ≤ height(g̃(D0))

.

The second one comes from the fact that the set h̃ ◦ g̃(α̃0
0) does not meet anymore one of the

connected components of the boundary of Ãi1j1 .

Second case. Suppose that the set g̃(D0) does not meet the boundary of Ãj1i1 . In an analogous way,

we build a homeomorphism in Homeo0(T2) supported in Åj1 such that the curve h̃ ◦ g̃(α̃0
0) does not

meet the band Ãi0j0 anymore and such that:







FragU (h) ≤ λ

n(h̃ ◦ g̃(α̃0
0)) < n(g̃(α̃0

0))

height(h̃ ◦ g̃(D0)) ≤ height(g̃(D0))

.

Thus, it suffices to prove the following property. There exists a constant C > 0 such that, if g is a
homeomorphism in Homeo0(T2) with n(g̃(α̃0

0)) = 0 and hauteur(g̃(D0)) ≤ 3, then FragU(g) ≤ C. Let us
consider such a homeomorphism g.

First case. g(α0) * A0. Let us consider a homeomorphism h supported in the annulus A1 which
preserves the horizontal foliation such that: h(g(α0)) ⊂ A0. The preservation of this foliation
implies that FragU(h) ≤ λ. We are led to the second case.

Second case. g(α0) ⊂ A0. Let us consider a homeomorphism h supported in the annulus A0 which
is equal to the homeomorphism g on a neighbourhood of the curve α0. As the height of g̃(D0) is less
than or equal to 3, we may suppose moreover that: hauteur(h̃(D0)) ≤ 3, because we may suppose

that supx∈R2

∥

∥

∥
h̃(x̃)− x̃

∥

∥

∥
< 2. Thus, we have FragU(h) ≤ λ. Moreover:

hauteur(h̃−1 ◦ g̃(D0)) ≤ 6.
We have pointwise fixed α which is one of the boundary components of A1. By an analogous procedure,

we can find a homeomorphism h′ such that h′−1 ◦h−1 ◦g pointwise fixes a neighbourhood of the boundary
of A1 and such that:

{

FragU(h
′) ≤ 2λ

hauteur(h̃′−1 ◦ h̃−1 ◦ g̃(D0)) ≤ 12
.

We denote by h1 the homeomorphism supported in A1 which is equal to h′−1 ◦ h−1 ◦ g on A1. The height
of h̃1(D0) is less than or equal to 12 and that is why: FragU (h1) ≤ λ. Moreover, the homeomorphism
h2 = h−1

1 ◦ h′−1 ◦ h−1 ◦ g is supported in A2. The image of D0 under h̃2 is less than or equal to 12:
FragU(h2) ≤ λ. Finally, FragU(g) ≤ 5λ in this case. Lemma 6.2 is proved.

7 Case of higher genus closed surfaces

In this section, we prove proposition 3.1 for a higher genus closed surface S. Let us begin by describing
the cover U that we use in what follows. Let p be the point of S which is the image under Π of a vertex
of the polygon ∂D0. Let us denote by Ã the set of edges of the polygon ∂D0 and by A the set of curves
which are the images under Π of an edge in Ã. Let:

B =

{

γ(α),

{

α ∈ Ã
γ ∈ Π1(S)

}

= Π−1(Π(Ã)).

We denote by U0 a closed disc of S whose interior contains the point p and which satisfies the following
property: if Ũ0 is a lift of U0 and p̃ is a lift of the point p, then the disc Ũ0 meets only edges in B for
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which one end is p̃ and the boundary ∂Ũ0 meets each of them in exactly one point. For any edge α in
A, we denote by Vα a closed disc which does not contain the point p so that the following properties are
satisfied:

– for any edge α in A, the set Vα ∪ U0 is a neighbourhood of the edge α;
– for any edge α in A, the set Vα ∩ U0 is the disjoint union of two closed discs;
– the discs Vα are pairwise disjoint.

We denote by U1 a closed disc which contains the union of the Vα. Finally, we denote by U2 a closed disc
which does not meet any edge in A and which satisfies the following properties:

– for any edge α in A, the closed set U2∩Vα is homeomorphic to the disjoint union of two closed discs;
– the union of the interior of the disc U2 with the interior of the disc U0 and with the interiors of the

discs Vα is equal to S;
– the closed set (

⋃

α Vα ∪ U2) ∩ U0 is homeomorphic to an annulus for which one component of the
boundary is ∂U0.

Let U = {U0, U1, U2}. The two following lemmas will allow us to conclude the proof of proposition 3.1.

∂U2

∂
⋃

α∈A

Vα

∂U0

Figure 9: Notations in the case of higher genus closed surfaces

Lemma 7.1. Let f be a homeomorphism in Homeo0(S). Suppose that elD0(f̃(D0)) ≥ 4g. Then there
exists a homeomorphism h in Homeo0(S) which satisfies the following properties:

– FragU (h) ≤ 8g − 2;
– elD0(h̃ ◦ f̃(D0)) ≤ elD0(f̃(D0))− 1.

Remark We did not try to have an optimal upper bound of the fragmentation length of a homeomorphism
with elD0(h̃ ◦ f̃(D0)) ≤ elD0(f̃(D0))− 1.

Lemma 7.2. There exists a constant C′ > 0 such that, for any homeomorphism f in Homeo0(S) with
elD0(f̃(D0)) ≤ 4g, we have:

FragU (f) ≤ C′.

End of the proof of proposition 3.1. Case of a higher genus closed surface. As, by the Lefschetz fixed
point theorem, the homeomorphism f has a contractible fixed point, then

f̃(D0) ∩D0 6= ∅

and
elD0(f̃(D0)) ≤ diamD(f̃(D0)).

Therefore, the two above lemmas allow us to conclude the proof of proposition 3.1.
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To complete the proof of lemma 7.1, we will need some combinatoric lemmas on the group Π1(S) which
we state in the following subsection.

7.1 Some combinatoric lemmas

Let us recall that two fundamental domains D1 and D2 in D are said to be adjacent if the intersection
of D1 with D2 is an edge common to the polygons ∂D1 and ∂D2. Let us recall also that G is a generating
set of Π1(S) consisting of deck transformations which send the fundamental domain D0 to a fundamental
domain adjacent to D0.

We call geodesic word a word γ whose letters are elements of G ⊂ Π1(S) such that the length of the
word γ is equal to lG(γ) (by abuse, we denote also by γ the image of the word γ in the group Π1(S)).

We now describe a more geometric way to see the words whose letters are elements of G. We call
path in D of origin D0 any finite sequence (D0, D1, . . . , Dp) of fundamental domains in D such that
two consecutive fundamental domains in this sequence are adjacent. Such a path in D is said to be
geodesic if, moreover, for any index i, dD(D0, Di) = i. Notice that there is a bijective map between words
on the elements of G and the paths of origin D0 in D: to a word l1 . . . lp, one can associate the path
(D0, l1(D0), l1l2(D0), . . . , l1l2 . . . lp(D0)). This last application is a bijective map and sends the geodesic
words to geodesic paths in D.

For a homeomorphism h in Homeo0(S), we call maximal face for h any fundamental domain in D at
distance elD0(h̃(D0)) fromD0. We want to prove that, after a composition of h with a number independent
from h of homeomorphisms supported in one of the discs in U , the image of D0 does not meet maximal
faces for h anymore. There will be two kinds of maximal faces for h. The fist ones, which we call non-
exceptional, are not a problem: after a composition by four homeomorphisms each supported in one of
the discs of U , the image of the fundamental domain D0 will not meet these faces anymore. These faces
are the ones which satisfy the following property: in the set of faces adjacent to D, there is only one
element which is at distance dD(D,D0) − 1 from D0. The faces in D which do not satisfy this property
are called exceptional. We will succeed in treating their case by understanding the relative arrangement
of the nearby fundamental domains in D.

Let us describe more precisely the crucial property which we use in the proof. Let us denote by D
an exceptional face and by γ a geodesic word such that γ(D0) = D. Let (D0, D1, . . . , DM = D) be the
geodesic path in D which corresponds to the geodesic word γ. We will soon see (see lemma 7.3) that
the 2g − 1 last faces in this sequence have a common vertex. The crucial property will be the following:
if 1 ≤ k ≤ 2g − 2, for any geodesic path of the form (D0, . . . , DM−k, D

′
M−k+1, . . . , D

′
M ), where the face

D′
M−k+1 is different from the face DM−k+1, then the faces D′

M−k+1, . . . , D
′
M are not exceptional (see

lemma 7.5).

By replacing the face D0 by any other fundamental domain D1 in D and the generating set G by
the generating set consisting of deck transformations which send D1 to a face adjacent to D1, we can
define the notion of exceptional faces with respect to D1. All the statements which follow and deal with
exceptional faces (with respect to D0) can be generalized to the case of an exceptional face with respect
to any fundamental domain in D. We tacitly use this remark during the proof of lemma 7.6.

Let:
G = {aǫi , 1 ≤ i ≤ g et ǫ ∈ {−1, 1}} ∪ {bǫi , 1 ≤ i ≤ g et ǫ ∈ {−1, 1}}

so that:
Π1(S) = 〈(ai)1≤i≤g, (bi)1≤i≤g|[a1, b1] . . . [ag, bg] = 1〉 .

Let us denote by Λ the set of cyclic permutations of the words [a1, b1] . . . [ag, bg] and [bg, ag] . . . [b1, a1]. In
terms of paths in D, these words correspond to a circle around one of the vertices of the polygon ∂D0:

Lemma 7.3. For any face D in D and any word λ1 . . . λ4g in Λ, the faces λ1 . . . λi(D), for 1 ≤ i ≤ 4g,
have a common point.
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Proof. We prove that, given a word λ in Λ the fundamental domains λ1 . . . λi(D0), for 1 ≤ i ≤ 4g, have a
common point. This last property implies the lemma by transitivity of the action of the group Π1(S) on
the set D.

Let us denote by X the set of 4g-tuples (δi)1≤i≤4g of elements of D which satisfy the following prop-
erties:

– δ4g = D0;
– there exists a vertex p̃ of D0 such that the set of elements of D which contain the point p̃is
{δi, 1 ≤ i ≤ 4g};

– any circle centered at p̃ of sufficiently small diameter and counterclockwise oriented meets successively
the fundamental domains δ1, . . . , δ4g in this order. In particular, the faces δi and δi+1 are adjacent.

The set X is naturally isomorphic to the set of vertices of the polygon ∂D0. An element a = (δi)1≤i≤4g in
X is associated to a word ϕ(a) = λ = λ1 . . . λ4g in Λ defined the following way: the letter λ1 is the unique
deck transformation in G which sends D0 to δ1. The second letter λ2 is the unique deck transformation
in G such that λ1λ2(D0) = δ2. Likewise, if we suppose that we have built the letters λ1, . . . , λi such
that λ1 . . . λi(D0) = δi, the letter λi+1 is defined by the relation λ1 . . . λi+1(D0) = δi+1. Finally, we have:
δ1 . . . δ4g(D0) = D0 so the word δ1 . . . δ4g belongs to the set Λ.

Thus, we have built an injective map which, to any vertex p̃ of D0, associates a word λ in Λ such that
the fundamental domains λ1 . . . λi(D0), for 1 ≤ i ≤ 4g, have p̃ as common point. Notice that the word
λ−1 satisfies also this last property. Moreover, as the cardinality of the set Λ is 4g and as the cardinality
of the set of vertices of the polygon ∂D0 is 2g, we obtain the following property: for a word λ in Λ, the
fundamental domains λ1 . . . λi(D0), for 1 ≤ i ≤ 4g, have a common point.

The following lemma describes the shape of the geodesic words which send the face D0 to an exceptional
face. This lemma, as well as the combinatorial lemmas which follow, are proved at the end of this section.

Lemma 7.4. Let D be an exceptional face distinct from D0. For any geodesic word γ with γ(D0) = D,
one of the two following properties holds:

– the 2g last letters of the word γ are a subword of a word of Λ;
– the 4g − 1 last letters of γ are the concatenation of two subwords λ1 et λ2 with respective length 2g

and 2g− 1 of words of Λ such that, if we denote by a the last letter of λ1 and b the first letter of λ2,
then the word ab is not included in any word in Λ.

Moreover, there exists a geodesic word γ such that γ(D0) = D which satisfies the first property above. We
denote by l1 . . . l2g its 2g last letters, where l1 . . . l4g ∈ Λ. Moreover, the 2g first letters of any geodesic
word for which this first property holds are l1 . . . l2g or l−1

4g . . . l
−1
2g+1.

In the case g = 2, an example of geodesic word associated to an exceptional face with the first property
above is [a1, b1] = [b2, a2] and an example of geodesic word associated to an exceptional face with the second
property above is

a−1
2 b−1

2 a1b
2
1a

−1
1 b−1

1 = a−1
2 b−1

2 a1b1a
−1
1 [a1, b1]

= b−1
2 a−1

2 b1[b2, a2].

The first property holds for this last word.

Let us fix an exceptional face D. Let l1 . . . l4g be a word in Λ and γ be a geodesic word whose 2g last
letters are l1 . . . l2g such that γ(D0) = D. Let γ = γ′l1 . . . l2g and, for 0 ≤ i ≤ 2g:

{

D1
i = γ′l1 . . . l2g−i(D0)

D2
i = γ′l−1

4g . . . l
−1
2g+i+1(D0)

.

Then: D1
0 = D2

0 = D et D1
2g = D2

2g. By lemma 7.3, all the fundamental domains that we just defined
meet in one point: they are the elements of the set of fundamental domains in D which contain this point.

For a natural number l ≥ 1, we call face of type (0, l) any fundamental domain D in D which is at
distance l from D0 and which satisfies the following property: in the set of faces adjacent to D, only one
element is at distance l − 1 from D0, i.e. this face is not exceptional and is at distance l from D0. In
this case, the other faces adjacent to D are at distance l+ 1 from the fundamental domain D0. This last
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D = D1

0
= D2

0

D1

1

D1

2

D1

3

D2

1

D2

2

D2

3

D2

4
= D1

4

q̃

Figure 10: The Dj
i ’s for a genus 2 surface

fact comes from the following remark: if we denote by m a word on elements of G and by l a letter in
G, the elements ml and l in the group Π1(S) do not have the same length lG modulo 2 as the relations
which défine this group have an even length. By using the notion of geodesic word, another (equivalent)
definition of faces of type (0, l) can be given: a face of type (0, l) is a fundamental domain D in D such
that all the geodesic words γ with γ(D0) = D have the same last letter and their length is l.

For an integer k between 0 and l, we define by induction the set of faces of types (k, l). A face of type
(k, l) is a fundamental domain D in D which is at distance l− k from D0 and which satisfies the following
property: all the faces adjacent to D, except one, are of type (k − 1, l). Therefore, a face of type (k, l)
is also of type (0, l − k) (or even (k − i, l − i), for 0 ≤ i ≤ k). An equivalent definition of faces of type
(k, l) is the following. Let us consider a geodesic word γ′ of length l − k such that γ′(D0) = D. The face
D is of type (k, l) if and only if, for any reduced word m with length less than or equal to k such that
the word γ′m is reduced, the face γ′m(D0) is not exceptional. This definition can also be interpreted in
terms of geodesic paths in D. Let us denote by (D0, . . . , Dl−k) a geodesic path in D. The face Dl−k is of
type (k, l) if and only if for any geodesic extension of the form (D0, . . . , Dl−k, Dl−k+1, . . . , Dl) of this last
path, the faces Dl−k, . . . , Dl are not exceptional. The crucial property described above can be translated
the following way: for any exceptional face D, for any integer 1 ≤ j ≤ 2g − 2, the faces adjacent to D1

j

and different from D1
j−1 and D1

j+1 are of type (j − 1, dD(D,D0)). Notice that the face D1
j is not of type

(j, dD(D,D0)) as the face D, which is exceptional, is at distance j from D.

The following lemma will play a crucial role in the proof of lemma 7.1 and is deduced from lemma 7.4.

Lemma 7.5. For any indices i between 1 and 2g − 2 and j ∈ {1, 2}, the fundamental domains adjacent
to Dj

i which are different from Dj
i+1 and from Dj

i−1 are of type (i− 1, dD(D0, D)).

The following lemma is symmetric to lemma 7.4.

Lemma 7.6. Let D1 be a fundamental domain in D. Suppose that there exist two geodesic words with
distinct first letters a and b such that:

γ1(D0) = γ2(D0) = D1.

Notice that, in this case, the fundamental domain D0 is an exceptional face with respect to D1. Then
there exists a geodesic word γ such that γ(D0) = D1 whose 2g first letters λ1 . . . λ2g are a subword of a

32



word λ1 . . . λ4g in Λ. Moreover, the fundamental domains D0, a(D0) and b(D0) have a common point
p̃ with the following property: the fundamental domains in D which contain the point p̃ are of the form
λ1 . . . λi(D0) or λ−1

4g . . . λ
−1
4g−i+1(D0), with 0 ≤ i ≤ 2g.

For a homeomorphism h in Homeo0(S), we denote by l(h) the maximum of the dD(D,D0), where D
is a fundamental domain in D which contains the image under the homeomorphism h̃ of a vertex of the
polygon ∂D0.

Lemma 7.7. Let h be a homeomorphism in Homeo0(S). Suppose that there exists a fundamental domain
D1 in D whose interior contains the image under h̃ of a vertex p̃ of the polygon ∂D0. The following
conditions are then equivalent:

1. dD(D1, D0) = l(h);

2. the fundamental domain D0 is an exceptional face with respect to D1.

The face D1 is then unique among the faces which satisfy the properties above. In this case, there exists
a word λ1λ2 . . . λ4g in Λ and a geodesic word γ such that γ(D0) = D1 and the 2g first letters of γ are
λ1λ2 . . . λ2g: γ = λ1λ2 . . . λ2gγ

′. Moreover, the vertices of the polygon ∂D0 are the points of the form
p̃i = λ−1

i λ−1
i−1 . . . λ

−1
1 (p̃) or p̃′i = λ4g−i+1λ4g−i+2 . . . λ4g(p̃). These points are pairwise distinct except in the

two following cases: p̃′0 = p̃0 = p̃ and p̃2g = p̃′2g.

Let us come now to the proof of lemma 7.1.

7.2 Proof of lemma 7.1

Proof of lemma 7.1. Let f be a homeomorphism in Homeo0(S) such that elD0(f̃(D0)) ≥ 4g. The proof is
divided into two parts. First, we build a homeomorphism η1 so that the set η̃1 ◦ f̃(D0) does not meet faces
of type (i, elD0(f̃(D0))) for 0 ≤ i ≤ 2g − 2 anymore. Then, we build a homeomorphism η2 so that the set
η̃2 ◦ η̃1 ◦ f̃(D0) does not meet either exceptional maximal faces for f . The constructions will be carried
out so that the quantities FragU (ηi) are bounded by a constant independent from the homeomorphism f
chosen. Let us precise this now.

Lemma 7.8. Let h be a homeomorphism in Homeo0(S). Suppose that elD0(h̃(D0)) ≥ 4g. Then, there
exists a homeomorphism η in Homeo0(S) such that:

– FragU (η) ≤ 4(2g − 2) + 1;
– elD0(η̃ ◦ h̃(D0)) ≤ elD0(h̃(D0));
– one of the two following properties holds:

1. elD0(η̃ ◦ h̃(D0)) ≤ elD0(h̃(D0))− 1;

2. the set η̃ ◦ h̃(D0) does not meet faces of type (i, elD0(h̃(D0))) for 0 ≤ i ≤ 2g − 2.

Proof. Before making the proof, notice that there are two kinds of connected components of h(Π(∂D0))−
Π(∂D0): the connected components homeomorphic to R which will be called regular and (if the image
under h of the vertex of Π(∂D0) does not belong to Π(∂D0), what is assumed in the lemmas below to
simplify) a connected component called singular homeomorphic to the union of 2g straight lines of the
plane pairwise transverse which meet in one point. This last connected component is the one which
contains the vertex of Π(∂D0). The management of this last kind of component is technical and will
require lemmas throughout the proof. The reader may skip the lemmas which deal with this singular
component on first reading. The following lemma is one of those.

Lemma 7.9. Let h be a homeomorphism in Homeo0(S). Take an integer j in [0, 2g − 2]. Suppose that
the following properties hold:

– elD0(h̃(D0)) ≥ 4g;
– the point h(p) does not belong to the set Π(∂D0);
– The set h̃(D0) does not meet the faces of type (i, elD0(h̃(D0))) if 0 ≤ i < j;
– the image under h̃ of a vertex p̃ of the polygon ∂D0 belongs to a face D1 of type (j, elD0(h̃(D0))).
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In this case, the image under the homeomorphism h̃ of any vertex of the polygon ∂D0 different from p̃
does not belong to a face of type (j, elD0(h̃(D0))). Moreover, the face D0 is exceptional with respect to D1.

Proof. Suppose first that j = 0. Lemma 7.7 implies that the image under the homeomorphism h̃ of the
other vertices of the polygon ∂D0 belong to fundamental domains in D strictly closer to D0 than D1.
Suppose now that j ≥ 1. We prove by contradiction that the face D1 is exceptional with respect to D0.
Denote by s(D0), where s is a deck transformation in G, a face adjacent to D0 which contains the point
p̃. Suppose by contradiction that dD(s(D0), D1) = dD(D0, D1) + 1. Then:

{

dD(D0, s
−1(D1)) = dD(D0, D1) + 1

h̃(s−1(p̃)) ∈ s−1(D1)
.

Let us prove then that the face s−1(D1) is of type (j − 1, elD0(h̃(D0))). Let γ be a geodesic word such
that γ(D0) = D1. As elD0(h̃(D0)) ≥ 4g, the word γ has length at least 2g. Moreover, as dD(s(D0), D1) =
dD(D0, D1) + 1, the word s−1γ is geodesic. If we concatenate i ∈ [0, j] letters a1, a2, . . . , ai on the right
with γ so that the word γa1a2 . . . ai is reduced, then the 2g last letters of the obtained word are not a
subword of a word in Λ, as the face D1 is of type (j, elD0(h̃(D0))). Therefore, if we concatenate i ∈ [0, j−1]
letters a1, a2, . . . , ai on the right with the geodesic word s−1γ so that the obtained word is reduced, the
2g − 1 last letters of the obtained word are not a subword of a word in Λ. By lemma 7.4, the faces
s−1γa1a2 . . . ai(D0) are not exceptional so the face s−1(D1) is of type (j − 1, elD0(h̃(D0))). There is a
contradiction with the hypothesis of the lemma.

Thus, the face D0 is exceptional with respect to D1 and, using lemma 7.7, we see that the image under
the homeomorphism h̃ of the vertices of ∂D0 distinct from p̃ belong to fundamental domains in D strictly
closer to D0 than D1, which proves the lemma.

Let M = elD0(h̃(D0)). Consider a little perturbation of the identity η0 supported in the interior of
one of the discs in U so that:

{

elD0(η̃0 ◦ h̃(D0)) ≤M
η0 ◦ h(p) /∈ Π(∂D0)

.

Notice that, if elD0(η̃0 ◦ h̃(D0)) ≤ M − 1, then the lemma is proved with η = η0. Suppose now that, for
an integer j ∈ [0, 2g − 2], we have built a homeomorphism ηj in Homeo0(S) such that:

– FragU (ηj) ≤ 4(j − 1) + 1;

– elD0(η̃j ◦ h̃(D0)) =M ;

– the set η̃j(h̃(D0)) does not meet the faces of type (i,M) for 0 ≤ i < j;
– the point ηj ◦ h(p) does not belong to Π(∂D0).

We will then build a homeomorphism ηj+1 so that the set η̃j+1◦h̃(D0) does not meet the faces of type (j,M)
either. This homeomorphism will be built by composing the homeomorphism ηj by four homeomorphisms
f1, f2, f3 and f4 supported each in the interior of one of the discs in U . The homeomorphisms fi for
1 ≤ i ≤ 3 will satisfy the following property P :

{

D ∈ D, D ∩ f̃i . . . f̃1 ◦ η̃j ◦ h̃(D0) 6= ∅
}

=
{

D ∈ D, D ∩ η̃j ◦ h̃(D0) 6= ∅
}

.

If the image under η̃j ◦ h̃ of a vertex p̃ of the polygon ∂D0 belongs to a face D of type (j,M), i.e. the

homeomorphism ηj ◦ h satisfies the hypothesis of the previous lemma, we denote by C̃1 the connected

component of η̃j ◦ h̃(∂D0)∩ D̊ which contains the point η̃j ◦ h̃(p̃). This is the unique connected component

of η̃j ◦ h̃(∂D0)− Π−1(Π(∂D0)) which contains the image under the homeomorphism η̃j ◦ h̃ of a vertex of

the polygon ∂D0 which is included in a face of type (j,M), by the previous lemma. Notice that Π(C̃1) is
included in the singular component of ηj ◦ h(Π(D0))−Π(∂D0).

Let f1 be a homeomorphism supported in the interior of the disc U0 with the following properties:
– the homeomorphism f1 globally preserves each edge in A;
– for any connected component C of Ů0 ∩ ηj ◦ h(Π(∂D0)) which does not contain the point p, we have

f1(C) ⊂
⋃

α∈A

V̊α ∪ Ů2;
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η̃j ◦ h̃(∂D0)

∂Ũ2,D(j,M)

β̃D(j,M)

Figure 11: Idea of the proof of lemma 7.8: the face D(j,M)

– Treatment of the singular component: if the hypothesis of the previous lemma hold for the homeo-
morphism ηj ◦ h, we ask moreover that the image of Π(C̃1) under f1 is included in the open set

⋃

α∈A

V̊α ∪ Ů2.

Notice that this condition is not redundant with the other ones when Π(C̃1) is included in a connected
component of Ů0 ∩ ηj ◦ h(Π(∂D0)) which contains the point p.

Notice that, as the set C̃1 is included in a face of type (j,M), the set Π(C̃1) does not contain the point

p (otherwise the closed set C̃1 would meet a face of type (j − 1,M), which is excluded by hypothesis
on the homeomorphism ηj). To build such a homeomorphism f1, it suffices to take the time 1 of the
flow of a vector field for which the point p is a repulsive fixed point, which is tangent to the edges of
A and is supported in the open disc Ů0. As the homeomorphism f1 globally preserves Π−1(Π(∂D0)),
this homeomorphism satisfies property P . Denote by D(j,M) a face of type (j,M). Recall that, by
definition, if j ≥ 1, all the faces adjacent to D(j,M), except one, are of type (j − 1,M). Let β̃D(j,M) be
the common edge to the face D(j,M) and to the unique face adjacent to D(j,M) which is at distance
dD(D(j,M), D0) − 1 of the fundamental domain D0. Then, by hypothesis, any connected component of
η̃j ◦ h̃(∂D0) ∩ D(j,M) has ends included in the interior β̃D(j,M) − ∂β̃D(j,M) of the edge β̃D(j,M). Let us

denote by Ũ2,D(j,M) the lift of the disc U2 included in the fundamental domain D(j,M). The construction
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of the homeomorphism f1 implies then that:

f̃1 ◦ η̃j ◦ h̃(∂D0) ∩D(j,M) ⊂ ˚̃U2,D(j,M) ∪ Π−1(
⋃

α∈A

Vα).

Consider a homeomorphism f2 in Homeo0(S) which is supported in the union of the discs Vα, where
α varies over A, which satisfies the following properties:

– the homeomorphism f2 pointwise fixes all the edges in A;
– for any edge α in A and any connected component C of f1 ◦ ηj ◦ h(Π(∂D0)) ∩ Vα which does not

meet the edge α, we have f2(C) ⊂ Ů2;
– treatment of the singular component: if the homeomorphism ηj ◦ h satisfies the hypothesis of the

previous lemma, we ask moreover that f2 ◦ f1(Π(C̃1)) ⊂ Ů2.
Let Ṽβ̃D(j,M)

be the lift of the disc VΠ(β̃D(j,M))
which meets the edge β̃D(j,M). As the homeomorphism f̃2

pointwise fixes Π−1(Π(∂D0)), it satisfies property P . Moreover, by construction of the homeomorphism
f2, we have, for any face D(j,M) of type (j,M):

f̃2 ◦ f̃1 ◦ η̃j ◦ h̃(∂D0) ∩D(j,M) ⊂ ˚̃Vβ̃D(j,M)
∪ ˚̃U2,D(j,M).

With the same method, we build a homeomorphism f3 supported in the interior of U2 such that, for any
face D(j,M) of type (j,M), we have:

f̃3 ◦ f̃2 ◦ f̃1 ◦ η̃j ◦ h̃(∂D0) ∩D(j,M) ⊂ ˚̃Vβ̃D(j,M)
.

As this homeomorphism pointwise fixes Π−1(Π(∂D0)), it also satisfies property P . Finally, let f4 be a
homeomorphism in Homeo0(S) supported in the disjoint union of open discs V̊α, where α varies over the
set A, which satisfies the following properties for any edge α in A:

– for any connected component C of f3 ◦ f2 ◦ f1 ◦ ηj ◦ h(Π(∂D0)) ∩ V̊α whose ends belong to the same
connected component of Vα − α, we have f4(C) ∩ α = ∅;

– the homeomorphism f4 pointwise fixes any other regular connected component of f3 ◦ f2 ◦ f1 ◦ ηj ◦

h(Π(∂D0)) ∩ V̊α;
– treatment of the singular component: if the homeomorphism ηj ◦ h satisfies the hypothesis of the

previous lemma, if C̃′
1 denotes the connected component of f̃3 ◦ f̃2 ◦ f̃1 ◦ η̃j ◦ h̃(∂D0) ∩ Π−1(∪αV̊α)

which contains the image under the homeomorphism f̃3 ◦ f̃2 ◦ f̃1 ◦ η̃j ◦ h̃ of a vertex of the polygon
∂D0 and which meets a face of type (j,M), then:

f4(Π(C̃
′
1)) ∩ α = ∅.

– in the case where the homeomorphism ηj ◦ h does not satisfy the hypothesis of the previous lemma,
then the homeomorphism f4 pointwise fixes the potential connected component of f3 ◦ f2 ◦ f1 ◦ ηj ◦

h(Π(∂D0))∩ V̊α which is not homeomorphic to R and has ends in the two connected components of
Vα − α.

We now prove that the homeomorphism ηj+1 = f4 ◦ f3 ◦ f2 ◦ f1 ◦ ηj satisfies then the required property,

namely that elD0(η̃j+1 ◦ h̃(D0)) ≤ elD0(η̃j ◦ h̃(D0)) and that the set η̃j+1 ◦ h̃(D0) does not meet the faces

of type (i,M) for 0 ≤ i ≤ j. We will distinguish several pieces of the curve f̃3 ◦ f̃2 ◦ f̃1 ◦ η̃j ◦ h̃(∂D0): the

piece k̃1 = f̃3 ◦ f̃2 ◦ f̃1 ◦ η̃j ◦ h̃(∂D0)−Π−1(∪αVα) and the piece k̃2 = f̃3 ◦ f̃2 ◦ f̃1 ◦ η̃j ◦ h̃(∂D0)∩Π−1(∪αVα).
For each case, we prove that the image under f4 of the piece chosen does not meet new faces (i.e. which
were not met by the curve f̃3 ◦ f̃2 ◦ f̃1 ◦ η̃j ◦ h̃(∂D0)) and does not meet faces of type (j,M).

First case If C̃ is the closure of a connected component of k̃1, then f4(C̃) = C̃ is contained in a face
which belongs to the set:

{

D ∈ D, D ∩ f̃3 ◦ f̃2 ◦ f̃1 ◦ η̃j ◦ h̃(D0) 6= ∅
}

=
{

D ∈ D, D ∩ η̃j ◦ h̃(D0) 6= ∅
}

and is not included in a face of type (j,M) because, for any face D(j,M) of type (j,M), we have:

f̃3 ◦ f̃2 ◦ f̃1 ◦ η̃j ◦ h̃(∂D0) ∩D(j,M) ⊂ ˚̃Vβ̃D(j,M)
.
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Second case If C̃ is a connected component of k̃2 whose ends do not belong to the same connected
component of Π−1(∪αVα − α) and, in the case where the homeomorphism ηj ◦ h satisfies the hypothesis

of the previous lemma, which does not contain the image under the homeomorphism f̃3 ◦ f̃2 ◦ f̃1 ◦ η̃j ◦ h̃

of a vertex of the polygon ∂D0 then f̃4(C̃) = C̃ in the faces of the set:

{

D ∈ D, D ∩ η̃j ◦ h̃(D0) 6= ∅
}

and does not meet faces of type (j,M).

Third case If C̃ is a connected component of k̃2 whose ends belong all to the same connected component
of Π−1(∪αVα − α), then the subset f̃4(C̃) is contained in the interior of the fundamental domain in D
which contains the ends of C̃ and which, therefore, is not of type (j,M) because, for any face D(j,M) of
type (j,M), we have:

f̃3 ◦ f̃2 ◦ f̃1 ◦ η̃j ◦ h̃(∂D0) ∩D(j,M) ⊂ ˚̃Vβ̃D(j,M)
.

Moreover, such a face belongs to the set:

{

D ∈ D, D ∩ η̃j ◦ h̃(D0) 6= ∅
}

.

Fourth case Let us finally address the case where the homeomorphism ηj ◦ h satisfies the hypothesis

of the previous lemma and where C̃ is a connected component of k̃2 which contains the image under the
homeomorphism f̃3 ◦ f̃2 ◦ f̃1 ◦ η̃j ◦ h̃ of a vertex of the polygon ∂D0. Let p̃ be the vertex of the polygon

whose image under the homeomorphism f̃3 ◦ f̃2 ◦ f̃1 ◦ η̃j ◦ h̃ belongs to a face D1 of type (j,M). By lemmas
7.9 and 7.7, there exists a geodesic word of the form λ1λ2 . . . λ2gγ, where the word λ1λ2 . . . λ4g belongs
to Λ, which sends the face D0 to the face D1. Let us denote by γ′ the word γ without the last letter.
By construction of the homeomorphism f4, by lemma 7.7, the set f̃4(C̃) is included in the union of the
following fundamental domains:

λ1 . . . λ2gγ
′(D0)

λi+1 . . . λ2gγ(D0) si 1 ≤ i ≤ 2g
λi+1 . . . λ2gγ

′(D0) si 1 ≤ i ≤ 2g
λ−1
4g−i . . . λ

−1
2g γ(D0) si 1 ≤ i ≤ 2g

λ−1
4g−i . . . λ

−1
2g γ

′(D0) si 1 ≤ i ≤ 2g.

These fundamental domains are each at distance less than or equal to M − j − 1 from D0 and are not
of type (i,M) if 0 ≤ i ≤ j. Lemma 7.8 is proved because, either elD0(η̃j+1 ◦ h̃(D0)) < elD0(h̃(D0))
and η = ηj+1 is appropriate, either one can continue the process until the other property is eventually
satisfied.

For a homeomorphism h in Homeo0(S), we denote by Fh the union of the set of exceptional faces
which are maximal for the homeomorphism h with the set of fundamental domains in D at distance less
than or equal to elD0(h̃(D0))− 1 and greater than or equal to elD0(h̃(D0))− (2g − 2) from D0 and which
have a common vertex with an exceptional face which is maximal for h. By lemma 7.5, the faces D which
belong to this last category satisfy the folllowing property: if p̃ denotes the vertex of the boundary of D
which belongs to an exceptional maximal face, any face adjacent to D which does not contain the point
p̃ is of type (i, elD0(h̃(D0))), for an integer i between 0 and 2g − 3.

Lemma 7.10. Let h be a homeomorphism in Homeo0(S) with the following properties:
– h(p) /∈ Π(∂D0);
– elD0(h̃(D0)) ≥ 4g;
– the set h̃(D0) does not meet the faces of type (i, elD0(h̃(D0))) for any index 0 ≤ i ≤ 2g − 2.

Then, there exists a homeomorphism η in Homeo0(S) such that, for any fundamental domain D in Fh,
the connected components of η̃ ◦ h̃(∂D0) ∩D are included in Π−1(Ů0) and with the following properties:

– η ◦ h(p) /∈ Π(∂D0);
– elD0(η̃ ◦ h̃(D0)) ≤ elD0(h̃(D0));
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– FragU (η) ≤ 4;
– the set η̃ ◦ h̃(D0) does not meet faces of type (i, elD0(h̃(D0))) for 0 ≤ i ≤ 2g − 2.

Proof. During this proof, we need the following result which enables us to deal with the singular compo-
nents:

Lemma 7.11. Let h be a homeomorphism of S which satisfies the hypothesis of lemma 7.10. Suppose
that there exists a vertex p̃ of the polygon ∂D0 such that the point h̃(p̃) belongs to a fundamental domain
D1 in Fh at distance i from an exceptional face Dmax which is maximal for h, with 0 ≤ i ≤ 2g− 2. Then
there exist two subwords λ1 . . . λ2g and λ′1 . . . λ

′
2g−1 of words λ1 . . . λ4g and λ′1 . . . λ

′
4g in Λ and a geodesic

word of the form λ1 . . . λ2gγλ
′
1 . . . λ

′
2g−1 wuch that:

– λ1 . . . λ2gγλ
′
1 . . . λ

′
2g−1−i(D0) = D1;

– λ1 . . . λ2gγλ
′
1 . . . λ

′
2g−1(D0) = Dmax;

– the vertices of the polygon ∂D0 are the points of the form λ−1
i . . . λ−1

1 (p̃) or λ4g−i+1 . . . λ4g(p̃).

Remark The lemma implies in particular that the point p̃ is the unique vertex of the polygon ∂D0 whose
image under h̃ belongs to a fundamental domain in Fh.

Proof. Let us denote by p̃′ the vertex of the polygon ∂D0 such that the point h̃(p̃′) belongs to a fundamental
domain D′

1 in D at distance l(h) from D0. Then, by lemma 7.7, D′
1 = λ1 . . . λ2gγ

′(D0), where λ1 . . . λ2g
is a subword of length 2g of a word λ1 . . . λ4g in Λ and λ1 . . . λ2gγ

′ is a geodesic word. Morever, by the
same lemma, after replacing λ1 . . . λ2g with λ−1

4g . . . λ
−1
2g+1, we may suppose that p̃ = λ−1

j . . . λ−1
1 (p̃′), where

0 ≤ j ≤ 2g. Therefore, the face D1 is of the form D1 = λj+1 . . . λ2gγ
′(D0). As the face D1 belongs to Fh,

by lemma 7.4, we have γ′ = γλ′1 . . . λ
′
2g−i−1, where λ′1 . . . λ

′
2g−1 is a subword of length 2g − 1 of a word in

Λ and:
Dmax = λj+1 . . . λ2gγλ

′
1 . . . λ

′
2g−1(D0).

The lemma will be proved if j = 0. Suppose by contradiction that j ≥ 1. As dD(D
′
1, D0) ≤ dD(Dmax, D0),

then j ≤ i. Moreover, by lemma 7.4, the faces of the form λ1 . . . λ2gγ
′λ′1 . . . λ

′
2g−i−1a1 . . . ak(D0), where

0 ≤ k ≤ i − j, the letters ai are elements of G and the word λ1 . . . λ2gγ
′λ′1 . . . λ

′
2g−i−1a1 . . . ak is reduced,

are not exceptional, so that the face D′
1 is of type (i − j, elD0(h̃(D0))). This is in contradiction with the

fact that the set h̃(∂D0) does not meet faces of this type.

By methods similar to those used to prove lemma 7.8, we build a homeomorphism f1 which is the
composition of a homeomorphism supported in U0 with a homeomorphism supported in the union of the
Vα’s, which globally preserves Π−1(Π(∂D0)) and has the following property. Let D be a fundamental
domain in Fh. The face D has then exactly two adjacent faces which are in Fh and we denote by α̃D
and β̃D the edges common to the boundary of one of these faces and to ∂D. We denote by Ũ2,D the lift

of the disc U2 included in D, Ṽα̃D the lift of VΠ(α̃D) which meets α̃D, Ṽβ̃D the lift of VΠ(β̃D) which meets

β̃D and Ũ0,D the lift of U0 which contains the point α̃D ∩ β̃D. Then, for any connected component C̃ of

h̃(∂D0) ∩D, we have:
f̃1(C̃) ⊂ Ũ0,D ∪ Ṽα̃D ∪ Ṽβ̃D ∪ Ũ2,0.

Moreover, if no end of C̃ meets E, where E is one of the sets Ũ0,D, Ṽα̃D or Ṽβ̃D and if C̃ does not have

one end in Ṽα̃D and the other in Ṽβ̃D then f̃1(C̃) does not meet E.

If the homeomorphism h does not satisfy the hypothesis of the previous lemma, we denote by C the
set of connected components of f1 ◦h(Π(∂D0))−Π(∂D0) whose ends belong either all to the same edge in
A, either to two consecutive edges in A (i.e. edges which admit lifts which have a common point and are
included in a same face in D). If the homeomorphism h satisfies the hypothesis of the previous lemma,

we define the set C as the union of the set that we just described with the singleton
{

Π(C̃1)
}

, where C̃1

is the unique connected component of f̃1 ◦ h̃(∂D0) − Π−1(Π(∂D0)) which contains the image under the
homeomorphism f̃1 ◦ h̃ of a vertex of ∂D0 and which is included in a face in Fh.
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Figure 12: Illustration of the proof of lemma 7.10

We build a homeomorphism f2 which is supported in U2 with the following property: given two
consecutive edges α and β, for any element C in C whose ends belong to α∪β, we have: f2(C) ⊂ Vα∪Vβ∪U0.
Moreover, if the ends of C do not meet a set E among Vα, Vβ or U0, then f2(C) is disjoint from E. The

construction implies that, for any fundamental domain D in Fh and any connected component C̃ of
f̃1 ◦ h̃(∂D0) ∩D, we have:

f̃2(C̃) ⊂ Ũ0,D ∪ Ṽα̃D ∪ Ṽβ̃D .

Moreover, if the set C̃ does not meet a disc E among Ũ0,D, Ṽα̃D or Ṽβ̃D , then f̃2(C̃) does not meet this
disc either. As the homeomorphism f2 is supported in U2, we have:

{

D ∈ D, f̃2 ◦ f̃1 ◦ h̃(D0) ∩D 6= ∅
}

=
{

D ∈ D, h̃(D0) ∩D 6= ∅
}

.

We consider then a homeomorphism f3 supported in the union of the Vα’s with the following properties:
– for any edge α in A and any connected component C of f2 ◦ f1 ◦ h(Π(∂D0))∩ Vα whose ends belong

to a same connected component of U0 ∩ Vα, then f3(C) ⊂ U0;
– for any connected component C of f2 ◦ f1 ◦ h(Π(∂D0)) ∩ Vα which does not meet the edge α, we

have f3(C) ∩ α = ∅.
– if C̃1 is a connected component of f̃2 ◦ f̃1 ◦ h̃(∂D0)−Π−1(Π(∂D0)) which contains the image under

the homeomorphism f̃2 ◦ f̃1 ◦ h̃ of a vertex of the polygon ∂D0 and which is contained in a face in
Fh, then f3(Π(C̃1)) ⊂ U0.

Let D be a face in Fh at distance i < 2g−2 of an exceptional face which is maximal for h. We prove that,
for any fundamental domain D′ in D and any connected component C̃ of D′ ∩ f̃2 ◦ f̃1 ◦ h̃(∂D0), we have:

f̃3(C̃) ∩D ⊂ Ũ0,D.
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If the face D′ is not adjacent to D, as f̃3(C̃) is included in the set of faces adjacent to D′, we have:
f̃3(C̃) ∩D = ∅. By lemma 7.5, the faces adjacent to D are:

– either of type (i− 1, elD0(h̃(D0)));
– either at distance elD0(h̃(D0)) + 1 from the face D0;
– either in Fh.

In the first two cases, the faces do not meet f̃2 ◦ f̃1 ◦ h̃(∂D0). Therefore, it suffices to study the two
following cases:

– the face D′ belongs to Fh and is adjacent to D;
– D′ = D.

In the first case, let α̃ = D ∩ D′ and Ṽα̃ be the lift of VΠ(α̃) which meets α̃. Notice that any point of

C̃ which does not meet Ṽα̃ has an image which does not meet D. Moreover, by construction of f3, any
connected component of C̃ ∩ Ṽα̃ which does not meet α̃ has an image under f̃3 which does not meet the
fundamental domain D. Let us denote by C̃1 a connected component of C̃ ∩ Ṽα̃ which meets α̃ and denote
by C̃′

1 the connected component of Ṽα̃ which contains C̃1. The connected component C̃′
1 has necessarily its

both ends included in Ũ0,D by the properties satisfied by f̃2 ◦ f̃1 ◦ h̃. Therefore, the set f̃3(C̃1) is included

in the set f̃3(C̃
′
1) which is itself included in Ũ0,D, which proves the result in the first case. In the second

case, the same kind of deductions implies that f̃3(C̃) ∩D ⊂ Ũ0,D.

Finally, consider a homeomorphism f4 in Homeo0(S) supported in the union of the Vα’s with the
following properties:

– the homeomorphism f4 globally preserves Π(∂D0);
– for any connected component C̃ of f̃3 ◦ f̃2 ◦ f̃1 ◦ h̃(∂D0)−Π−1(Π(∂D0)) included in a face in Fh at

distance 2g − 2 from an exceptional maximal face, we have: f̃4(C̃) ⊂ Π−1(U0);
– f4(U0) ⊂ U0.

The homeomorphism η = f4 ◦ f3 ◦ f2 ◦ f1 satisfies then the following property, for any face D in Fh:

f̃4 ◦ f̃3 ◦ f̃2 ◦ f̃1(∂D0) ∩D ⊂ Π−1(U0).

Moreover, we have:

{

D ∈ D, D ∩ f̃4 ◦ f̃3 ◦ f̃2 ◦ f̃1 ◦ h̃(∂D0) 6= ∅
}

=
{

D ∈ D, D ∩ f̃3 ◦ f̃2 ◦ f̃1 ◦ h̃(∂D0) 6= ∅
}

.

Therefore, in orderto prove the lemma, it suffices to prove that any fundamental domain in D met by
f̃3 ◦ f̃2 ◦ f̃1 ◦ h̃(∂D0) is at distance at most elD0(h̃(D0)) from D0 and is not of type (i, elD0(h̃(D0))) for
0 ≤ i ≤ 2g−2. Let D be a fundamental domain in D. If C̃ is a connected component of f̃2◦ f̃1◦ h̃(∂D0)∩D
which does not contain the image under the homeomorphism f̃2 ◦ f̃1 ◦ h̃ of a vertex of the polygon ∂D0,
then the set f̃3(C̃) meets only fundamental domains in D that f̃2 ◦ f̃1 ◦ h̃(∂D0) meets. If C̃ is a connected
component of f̃2 ◦ f̃1 ◦ h̃(∂D0) ∩ D which contains the image under the homeomorphism f̃2 ◦ f̃1 ◦ h̃ of a
vertex of the polygon ∂D0, then either the homeomorphism h̃ does not satisfy the hypothesis of lemma
7.11 and the last claim remains true, either it satisfies the hypothesis of this lemma and it suffices to apply
this lemma to conclude.

We now end the proof of lemma 7.1. Let M = elD0(f̃(D0)). By lemmas 7.8 and 7.10, we see that,
after possibly composing the homeomorphism f with 8g − 3 homeomorphisms which are each supported
in the interior of one of the discs of U , we may suppose that the homeomorphism f satisfies the following
properties:

– f(p) /∈ Π(∂D0);
– the set f̃(D0) does not meet faces of type (i,M), for any index i ∈ [0, 2g − 2];
– for any fundamental domain D in Ff (defined just before lemma 7.10), the set f̃(∂D0)∩D is included

in Ũ0,D, where Ũ0,D is the lift of U0 which meets D, meets an exceptional maximal face and meets
only fundamental domains in D at distance less than M from D0.

Two distinct connected components ξ1 and ξ2 of U0 − Π(∂D0) are said to be adjacent if ξ1 ∩ ξ2 is an
interval which is not reduced to a point. Two connected components ξ1 and ξ2 of U0−Π(∂D0) are said to
be almost adjacent if there exists a connected component ξ of U0 −Π(∂D0) distinct from ξ1 and from ξ2
which is adjacent to ξ1 and to ξ2. Such a connected component ξ is then unique: we call it the adjacency
face of ξ1 and ξ2.
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In the case where any connected component of f̃(∂D0)∩Π−1(U0) which contains the image under the
homeomorphism f̃ of a vertex of the polygon ∂D0 avoids the exceptional faces which are maximal for f , we
denote by C the set of connected components of f(Π(∂D0))∩ Ů0 whose ends belong all either to the same
connected component of U0−Π(∂D0), either to the interior of an interval of the form ∂U0∩ξ1 ∪ ξ2, where ξ1
and ξ2 are adjacent connected components of U0−Π(∂D0), either to the interior of an interval of the form
∂U0 ∩ ξ1 ∪ ξ ∪ ξ2, where ξ1 and ξ2 are connected components of U0 − Π(∂D0) which are almost adjacent
with adjacency face ξ. In the case where there exists a connected component C̃1 of f̃(∂D0) ∩ Π−1(U0)
which contains the image under the homeomorphism f̃ of a vertex p̃ of the polygon ∂D0 which meets an
exceptional face which is maximal for f (such a connected component is then unique by lemma 7.11), the
set C is the union of the last set with the singleton Π(C̃1).

D (exceptional maximal face)

f̃(∂D0)
∂Ũ0,D

h̃
h̃

Figure 13: End of the proof of lemma 7.1

Let us consider then a homeomorphism h supported in Ů0 with the following properties:
– for any connected component C in C whose ends belong to a same face or to two adjacent faces,
h(C) is included in the interior of the union of the closures of connected components of U0−Π(∂D0)
that meet the ends of C;

– for any connected component C in C whose ends belong to two almost adjacent connected components
ξ1 and ξ2 of U0 −Π(∂D0) and to their adjacency face ξ, then h(C) ⊂ k̊, with k = ξ1 ∪ ξ2 ∪ ξ.

– the homeomorphism h pointwise fixes any connected component of f(Π(∂D0)) ∩ U0 which does not
contain an element of C.

We claim then that elD0(h̃ ◦ f̃(D0)) ≤ elD0(f̃(D0))− 1 =M − 1,which concludes the proof of lemma 7.1.

The face at distance M from D0 can be split into two categories: the exceptional maximal ones, and
those of type (0,M). We will prove that the set h̃◦ f̃(D0) meets neither the first ones nor the second ones.

First, for a point ỹ in f̃(∂D0) which does not belong to Π−1(Ů0), we have h̃(ỹ) = ỹ and the point ỹ
belongs neither to an exceptional maximal face nor to a face of type (0,M) by the properties satisfied by
f . Thus, the point h̃(ỹ) does not meet a fundamental domain in D at distance M from D0.

Let C̃ be a connected component of f̃(∂D0) ∩ Π−1(U0) which does not contain the image under f̃ of
a vertex of ∂D0.

Let D be an exceptional maximal face for f . Let us prove that D ∩ h̃(C̃) = ∅. If the lift Ũ0 of the
disc U0 which contains C̃ does not meet D then this last property holds. Suppose now that the lift of the
disc U0 which contains C̃ meets D. We take now the notations from lemma 7.5. By this lemma, the faces
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Dj
i , for 1 ≤ i ≤ 2g − 2 and j ∈ {1, 2}, belong to Ff . By the properties satisfied by the homeomorphism

f , the connected component C̃ has necessarily its ends included in D1
2g−1, D

2
2g−1 or D1

2g = D2
2g. But the

connected components Π(D̊1
2g−1) and Π(D̊2

2g−1) of U0 −Π(∂D0) are almost adjacent with adjacency face

Π(D̊1
2g). This implies the following inclusion: h̃(C̃) ⊂ D1

2g−1 ∪D
2
2g−1 ∪D

1
2g. In particular: h̃(C̃) ∩D = ∅.

Let D be a fundamental domain in D of type (0,M). Let us prove that h̃(C̃)∩D = ∅. By the properties
satisfied by f̃ , the set C̃ does not meet D. The only possibility for h̃(C̃) to meet D is the following: the
two ends of C̃ belong to two distincts fundamental domains which are adjacent to D. But then these two
fundamental domains would be at distance M − 1 from D0 (they cannot be at distance M + 1 from D0

by definition of M), which would contradict the fact that a fundamental domain D is of type (0,M).

It remains to deal with the case of a connected component C̃ of f̃(∂D0)∩Π−1(U0) which contains the
image under f̃ of a vertex of the polygon ∂D0. In the case where no connected component of this kind
meets an exceptional maximal face, there is no difficulty. Otherwise, we have to use lemma 7.11 to have an
explicit expression of the fundamental domains met by the image under h̃ of such connected components.
We notice then that those faces are not maximal for f̃ .

This concludes the proof of lemma 7.1.

7.3 Proof of lemma 7.2

Proof of lemma 7.2. The proof of this lemma is analogous to the proof of lemma 6.2. Let β and γ be
simple closed curves of S which are homotopic and which are not homotopic to a point. We denote by
l(γ, β) the number of connected components of Π−1(β) that a connetced component of Π−1(γ) meets. Let
us denote by α an edge in A and by α′ a simple closed curve isotopic to α and disjoint from α. Let Sα′

be the complementary of an open tubular neighbourhood of α′ and let Sα be the complementary of an
open tubular neighbourhood of α so that S̊α′ ∪ S̊α = S. Let f be a homeomorphism in Homeo0(S) with
elD0(f̃(D0)) ≤ 4g. Throughout the proof, η denotes a positive constant which will be fixed later. We will
use the following result, which is a consequence from lemma 3.2 applied to neighbourhoods of Sα and of
Sα′ : there exists λη > 0 such that, for any homeomorphism h in Homeo0(Sα) or in Homeo0(Sα′) with

elD0(h̃(D0)) ≤ η, we have FragU (h) ≤ λη.

We will proceed as follows. By composing by at most 16g homeomorphisms with fragmentation
length (with respect to U) less than or equal to λη, we obtain a homeomorphism f1 which sends the

curve α on a curve disjoint from α and included in S̊α′ . Then, after composition by a homeomorphism
supported in Sα′ which is equal to f−1

1 on a neighbourhood of f1(α) and with fragmentation length
bounded by λη, we obtain a homeomorphism f2 which is the identity on a neighbourhood of α and
isotopic to the identity relative to α. By composing by at most three homeomorphisms with support
in Sα or in Sα′ and and with fragmentation length bounded by λη, we obtain a homeomorphism f3
which pointwise fixes a neighbourhood of the boundary of Sα and isotopic to the identity relative to this
boundary. The homeomorphism f3 can be then written as a product of a homeomorphism in Homeo0(Sα)
and of a homeomorphism in Homeo0(Sα′) with disjoint supports. The last result applied to these two
homeomorphisms implies that the fragmentation length of f3 is less than or equal to 2λη. Of course, the
constant η will have to be large enough so that this proof works.

Let us precise what we just explained. Let α1 and α2 (respectively α′
1 and α′

2) be the two connected
components of the boundary of Sα (respectively of Sα′). For any two disjoint subsets A and B of S̃, we
denote by δ(A,B) the number of connected components of Π−1(α1 ∪ α2 ∪ α′

1 ∪ α
′
2) disjoint from A and

from B which separate A and B. Let M(f) be the maximum of δ(S̃′, α̃), where S̃′ varies over connected
components of Π−1(Sα) or of Π−1(Sα′) which meet f̃(α̃). As, by hypothesis, we have elD0(f̃(D0)) ≤ 4g,
then M(f) ≤ 16g. Notice that, if S̃′ is a connected component of Π−1(Sα) or of Π−1(Sα′) such that
δ(S̃′, α̃) =M(f), then any connected component of f̃(α̃)∩S̃′ has its ends in the same connected component
of ∂S̃′. Let S′ = Π(S̃′) and S” be the surface Sα if S′ = Sα′ or the surface Sα′ if S′ = Sα. Denote by h1
a homeomorphism supported in S′ with the following properties:

– elD0(h̃1(D0)) ≤ 4g;
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– for any connected component C of f(α) ∩ S′ whose ends are in the same connected component of
∂S′ and homotopic to a path on the boundary of S′, we have h1(C) ⊂ S”.

These two properties are compatible because elD0(f̃(D0)) ≤ 4g. Notice that we have then elD0(h̃1 ◦
f̃(D0)) ≤ 8g and FragU(h1) ≤ λη if η ≥ 4g. Moreover, for any connected component S̃′ of Π−1(S′) with

d(α̃, S̃′) = M(f) and for any connected component C̃ of f̃(α̃) ∩ S̃′, we have h̃1(C̃) ⊂ Π−1(S”). Now, let
h2 be a homeomorphism supported in S” with the following properties:

– elD0(h̃2(D0)) ≤ 8g;
– for any connected component C of h1 ◦ f(α)∩ S” whose ends are in the same connected component

of ∂S” and homotopic to a path on the boundary of S”, we have: h2(C) ⊂ S′.
These two properties are compatible because elD0(h̃1 ◦ f̃(∂D0)) ≤ 8g. Notice that we have then elD0(h̃2 ◦
h̃1 ◦ f̃(∂D0)) ≤ 16g and FragU (h2) ≤ λη if η ≥ 16g. Moreover, we have M(h2 ◦ h1 ◦ f) ≤ M(f)− 2. We
repeat this process at most 8g times so that, after composition of the homeomorphism f by at most 16g
homeomorphisms with fragmentation length less than or equal to λη (by taking η ≥ 28g.4g), we obtain a
homeomorphism f1 which sends the curve α to a curve disjoint from α and which satisfies moreover the
following inequality:

elD0(f̃1(D0)) ≤ 28g+1.4g.

After composition by four homeomorphisms with fragmentation length less than or equal to λη (if we take
η ≥ 28g+4.4g), we obtain a homeomorphism f3 which pointwise fixes a neighbourhood of ∂Sα and which
is isotopic to the identity relative to this neighbourhood with:

elD0(f̃3(D0)) ≤ 28g+5.4g.

As written at the beginning of this proof, it suffices then to take η ≥ 28g+5.4g to conclude the proof of
lemma 7.2.

7.4 Proof of the combinatorial lemmas

Proof of lemma 7.4. Let us describe the Dehn algorithm that we use in what follows. Let m be a reduced
word on elements of G. At each step of the algorithm, we look for a subword f of m with length greater
than 2g which is included in a word f.λ′ of Λ (such a word f will be said to be simplifiable in what follows)
and which is of maximal length among such words (it is then said to be maximal in m). The word λ′ will
be called the complementary word of f . We replace then in m the subword f by the word λ′−1 which
has a strictly smaller length (the words in Λ have length 4g) and we make if necessary the free group
reductions to obtain a new reduced word. By a theorem by Dehn (see [17]), a reduced word represents
the trivial element in Π1(S) if and only if, after application of a finite number of steps of this algorithm,
we obtain the empty word.

Let us give some general facts on the group Π1(S) which are immediate and are used in what follows.

Fact 1 For any two letters a and b in G, there exists at most one word in Λ whose two first letters are
given by ab. The other words in Λ which contain the word ab are a cyclic permutation of this one.

Fact 2 For any letter a in G, there exists exactly two words in Λ whose last letter (respectively first
letter) is a. If b et c denote the penultimate letters (respectively the second letters) of these words, then
the word b−1c is not a subword of a word in Λ.

Fact 3 For any two letters a and b in G such that the word ab is contained in a word of Λ, let us
denote by m1 the word of Λ with first letter b but whose last letter l1 is different from a and by m2 the
word in Λ whose last letter is a but whose first letter l2 is not b. Then l−1

2 l−1
1 is not contained in a word

in Λ.

We will use fact 2 in the following situation: if, at a given step of Dehn algorithm, we have a reduced
word of the form macm′, where acm′ is a subword of a word in Λ, ma is a simplifiable word and mac is
not simplifiable, then, after replacing ma by the inverse of its complementary word, we obtain a word of
the form m”cm′, where m”c is not contained in any word in Λ. As for fact 3, we will use it in the following
situation: suppose that, at a given step of Dehn algorithm, we have a word of the form mabm′, where ab
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is a subword of a word in Λ and ma as well as bm′ are simplifiable. Suppose moreover that the words
mab and abm′ are not simplifiable (these are not subwords of words in Λ). Then after replacement of the
words ma and bm′ by the inverse of their complementary words, we obtain a word of the form nl−1

2 l−1
1 n′

and the words nl−1
2 l−1

1 and l−1
2 l−1

1 n′ are not contained in any subword of words in Λ.

Let us come back to the proof of the lemma. As D is an exceptional face, there exist two geodesic
words γ1 and γ2 with distinct last letters such that γ1(D0) = D and γ2(D0) = D. We now prove that
one of them satisfies necessarily the first property given by the lemma and both of them satisfy one of the
property stated in the lemma. Moreover, if both of them satisfy the first property of the lemma, there
exists a word l1 . . . l4g in Λ such that the 2g last letters of γ1 are l1 . . . l2g and the 2g last letters of γ2 are
l−1
4g . . . l

−1
2g+1. These two results imply all the claims of the lemma.

Let us take then two geodesic words γ1 and γ2 with distinct last letters such that γ1(D0) = D and
γ2(D0) = D. The word γ1γ

−1
2 is then reduced but represents the trivial element in the group Π1(S). We

apply now the algorithm just described to this word to prove the lemma. As the words γ1 and γ2 are
geodesic, they do not contain simplifiable words. Let us consider a simplifiable word λ′ which is maximal
for γ1γ

−1
2 . Let λ3 be the complementary word of λ′. Then we have a decomposition of the word λ′,

λ′ = λ1λ2, with:
{

γ1 = γ̂1λ1
γ2 = γ̂2λ

−1
2

.

By the previous remark, the words λ1 and λ2 are nonempty. The words γ̂1 and γ̂2 are geodesic. Moreover,
as the words γ1 and γ2 are both geodesic, the words λ1 and λ2 are not simplifiable. Thus, if the length of
λ′ is 4g, the words λ1 and λ2 are both of length 2g. We now prove the following fact.

Fait Such a word λ′ is necessarily of length greater than 4g − 2.

Suppose first that the length of λ′ is less than or equal to 4g − 3 (i.e. the length of λ3 is greater than
2). After the application of the first step of the algorithm, we obtain the word γ̂1λ

−1
3 γ̂−1

2 which is reduced
by maximality of λ′. Moreover, the concatenation of the word λ−1

3 with the first letter of the word γ̂−1
2 is

not contained in any word in Λ. It is the same thing for the concatenation of the last letter of the word
γ̂1 with the word λ−1

3 . Suppose by induction that, at a given step of the algorithm, we obtain a reduced
word of the following form:

γ̃1η1η2 . . . ηkγ̃
−1
2 ,

where k ≥ 1, the words γ̃1 and γ̃2 are geodesic and the words ηi are each included in a word of Λ, have a
length which is less than 2g and satisfy the following properties:

1. the words η1 and ηk have a length greater than 1 and, if they are both of length 2, then k > 1;

2. for any index i between 1 and k− 1, the concatenation of the last letter of ηi with the first letter of
ηi+1 is not contained in any word in Λ;

3. the concatenation of the word ηk with the first letter of the word γ̃−1
2 is not contained in any word

in Λ. Same thing for the concatenation of the last letter of the word γ̃1 with the word η1.

Let us apply a new step of the algorithm. A simplifiable subword λ′ of the above word is necessarily
included in one of the words γ̃1η1 or ηkγ̃

−1
2 by the second property above and by using the fact that each

of the ηi’s has a length which is less than 2g. We may suppose, without loss of generality, that such a
subword is included in γ̃1η1. By combining fact 1 with the third property above, we obtain that the last
letter a of the word λ′ = λ′1a is also the first letter of the word η1 = aη′1. As the word γ̃1 is geodesic, it
does not contain any simplifiable subword, so the word λ′1, that it conatins, is of length 2g. After applying
the algotrithm, we obtain the word:

γ̃′1λ̃
−1η′1η2 . . . ηkγ̃

−1
2 ,

where γ̃1 = γ̃′1λ
′
1 and λ̃ is the complementary word of λ′. The words γ̃′1 and γ̃2 obtained here are geodesic.

The word λ̃, of length 2g − 1, is of length less than 2g and greater than 1. Moreover, if k = 1, the length
of η1 is greater than 2 so the length of η′1 is greater than 1. Fact 2 implies that the concatenation of the
last letter of λ̃−1 with the first letter of η′1 is not contained in any word in Λ. Finally, the third property
is satisfied for this decomposition: denoting by l the las letter of γ̃′1, if the word lλ̃−1 was a subword of a
word in Λ, then, by fact 1, the first letter of the word λ′ would be l−1, which would contradict the fact
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that the word γ̃1 is reduced. At each step of the algorithm, the sum of the lengths of the geodesic words
at the beginning and at the end of this decomposition strictly decreases. Therefore, after application of a
finite number of steps of the algorithm, we obtain a word of the following form:

γ̃1η1η2 . . . ηkγ̃
−1
2 ,

where k ≥ 1, which satisfies the three properties that we just described as well as the following property:
the length of γ̃1 as well as the length of γ̃2 are less than 2g. In this case, we can see that the word
considered does not contain subwords fo a word in Λ with length greater than 2g+1. It is a contradiction.

Let us come back to the first step of the algorithm. The word λ′ considered is then of length 4g− 2 or
4g−1, if its length is not 4g. Suppose now that the length of λ′ is 4g−2. We want to find a contradiction.

After the first step of the algorithm, we obtain a reduced word of the form γ̂1λ3γ̂
−1
2 , where the length

of λ3 = ab is 2. As before, the concatenation of the last letter of γ̂1 with the word λ3 as well as the
concatenation of the word λ3 with the first letter of γ̂−1

2 is not contained in any word of Λ. Without loss
of generality, we may suppose that, during the second step of the algorithm, we choose a subword of a
word in Λ of the form bλ̃2, where the word λ̃2 is the concatenation of the 2g first letters of the word γ̂−1

2 .
Let us use the notations of fact 3. After application of a step of the algorithm, we obtain a word of the
form γ̂1aη1γ̃

−1
2 , where the length of η1 is 2g−1 and the first letter of η1 is l−1

1 . While the subwords chosen
during the algorithm do not meet γ̂1, we obtain words of the form γ̂1aη1η2 . . . ηk γ̃

−1
2 , where the properties

1) and 2) that we just described as well as property 3) for γ̃2 alone are satisfied and where the first letter
of η1 is l−1

1 . After the first step where we replace a subword which meets γ̂1, we obtain a word of the form:

γ̃1η0η1 . . . ηkγ̃
−1
2 ,

where the last letter of the word η0 is l−1
2 and the first letter of η1 is l−1

1 . Fact 3 implies the situation is
the same as before. We have then a contradiction.

Finally, in the case where the length of λ′ is 4g − 1, one of the two geodesic words γ1 or γ2 satisfies
necessarily the first property of the lemma. After application of the algorithm, by analogous deductions,
we see that the second geodesic word satisfies the second property of the lemma.

Proof of lemma 7.5. The cases j = 1 and j = 2 are symmetric: suppose that j = 1. Take an index
2 ≤ i′ ≤ 2g − 1 (think that i’=2g-i). By induction on the length of m, we prove that, for any reduced
word m of length less than or equal to 2g − i′ with a first letter distinct from li′+1 and from l−1

i′ :
– the word γ′l1l2 . . . li′m is geodesic;
– the fundamental domain γ′l1l2 . . . li′m(D0) is not exceptional.

Suppose that the property holds for a word m as above of length less than 2g − i′. Let l be a letter in
G distinct from the inverse of the last letter of m (or distinct from li′+1 and form l−1

i′ if the word m is
empty). As the fundamental domain γ′l1l2 . . . li′m(D0) is not an exceptional face, then:

dD(γ
′l1l2 . . . li′ml(D0), D0) = dD(γ

′l1l2 . . . li′m(D0), D0) + 1

and the word γ′l1l2 . . . li′ml is geodesic. Moreover, as the length of ml is less than or equal to
2g − i′, the word γ′l1l2 . . . li′ml is not of one of the forms described by lemma 7.4. Therefore, the face
γ′l1l2 . . . li′ml(D0) is not exceptional. This concludes the proof of lemma 7.5.

Proof of lemma 7.6. The generating set of the group Π1(S) given by the deck transformations which send
the fundamental domain D1 on a fundamental domain in D adjacent to D1 is γ1Gγ

−1
1 . By lemma 7.4,

there exists a geodesic word on elements of γ1Gγ
−1
1 whose 2g last letters

(γ1λ
−1
2g γ

−1
1 )(γ1λ

−1
2g−1γ

−1
1 ) . . . (γ1λ

−1
1 γ−1

1 ),

where λ1λ2 . . . λ4g ∈ Λ, which sends the face D1 to the face D0. Thus, in the group Π1(S), we have the
following equality:

γ−1
1 = γ1η

−1λ−1
2g λ

−1
2g−1 . . . λ

−1
1 γ−1

1 ,

where η−1λ−1
2g λ

−1
2g−1 . . . λ

−1
1 is a geodesic word on elements of G. Let γ be the word λ1λ2 . . . λ2gη. We have

then, in the group Π1(S): γ = γ1. Thus, the geodesic word γ satisfies the required properties. The second
point of the lemma comes from the above and from lemma 7.3.
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Proof of lemma 7.7. Let us denote by s(D0) and s′(D0), where s and s′ are deck transformations in G, the
faces which are adjacent to the face D0 and which contain the point p̃. Suppose that dD(D0, D1) = l(h).
If we had dD(s(D0), D1) = dD(D0, D1) + 1, then we would have dD(D0, s

−1(D1)) > l(h) and the vertex
s−1(p̃) of ∂D0 would satisfy:

h̃(s−1(p̃)) = s−1(h̃(p̃)) ∈ s−1(D1)

which is not possible by definition of l(h). Thus, necessarily, we have:

dD(s(D0), D1) = dD(s
′(D0), D1) = dD(D0, D1)− 1.

The face D0 is then exceptional with respect to D1. By lemma 7.4, there exists a word λ1λ2 . . . λ4g in Λ
such that:

{

γ = λ1λ2 . . . λ2gγ
′ = λ−1

4g . . . λ
−1
2g+1γ

′

γ(D0) = D1
.

Moreover, by the same lemma, the point p̃ is common to the faces λ1λ2 . . . λi(D0) and
λ−1
4g λ4g−1 . . . λ

−1
4g−i+1(D0) for an integer i between 0 and 2g. Let i be an integer between 0 and 2g.

The point p̃ is a vertex of the polygon λ1λ2 . . . λi(D0) so the point λ−1
i λ−1

i−1 . . . λ
−1
1 (p̃) belongs to the

polygon ∂D0. Therefore, we have 4g pairwise distinct points which are vertices of the polygon ∂D0: we
obtained this way all the vertices of the polygon ∂D0. Moreover, if i ≥ 1:

{

h̃(λ−1
i λ−1

i−1 . . . λ
−1
1 (p̃)) ∈ λi+1λi+2 . . . λ2gγ

′(D0)

h̃(λ4g−i+1λ4g−i+2 . . . λ4g(p̃)) ∈ λ−1
4g−iλ

−1
4g−i−1 . . . λ

−1
2g+1γ

′(D0)

so the image under the homeomorphism h̃ of the vertices of the polygon ∂D0 which are distinct from p̃
belong to the interior of fundamental domains D in D with the following property: the face D0 is not
exceptional with respect to D, by lemma 7.4. This remark implies the converse and the uniqueness of the
face D1.

8 Distortion elements with a fast orbit growth

The aime of this section is the proof of theorem 2.6.

Notice first that it suffices to prove theorem 2.6 for the sequences (vn)n≥1 with the following additional
properties

1. the sequence (vn)n≥1 is strictly increasing;

2. the sequence (vn+1 − vn)n≥1 is decreasing.

Let us prove this. Suppose we have proved theorem 2.6 for strictly increasing sequences. If (vn)n≥1 is any
sequence, it suffices to apply the theorem to the sequence (supk≤n vk + 1− 1

2n )n≥1 to deduce the general
theorem. Suppose now that the theorem is proved only for sequences which satisfy the two properties
above. Let us prove that it is then true for any strictly increasing sequence. Let (vn)n≥1 be a strictly
increasing sequence such that the sequence (vn

n
)n converges to 0. Let A be the convex hull in R2 of the

set
{(n, t), n ≥ 1 et t ≤ vn}

and let wn = sup {t ∈ R, (n, t) ∈ A}. The sequence (wn)n≥1 satisfies then the two properties above and
limn→+∞

wn
n

= 0. It suffices then to apply the theorem to this sequence to prove it for the sequence
(vn)n≥1.

In what follows, we suppose that (vn)n≥1 is a sequence which satisfies the hypothesis of theorem 2.6
as well as the two above properties.

Let A = R/Z × [−1, 1] and let α be the curve {0} × [−1, 1] ⊂ A. The homeomorphism f in
Homeo0(A, ∂A) which we are going to build will satisfy the following property:

∃x ∈ Å, vn +
1

2n
≥ p2(f̃

n(x))− p2(x) ≥ vn
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where p2 : R× (−1, 1) → R denotes the projection. As f is compactly supported, this guarantee that the
property

∀n ∈ N, δ(f̃n([0, 1]× [0, 1])) ≥ vn

holds. Now, let us consider the following embedding of R in Å:

L : R → Å = R/Z× (−1, 1)
x 7→ (x mod 1, g(x))

where g is a continuous strictly increasing function whose limit as x tends to +∞ is 1
2 and whose limit as x

tends to −∞ is − 1
2 . We identify a tubular neighbourhood T of L(R) with the band R× [−1, 1], where the

real line R is identified to the curve L(R) via the map L so that, for any integer j, the path {j} × [−1, 1]
is included in α. Let h be a homeomorphism of the line L, identified to R, with the following properties:

1. the map x 7→ h(x)− x is decreasing on the interval [0,+∞) and limx→+∞ h(x)− x = 0;

2. the homeomorphism h is equal to the identity on (−∞,−1];

3. for any natural numbers i and n, we have: hn(i) /∈ N;

4. for any natural number n, we have: hn(0) = vn + ǫn
2n , where ǫn is equal to 1 if vn is an integer and

vanishes otherwise.

The "ǫn" in the fourth property makes this property compatible with the third one. Let f be the
homeomorphism defined on T by:

f : R× [−1, 1] → R× [−1, 1]
(x, t) 7→ ((1− |t|)h(x) + |t|x, t)

.

This extends continuously to a homeomorphism in Homeo0(A, ∂A) that we denote by f by abuse. This
extension is possible thanks to the fifth property satisfied by h which makes sure that the homeomorphism
f is close to the identity when we are close to the circle R/Z ×

{

1
2

}

. The third property satisfied by h
makes sure that, for any nonnegative integers i, j and n, the curve fn({i} × (−1, 1)) is transverse to the
curve {j}× (−1, 1). For any curve β in the annulus A, let l(β, α) be the number of connected components
of Π−1(α) met by a lift of β. In order to prove that the homeomorphism f is a distorsion element, the
crucial proposition is the following:

Proposition 8.1. Let l be a positive integer and let λl = l(f l(α), α). There exist two homeomorphisms g1
and g2 in Homeo0(A, ∂A) supported respectively in the complementary of α and in a tubular neighbourhood
of α such that:

l((g2 ◦ g1)
λl−1(f l(α)), α) = 1.

Let us see first why this property implies theorem 2.6.

Proof of theorem 2.6. Let U be the open cover of A built at the beginning of section 5. By lemma 5.2, we
have:

FragU (g1) ≤ 6

and
FragU (g2) ≤ 6.

Remarque Looking closely at the proof of lemma 5.2, we can see that the upper bound can be replaced
with 3.

By lemma 5.2, we have:
FragU ((g2 ◦ g1)

λl−1 ◦ f l) ≤ 6.

Recall that al = aU (f
l) is the minimum of the mlog(k) where there exists a family (hi)1≤i≤m of homeo-

morphisms which are each supported in one of the open sets of U such that f l = h1 ◦ h2 ◦ . . . ◦ hm and
the cardinality of the set {hp, 1 ≤ p ≤ m} is k. So, for any positive integer l:

al ≤ (12λl − 6)log(18).
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But:
λl
l

=
l(f l(α), α)

l
≤
vl +

1
2l

l
,

where the left-hand side of the inequality converges to 0. Therefore, the sequence (al
l
)l∈N−{0} converges

to 0. By proposition 4.1, the homeomorphism f is a distortion element in Homeo0(A, ∂A). Notice that,
here, the use of proposition 4.1 is crucial as the hypothesis

lim
n→+∞

FragU (f
n).log(FragU (f

n))

n
= lim

n→+∞

λn
n

= 0

of theorem 2.5 does not necessarily hold.

Proof of proposition 8.1. Let g = f l and λ = λl = l(f l(α), α). In what follows, everything will take place
in the tubular neighbourhood T of the line L which is identified to R× [−1, 1]. Therefore, we can "forget"
the annulus A. Let us give briefly the idea of the proof which follows. As the curve g({0} × (−1, 1)) has
length λ with respect to α, we have no choice: in the product (g2 ◦ g1)

λ−1, each factor must push this
curve to the left and it must pass a curve of the form {i} × (−1, 1) at each step (under the action of each
factor g2 ◦ g1). The curves g({i} × (−1, 1)) are less dilated and must come back to their places in λ steps
also. We must then "make them wait" so that they do not come back too fast: if they come back before
the time λ, they go too far to the left, which we want to avoid. On figure 14, we represented the action
of g2 ◦ g1 on g(α) on an example.

{0} × [−1, 1] {1} × [−1, 1] {2} × [−1, 1] {3} × [−1, 1] {4} × [−1, 1] {5} × [−1, 1]

f({0} × [−1, 1]) f({1} × [−1, 1])
f({2} × [−1, 1]) f({3} × [−1, 1])

f({4} × [−1, 1])

f({5} × [−1, 1])

g2 ◦ g1

g2 ◦ g1

g2 ◦ g1

Figure 14: The action of g2 ◦ g1

Let N be the minimal nonnegative integer such that

g(N, 0) ∈ [N,N + 1)× {0} ⊂ R× [−1, 1] ⊂ A.

In the case of figure 14, this integer is equal to 4, for instance. Let us take a real number ǫ in (0, 12 ) such
that, for any integer i in [0, N ], any connected component of g(α)∩ ([i− ǫ, i+ ǫ]× [−1, 1]−g({i}× (−1, 1))
joins the two boundary components of [i − ǫ, i + ǫ] × (−1, 1). The transversality property satisfied by
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f enables to find such a real number ǫ. Let η > 0 such that, for any integer i in [0, N ], any connected
component of

g(α) ∩ [i+
ǫ

4
, i+ 1−

ǫ

4
]× [−1, 1]

is included in:
[i+

ǫ

4
, i+ 1−

ǫ

4
]× (−1 + η, 1 − η).

Let us start with the construction of the homeomorphism g2. Let g2 be a homeomorphism with the
following properties:

1. the homeomorphism g2 is supported in
⋃

0≤i≤N

(i− ǫ, i+ ǫ)× (−1, 1);

2. if Pi denotes the connected component of [i − ǫ, i + ǫ] × [−1, 1] − g({i} × [−1, 1]) which contains
{i− ǫ}× [−1, 1] and Ki denotes a topological closed disc included in Pi which contains the connected
components of

(g(α) ∩ [i− ǫ, i+
ǫ

2
]× (−1, 1))− g({i} × [−1, 1]),

we have:
∀i, g2(Ki) ⊂ [i− ǫ, i−

ǫ

2
]× (−1 + η, 1− η);

3. the homeomorphism g2 globally preserves each connected component of g(α)∩ [i− ǫ, i+ ǫ]× (−1, 1).

Before defining g1, we first need to build a sequence of integers (ni)0≤i≤N . For an integer i between 0
and N , let:

Ai =

{

j ∈ N ∩ [0, N ],

{

g({j} × [−1, 1]) ∩ {i} × [−1, 1] 6= ∅
g({j} × [−1, 1]) ∩ {i+ 1} × [−1, 1] = ∅

}

.

Let i0 = max {i, {i} × [−1, 1) ∩ g({0} × (−1, 1)) 6= ∅}. The sets A0, A1, . . . , Ai0−1 are all empty but we are
going to see that, for any integer N ≥ m ≥ i0, the set Am is nonempty. In the case of figure 14, the sets
A0, A1 and A2 are empty , A3 = {0, 1} and A4 = {2, 3, 4}. More generally, the family (Ai0 , Ai0+1, . . . , AN )
is a partition of {0, 1, . . . , N} which is ordered in the sense where, if i0 ≤ m ≤ m′ ≤ N , then any integer
in Am is smaller than any integer in Am′ . Let us prove that if, for an integer i between 0 and N − 1, the
set Ai is nonempty, then the set Ai+1 is nonempty. Notice that, for an integer j in the interval [0, N ]:

l(g({j} × (−1, 1)), α) = ⌊hl(j)⌋ − j + 1

by construction of f . As the map x 7→ hl(x)− x is decreasing by construction of h, then the map

j 7→ l(g({j} × (−1, 1)), α)

is decreasing on [0, N ] ∩ N. In particular, i0 = λ− 1. Let j = max(Ai). As

l(g({j + 1} × (−1, 1)), α) ≤ l(g({j} × (−1, 1)), α),

then the curve g({j + 1} × (−1, 1)) does not meet the curve {i+ 2} × [−1, 1] so the integer j + 1 belongs
to Ai+1 which is nonempty. For any integer i between i0 and N , let

Ai = {j(i), j(i) + 1, . . . , j(i + 1)− 1} .

We define by induction a finite sequence of integers (ni)0≤i≤N :
– if i < i0, we let ni = 1.
– oterwise, assuming that the nk’s, for k < i, have been defined, we let

ni = λ−
i−1
∑

k=j(i+1)−1

nk.

The integer ni will represent the number of iterations of g2◦g1 necessary for a curve close to {i+ 1}×(−1, 1)
to cross the curve {i} × (−1, 1). For 0 ≤ j ≤ N , let i(j) be the unique integer such that j ∈ Ai(j). After
a number of iterations of g2 ◦ g1 which is less than or equal to ni(j), the curve g({j} × (−1, 1)) will cross
{i(j)} × (−1, 1) then, after ni(j)−1 iterations, it will cross the curve {i(j)− 1} × (−1, 1) and so on... For
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instance, in the case of figure 14, we have n0 = n1 = n2 = 1, n3 = 2 and n4 = 4. Let us prove by induction
that, for any integer i ≥ i0 :

i−1
∑

k=j(i)

nk < λ.

This will prove also that the integers ni are positive. If i = i0, then, for j < i0, the set Aj is empty and
we have:

l(g({0} × [−1, 1]), α) = i0 + 1 ≤ λ

by definition of λ. Thus:

λ−
i0−1
∑

k=0

nk = λ− i0 > 0

and the property holds for i = i0. Suppose that the property holds for k between i0 and i given between
0 and N − 1. We then have:

i
∑

k=j(i+1)

nk = λ−
i−1
∑

k=j(i+1)−1

nk +

i−1
∑

k=j(i+1)

nk = λ− nj(i+1)−1 < λ

because nj(i+1)−1 > 0 by induction hypothesis. The property is proved.

For an integer j between 0 and N , notice that, by construction, the connected components of

g({j} × [−1, 1]) ∩
⋃

0≤i≤N

[i+
ǫ

4
, i+ 1−

ǫ

4
]× (−1, 1)

join each two distinct connected components of the boundary of

⋃

0≤i≤N

[i+
ǫ

4
, i+ 1−

ǫ

4
]× (−1, 1)

except one (which corresponds to the maximal integer i) which we will denote by Cj . Let i(j) be the
unique integer such that the integer j belongs to Ai(j). Then:

Cj ⊂ [i(j) +
ǫ

4
, i(j) + 1−

ǫ

4
]× (−1, 1).

Now, we can build an appropriate homeomorphism g1. Let g1 be a homeomorphism which is supported
in

⋃

0≤i≤N

(i +
ǫ

4
, i+ 1−

ǫ

4
)× [−1, 1] ⊂ R× [−1, 1] ⊂ A

and which satisfies the following properties for any integer i between 0 and N :

1. the homeomorphism g1 globally preserves each of the connected components of g(α)∩ [i+ ǫ
4 , i+1−

ǫ
4 ]× [−1, 1] which join the boundary components of [i+ ǫ

4 , i+ 1− ǫ
4 ]× (−1, 1);

2. for any integer j in Ai and any integer r < λ−
i−1
∑

k=j

nk, we have

gr1(Cj) ∩ (i− ǫ, i+ ǫ)× [−1, 1] = Cj ∩ (i − ǫ, i+ ǫ)× [−1, 1];

3. for any integer j in Ai, the following inclusion holds:

g
λ−

i−1∑

k=j

nk

1 (Cj) ⊂ Ki

(notice that these properties are compatible as λ−
i−1
∑

k=j

nk increases with j and, moreover, λ−
i−1
∑

k=j

nk ≤

ni by definition of ni);
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4. the following inclusion holds:

gni1 ([i+
ǫ

4
, i+ 1−

ǫ

2
]× (−1 + η, 1− η)) ⊂ [i+

ǫ

4
, i+

ǫ

2
)× (−1 + η, 1− η) ∩Ki;

5. for any connected component C of g(α) ∩ [i + ǫ
4 , i + 1 − ǫ] × (−1, 1) which joins the two boundary

components of [i+ ǫ
4 , i+ 1− ǫ]× (−1, 1), we have:

∀r < ni, g
r
1(C) ∩ (i − ǫ, i+ ǫ)× [−1, 1] = C ∩ (i− ǫ, i+ ǫ)× [−1, 1];

6. for any integer r < ni, the set gr1([i+1−ǫ, i+1− ǫ
4 ]×[−1, 1]) does not meet the square[i, i+ǫ]×[−1, 1].

The second and the third above properties give the speeds with which we push back the components Cj :

the thirs property means that the piece Cj is pushed back in a Ki after time λ−
i−1
∑

k=j+1

nk but the second

condition implies that it cannot be pushed back before this time. The properties 4, 5 et 6 give the exact
time necessary to cross [i, i+ 1]× (−1, 1).

Now, we prove that, for homeomorphisms g1 and g2 with the properties given above, we have:

l((g2 ◦ g1)
λ−1(g(α)), α) = 1.

Let j be an integer between 0 and N and let i = i(j). We denote by αj the curve {j} × [−1, 1]. Let us

prove that, for any j′ ∈ [j − 1, i− 1] and any λ−
∑j′

k=j nk > r ≥ λ−
∑j′+1

k=j nk, we have:

l((g2 ◦ g1)
r ◦ g(αj), α) = l(g(αj), α)− (i − j′ − 1).

By the two first properties satisfied by g1 and the third property satisfied by g2, we have, for any

positive integer r which is less than λ−
i−1
∑

k=j

nk:

{

(g2 ◦ g1)
r(g(αj) ∩ [0, i+ ǫ]× [−1, 1]) = g(αj) ∩ [0, i+ ǫ]× [−1, 1]

(g2 ◦ g1)r(g(αj)) = gr1(g(αj))
.

This implies the above property for j′ = i− 1. Therefore:

g1 ◦ (g2 ◦ g1)
λ−

i−1∑

k=j

nk−1

◦ g(αj) = g
λ−

i−1∑

k=j

nk

1 (g(αj)).

The third property satisfied by the homeomorphism g1 implies that the intersection of the above set with
[i − ǫ,+∞) × [−1, 1] is included in Ki. Therefore, the second property satisfied by the homeomorphism
g2 implies that:

(g2 ◦ g1)
λ−

i−1∑

k=j

nk

◦ g(αj) ⊂ [j, i−
ǫ

2
]× [−1 + η, 1− η].

All the extremal part of the curve has been put back in [i − ǫ, i − ǫ
2 ] × (−1, 1). The remainder has not

moved. Indeed:

(g2 ◦ g1)
λ−

i−1∑

k=j

nk

(g(αj) ∩ [j, i− ǫ]× [−1, 1]) = g(αj) ∩ [j, i − ǫ]× [−1, 1]

and:

l((g2 ◦ g1)
λ−

i−1∑

k=j

nk

◦ g(αj), α) = i− j
= l(g(αj), α)− 1.

It suffices now to iterate the proof we just made to conclude. Suppose that, for an integer j′ between j+1
and i− 1, we have:















(g2 ◦ g1)
λ−

j′∑

k=j

nk

◦ g(αj) ⊂ [j, j′ + 1− ǫ
2 ]× (−1 + η, 1− η)

(g2 ◦ g1)
λ−

j′∑

k=j

nk

(g(αj) ∩ [j, j′ + 1− ǫ]× [−1, 1]) = g(αj) ∩ [j, j′ + 1− ǫ]× [−1, 1]

.
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We saw that this property holds for j′ = i − 1. Supposing that this property holds for an integer j′, we

prove now that it holds for the integer j′ − 1 and also that, under this hypothesis, for λ−
∑j′−1

k=j nk > r >

λ−
∑j′

k=j nk, we have:

l((g2 ◦ g1)
r ◦ g(αj), α) = l(g(αj), α) − (i− j′);

By the fifth and the sixth properties satisfied by the homeomorphism g1 and the third property satisfied
by the homeomorphism g2, we have, for any integer 0 ≤ r < nj′ :

(g2 ◦ g1)
r ◦ (g2 ◦ g1)

λ−
j′∑

k=j

nk

(g(αj) ∩ [0, j′ + ǫ]× [−1, 1]) = g(αj) ∩ [0, j′ + ǫ]× [−1, 1]

and

(g2 ◦ g1)
r ◦ (g2 ◦ g1)

λ−
j′∑

k=j

nk

◦ g(αj) = gr1(g2 ◦ g1)
λ−

j′∑

k=j

nk

(g(αj)).

Therefore, we have:

g1 ◦ (g2 ◦ g1)
nj′−1 ◦ (g2 ◦ g1)

λ−
j′∑

k=j

nk

(g(αj)) = g
nj′

1 (g2 ◦ g1)
λ−

j′∑

k=j

nk

(g(αj))

so, by the fourth property satisfied by the homeomorphism g1, the intersection of this set with [j′ +
ǫ,+∞)× [−1, 1] is included in the set Kj′ . By the second property satisfied by the homeomorphism g2,
we have then:

(g2 ◦ g1)
nj ◦ (g2 ◦ g1)

λ−
j′∑

k=j

nk

◦ g(αj) ⊂ [j, j′ −
ǫ

2
]× (−1 + η, 1− η)

and, moreover:

(g2 ◦ g1)
nj′ ◦ (g2 ◦ g1)

λ−
i−1∑

k=j

nk

(g(αj) ∩ [j, j′ − ǫ]× [−1, 1]) = g(αj) ∩ [j, j′ − ǫ]× [−1, 1].

This concludes the induction. We prove then, as before, that, for any λ > r > λ− nj, we have:

(g2 ◦ g1)
r ◦ g(αj) = g

r−λ+nj
1 (g2 ◦ g1)

λ−nj (g(αj)).

which implies that:
l((g2 ◦ g1)

λ−1 ◦ g(αj), α) = 1,

what we wanted to prove.

9 Generalization of the results

In this section, we will briefly generalize the results in two directions. First, we could look at other
growth speeds of words than the linear speed. Moreover, we can also consider finite families of elements
instead of looking at one element and define a notion of distortion for this situation. The results are
analogous to those we stated before. In what follows, let (wn)n∈N be a sequence of positive real numbers
which tends to +∞. Let us start with a definition:

Definition 9.1. Let G be a group and g be an element of G. The element g is said to be (wn)n∈N-distorted
in G if and only if there exists a finite set G in G such that:

– the element g belongs to the group generated by G;
– the limit inferior of the sequence ( lG(gn)

wn
) is 0.

This notion of distortion is interesting only if limn→+∞
wn
n

= +∞: in this case, any element of G
is (wn)n∈N-distorted. Moreover, this notion depends only on the equivalence class of (wn)n∈N for the
following equivalence relation:

(ωn) ≡ (ξn) ⇔ ∃C > 0, ∀n ∈ N,
1

C
ξn ≤ ωn ≤ Cξn.

We can then show the following theorems:
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Proposition 9.1. Let D, be a fundamental domain of S̃ for the action of Π1(S).
If a homeomorphism f in Homeo0(S) (respectively in Homeo0(S, ∂S)) is (wn)n∈N-distorted in Homeo0(S)
(respectively in Homeo0(S, ∂S)), then:

lim inf
n→+∞

δ(f̃n(D))

wn
= 0.

Theorem 9.2. Let f be a homeomorphism in Homeo0(S) (respectively in Homeo0(S, ∂S)). If:

lim inf
n→+∞

δ(f̃n(D))log(δ(f̃n(D)))

wn
= 0,

then f is (wn)n∈N-distorted in Homeo0(S) (respectively in Homeo0(S, ∂S)).

Theorem 9.3. Let (vn)n∈N be a sequence of positive real numbers such that: lim infn→+∞
vn
wn

= 0. Then
there exists a homeomorphism f in Homeo0(R/Z× [0, 1],R/Z× {0, 1}) such that:

1. ∀n ∈ N, δ(f̃n([0, 1]× [0, 1])) ≥ vn;

2. the homeomorphism f is (wn)n∈N-distorted in Homeo0(R/Z× [0, 1],R/Z× {0, 1}).

For any positive integer k, we denote by Fk the free group on k generators. Let a1, a2, . . . , ak be the
standard generators of this group and A be the set of these generators.

Definition 9.2. Let G be a group generated by a finite set G. A k-tuple (f1, f2, . . . , fk) is said to be
distorted if the map Fk → G which sends the genrator ak on fk is not a quasi-isometry for the distances
dA and dG . More generally, for any group G, a k-tuple (f1, f2, . . . , fk) is said to be distorted if there exists
a subgroup of G which is finitely generated, which contains the elements fi and in which this k-tuple is
distorted.

One can then prove the following theorem for a compact surface S:

Theorem 9.4. Let D be a fundamental domain of S̃ for the action of Π1(S). Let (f1, f2, . . . , fk) be a
k-tuple of homeomorphisms of S. Suppose that there exists a sequence of words (mn)n∈N on the fi’s whose
sequence of lengths (l(mn))n tend to +∞ such that:

lim
n→+∞

δ(mn(D))log(δ(mn(D)))

l(mn)
= 0.

Then the k-tuple (f1, f2, . . . , fk) is distorted.
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