
HAL Id: hal-00713431
https://hal.science/hal-00713431

Submitted on 1 Jul 2012

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

The longest common subsequence problem with
crossing-free arc-annotated sequences
Guillaume Blin, Minghui Jiang, Stéphane Vialette

To cite this version:
Guillaume Blin, Minghui Jiang, Stéphane Vialette. The longest common subsequence problem with
crossing-free arc-annotated sequences. 19th edition of the International Symposium on String Process-
ing and Information Retrieval (SPIRE 2012), Oct 2012, Cartagena de Indias, Colombia. pp. 130–142.
�hal-00713431�

https://hal.science/hal-00713431
https://hal.archives-ouvertes.fr

The longest common subsequence problem with
crossing-free arc-annotated sequences

Guillaume Blin1, Minghui Jiang2, and Stéphane Vialette1

1 Université Paris-Est, LIGM - UMR CNRS 8049, France
{gblin,vialette}@univ-mlv.fr

2 Department of Computer Science, Utah State University, USA
mjiang@cc.usu.edu

Abstract. An arc-annotated sequence is a sequence, over a given alphabet, with
additional structure described by a - possibly empty - set of arcs, each arc joining
a pair of positions in the sequence. As a natural extension of the longest com-
mon subsequence problem, Evans introduced the LONGEST ARC-PRESERVING
COMMON SUBSEQUENCE (LAPCS) problem as a framework for studying the
similarity of arc-annotated sequences. This problem has been studied extensively
in the literature due to its potential application for RNA structure comparison, but
also because it has a compact definition. In this paper, we focus on the nested case
where no two arcs are allowed to cross because it is widely considered the most
important variant in practice. Our contributions are three folds: (i) we revisit the
nice NP-hardness proof of Lin et al. for LAPCS(NESTED, NESTED), (ii) we im-
prove the running time of the FPT algorithm of Alber et al. from O(3.31k1+k2n)
to O(3k1+k2n), where resp. k1 and k2 deletions from resp. the first and second
sequence are needed to obtain an arc-preserving common subsequence, and (iii)
we show that LAPCS(STEM, STEM) is NP-complete for constant alphabet size.

1 Introduction

Structure comparison for RNA has become a central computational problem bearing
many computer science challenging questions. Indeed, RNA secondary structure com-
parison is essential for (i) identification of highly conserved structures during evolution
(which cannot always be detected in the primary sequence, since it is often unpreserved)
which suggest a significant common function for the studied RNA molecules, (ii) RNA
classification of various species (phylogeny), (iii) RNA folding prediction by consider-
ing a set of already known secondary structures, and (iv) identification of a consensus
structure and consequently of a common role for molecules. From an algorithmic point
of view, RNA structure comparison was first considered in the framework of ordered
trees [12] and, later on, in the one of arc-annotated sequences [5]. An arc-annotated
sequence over some fixed alphabet Σ is a pair (S, P), where S (the sequence) is a string
of Σ∗ and P (the annotation) is a set of arcs {(i, j) : 1 ≤ i < j ≤ |S|}. In the context
of RNA structures, S is a sequence of RNA bases and P represents hydrogen bonds
between pairs of elements of S. From a purely combinatorial point of view, arc-annotated
sequences are a natural extension of simple sequences. However, using arcs for modeling
non-sequential information together with restrictions on the relative positioning of arcs
allow for varying restrictions on the structure of arc-annotated sequences. Observe that a
(plain) sequence without any arc can be viewed as an arc-annotated sequence with an
empty arc set.

Different pattern matching and motif search problems have been considered in the
context of arc-annotated sequences among which we can mention finding a longest
arc-annotated subsequence, finding an arc-preserving subsequence, finding a maximum
arc-preserving common subsequence, and computing the edit distance for arc-annotated
sequences. The best overview references are [3] and [2].

In an arc-annotated sequence (S, P), two arcs (i1, j1) and (i2, j2) are crossing, if
i1 < i2 < j1 < j2 or i2 < i1 < j2 < j1. An arc (i1, j1) is nested into an arc (i2, j2)
if i2 < i1 < j1 < j2. In her pioneering work [4], Evans has introduced a five level
hierarchy 1 for arc-annotated sequences that is described as follows: UNLIMITED: no
restriction at all, CROSSING: each base is incident to at most one arc, NESTED: each
base is incident to at most one arc and no two arcs are crossing, STEM: each base is
incident to at most one arc, and given any two arcs one is nested into the other, and
PLAIN: there is no arc. This hierarchy is clearly organized according to the following
chain of inclusions: PLAIN ⊂ STEM ⊂ NESTED ⊂ CROSSING ⊂ UNLIMITED.

Let (S1, P1) and (S2, P2) be two arc-annotated sequences. If S1[i] = S2[j] for
some pair of integers i and j (1 ≤ i ≤ |S1| and 1 ≤ j ≤ |S2|), we refer to 〈i, j〉 as
a base-match. If S1[i] = S2[j] and S1[k] = S2[l] with (i, k) ∈ P1 and (j, l) ∈ P2,
we refer to the pair (〈i, k〉〉, 〈j, l〉) as an arc-match. A common subsequence T of S1

and S2 can be viewed as a set of pairwise disjoint base-matches M = {〈ik, jk〉 :
1 ≤ k ≤ |T |, 1 ≤ ik ≤ |S1|, 1 ≤ jk ≤ |S2|} such that ∀1 ≤ k1 < k2 ≤ |T |,
ik1 < ik2 and jk1 < jk2 (i.e. preserving order). The common subsequence T is said
to be arc-preserving if the arcs induced by M are preserved, i.e., for any distinct
〈ik1 , jk1〉, 〈ik2 , jk2〉 ∈ M , (ik1 , ik2) ∈ P1 if and only if (jk1 , jk2) ∈ P2. Among the
many paradigms referring to arc-annotated sequences we focus here on the most natural
extension of the longest common subsequence problem, the so-called LONGEST ARC-
PRESERVING COMMON SUBSEQUENCE (LAPCS) problem which is defined as
follows [4]: Given two arc-annotated sequences (S1, P1) and (S2, P2), find the longest
common subsequence of S1 and S2 that is arc-preserving. It is well-known that the
LAPCS problem is NP-complete [4].

The LAPCS problem is traditionally parameterized by the arc-structure of the two
input arc-annotated sequences. We focus on the nested case because it is widely consid-
ered the most important variant in practice [10, 11, 1]. We denote by LAPCS(NESTED,
NESTED) (resp. LAPCS(STEM, STEM) the LAPCS problem where both arc-annotated
sequences are NESTED (resp. STEM). It has been shown in [9] that the LAPCS(NESTED,
NESTED) problem is NP-complete, even for an unary alphabet. This result has been ex-
tended in [8] where it is shown that the LAPCS(STEM, STEM) problem is NP-complete.
Alber et al. [1] presented two FPT algorithm for the LAPCS(NESTED,NESTED) prob-
lem. Given two arc-annotated sequences of maximum length n, their first algorithm
decides in O((3|Σ|)` `n) time whether the two sequences have an arc-preserving com-
mon subsequence of length `, and their second algorithm decides in O(3.31k1+k2n)
time whether an arc-preserving common subsequence can be obtained by deleting k1
letters from the first sequence and k2 letters from the second sequence. Improving the
exponential running times of the two algorithms was left as an immediate open question.

1 Our presentation actually replaces the original CHAIN level with the STEM level due to its
importance for practical issues [7].

Moreover, Alber et al. [1] noted that their second algorithm relies on a breadth-first
search that is very space-consuming, and asked whether it can be replaced by a simple
depth-first search. Our paper makes the following contributions. First, w e revisit the nice
NP-hardness proof of Lin et al. [11] for the LAPCS(NESTED, NESTED) problem. We
point out a problem an provide a simple solution. Second, we improve the running time
of the (second) FPT algorithm of Alber et al. [1] from O(3.31k1+k2n) to O(3k1+k2n).
Our algorithm uses the bounded search tree technique, and can be implemented using a
simple depth-first search. Third, we show that the LAPCS(STEM, STEM) problem is
NP-complete for constant alphabet size. The proof is by a tricky modification of [8].

2 LAPCS(NESTED, NESTED) is NP-complete

In this section we prove that the LAPCS(NESTED, NESTED) problem is NP-complete
even if both arc-annotated sequences are unary. We actually point out a problem in a
previous proof by Lin et al. [11] for the same result, and give a simple solution for
the correctness of the proof. Our proof is for a large part the same as the proof of Lin
et al. [11]. The only difference is that we use larger “barriers” of length Ω(n) each.

4

1 2 3 4

G

A

AtA1

...

1 12 3 4 4 1 2 3

Fig. 1. The counter-example graph G.

Our counter-example graph for the proof of Lin et al. [11] is presented Figure 1. The
graph A has 4 vertices v1, v2, v3 and v4. The graph G has n = 4t vertices, and consists
of t copies A1, A2, . . . , At of the graph A linked into a circular “list” (for convenience
let A0 = At and At+1 = A1) by one additional edge from the vertex v1 of each Ai to
the vertex v4 of Ai−1. One can easily verified that G is cubic, planar, bridgeless, and
connected. Moreover, G has a natural two-page book embedding such that each vertex is
incident to at least 1 and at most 2 edges on each page, as illustrated in Figure 1. We
have the following lemma about the graph G.

Lemma 1. The maximum cardinality k∗ of an independent set in the graph G is
⌊
3
8 n
⌋
.

We now turn to pointing out the problem in the proof of Lin et al. [11]. Refer to
Figure 2 for the construction of the two arc-annotated sequences P1 and P2 based on the
graph G according to the reduction of Lin et al. [11]. As illustrated by the dotted lines

1

Ai

432

Fig. 2. The two arc-annotated sequences P1 and P2 for the graph G. The separating blocks, each
of length 8, are illustrated by large dots.

between the two sequences, the two arc-annotated sequences (S1, P1) and (S2, P2) has
an arc-preserving common subsequence of length ` = 8n+ 3+2

2 n− 6 = 10n+ 1
2n− 6.

Lin et al. [11] claimed that every LAPCS can be transformed into a good LAPCS (of
the same length). We show that this claim is wrong. Following their proof, the graph G
has an independent set of cardinality k if and only if (S1, P1) and (S2, P2) have a good
LAPCS of length 8(n+ 1)+ 2n+ k = 10n+ k+ 8. Then, by Lemma 1, the maximum
length of a good LAPCS of (S1, P1) and (S2, P2) is at most `good = 10n+

⌊
3
8n
⌋
+ 8.

Note that for t > 28 and correspondingly n = 4t > 112, we have ` > `good. This
disproves their claim. For a correct proof, we increase the length of each separating
block in the reduction from 8 to s = 4n. Then, following their proof, the length of an
LAPCS is at least s(n+ 1) + 2n+ k∗. If a common subsequence has a far match 〈i, j〉
such that |j − i| ≥ n, then in each sequence there must be at least n unmatched bases on
each side of the match. It follows that the length of the common subsequence is at most
s(n+1)+4n− 2n, which is less than s(n+1)+2n+k∗. Therefore every match 〈i, j〉
of an LAPCS must be near, i.e., |j − i| < n. By the same argument, an LAPCS must
include at least one arc from each separating block in each sequence, because otherwise
a separating block with no arcs in the LAPCS would have at least 4n/2 = 2n unmatched
bases. Since all matches must be near, any arc (i1, i2) in the LAPCS that comes from
a separating block in P1 must match an arc (j1, j2) from the corresponding separating
block in P2 such that either i1 ≤ j1 ≤ j2 ≤ i2 or j1 ≤ i1 ≤ i2 ≤ j2. Then a simple
replacement argument shows that all separating blocks are matched completely, and
consequently any LAPCS can be transformed into a good LAPCS of the same length.

3 A faster algorithm for the LAPCS(NESTED, NESTED) problem

Theorem 1. There is an O(3k1+k2n)-time algorithm for LAPCS(NESTED,NESTED)
that decides whether an arc-preserving common subsequence of two arc-annotated

sequences of maximum length n can be obtained by deleting k1 letters from the first
sequence and k2 letters from the second sequence.

We first observe that the two parameters k1 and k2 are not independent. Let n1 and
n2 be the lengths of the two sequences. Then the problem admits a valid solution only if
n1 − k1 = n2 − k2. Without loss of generality, we use a single parameter k = k1 + k2
for the total number of letters deleted from the two arc-annotated sequences. The running
time of our algorithm is thus O(3kn). For an arc-annotated sequence S and an index
i, define buddy(S, i) = j if S[i] is connected to S[j] by an arc, and buddy(S, i) = 0
otherwise. For an arc-annotated sequence S of length n and two indices i ≤ j, denote
by S[i, j] the subsequence obtained from S by deleting letters S[1], S[2], . . . , S[i− 1]
and S[j + 1], S[j + 2], . . . , S[n] together with the incident arcs. For an arc-annotated
sequence S and three indices i ≤ j ≤ k, denote by S[i, j, k] the subsequence obtained
from S[i, k] by deleting S[j] and its incident arc (if any).

Algorithm lapcs(S, T, k)
Input: Two arc-annotated sequences S and T , an integer k.
Output: returns k∗ – the minimum number of letters that must be deleted from S and T
to obtain an arc-preserving common subsequence – if k∗ ≤ k;∞ otherwise.

The algorithm is recursive. For the base case, the algorithm returns 0 if S = T and
k ≥ 0, and returns∞ if S 6= T and k ≤ 0. For the inductive case, the algorithm tries all
applicable following cases and returns the minimum value. Let s and t be the lengths of
the two sequences S and T , respectively. Put i = buddy(S, 1) and j = buddy(T, 1).

Case 1 S[1] 6= T [1].

– Delete S[1], then return lapcs(S[2, s], T, k − 1) + 1.
– Delete T [1], then return lapcs(S, T [2, t], k − 1) + 1.

Case 2.1 S[1] = T [1], i = j = 0.

– Match S[1] ∼ T [1], then return lapcs(S[2, s], T [2, t], k).

Case 2.2 S[1] = T [1], i > 0 and j = 0.

– Delete S[1], then return lapcs(S[2, s], T, k − 1) + 1.
– Delete T [1], then return lapcs(S, T [2, t], k − 1) + 1.
– Delete S[i], match S[1] ∼ T [1], then return lapcs(S[2, i, s], T [2, t], k − 1) + 1.

Case 2.3 S[1] = T [1], i = 0 and j > 0.

– Delete S[1], then return lapcs(S[2, s], T, k − 1) + 1.
– Delete T [1], then return lapcs(S, T [2, t], k − 1) + 1.
– Delete T [j], match S[1] ∼ T [1], then return lapcs(S[2, s], T [2, j, t], k − 1) + 1.

Case 2.4 S[1] = T [1], i > 0 and j > 0, S[i] 6= T [j].

– Delete S[1], then return lapcs(S[2, s], T, k − 1) + 1.
– Delete T [1], then return lapcs(S, T [2, t], k − 1) + 1.

– Delete S[i] and T [j], match S[1] ∼ T [1], then return lapcs(S[2, i, s], T [2, j, t], k −
2) + 2.

Case 2.5.1 S[1] = T [1], i > 0 and j > 0, S[i] = T [j], S[2, i− 1] = T [2, j − 1].

– Match S[1, i] ∼ T [1, j], then return lapcs(S[i+ 1, s], T [j + 1, t], k).

Case 2.5.2 S[1] = T [1], i > 0 and j > 0, S[i] = T [j], S[i+ 1, s] = T [j + 1, t].

– Match S[1] ∼ T [1] and S[i, s] ∼ T [j, t], then return lapcs(S[2, i−1], T [2, j−1], k).

Case 2.5.3 S[1] = T [1], i > 0 and j > 0, S[i] = T [j], ∃a : S[2, a, i− 1] = T [2, j− 1].

– Delete S[1], then return lapcs(S[2, s], T, k − 1) + 1.
– Delete T [1], then return lapcs(S, T [2, t], k − 1) + 1.
– Delete S[a], match S[1, a, i] ∼ T [1, j], then return lapcs(S[i+1, s], T [j+1, t], k−
1) + 1.

Case 2.5.4 S[1] = T [1], i > 0 and j > 0, S[i] = T [j], ∃b : S[2, i− 1] = T [2, b, j − 1].

– Delete S[1], then return lapcs(S[2, s], T, k − 1) + 1.
– Delete T [1], then return lapcs(S, T [2, t], k − 1) + 1.
– Delete T [b], match S[1, i] ∼ T [1, b, j], then return lapcs(S[i+1, s], T [j+1, t], k−
1) + 1.

Case 2.5.5 S[1] = T [1], i > 0 and j > 0, S[i] = T [j], ∃a : S[i+ 1, a, s] = T [j + 1, t].

– Delete S[1], then return lapcs(S[2, s], T, k − 1) + 1.
– Delete T [1], then return lapcs(S, T [2, t], k − 1) + 1.
– Delete S[a], match S[1] ∼ T [1] and S[i, a, s] ∼ T [j, t], then return lapcs(S[2, i−
1], T [2, j − 1], k − 1) + 1.

Case 2.5.6 S[1] = T [1], i > 0 and j > 0, S[i] = T [j], ∃b : S[i+ 1, s] = T [j + 1, b, t].

– Delete S[1], then return lapcs(S[2, s], T, k − 1) + 1.
– Delete T [1], then return lapcs(S, T [2, t], k − 1) + 1.
– Delete T [b], match S[1] ∼ T [1] and S[i, s] ∼ T [j, b, t], then return lapcs(S[2, i−
1], T [2, j − 1], k − 1) + 1.

Case 2.5.7 S[1] = T [1], i > 0 and j > 0, S[i] = T [j], S[2, i − 1] 6= T [2, j − 1],
S[i+1, s] 6= T [j+1, t], ∀a : S[2, a, i−1] 6= T [2, j−1], ∀a : S[i+1, a, s] 6= T [j+1, t],
∀b : S[2, i− 1] 6= T [2, b, j − 1], ∀b : S[i+ 1, s] 6= T [j + 1, b, t].

– Delete S[1], then return lapcs(S[2, s], T, k − 1) + 1.
– Delete T [1], then return lapcs(S, T [2, t], k − 1) + 1.
– Delete S[i] and T [j], match S[1] ∼ T [1], then return lapcs(S[2, i, s], T [2, j, t], k −
2) + 2.

– Match S[1] ∼ T [1] and S[i] ∼ T [j], compute k′ = lapcs(S[2, i − 1], T [2, j −
1], k − 2) + lapcs(S[i+ 1, s], T [j + 1, t], k − 2),, then return k′ if k′ ≤ k, or∞ if
k′ > k.

The correctness of the algorithm is self-evident for the cases from 1 to 2.5.2. To
justify the four cases from 2.5.3 and 2.5.6, we have the following easy lemma.

Lemma 2. For each case from 2.5.3 to 2.5.6, if the condition of the case is met, then
there is an optimal solution that corresponds to one of the three branches for that case.

Finally, the condition for case 2.5.7 ensures that at least two deletions are necessary
in each of the two subproblems for (S[2, i−1], T [2, j−1]) and (S[i+1, s], T [j+1, t]).
Thus in the last branch of this case, it is sufficient to set the third parameter to k−2 in the
two recursions. In terms of time complexity, the seven cases 2.2, 2.3, and 2.5.3–2.5.7 are
the worst cases. The six cases 2.2, 2.3, and 2.5.3–2.5.4 correspond to the characteristic
polynomial equation 1 = x−1 + x−1 + x−1; the last case 2.5.7 corresponds to the
characteristic polynomial equation 1 = x−1+x−1+x−2+(x−2+x−2). Both equations
have a unique positive real root x0 = 3.

4 LAPCS(STEM, STEM) for constant alphabet size

The LAPCS(STEM, STEM) problem turns out to be of particular interest for RNA prac-
tical issues [7]. This problem has been shown to be NP-complete for arbitrarily large al-
phabets [8]. This section is devoted to investigating the LAPCS(STEM, STEM) problem
for constant alphabet size. We first make the easy observation that the LAPCS(STEM,
STEM) problem for an alphabet of size 1 admits a polynomial-time exact algorithm by
dynamic programming. Unfortunately, this approach cannot be pushed too far. Indeed,
we now show that the constant alphabet size assumption is not enough to gain tractability
for the LAPCS(STEM,STEM) problem.

Theorem 2. The LAPCS(STEM,STEM) problem is NP-complete for constant alpha-
bet size.

To prove hardness, we propose a reduction from the NP-complete 3-SAT problem [6]
which is defined as follows: Given a collection Cq = {c1, c2, . . . , cq} of q clauses, where
each clause is the disjunction of 3 literals on a finite set of n boolean variables Vn =
{x1, x2, . . . , xn}, determine whether there exists a truth assignment to the variables so
that each clause has at least one true literal. Let (Cq, Vn) be an arbitrary instance of the 3-
SAT problem. For convenience, let Lji denote the j− th literal of the i− th clause (i.e. ci)
of Cq . In the following, given a sequence S over an alphabet Σ, let occ(i, c, S) denote
the i− th occurrence of the letter c in S. We build two arc-annotated sequences (S1, P1)
and (S2, P2) as follows. An illustration of a full example is given in figures 3 and 4,
where n = 4 and q = 3. For readability reasons, the arc-annotated sequences resulting
from the construction have been split into several parts and a schematic overview of the
overall placement of each part is provided.

Let S1 and S2 be the two sequences defined as follows:

S1 = C1
q S C

1
q−1 . . . C

1
2 S C

1
1 S S

1
M S P 1

1 S P
1
2 . . . P

1
q−1 S P

1
q

S2 = C2
q S C

2
q−1 . . . C

2
2 S C

2
1 S S

2
M S P 2

1 S P
2
2 . . . P

2
q−1 S P

2
q

where, for all 1 ≤ i ≤ q and 1 ≤ k ≤ n,

– S = 2β

– C1
i = 9δ 6γ 8δ 6γ X1

1 X
1
2 . . . X

1
n 6γ 8δ 6γ 7δ with X1

k = 0 sj 1 2α if xk = Lji or
xk = Lji , with s1 = 3, s2 = 4 and s3 = 5; X1

k = 0 1 2α otherwise;
– P 1

i = 6γ 6γ 9δ X1
n . . . X

1
n
2 +1 8δ X1

n
2
. . . X1

1 7δ 6γ 6γ s.t. X1
k = 1 0 2α;

– C2
i = X2

1 . . . X
2
n 9δ 6γ X2

1 . . . X
2
n
2
8δ X2

n
2 +1 . . . X

2
n 6γ 7δ X2

1 . . . X
2
n s.t. ∀1 ≤

j ≤ 3, occ(j,X2
k , C

2
i) = 1 0 sj 2

α (resp. sj 1 0 2α) if xk = Lji (resp. xk = Lji),
with s1 = 3, s2 = 4 and s3 = 5; occ(j,X2

k , C
2
i) = 1 0 2α otherwise;

– P 2
i = (0 1 2α)n 7δ 6γ (0 1 2α)

n
2 8δ (0 1 2α)

n
2 6γ 9δ (0 1 2α)n.

Moreover, let S1
M = (0 1 2α)n and S2

M = (1 0 2α)n. Notice that, by construction,
there is only one occurrence of each {3, 4, 5} in C2

i . Moreover, let α = 2n + 1, β =
|S1
M |+

∑
1≤i≤q(|C1

i |+|P 1
i |), δ = α(n+1) and γ = 5δ+4 . Let us now define P1 and P2.

For all 1 ≤ i ≤ q− 1, (1) add an arc in P1 between occ(k, 0, C1
i) (resp. occ(k, 1, C1

i))
and occ(n − k + 1, 0, P 1

i+1) (resp. occ(n − k + 1, 1, P 1
i+1)), ∀1 ≤ k ≤ n (see Fig.

3.d and 4.b); (2) add an arc in P2 between occ(j ∗ k, 0, C2
i) (resp. occ(j ∗ k, 1, C2

i))
and occ(3n − jk + 1, 0, P 2

i) (resp. occ(3n − jk + 1, 1, P 2
i)), ∀1 ≤ j ≤ 3, 1 ≤

k ≤ n (see Fig. 3.c, 4.a and 4.c); (3) add an arc in P2 between occ(k, j, C2
i) and

occ(d+1− k, j, P 2
i), ∀j ∈ {7, 8, 9} and 1 ≤ k ≤ δ (see Fig. 3.c, 4.a and 4.c). Clearly,

this construction can be achieved in polynomial-time, and yields to sequences (S1, P1)
and (S2, P2) that are both of type STEM. We now give an intuitive description of the
different elements of this construction. Each clause ci ∈ Cq is represented by a pair
(C1

i , C
2
i) of sequences. The sequenceC2

i is composed of three subsequences representing
a selection mechanism of one of the three literals of ci. The pair (S1

M , S
2
M) of sequences

is a control mechanism that will guarantee that a variable xk cannot be true and false
simultaneously. Finally, for each clause ci ∈ Cq, the pair (P 1

i , P
2
i) of sequences is a

propagation mechanism which aim is to propagate the selection of the assignment (i.e.
true or false) of any literal xk all overCq . Notice that all the previous intuitive notions will
be detailed and clarified afterwards. In the sequel, we will refer to any such construction
as a snail-construction. In order to complete the instance of the LAPCS(STEM, STEM)
problem, we set k′ = |S1| − ε with ε = q(2(n+ 2δ + 2γ + 1)) + n. (the desired length
of the solution). Let (S1, P1) and (S2, P2) denote the arc-annotated sequences obtained
by a snail-construction. We will denote Sd the set of symbols deleted in a solution of the
LAPCS problem on (S1, P1) and (S2, P2) (i.e. the symbols that do not belong to the
common subsequence). We need some technical lemmas (proofs deferred to Appendix)

Lemma 3. Any optimal solution of the LAPCS(STEM, STEM) problem on (S1, P1)
and (S2, P2) is of length |S1| − ε.

Lemma 4. In any optimal solution of the LAPCS(STEM, STEM) problem on (S1, P1)
and (S2, P2), if occ(k, 1, S1

M) (resp. occ(k, 0, S1
M)) for a given 1 ≤ k ≤ n is deleted

then, ∀1 ≤ j ≤ q, occ(k, 1, C1
j) (resp. occ(k, 0, C1

j)) is deleted.

The following lemma proves Theorem 2.

Theorem 3. Given an instance of the problem 3SAT with n variables and q clauses,
there exists a satisfying truth assignment if and only if the LAPCS(STEM, STEM)
problem for (S1, P1) and (S2, P2) is of length k′ = |S1| − ε.

Fig. 3. Considering Cq = (x1 ∨ x2 ∨ x3) ∧ (x1 ∨ x2 ∨ x4) ∧ (x2 ∨ x3 ∨ x4). For readability,
all the arcs have not been drawn, consecutive arcs are representing by a unique arc with lines
for endpoints. Symbols over a grey background may be deleted to obtain an optimal LAPCS. a)
A schematic view of the overall arrangement of the components of the two a.a. sequences. b)
Description of S1

M , S2
M , P 1

1 , P 2
1 and the corresponding arcs in P1. c) Description of C1

1 , C2
1 , P 1

1 ,
P 2
1 and the corresponding arcs in P2. d) Description of C1

1 , C2
1 , P 1

2 , P 2
2 and the corresponding

arcs in P1.

Fig. 4. Considering Cq = (x1 ∨ x2 ∨ x3) ∧ (x1 ∨ x2 ∨ x4) ∧ (x2 ∨ x3 ∨ x4). For readability
all the arcs have not been drawn, consecutive arcs are representing by a unique arc with lines
for endpoints. Symbols over a grey background may be deleted to obtain an optimal LAPCS. a)
Description of C1

2 , C2
2 , P 1

2 , P 2
2 and the corresponding arcs in P2. c) Description of C1

2 , C2
2 , P 1

3 ,
P 2
3 and the corresponding arcs in P1. d) Description of C1

3 , C2
3 , P 1

3 , P 2
3 and the corresponding

arcs in P2.

Proof. (⇒) An optimal solution forCq = (x1∨x2∨x3)∧(x1∨x2∨x4)∧(x2∨x3∨x4)
– i.e. x1 = x3 = true and x2 = x4 = false – is illustrated in figures 3 and 4 where any
symbol over a grey background have to be deleted. Suppose we have a solution for our
3-SAT instance, that is an assignment of each variable of Vn satisfying each clause of
Cq . Let us first list all the symbols to delete in S1. For all 1 ≤ k ≤ n, if xk = false then
delete, ∀1 ≤ j ≤ q, {occ(k, 0, C1

j), occ(k, 1, P
1
j)} and occ(k, 0, S1

M); otherwise
delete, ∀1 ≤ j ≤ q, {occ(k, 1, C1

j), occ(k, 0, P
1
j)} and occ(k, 1, S1

M).

For each Lji satisfying ci with the biggest index j with 1 ≤ i ≤ q,
if (1) j = 1 then from C1

i , delete all the symbols 9, the two first substrings of γ
symbols 6, the first substring of δ symbols 8, symbols 4 and 5. Moreover, from P 1

i delete
all the symbols 7 and 8, the two last substrings of γ symbols 6 (cf Fig. 3.c);

if (2) j = 2 then from C1
i , delete all the symbols 8, the first and the last substrings of

γ symbols 6, symbols 3 and 5. Moreover, from P 1
i delete all the symbols 7 and 9, the

first and the last substrings of γ symbols 6 (cf Fig. 4.a);
if (3) j = 3 then from C1

i , delete all the symbols 7, the two last substrings of γ
symbols 6, the last substring of δ symbols 8, symbols 3 and 4. Moreover, from P 1

i delete
all the symbols 8 and 9, the two first substrings of γ symbols 6 (cf Fig. 4.c);

Let us now list all the symbols in S2 to be deleted. For all 1 ≤ k ≤ n, if xk = false
then delete occ(k, 0, S2

M); otherwise delete occ(k, 1, S2
M). For each Lji satisfying ci

with the biggest index j with 1 ≤ i ≤ q,
if (1) j = 1 then, in C2

i , delete all the symbols not in {6, 7, 8} appearing after
occ(1, 9, C2

i) (included). Moreover, if xk = false with 1 ≤ k ≤ n then delete,
occ(k, 0, C2

i), otherwise delete occ(k, 1, C2
i) (cf Fig. 3.c). Moreover, in P 2

i , delete all
the symbols not in {6, 9} appearing before occ(1, 9, P 2

i). Moreover, if xk = falsewith
1 ≤ k ≤ n then delete, occ(3n−k+1, 0, P 2

i), otherwise delete occ(3n−k+1, 1, P 2
i)

(cf Fig. 3.c);
if (2) j = 2 then, in C2

i , delete all the symbols 8 and all the symbols appearing before
occ(1, 9, C2

i) (excluded) or after occ(δ, 7, C2
i) (excluded). Moreover, if xk = false

with 1 ≤ k ≤ n then delete, occ(n + k, 0, C2
i), otherwise delete occ(n + k, 1, C2

i)
(cf Fig. 4.a). Moreover, in P 2

i , delete all the symbols appearing before occ(1, 6, P 2
i)

(excluded) or after occ(2γ, 6, P 2
i) (excluded). Moreover, if xk = falsewith 1 ≤ k ≤ n

then delete, occ(2n− k + 1, 0, P 2
i), otherwise delete occ(2n− k + 1, 1, P 2

i) (cf Fig.
4.a);

if (3) j = 3 then, in C2
i , delete all the symbols not in {6, 8, 9} appearing before

occ(δ, 7, C2
i) (included). Moreover, if xk = false with 1 ≤ k ≤ n then delete,

occ(2n + k, 0, C2
i), otherwise delete occ(2n + k, 1, C2

i) (cf Fig. 4.c). Moreover, in
P 2
i , delete all the symbols not in {6, 7} appearing after occ(1, 7, P 2

i). Moreover, if
xk = false with 1 ≤ k ≤ n then delete, occ(n − k + 1, 0, P 2

i), otherwise delete
occ(n− k + 1, 1, P 2

i) (cf Fig. 4.c);
By construction, the natural order of the symbols of S1 and S2 allows the corre-

sponding set of undeleted symbols to be conserved in a common arc-preserving common
subsequence between (S1, P1) and (S2, P2). Let us now prove that the length of this last
is k′. One can easily check that in this solution, in S1, n symbols have been deleted from
S1
M and ∀1 ≤ i ≤ q, 2δ+2γ+n+2 symbols fromC1

i and 2δ+2γ+n symbols from P 1
i

have been deleted. Thus, the length of the solution is |S1|− [q(2(n+2δ+2γ+1))+n].

(⇐) Suppose we have an optimal solution – i.e. a set of symbols Sd to delete – for
LAPCS of (S1, P1) and (S2, P2). Let us define the truth assignment of Vn s.t., ∀1 ≤
i ≤ q, if in C1

i symbol 3 is not deleted, then the first literal of clause ci (i.e. L1
i) is true; if

in C1
i symbol 4 is not deleted, then the second literal of clause ci (i.e. L2

i) is true; if in C1
i

symbol 5 is not deleted, then the third literal of clause ci (i.e.L3
i) is true;. Let us prove that

it is a solution for our 3-SAT instance. By construction, if Lji = xk (resp. xk) then in C1
i ,

symbol 2 + j (i.e. 3, 4 or 5) appears between occ(k, 0, C1
i) and occ(k, 1, C1

i) whereas
in C2

i it appears after occ(k, 1, C2
i) (resp. before occ(k, 0, C2

i)). Thus, if symbol 2+ j
(i.e. 3, 4 or 5) in C1

i is not deleted then occ(k, 1, C1
i) (resp. occ(k, 0, C1

i)) in C1
i is

deleted if Lji = xk (resp. xk). Consequently, according to the proof of Lemma 4, if
symbol 2+j (i.e. 3, 4 or 5) inC1

i is not deleted then occ(k, 1, C1
i′) (resp. occ(k, 0, C1

i′))
in all C1

i′ , with 1 ≤ i′ ≤ q is deleted if Lji = xk (resp. xk). Therefore, we can ensure

that one cannot obtain Lji and Lj
′

i′ being true whereas Lji = Lj
′

i′ (that is a variable cannot
be simultaneously true and false). By Lemma 3, we can ensure that for any 1 ≤ i ≤ q
exactly one of {3, 4, 5} is conserved in C1

i . ut

References
1. J. Alber, J. Gramm, J. Guo, and R. Niedermeier. Computing the similarity of two sequences

with nested arc annotations. Theoretical Computer Science, 312(2-3):337–358, 2004.
2. G. Blin, M. Crochemore, and S. Vialette. Algorithms in Computational Molecular Biology:

Techniques, Approaches and Applications, chapter Algorithmic Aspects of Arc-Annotated
Sequences. Wiley, 2010. To appear.

3. G. Blin, A. Denise, S. Dulucq, C. Herrbach, and H. Touzet. Alignment of RNA structures.
IEEE/ACM Transactions on Computational Biology and Bioinformatics, 2008. To appear.

4. P. Evans. Algorithms and Complexity for Annotated Sequences Analysis. PhD thesis, Univer-
sity of Victoria, 1999.

5. Patricia A. Evans. Finding common subsequences with arcs and pseudoknots. In
M. Crochemore and M. Paterson, editors, Proc. CPM 99, volume 1645 of LNCS, pages
270–280. Springer, 1999.

6. M.R. Garey and D.S. Johnson. Computers and Intractability: A guide to the theory of
NP-completeness. W.H. Freeman, San Francisco, 1979.

7. V. Guignon, C. Chauve, and S. Hamel. An edit distance between rna stem-loops. In Mariano P.
Consens and Gonzalo Navarro, editors, Proc. of SPIRE 2005, volume 3772 of LNCS, pages
335–347, 2005.

8. S. Hamel, G. Blin, and S. Vialette. Comparing RNA structures with biologically relevant op-
erations cannot be done without strong combinatorial restrictions. In S. Fujita and S. Rahman,
editors, Proc. of WALCOM’10, LNCS, 2010.

9. T. Jiang, G. Lin, B. Ma, and K. Zhang. A general edit distance between RNA structures.
Journal of Computational Biology, 9(2):371–388, 2002.

10. T. Jiang, G.-H. Lin, B. Ma, and K. Zhang. The longest common subsequence problem for
arc-annotated sequences. In R. Giancarlo and D. Sankoff, editors, Proc. CPM 2000, volume
1848 of LNCS, pages 154–165. Springer, 2000.

11. G. Lin, Z.-Z. Chen, T. jiang, and J. Wen. The longest common subsequence problem for
sequences with nested arc annotations. Journal of Computer and System Sciences, 65:465–480,
2002.

12. D. Shasha and K. Zhang. Simple fast algorithms for the editing distance between trees and
related problems. SIAM Journal on Computing, 18(6):1245–1262, 1989.

Appendix

Proof (Of Lemma 1). Consider any independent set S in the graphG. Clearly, S includes
at most two vertices from each copy Ai of the graph A. Moreover, if S includes exactly
two vertices from Ai, then the two vertices must be v1 and v4, and consequently S
includes at most one vertex from Ai−1 and at most one vertex from Ai+1. Recall that
n = 4t. Thus the maximum cardinality k∗ of an independent set in the graph G is⌊
2+1
2 t
⌋
=
⌊
3
8 n
⌋
. ut

Proof (Of Lemma 2). We first consider case 2.5.3, where S[1] = T [1], i > 0 and
j > 0, S[i] = T [j], and ∃a : S[2, a, i − 1] = T [2, j − 1]. Then i − 1 = j ≥ 2 and
S[1, a, i] = T [1, j].

Consider any optimal solution in which S[1] and T [1] are not deleted, that is, S[1] ∼
T [1] is a match. Then the jth letter of this optimal solution matches S[i′] ∼ T [j′] for
some i′ ≥ j and j′ ≥ j. If S[i] is not deleted, then the arc S[1]S[i] is matched to the
arc T [1]T [j], and consequently at least one letter in S[2, i− 1] must be deleted because
S[2, i− 1] has one more letter than T [2, j − 1]. In any case, at least one letter in S[1, i]
must be deleted, thus i′ > j. Since j = i− 1, it follows that i′ ≥ i. Since we also have
j′ ≥ j, it is safe to replace the first j letters of this optimal solution by the j letters in
S[1, a, i] = T [1, j], which results in an optimal solution that matches S[1, a, i] ∼ T [1, j]
and deletes S[a]. This proves the lemma for case 2.5.3. A similar replacement argument
proves the lemma for the other three cases. ut

Technical lemma needed to prove Lemma 4.

Lemma 5. In any optimal solution of the LAPCS(STEM, STEM) problem on (S1, P1)
and (S2, P2), at least one symbol incident to any arc has to be deleted. Moreover, all the
substrings of β symbols 2 – denoted as S in the construction – will not be deleted.

Proof. By contradiction, let us suppose that there exist an optimal solution where one
complete substring S has been deleted. Therefore, since S1 is, by construction, smaller
than S2 the length of this optimal solution is at most |S1| − β. Then, in order for
this solution to be optimal, one should have ε ≥ β; a contradiction since β = |S1

M |+∑
1≤i≤q(|C1

i |+ |P 1
i |) = (2+α)n+q((4γ+4δ+(2+α)n+3)+(4γ+3δ+(2+α)n)).

Thus, in an optimal solution, all the substrings of β symbols 2 should be preserved –
contributing (2q − 1)β to the length of the optimal. This also induces that, ∀1 ≤ i ≤ q,
symbols of C1

i will be matched to symbols of C2
i , symbols of P 1

i will be matched to
symbols of P 2

i and symbols of S1
M will be matched to symbols of S2

M . ut

Technical lemma needed to prove Lemma 3 and Lemma 4.

Lemma 6. In any optimal solution of the LAPCS(STEM, STEM) problem on (S1, P1)
and (S2, P2), the alignment of S1

M and S2
M contributes (α + 1)n to the length of the

solution.

Proof. Indeed, in any optimal solution, all the symbols 2 of S1
M should be kept. By

contradiction, suppose a full substring of α symbols 2 is not kept. Then the contribution of
S1
M to this optimal solution is at most |S1

M |−α. Consider now the common subsequence
of S1

M and S2
M where all the symbols 2 are kept. This last is of size |S1

M |−2n – which is,
by definition, greater than |S1

M | − α; a contradiction. Therefore, in any optimal solution,
by construction, for all 1 ≤ i ≤ n, either occ(i, 0, S1

M) or occ(i, 1, S1
M) will be kept

in addition to all the symbols 2; leading to a common subsequence of size (α+1)n. ut

Technical lemma needed to prove Lemma 3 and Lemma 4.

Lemma 7. In any optimal solution of the LAPCS(STEM, STEM) problem on (S1, P1)
and (S2, P2), the alignment of P 1

i and P 2
i contributes (2γ+ δ+(α+1)n) to the length

of the solution.

Proof. In any optimal solution, in P 1
i , half of the symbols 6 should be kept. First, note

that there are 4γ symbols 6 in P 1
i and only 2γ such symbols in P 2

i . Thus, in any optimal
solution, in P 1

i , at most half of the symbols 6 can be kept. By contradiction to the first
assumption, suppose there are, in an optimal solution, less than half of the symbols 6
kept in P 1

i . Then the length of this optimal solution is at most |P 1
i | − 3γ. Consider now

the common subsequence of P 1
i and P 2

i where half of the symbols 6 in P 1
i are kept.

This last is of size |P 1
i | − (2γ + 3δ + (α+ 2)n) – which is, by definition of γ, greater

than |P 1
i | − 3γ; a contradiction. Therefore, in any optimal solution, since in P 1

i half
of the symbols 6 are kept, by construction, at most one of the substrings 7δ, 8δ or 9δ

can be kept. Moreover, in P 1
i , by construction, for all 1 ≤ j ≤ n, either occ(j, 0, P 1

i)
or occ(j, 1, P 1

i) will be kept in addition to all the symbols 2; leading to a common
subsequence of size (2γ + δ + (α+ 1)n). ut

Technical lemma needed to Prove Lemma 3 and Lemma 4.

Lemma 8. In any optimal solution of the LAPCS(STEM, STEM) problem on (S1, P1)
and (S2, P2), the alignment of C1

i and C2
i contributes (2γ + 2δ + (α+ 1)n+ 1) to the

length of the solution.

Proof. By a similar proof as in Lemma 7, in any optimal solution, in C1
i half of the

symbols 6 should be kept. Moreover, among all the 4δ symbols 7, 8 and 9, only 2δ
may be kept in an optimal solution. Indeed, first, note that there are 2δ symbols 8 in C2

i

and only δ such symbols in C1
i . Thus, in any optimal solution, in C1

i , at most δ of the
symbols 8 can be kept. Then, note that by Lemma 7, at most one of the substrings 7δ , 8δ

or 9δ can be kept in an optimal solution and in P2, for all 1 ≤ j ≤ δ and k ∈ {7, 8, 9},
there is an arc between occ(j, k, C2

i) and occ(δ− j+1, k, P 2
i). Moreover, considering

all the combinations of alignment of the symbols 6, at most one of {3, 4, 5} may be
kept. Finally, by construction, for all 1 ≤ j ≤ n, either occ(j, 0, C1

i) or occ(j, 1, C1
i)

will be kept in addition to all the symbols 2; leading to a common subsequence of size
(2γ + 2δ + (α+ 1)n+ 1). ut

Proof (Of Lemma 3). By construction, S1 is of length (2q− 1)β+ q(4γ+4δ+3+(2+
α)n) + (2 + α)n+ q(4γ + 3δ + (2 + α)n). According to Lemmas 6, 7, 8, any optimal
solution is of size (2q−1)β+q(2γ+2δ+1+(1+α)n)+(1+α)n+q(2γ+δ+(1+α)n).
One can easily verify that any optimal solution is, thus, of size |S1| − ε. ut

Proof (Of Lemma 4). By Lemma 6, for every 1 ≤ k ≤ n only one of {occ(k, 0, S1
M),occ(k, 1, S1

M)}
may be conserved between S1

M and S2
M . By Lemma 5, at least one symbol incident to any

arc is deleted. Therefore, ∀1 ≤ k ≤ n only one of {occ(n− k + 1, 0, SP 1
i),occ(n−

k + 1, 1, P 1
i)} may be conserved.

Let us suppose that for a given 1 ≤ k ≤ n, occ(k, 1, S1
M) is deleted. Then occ(n−

k+1, 0, P 1
1) is deleted whereas occ(n−k+1, 1, P 1

1) and occ(k, 0, S1
M) are conserved.

By construction, since according to the proof of Lemma 7, in P 1
1 half of the symbols

6 and one of the substrings 7δ, 8δ or 9δ are kept, either (1) the two first substrings of
γ symbols 6 and the substring of symbols 9, or (2) one of the two first and one of the
two last substrings of γ symbols 6 and the substring of symbols 8, or (3) the two last
substrings of γ symbols 6 and the substring of symbols 7 are conserved.

Let us first consider that the two first substrings of γ symbols 6 and the substring
of symbols 9 are conserved (cf. Fig. 3.c). Since, in P2, ∀1 ≤ k ≤ δ there is an arc
between occ(k, 9, C2

1) and occ(δ − k + 1, 9, P 2
1), according to Lemma 8, a substring

of δ symbols 7 and a substring of δ symbols 8 in C1
1 have to be conserved. Then one can

check that the only solution is to conserve the second substring of δ symbols 8 and the two
last substrings of γ symbols 6 of C1

1 since otherwise one would not be able to conserve
all the symbols 2 of C1

1 (which is required according to Lemma 8). Consequently,
the only solution is to conserve, the symbols 2 appearing before occ(1, 6, C2

1) (resp.
after occ(γ + 1, 6, P 2

1)) in C2
1 (resp. P 2

1). Since by construction, ∀1 ≤ k ≤ n, there
is an arc between occ(k, 1, C2

1) (resp. occ(k, 0, C2
1)) and occ(3n − k + 1, 1, P 2

1)
(resp. occ(3n− k + 1, 0, P 2

1)), in order for occ(k, 1, P 1
1) to be conserved, one has to

conserved occ(3n− k+1, 1, P 2
1). Thus, by Lemma 5, occ(k, 1, C2

1) has to be deleted
and, according to the proof of Lemma 8, occ(k, 0, C1

1) has to be conserved.
Let us now consider that one of the two first and one of the two last substrings of

γ symbols 6 and the substring of symbols 8 are conserved (cf Fig. 4.a). By a similar
reasoning, one can check that the only solution is to conserve, the symbols 2 appear-
ing between occ(1, 6, C2

1) and occ(γ + 1, 6, C2
1) (resp. between occ(1, 6, P 2

1) and
occ(γ + 1, 6, P 2

1)) in C2
1 (resp. P 2

1). Since by construction, ∀1 ≤ k ≤ n, there is an
arc between occ(n+ k, 1, C2

1) (resp. occ(n+ k, 0, C2
1)) and occ(2n− k + 1, 1, P 2

1)
(resp. occ(2n− k + 1, 0, P 2

1)), in order for occ(k, 1, P 1
1) to be conserved, one has to

conserved occ(2n − k + 1, 1, P 2
1). Thus, by Lemma 5, occ(n + k, 1, C2

1) has to be
deleted and, according to the proof of Lemma 8, occ(k, 0, C1

1) has to be conserved.
Finally, let us consider that the two last substrings of γ symbols 6 and the substring of

symbols 7 are conserved (cf Fig. 4.c). Once again, by a similar reasoning, one can check
that the only solution is to conserve, the symbols 2 appearing after occ(γ + 1, 6, C2

1)
(resp. before occ(1, 6, P 2

1)) in C2
1 (resp. P 2

1). Since by construction, ∀1 ≤ k ≤ n, there
is an arc between occ(2n + k, 1, C2

1) (resp. occ(2n + k, 0, C2
1)) and occ(n − k +

1, 1, P 2
1) (resp. occ(n− k+1, 0, P 2

1)), in order for occ(k, 1, P 1
1) to be conserved, one

has to conserved occ(n− k+1, 1, P 2
1). Thus, by Lemma 5, occ(2n+ k, 1, C2

1) has to
be deleted and, according to the proof of Lemma 8, occ(k, 0, C1

1) has to be conserved.
With a similar reasoning, by recurrence, since, ∀1 ≤ i ≤ q, 1 ≤ k ≤ n, there is

an arc in P1 between occ(k, 0, C1
i) (resp. occ(k, 1, C1

i)) and occ(k, 0, P 1
i+1) (resp.

occ(k, 1, P 1
i+1)), if occ(k, 0, C1

i) is conserved then occ(k, 0, P 1
i+1) is deleted. And

therefore, with similar arguments, occ(k, 0, C1
i+1) is conserved. Once more, it is easy

to see that this result still holds if occ(k, 0, C1
i) is conserved. ut

