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Abstract. In this paper, we show that the presentation of affine T-varieties of complex-
ity one in terms of polyhedral divisors holds over an arbitrary field. We describe also
a class of multigraded algebras over Dedekind domains.

Introduction

There exist several descriptions of T-varieties, see for instance [KKMS], [De], [FZ],
[AH], [Ti], [AHS]. In this paper, we show that the presentation of affine T-varieties
of complexity one in terms of polyhedral divisors holds over an arbitrary field. We
describe also a class of multigraded algebras over Dedekind domains, see 2.6, 3.12.

Before reformulating our result, let us recall some notation. In the following all
algebraic structures are defined over a field k.

A split algebraic torus T of dimension n is an algebraic group scheme isomorphic to
Gn

m. Let M be the character lattice of a torus T. Then defining a T-action on an affine
variety X is equivalent to having an M-grading on the algebra k[X ] [SGA III, 4.7.3].
An affine T-variety of complexity one is a normal variety endowed with an effective
T-action (i.e the weights of A = k[X ] generate M) such that the field

K0 =
{a
b
, a, b ∈ A homogeneous of same degree

}
∪ {0}

has transcendence degree over k equal to one.
In order to describe affine T-varieties of complexity one, we consider a smooth curve

C. A point z ∈ C is assumed to be closed. Denote by N the one parameter lattice of
T. Fix a strongly convex polyhedral cone σ ⊂ NQ = Q ⊗Z N . We define as in [AH] a
divisor D =

∑
z∈C ∆z · z with σ-polyhedral coefficients in NQ. The degree of D is

degD =
∑

z∈C

[κz : k] ·∆z ,

where κz is the residual field at the point z. The properness ofD and the corresponding
M-graded algebra A[C,D] are given by the usual definitions, see [AH, 2.12]. Using some
ideas developped in [La], we obtain the following result.
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2 KEVIN LANGLOIS

Theorem 0.1. Let X be an affine T-variety of complexity one over a field k. If
σ∨ ⊂ MQ = Q ⊗Z M is the weight cone of A = k[X ] then there exists a proper
σ-polyhedral divisor D on a smooth curve C such that A ≃ A[C,D] as multigraded
algebras.

Let us give a brief summary of the contents of each section. In the first section,
we extend the D.P.D. presentation to the context of Dedekind domains. This fact has
been mentioned by Flenner and Zaidenberg, see the introduction of [FZ]. In the second
section, we study a class of multigraded algebras over Dedekind domains. In the last
section, we classify affine T-varieties of complexity one over k.

Acknowledgments : The author is grateful to Mikhail Zaidenberg for his permanent
encouragement.

1. Graded algebras and Dedekind domains

In this section we generalize the Dolgachev-Pinkham-Demazure (D.P.D.) presentation
to the context of Dedekind domains. See [FZ, §3] for the case of normal affine surfaces
with parabolic C⋆-actions.

1.1. An integral domain A0 is called a Dedekind domain (or Dedekind ring) if it is not
a field and if it satisfies the following conditions.

(i) The ring A0 is noetherian;
(ii) The ring A0 is integrally closed in its field of fractions;
(iii) Every nonzero prime ideal is a maximal ideal.

Let us mention several classical examples of Dedekind domains.

Exemple 1.2. Let K be a number field (i.e. K is a finite extension of Q). If ZK

denotes the ring of elements of K which are integral over Z then ZK is a Dedekind
ring. For instance the ring of integers Z and the ring of Gaussian integers Z[

√
−1] are

Dedekind rings. If p is a prime number and if ζ ∈ C is a primitive pth root of unity
then Z[ζ ] is a Dedekind domain. However there exist quadratic extensions of Z that

are not Dedekind. Indeed if d is a positive integer then the ring Z[
√
d] is Dedekind if

and only if d ≡ 2, 3 mod 4.
Let k be a field and let A be a finitely generated normal algebra over k of dimension

one. This means that the affine scheme C = SpecA is an affine smooth algebraic
curve over k. Then the coordinate ring A = k[C] is Dedekind. The algebra of power
series k[[t]] in one variable over the field k is a Dedekind domain. More generally every
principal ideal domain (and so every discrete valuation ring) that is not a field is a
Dedekind domain. The example of Z[

√
−5] shows that the converse is false, in general.

If A0 is a Dedekind domain then the localisation of A0 by a multiplicative subset
S of A0 is either a Dedekind Domain or a field [Mi, 3.4]. In the case where S is the
complement of a nonzero prime ideal p the localisation is a discrete valuation ring.
Futhermore if K0 is the field of fractions of A0 and L is a finite separable extension of
K0 then the integral closure of A0 in L is also a Dedekind ring [Mi, 2.29].

1.3. Let A0 be an integral domain and let K0 be the field of fractions of A0. Recall that
a fractional ideal b is a finitely generated nonzero A0-submodule of K0. We remark
that every fractional ideal is of the form 1

f
· a where f ∈ A0 is nonzero and a is a
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nonzero ideal of A0. If b is equal to u · A0 for some nonzero element u belonging to
K0 := FracA0 then we say that b is a principal fractional ideal.

The following gives a description of fractional ideals of A0 in terms of Weil divisors
on Y = SpecA0 when A0 is a Dedekind domain. This assertion is well known [Ke,
§14]. For convenience of the reader we include a short proof.

Theorem 1.4. Let A0 be a Dedekind ring with field of fractions K0. Let Y := SpecA0.
Then the map

DivZ(Y ) → Id(A0), D 7→ H 0(Y ,OY (D))

is a bijection between the set of integral Weil divisors on Y and the set of fractional
ideals of A0. Every fractional ideal is locally free of rank 1 as A0-module and the natural
map

H0(Y,OY (D))⊗H0(Y,OY (D
′)) → H0(Y,OY (D +D′))

is surjective. The divisor D is principal (resp. effective) if and only if the corresponding
fractional ideal is principal (resp. contains A0).

Proof. By [Ha, Proposition II.6.11], the group of Weil divisors on Y coincides with the
group of Cartier divisors. In particular, every A0-module H0(Y,OY (D)) is of finite
type [Ha, Corollary II.5.5], locally free of rank one and so has a nonzero global section.
Therefore the map

DivZ(Y ) → Id(A0)

is well defined.
Let D,D′ be divisors of DivZ(Y ). Then by the previous observation the OY -sheaves

OY (D)⊗OY (D
′) and OY (D+D′) are isomorphic. By standard arguments this induces

an isomorphism on the level of global sections.
Combining Proposition 14.6 and Theorem 14.8 in [Ke], every nonzero prime ideal of

A0 is the module of global sections of an invertible sheaf over OY . Thus by the primary
decomposition [Ke, Theorem 14.11], the map DivZ(Y ) → Id(A0) is surjective.

Assume that

H0(Y,OY (D)) = H0(Y,OY (D
′))

for some D,D′ ∈ DivZ(Y ). Then we can write D = D+−D− and D = D′
+−D′

− where
D+, D

′
+, D−, D

′
+ are integral effective divisors. By tensoring we obtain the equality

H0(Y,OY (−D− −D′
+)) = H0(Y,OY (−D′

− −D+))

between ideals of A0. Again using the decomposition in prime ideals we get −D− −
D′

+ = −D′
− −D+ and so D = D′. One concludes that the map is injective.

Assume that H0(Y,OY (D)) contains A0. Write D = D+−D− with D+, D− effective
and having disjoint supports. Then by our assumption

H0(Y,OY (0)) = A0 = A0 ∩H0(Y,OY (D)) = H0(Y,OY (−D−)).

This yields D− = 0 and so D is effective. The rest of the proof is straightforward. �
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Notation 1.5. Let A0 be a Dedekind domain. As usual, for a Q-divisor D on Y :=
SpecA0 we denote by A0[D] the graded algebra

⊕

i∈N

H0(Y,OY (⌊iD⌋)) ti

where t is a variable over the field K0 := FracA0. Note that A0[D] is normal as
intersection of discrete valuation rings with field of fractions K0(t) (see [De, §2.7]).

The next lemma provides a D.P.D. presentation for a class of graded subrings ofK0[t].
It will be useful later on. See [FZ, Theorem 3.2(a)] for a geometric proof concerning
affine surfaces with a parabolic C⋆-action.

Lemma 1.6. Let A0 be a Dedekind ring with the field of fractions K0, and let

A =
⊕

i∈N

Ai t
i ⊂ K0[t]

be a normal graded subalgebra of finite type over A0 such that for every i, Ai ⊂ K0 is
an A0-submodule. Assume that the field of fractions of A is K0(t). Then there exists a
unique Q-divisor D on Y = SpecA0 such that for any i ∈ N,

Ai = H0(Y,OY (⌊iD⌋)).
Futhermore we have Y = ProjA.

Proof. By Hilbert’s Basis Theorem the ring A is noetherian. So each Ai is either zero
or a fractional ideal of A0 (see [G-Y, Lemma 2.2]). Using Theorem 1.4 for every i ∈ N

such that Ai 6= {0} we can write

Ai = H0(Y,OY (Di))

for some Di ∈ DivZ(Y ). By [Bou, §III.3, Proposition 3] we can find a positive integer
d such that the dth Veronese subring

A(d) :=
⊕

i≥0

Adi t
di

is generated as A0-algebra by Ad t
d. One observes that for each i ∈ N, the graded piece

Adi is nonzero. Proceeding by induction, for any i ∈ N the equality Ddi = iDd holds.
Put D = Dd

d
. Then using the normality of A and A0[D], we have for any homogenous

element f ∈ K0[t] the equivalences

f ∈ A0[D] ⇔ f d ∈ A0[D] ⇔ f d ∈ A ⇔ f ∈ A.

Hence A = A0[D].
Let D′ be another Q-divisor on Y such that A = A0[D

′]. Comparing the graded
pieces of A0[D] and of A0[D

′], by Theorem 1.4 we obtain

⌊iD⌋ = ⌊iD′⌋
for any i ∈ N. Hence

D′ = lim
i→∞

⌊iD′⌋
i

= lim
i→∞

⌊iD⌋
i

= D

and so the decomposition is unique.
It remains to show the equality Y = ProjA. Let V := ProjA. By [Ha, §II Exercices

5.13] and [Bou, §III.1, Proposition 3] we may assume that A = A0[D] is generated by



POLYHEDRAL DIVISORS, DEDEKIND DOMAINS AND ALGEBRAIC FUNCTION FIELDS 5

A1. Since the sheaf OY (D) is locally free of rank one over OY there are g1, . . . , gs ∈ A0

such that

Y = Yg1 ∪ . . . ∪ Ygs,

where Ygj = Spec (A0)gj (i.e. the localization by gj) and such that for e = 1, . . . , s,

A1 ⊗A0
(A0)ge = OY (D)(Yge) = he · A0

for some he ∈ K⋆
0 . Let π : V → Y be the natural morphism induced by the inclusion

A0 ⊂ A. The preimage of the open subset Yge under π is

ProjA⊗A0
(A0)ge = Proj (A0)ge [A1 ⊗A0

(A0)ge t ] = Proj (A0)ge [het ] = Yge .

Hence π is the identity map and so Y = V , as required. �

Using the same argument as in [FZ, Proposition 3.9] we deduce the following corollary.

Corollary 1.7. Let A0 be a Dedekind ring with field of fractions K0 and let t be a
variable over K0. Consider the subalgebra

A = A0[f1t
m1 , . . . , frt

mr ] ⊂ K0[t],

where m1, . . . , mr are positive integers and f1, . . . , fr ∈ K⋆
0 are such that the field of

fractions of A is the same as that of K0[t]. Then the normalization of A is equal to
A0[D] where D is the Q-divisor

D = − min
1≤i≤r

div fi .

Proof. Since for i = 1, . . . , r, we have fi ∈ H0(Y,OY (⌊miD⌋)), the ring A is contained
in A0[D]. By normality of A0[D] we obtain Ā ⊂ A0[D]. Notice that Ā satisfies the
assumptions of Lemma 1.6. Thus there exists a Q-divisor D′ on Y such that A = A0[D

′]
and so D′ ≤ D. Now the inequalities

div fi + ⌊miD
′⌋ ≥ 0, i = 1, . . . , r ,

imply that D = D′. �

2. Multigraded algebras and Dedekind domains

Let A0 be a Dedekind ring and let K0 be its field of fractions. We denote by K0[M ]
the semigroup algebra of a lattice M .

The purpose of this section is to study normal noetherian effectively M-graded A0-
subalgebras of K0[M ]. We show below that these subalgebras admit a description
in terms of polyhedral divisors introduced by Altmann-Hausen [A-H]. We start by
recalling some necessary notation from convex geometry.

2.1. Let N be a lattice and let M = Hom(N ,Z) be its dual. We denote by NQ :=
Q ⊗Z N and MQ := Q ⊗Z M the associated dual Q-linear spaces. To any linear form
m of MQ and to any vector v of NQ, we let

〈m, v〉 = m(v).

A polyhedral cone σ ⊂ NQ is called strongly convex if it admits a vertex. This is
equivalent to say that the dual cone

σ∨ := {m ∈ MQ, ∀v ∈ σ, 〈m, v〉 ≥ 0 }
is full dimensional or that σ does not contain any affine line.
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We fix now a strongly convex polyhedral cone σ ⊂ NQ. A subset Q ⊂ NQ is a
polytope if Q is non-empty and is the convex hull of a finite number of vectors. We
define Polσ(NQ) to be the set of polyhedra which can be written as the Minkowski sum
P = Q+ σ with Q a polytope of NQ.

Definition 2.2. Let A0 be a Dedekind domain. Consider the subset Z of closed points
of the affine scheme Y := SpecA0. A σ-polyhedral divisor D over A0 is a formal sum

D =
∑

z∈Z

∆z · z,

where ∆z belongs to Polσ(NQ) and ∆z = σ for all but finitely many z in Z. Let
z1, . . . , zr be elements of Z such that for any z ∈ Z and for i = 1, . . . , r, z 6= zi implies
∆z = σ. If the meaning of A0 is clear from the context, then we write

D =

r∑

i=1

∆zi · zi.

Exemple 2.3. If A0 = k[[t]] is the algebra of power series in one variable over a field
k then Z has a unique element given by the ideal t k[[t]]. Thus defining a σ-polyhedral
divisor D over A0 is equivalent to considering an element of Polσ(NQ).

If A0 = Z is the ring of integers then Z can be seen as the set of prime numbers.

Starting from a σ-polyhedral divisor D we can build an M-graded algebra over A0

with weight cone σ∨ in the same way as in [A-H, §3].
2.4. Let m be an element of σ∨. Then for any z ∈ Z the expression

hz(m) := min 〈m,∆z〉
is well defined. The function hz on σ∨ is upper convex and positively homogeneous. It
is identically zero if and only if ∆z = σ. The evaluation of D in a vector m ∈ σ∨ is the
Q-divisor on Y = SpecA0 given by

D(m) :=
∑

z∈Z

hz(m) · z.

Letting K0 be the field of fractions of A0 we consider the semigroup algebra

K0[M ] :=
⊕

m∈M

K0 · χm,

where the χm’s satisfy the relations χm · χm′

= χm+m′

for all m,m′ ∈ M . To simplify
notation for a polyhedral cone ω ⊂ MQ we let ωM := ω ∩M . We denote by A0[D] the
M-graded subring

⊕

m∈σ∨

M

Amχ
m ⊂ K0[M ] with Am = H 0 (Y ,OY (⌊D(m)⌋))

for any m ∈ σ∨
M . In particular, every Am is a fractional ideal of the ring A0.

Notation 2.5. For a closed point z ∈ Z of the scheme Y = SpecA0 the function

νz : K
⋆
0 → Z

is the valuation given by the local ring OY, z. Let

f = (f1χ
m1 , . . . , frχ

mr)
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be an r-uplet of homogeneous elements ofK0[M ]. We assume that the vectorsm1, . . . , mr

generate the cone σ∨. We denote by D[f ] the σ-polyhedral divisor
∑

z∈Z

∆z[f ] · z, where ∆z [f ] := { v ∈ NQ, 〈mi , v〉 ≥ −νz (fi), i = 1, 2, . . . , r } .

The main result of this section is the following theorem.

Theorem 2.6. Let A0 be a Dedekind domain with field of fractions K0 and let σ ⊂ NQ

be a strongly convex polyhedral cone. Then the following hold.

(i) If D is a σ-polyhedral divisor over A0 then the algebra A0[D] is normal, noe-
therian, and has the same field of fractions as that of K0[M ];

(ii) Conversely, let

A =
⊕

m∈σ∨

M

Amχ
m

be a normal noetherian M-graded subalgebra of K0[M ] with weight cone σ∨.
Assume that the rings A and K0[M ] have the same field of fractions. Then
there exists a unique σ-polyhedral divisor D over A0 such that A = A0[D];

(iii) More explicitly, if

f = (f1χ
m1 , . . . , frχ

mr)

is an r-uplet of homogeneous elements of K0[M ] with the vectors m1, . . . , mr

generating the lattice M then the normalization of the ring

A = A0[f1χ
m1 , . . . , frχ

mr ]

is equal to A0[D[f ]].

Let us give some examples.

Exemple 2.7. Let A0 := Z. Let x, y be variables over Q and consider the Z2-graded
subring

A = Z

[
2

3
xy2,

1

9
x,

4

3
x2y

]
⊂ Q

[
x, y,

1

x
,
1

y

]
.

We will compute the normalization Ā of A. Note that NQ is identified with Q2. By
Theorem 2.6 we have Ā = A0[D], where D = ∆2 · (2) + ∆3 · (3) with

∆2 =
{
(v1, v2) ∈ Q2 | v1 + 2v2 ≥ −1, v1 ≥ 0, 2v1 + v2 ≥ −2

}

and

∆3 =
{
(v1, v2) ∈ Q2 | v1 + 2v2 ≥ 1, v1 ≥ 2, 2v1 + v2 ≥ 1

}
.

More precisely, the weight cone of A is

ω = Q≥0(1, 2) +Q≥0(1, 0).

By [La, Proposition 1.10], for any

(m1, m2) ∈ ωZ2 := ω ∩ Z2

we have the equality

D(m1, m2) = −m2

2
· (2) +

(
2m1 −

1

2
m2

)
· (3).
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The graded pieces are given by

A0[D] =
⊕

(m1,m2)∈ωZ2

H0(Y,OY (⌊D(m1, m2)⌋)) xm1ym2,

where Y := SpecZ. Actually

A0[D] = Z

[
1

9
x,

2

3
xy,

2

3
xy2

]
.(1)

Indeed let (m1, m2) be a vector of ωZ2 and assume that m2 = 2r is even. Then the
integer m1 − r is non-negative. The graded piece A(m1,m2) of A0[D] corresponding to
the pair (m1, m2) is

A(m1,m2) = Z
2r

32m1−r
xm1ym2 = Z

(
1

9
x

)m1−r

·
(
2

3
xy2
)r

.

Assume that m2 = 2r + 1 is odd. Then m1 − (r + 1) ≥ 0 and

A(m1,m2) = Z
2r+1

32m1−(r+1)
xm1ym2 = Z

2

3
xy ·

(
1

9
x

)m1−(r+1)

·
(
2

3
xy2
)r

.

Thus all graded pieces of A0[D] are generated by the elements 1
9
x, 2

3
xy, 2

3
xy2. Hence

(1) holds.

Exemple 2.8. Let k be a field and let A0 := k[[t]] be the algebra of power series in
one variable. Let z be the unique element of Z corresponding to the maximal ideal
t k[[t]]. Choose an element ∆ = ∆z of Polσ(NQ). If D = ∆z · z then

A0[D] =
⊕

m∈σ∨

M

t−⌊hz(m)⌋k[[t]]χm =
⊕

m∈σ∨

M

t−⌊hz(m)⌋k[t]⊗k[t] k[[t]]χ
m.

Letting

ω(∆) := {(m, e) ∈ MQ ×Q, e ≥ −hz(m)} and denoting M̂ := M × Z

we consider the algebra over k

k[ω(∆)
M̂
] =

⊕

(m,e)∈ω(∆)
M̂

k · χ(m,e)

of the affine semigroup ω(∆)
M̂
. The variable t is identified with χ(0,1). Therefore we

have

A0[D] = k[ω(∆)
M̂
]⊗k[t] k[[t]].

In the next example we treat the case where A0 is not a principal ideal domain.

Exemple 2.9. For a number field K, the group of classes ClK is the quotient of the
abelian group of fractional ideals of K by the subgroup of principal fractional ideals.
In other words, ClK = PicY , where Y := SpecZK is the affine scheme associated to
the ring of integers of K. It is known that the group ClK is finite [Mi, Theorem 4.4].
Futhermore ZK is a principal ideal domain if and only if ClK is trivial.



POLYHEDRAL DIVISORS, DEDEKIND DOMAINS AND ALGEBRAIC FUNCTION FIELDS 9

Let K = Q(
√
−5). Then ZK = Z[

√
−5] and the group ClK is isomorphic to Z/2Z

[Mi, Example 4.6]. A set of representatives in ClK is given by the fractional ideals
a = (2, 1+

√
−5) and ZK . Given x, y variables over K, consider the Z2-graded subring

A = ZK

[
3 x2y, 2 y, 6 x

]
⊂ K

[
x, y,

1

x
,
1

y

]
.

We will describe the normalization Ā of A. Denoting respectively by b, c the prime
ideals (3, 1 +

√
−5) and (3, 1−

√
−5), we have the decompositions

(2) = a2, (3) = b · c.
Observe that the ideals a, b, c are distincts. Thus we have

div 2 = 2 · a and div 3 = b+ c,

where a, b, c is seen as closed points of Y = SpecZK . Let D be the polyhedral divisor
over ZK given by ∆a · a+∆b · b +∆c · c with the polyhedra

∆a =
{
(v1, v2) ∈ Q2 | 2v1 + v2 ≥ 0, v2 ≥ −2, v1 ≥ −2

}
and

∆b = ∆c =
{
(v1, v2) ∈ Q2 | 2v1 + v2 ≥ −1, v2 ≥ 0, v1 ≥ −1

}
.

By Theorem 2.6 Ā = A0[D], where A0 = ZK . The weight cone of A is the first
quadrant ω = (Q≥0)

2. An easy computation (cf, [La, Proposition 1.10]) shows that for
all m1, m2 ∈ N,

D(m1, m2) = min (m1 − 2m2, −2m1 + 4m2) · a+min
(
−m1

2
, −m1 +m2

)
· (b+ c).

Letting

ω1 = Q≥0(0, 1) +Q≥0(2, 1) and ω2 = Q≥0(2, 1) +Q≥0(1, 0),

on the cone ω1, we have

D(m1, m2) = (m1 − 2m2) · a−
m1

2
· (b+ c),

and on ω2,

D(m1, m2) = (−2m1 + 4m2) · a+ (−m1 +m2) · (b+ c).

With the same notation as in 2.7, for i = 1, 2 we let

Aωi
=

⊕

(m1,m2)∈ωi∩Z2

A(m1,m2) x
m1 ym2

be the direct sum of graded pieces of A0[D] corresponding to ωi ∩ Z2. Then Aω2
is

generated over ZK by the elements 6x and 3x2y. Fix an element (m1, m2) in ω1 ∩ Z2.
If m1 = 2r is even then r −m1 is non-positive. It follows that

A(m1,m2) = ZK

(
3 xy2

)r · (2 y)m2−r .

Otherwise, m1 = 2r+1 is odd, m2−r−1 ≥ 0, and A(m1,m2) is the ideal of ZK generated
by the elements

(
3 xy2

)r · (2 y)m2−r−1 · (3(1 +
√
−5) xy),

(
3 xy2

)r · (2 y)m2−r−1 · 6 xy.
We conclude that

Ā = A0[D] = ZK

[
2 y, 6 xy, 3(1 +

√
−5) xy, 3 x2y, 6x

]
.
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The proof of Theorem 2.6 needs some preparations. We start by a well known
result giving an equivalence between noetherian and finitely generated properties of
multigraded algebras.

Theorem 2.10 (G-Y, Theorem 1.1). Let G be a finitely generated abelian group and
let A be a G-graded ring. Then the following statements are equivalent.

(i) The ring A is noetherian.
(ii) The graded piece Ae corresponding to the neutral element is a noetherian ring

and the Ae-algebra A is finitely generated.

The next lemma will enable us to show that the ring A0[D] is noetherian.

Lemma 2.11. Let D1, . . . , Dr be Q-divisors on Y = SpecA0. Then the A0-algebra

B =
⊕

(m1,...,mr)∈Nr

H0

(
Y,OY

(⌊
r∑

i=1

miDi

⌋))

is finitely generated.

Proof. Let d be a positive integer such that for i = 1, . . . , r, the divisor dDi is integral.
Consider the lattice polytope

Q := { (m1, . . . , mr) ∈ Qr | 0 ≤ mi ≤ d, i = 1, . . . , r } .
The subset Q ∩ Nr being finite, the A0-module

E :=
⊕

(m1,...,mr)∈Nr∩Q

H0

(
Y,OY

(⌊
r∑

i=1

miDi

⌋))

is finitely generated (see Theorem 1.4). Let (m1, . . . , mr) be an element of Nr. Write
mi = dqi + ri with qi, ri ∈ N such that 0 ≤ ri < d. The equality

⌊
r∑

i=1

miDi

⌋
=

r∑

i=1

qi ⌊dDi⌋ +
⌊

r∑

i=1

riDi

⌋

implies that every homogeneous element of B of degree (m1, . . . , mr) can be written as
a polynomial in E. Therefore if f1, . . . , fs generate the A0-module E then we

B = A0[E] = A0[f1, . . . , fs],

proving our statement. �

Next we give a proof of the first part of Theorem 2.6.

Proof of Theorem 2.6 (i). Let A = A0[D]. Let us show that

FracA = FracK0[M ].(2)

Indeed since A0 ⊂ A we have K0 ⊂ FracA. Let m be a vector of M . Then the cone σ∨

is full dimensional and so there is m1, m2 ∈ σ∨
M such that m = m1 −m2. By Theorem

1.4 there exist nonzero elements a ∈ Am1
, b ∈ Am2

. Hence

χm =
b

a
· aχ

m1

bχm2

∈ FracA,

proving (2).
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Let us show further that A is a normal ring. Given a closed point z ∈ Z and an
element of v ∈ ∆z, consider the map

νz,v : K0[M ]− {0} → Z

defined as follows. Let α be a nonzero element of K0[M ] with decomposition in homo-
geneous elements

α = f1χ
m1 + . . .+ frχ

mr .

This means that f1, . . . , fr belong to K⋆
0 and the mi’s are distinct. Then let

νz,v(α) := min
1≤i≤r

{νz(fi) + 〈mi, v〉} .

The map νz,v defines a discrete valuation on FracA. Denote by Ov,z the associated
local ring. By the definition of the algebra A0[D] we have

A = K0[M ] ∩
⋂

z∈Z

⋂

v∈∆z

Ov,z.

Hence A is normal as intersection of normal subrings of the field of fractions FracA.
It remains to show that A is noetherian. By Hilbert’s Basis Theorem, it suffices to

show that A is finitely generated. Let λ1, . . . , λe be full dimensional regular subcones
of σ∨ giving a subdivision1 such that for any i, the evaluation map

σ∨ → DivQ(Y ), m 7→ D(m)

is linear on λi. Fix i ∈ N such that 1 ≤ i ≤ e. Consider the distinct elements v1, . . . , vn
of the Hilbert basis of λi. Denote by Aλi

the algebra
⊕

m∈λi∩M

H0(Y,OY (⌊D(m)⌋)χm.

Then the vectors v1, . . . , vn form a basis of the lattice M and so

Aλi
≃

⊕

(m1,...,mn)∈Nn

H0

(
Y,OY

(⌊
n∑

i=1

mi D(vi)

⌋))
.

By Lemma 2.11, Aλi
is finitely generated over A0. The natural surjective map

Aλ1
⊗ . . .⊗Aλe

→ A

shows that A is also finitely generated. This completes the proof of Theorem 2.6 (i). �

For the second part of Theorem 2.6, we need the following lemma.

Lemma 2.12. Assume that A verifies the assumptions of Theorem 2.6 (ii). Then the
following hold.

(i) For any m ∈ σ∨
M we have Am 6= {0}. In other words, the weight semigroup of

the M-graded algebra A is σ∨
M ;

(ii) If L = Q≥0 ·m′ is a half-line contained in σ∨ then the ring

AL :=
⊕

m∈L∩M

Am

is normal and noetherian.

1see for instance [CLS, Theorem 11.1.9].
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Proof. Let

S = {m ∈ σ∨
M , Am 6= {0}}

be the weight semigroup of A. Assume that S 6= σ∨
M . Then S is not saturated in M .

So there exists e ∈ Z>0 and m ∈ M such that m 6∈ S and e · m ∈ S. Since A is a
noetherian ring, by [G-Y, Lemma 2.2] the A0-module Aem is a fractional ideal of A0.
By Theorem 1.4

Aem = H0(Y,OY (Dem))

for some integral divisor Dem ∈ DivZ(Y ). Let g be a nonzero element of

H0

(
Y,OY

(⌊
Dem

e

⌋))
.

This element exists by virtue of Theorem 1.4. We have the inequalities

div ge ≥ −e

⌊
Dem

e

⌋
≥ −Dem .

Since

geχem ∈ FracK0[M ] = FracA

is integral over A the normality of A implies gχm ∈ Am. This contradicts our assump-
tion S 6= σ∨

M and gives (i).
For the second assertion we notice by Theorem 2.10 and by arguments of [A-H,

Lemma 4.1] that the ring AL is noetherian.
It remains to show that AL is normal. Let α ∈ FracAL be an integral element over

AL. By normality of A and K0[χ
m] we obtain α ∈ A ∩ K0[χ

m] = AL and so AL is
normal, proving our lemma. �

In the next paragraphs we provide a proof of Theorem 2.6 (ii). We apply the
Dolgachev-Pinkham-Demazure contruction given in section 1. We start by fixing some
notation.

Notation 2.13. Let

(mi, ei), i = 1, . . . , r

be elements of M × Z such that the vectors m1, . . . , mr generate the lattice M . Then
the cone ω = Cone(m1, . . . ,mr) is full dimensional in MQ. Consider the ω

∨-polyhedron

∆ = { v ∈ NQ, 〈mi, v〉 ≥ −ei, i = 1, 2, . . . , r } .
Let L = Q≥0 ·m be a half-line contained in ω with primitive vector m. In other words,
the element m generates the semigroup L∩M . Denote by HL the Hilbert basis of the
cone

p−1(L) ∩ (Q≥0)
r, where p : Qr → MQ

is the Q-linear map sending the canonical basis onto (m1, . . . , mr). We put

H
⋆
L := { (s1, . . . , sr) ∈ HL,

r∑

i=1

si ·mi 6= 0 }.
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For any vector (s1, . . . , sr) ∈ H ⋆
L , there exists a unique λ(s1, . . . , sr) ∈ Z>0 such that

r∑

i=1

si ·mi = λ(s1, . . . , sr) ·m.

Lemma 2.14. Under the assumptions of 2.13, we have

min 〈m,∆〉 = − min
(s1,...,sr)∈H ⋆

L

∑r

i=1 si · ei
λ(s1, . . . , sr)

.

Proof. Let t be a variable over C and consider the M-graded algebra

A = C[t][te1χm1 , . . . , terχmr ] ⊂ C(t)[M ].

The field of fractions of A is the same as that of C(t)[M ]. By [La, Theorem 2.4], the
normalization of the algebra A is

Ā =
⊕

m∈ω∩M

H0(A1
C,OA1

C
(⌊min 〈m,∆〉⌋ · (0)))χm,

where A1
C := SpecC[t ] is the complex affine line. The sublattice G ⊂ M generated

by p(H ⋆
L ) is a subgroup of Z · m. There exists a unique integer d ∈ Z>0 such that

G = dZ ·m. For an element m′ ∈ ω ∩M , we denote by Am′ (resp. Ām′) the graded

piece of A (resp. Ā) corresponding to m′. Then the normalization Ā
(d)
L of the algebra

A
(d)
L :=

⊕

s≥0

Asdmχ
sdm is BL :=

⊕

s≥0

Āsdmχ
sdm .

Indeed, since A
(d)
L ⊂ A we have Ā

(d)
L ⊂ Ā. Similary, Ā

(d)
L ⊂ C(t)[χdm] and so

Ā
(d)
L ⊂ C(t)[χdm] ∩ Ā = BL.

Conversely, let s be a natural integer and consider α ∈ Āsdmχ
sdm. Then α satisfies an

equation of integral dependence

αe = a1α
e−1 + . . .+ ae, where ae 6= 0,

with ai ∈ A for every i = 1, . . . , e. We may assume that ai = 0 or ai homogenous of

degree isd ·m. Thus α is integral over A
(d)
L . Since G = dZ ·m, the element α belongs

to

FracBL = C(t)(χdm) = FracA
(d)
L

and so α ∈ Ā
(d)
L . Thus BL = Ā

(d)
L . Moreover the algebra

AL :=
⊕

s≥0

Asmχ
sm

is generated over C[t] by the elements

f(s1,...,sr) :=
r∏

i=1

(teiχmi)si = t
∑r

i=1
sieiχλ(s1,...,sr)m, (s1, . . . , sr) ∈ H

⋆
L .

By the choice of the integer d we have A
(d)
L = AL. Considering the G-graduation of

A
(d)
L , for any (s1, . . . , sr) ∈ H ⋆

L the element f(s1,...,sr) of the graded ring A
(d)
L has degree

deg f(s1,...,sr ) :=
λ(s1, . . . , sr)

d
.



14 KEVIN LANGLOIS

Letting

D := − min
(s1,...,sr)∈H ⋆

L

div f(s1,...,sr )
deg f(s1,...,sr )

= − min
(s1,...,sr)∈H ⋆

L

d ·
∑r

i=1 siei
λ(s1, . . . , sr)

· (0),

by Corollary 1.7 we obtain

Ā
(d)
L =

⊕

s≥0

H0(A1
C,OA1

C
(⌊sD⌋))χsdm.

The equality Ā
(d)
L = BL implies

H0(A1
C,OA1

C
(⌊min 〈sd ·m,∆〉⌋ · (0))) = H0(A1

C,OA1

C
(⌊sD⌋))

for all integer s ≥ 0. Hence

D = min 〈d ·m,∆〉 · (0).
Dividing by d, we obtain the desired formula. �

Let A be an M-graded algebra satisfying the assumptions of Theorem 2.6 (ii). Using
the D.P.D. presentation on each half line of the weight cone σ∨, we can build a map

σ∨ → DivQ(Y ), m 7→ D(m).

It is upper convex, positively homogeneous, and verifies for any m ∈ σ∨
M ,

Am = H0(C,OC(⌊D(m)⌋)).
By Lemma 2.14, this map is piecewise linear (see [AH, Proposition 2.11]) or equivalently
m 7→ D(m) is the evaluation map of a polyhedral divisor. The following precises this
idea.

Proof of Theorem 2.6 (ii). Let

f = (f1χ
m1 , . . . , frχ

mr)

be a system of homogeneous generators of A0 with nonzero vectors m1, . . . , mr ∈ M .
Denote by D the σ-polyhedral divisor D[f ] (see Notations 2.5). Let us show that
A = A0[D]. Let L = Q≥0 · m be a half-line contained in ω := σ∨ with m being the
primitive vector of L. By Lemma 2.12, the graded subalgebra

AL :=
⊕

m′∈L∩M

Am′χm′ ⊂ K0[χ
m]

is normal, noetherian, and has the same field of fractions as that of K0[χ
m]. Moreover,

with the same notations as in 2.13, the algebra AL is generated by the set
{

r∏

i=1

(fiχ
mi)si, (s1, . . . , sr) ∈ H

⋆
L

}
.

By Corollary 1.7, if

D(m) := − min
(s1,...,sr)∈H ⋆

L

∑r

i=1 si div fi
λ(s1, . . . , sr)
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then AL = A0[D(m)] with respect to the variable χm. By Lemma 2.14, for any closed
point z ∈ Z we have

hz[f ](m) = min〈m,∆z[f ]〉 = − min
(s1,...,sr)∈H ⋆

L

∑r

i=1 si νz(fi)

λ(s1, . . . , sr)
.

Hence D(m) = D(m). Since this equality is true for all primitive vectors belonging to
the cone ω, we conclude that A = A0[D]. The uniqueness of D is straightforward (see
Theorem 1.4 and [La, Lemma 2.2]). �

The following proof is essentially the same as that of Theorem 2.4 in [La]. For the
convenience of the reader we recall the main argument.

Proof of Theorem 2.6 (iii). By Theorem 2.6 (ii), we can write Ā = A0[D] for some σ-
polyhedral divisor D =

∑
z∈Z ∆z · z over A0. Since each homogeneous element fiχ

mi

belongs to A0[D[f ]], by normality we have the inclusion

A0[D] = Ā ⊂ A0[D[f ]].

As follow from Theorem 1.4, this implies that for any m ∈ σ∨, D(m) ≤ D[f ](m). We
have D(mi) + div fi ≥ 0, for every i. This yields that for any closed point z ∈ Z, the
inclusion ∆z ⊂ ∆z[f ]. Thus for m ∈ σ∨, D(m) ≥ D[f ](m) and so D = D[f ] holds,
proving our theorem. �

3. Multigraded algebras and algebraic function fields

In this section, we show that the description of affine T-varieties of complexity one
in terms of polyhedral divisors ([KKMS], [AH], [Ti]) holds over an arbitrary field. Our
approach uses the ideas of the proof of Theorem 2.6. Let k be a field.

3.1. An algebraic function field (in one variable) over k is a field extension K0/k
verifying the following conditions.

(i) The transcendence degree of K0 over k is equal to 1.
(ii) Every algebraic element of K0 over k belongs to k.

3.2. Actually every algebraic function fields K0/k is the field of rational functions of
a unique (up to isomorphism) smooth algebraic projective curve C over k [EGA II,
§7.4]. For instance, the projective line P1

k
yields the field k(t) where t is a variable.

In the next paragraph, we recall the construction of the curve C starting from an
algebraic function fields K0.

3.3. A valuation ring of K0 is a proper subring O ⊂ K0 strictly containing k and such
that for any nonzero element f ∈ K0, either f ∈ O or 1

f
∈ O. By [St, Theorem 1.1.6]

every valuation ring of K0 is the ring associated to a discrete valuation of K0/k. A
subset P ⊂ K0 is called a place of K0 if there is some valuation ring O of K0 such that
P is the maximal ideal of O. We denote by Rk K0 the set of places of K0. The latter is
called the Riemann surface of K0. By [EGA II, 7.4.18] the set Rk K0 can be identified
with a smooth projective curve C such that K0 = k(C).

In the sequel we consider C = Rk K0 as a geometrical object with its structure of
scheme. An element z belonging to C is a closed point. For z ∈ C, Pz is the associated
place. We will use the classical Weil divisors theory avaiable e.g. in [St, §1.4].
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3.4. Let σ ⊂ NQ be a strongly polyhedral convex cone. We define as well a σ-polyhedral
divisor D =

∑
z∈C ∆z · z and its evaluation, see [A-H, §2]. For a place P , we let

κ(P ) := O/P where O is the valuation ring of K0 containing P as maximal ideal. The
field κ(P ) is a finite extension of k [St, Proposition 1.1.15]. The degree of D is the
Minkowski sum

degD =
∑

z∈C

[κ(Pz ) : k] ·∆z .

The number [κ(P ) : k] is the dimension of the k-vector space κ(P ). It is also called
the degree of the place P . For m ∈ σ∨, we have the relation (degD)(m) = degD(m).
When k is algebraically closed, we have for any z ∈ C, [κ(Pz) : k] = 1 and we recover
the usual notion of degree for polyhedral divisors.

Definition 3.5. A σ-polyedral divisor D =
∑

z∈C ∆z · z is called proper if it satifies
the following conditions.

(i) The polyhedron degD is strictly contained in the cone σ.
(ii) If degD(m) = 0 then m belongs to the boundary of σ and a multiple of D(m)

is principal.

In our next result, we give a description similar to that in 2.6 for algebraic function
fields.

Theorem 3.6. Let k be a field and let C := Rk K0 be the Riemann surface of an
algebraic function field K0/k. Then the following hold.

(i) Let

A =
⊕

m∈σ∨

M

Amχ
m

be an M-graded normal noetherian subalgebra of K0[M ] with weight cone σ∨

such that for any m ∈ σ∨
M , Am ⊂ K0 is a k-vector subspace. If A0 = k and

FracA = FracK0[M ] then there exists a unique proper σ-polyhedral divisor D

on the curve C such that A = A[C,D], where

A[C,D] :=
⊕

m∈σ∨

M

H0(C,OC(⌊D(m)⌋))χm.

(ii) Let D be a proper σ-polyhedral divisor over C. Then the algebra A[C,D] is
M-graded, normal, and finitely generated with weight cone σ∨. Futhermore it
has the same field of fractions as that of K0[M ].

(iii) Let

A = k[f1χ
m1 , . . . , frχ

mr ]

be an M-graded subalgebra of K0[M ] with the fiχ
mi’s homogeneous and let f :=

(f1χ
m1 , . . . , frχ

mr). Assume that FracA = FracK0[M ]. Then D[f ] is the proper
σ-polyhedral divisor such that the normalization of A in K0[M ] is A[C,D[f ]].

For the proof of Theorem 3.6 we need some preliminary results.

Lemma 3.7. Let

A =
⊕

m∈σ∨

M

Amχ
m
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be an M-graded algebra satisfying the assumptions of Theorem 3.6 (i). Given a half-line
L = Q≥0 ·m ⊂ σ∨ with a primitive vector m, consider the subalgebra

AL :=
⊕

m′∈L∩M

Am′χm′

.

Let

Q(AL)0 :=
{ a

b
, a ∈ Asm, b ∈ Asm, b 6= 0, s ≥ 0

}
.

Then the following hold.

(i) The algebra AL is finitely generated and normal.
(ii) Either Q(AL)0 = k or Q(AL)0 = K0.
(iii) If Q(AL)0 = k then AL = k[βχdm] for some β ∈ K⋆

0 and some d ∈ Z>0.

Proof. The proof of (i) is similar to that of Lemma 2.12 (ii) and so we omit it.
The field Q(AL)0 is an extension of k contained in K0. If the transcendence degree

of Q(AL)0 over k is zero then by normality of AL we have Q(AL)0 = k. Otherwise
the extension K0/Q(AL)0 is algebraic. Let α be an element of K0. Then there exist
a1, . . . , ad ∈ Q(AL)0 with ad 6= 0 such that

αd = a1α
d−1 + a2α

d−2 + . . .+ ad.

Letting

I := {i ∈ {1, . . . , d}, ai 6= 0},
for any i ∈ I we write ai =

pi
qi

with pi, qi ∈ AL being homogeneous of the same degree.

Considering q :=
∏

i∈I qi we obtain the equality

(αq)d = a1q(αq)
d−1 + a2q

2(αq)d−2 + . . .+ qdad,

where αq ∈ AL. Write the decompositions in homogeneous components

αq =

r∑

i=1

fiχ
sim and q = aχsm .

Then

α =
αq

q
=

r∑

i=1

fi
a
χ(si−s)m

has degree zero in K0[M ]. This implies that r = 1 and s1 = s. Hence α ∈ Q(AL)0.
This establishes (ii).

To prove (iii), we let S ⊂ Z ·m be the weight semigroup of the graded algebra AL.
Since L is contained in the weight cone σ∨, S is nonzero. Therefore if G is the subgroup
generated by S then there exists d ∈ Z>0 such that G = Z d ·m. Putting u := χdm we
can write

AL =
⊕

s≥0

Asdmu
s.

Thus for all homogeneous elements a1u
r1, a2u

r2 ∈ AL of the same degree we have
a1
a2

∈ Q(AL)
⋆
0 = k⋆, so that

AL =
⊕

s∈S′

kfs u
s,
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where S ′ := 1
d
S and fs ∈ k(C)⋆. Let us fix homogeneous generators fs1u

s1, . . . , fsru
sr of

the G-graded algebra AL. Consider d
′ := g.c.d(s1, . . . , sr). If d

′ > 1 then the inclusion
S ⊂ dd′Z · m yields a contradiction. So d′ = 1 and there are some nonzero integers
l1, . . . , lr such that 1 =

∑r

i=1 lisi. The element

βu =
r∏

i=1

(fsiu
si)li

verifies

(βu)s1

fs1u
s1

∈ Q(AL)
⋆
0 = k⋆.

By normality of AL, βu ∈ AL and so AL = k[βu] = k[βχdm], proving (iii). �

The following lemma is well known. For the convenience of the reader we provide a
short proof using the Riemann-Roch Theorem [St, §1.5].
Lemma 3.8. Let D1, D2 be Q-divisors on C. Assume that for i = 1, 2, we have either
degDi > 0 or rDi is principal for some r ∈ Z>0. If for any s ∈ N, the inclusion

H0(C,OC(⌊sD1⌋)) ⊂ H0(C,OC(⌊sD2⌋))
holds, then D1 ≤ D2.

Proof. First of all, if rD1 = divα for some α ∈ K⋆
0 and for some r ∈ Z>0, then by our

assumption, for any s ∈ N,

−s div α + ⌊rsD2⌋ ≥ 0 .

This yields D2 ≥ D1.
Assume that degD1 > 0. For a Q-divisor D, we denote by Dz′ the coefficient of D

corresponding to z′ ∈ C. Fix z ∈ C and denote by g the genus of C. Since the degree
of D1 is positive, we may consider s ∈ Z>0, where sD1 is integral and such that the
inequality

deg sD1 − [κ(Pz ) : k] ≥ 2g − 1

holds. Then the integral divisor

D(s,z) :=
∑

z′∈C−{z}

(sD1)z′ · z′ + ((sD1)z − 1) · z

has degree greater than 2g − 1. By the Riemann-Roch Theorem [St, Theorem 1.5.17]
we have

h0(C,OC(D(s,z))) = degD(s,z) + 1− g

= deg sD1 − [κ(Pz ) : k] + 1− g < deg sD1 + 1− g = h0(C ,OC (sD1)).

This implies that there exists

γ ∈ H0(C,OC(sD1))−H0(C,OC(D(s,z))).

Thus γ verifies the equality νz(γ)+s(D1)z = 0, where νz is the valuation corresponding
to the place Pz. By assumption γ belongs to H0(C,OC(⌊sD2⌋)). We obtain νz(γ) +
⌊s(D2)z⌋ ≥ 0 and so (D1)z ≤ (D2)z. This is true for any z ∈ C. Hence D1 ≤ D2,
proving our lemma. �
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In the next corollary, we keep the notation of Lemma 3.7. Using the Demazure’s
Theorem for graded algebras, we show that each AL admits a D.P.D. presentation given
on the same smooth projective curve.

Corollary 3.9. There exists a unique Q-divisor D on C such that

AL =
⊕

s≥0

H0(C,OC(⌊sD⌋))χsm

and the following hold.

(i) If Q(AL)0 = k then D = div f
d

for some f ∈ K⋆
0 and some d ∈ Z>0.

(ii) If Q(AL)0 = K0 then degD > 0.
(iii) If f1χ

s1m, . . . , frχ
srm are homogeneous generators of the algebra AL then

D = − min
1≤i≤r

div fi
si

.

Proof. Assume that Q(AL)0 = k. By Lemma 3.7, AL = k[β χdm] for some β ∈ K⋆
0 and

some d ∈ Z>0. If D = div β−1

d
then AL = A[C,D]. The uniqueness in this case is easy.

Otherwise, the field of rational functions of the normal variety ProjAL is K0 =
Q(AL)0. Since ProjAL is a smooth projective curve over A0 = k, we may identify
its points with the places of K0. Therefore the existence and the uniqueness of D
follow from Demazure’s Theorem (see [De, Theorem 3.5]). Futhermore Q(AL)0 6= k

implies that dimkAsm ≥ 2, for some s ∈ Z>0. Hence by [St, Corollary 1.4.12] we obtain
degD > 0.

For the last assertion, we fix homogenous generators f1χ
s1m, . . . , frχ

srm of the k-
algebra AL. Letting

D′ := − min
1≤i≤r

div fi
si

,

by [De, §2.7], AL is contained in

A[C,D′] :=
⊕

s≥0

H0(C,OC(⌊sD′⌋))χsm

as a graded subalgebra. By Lemma 3.8, D ≤ D′. To show the inequality D′ ≤ D one
can use the same argument as that in Corollary 1.7. �

In the next paragraph, we keep the notation introduced in 2.5 and 2.13. For the
proof of 3.6 (iii), we refer the reader to [La, 2.4].

Proof of Theorem 3.6 (i). Let f = (f1χ
m1 , . . . , frχ

mr) be a system of homogeneous gen-
erators of A. Consider a half-line L = Q≥0 ·m ⊂ σ∨ with primitive vector m ∈ M . By
Corollary 3.9

AL =
⊕

s≥0

H0(C,OC(⌊sD(m)⌋))χsm

for a unique Q-divisor D(m) on the curve C. The algebra AL is generated by

(f1χ
m1)s1 . . . (frχ

mr)sr

where (s1, . . . sr) ∈ H ⋆
L . By Lemma 2.14 we have D[f ](m) = D(m) and so A =

A[C,D[f ]].
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It remains to show that D := D[f ] is proper. Denote by S ⊂ C the union of the
supports of divisors div fi , for i = 1, . . . , r. Let v ∈ degD. We can write

v =
∑

z∈S

[κ(Pz) : k] · vz

for some vz ∈ ∆z := ∆z[f ]. Therefore for any i we have

〈mi,
∑

z∈S

[κ(Pz) : k] · vz〉 ≥ −
∑

s∈S

[κ(Pz) : k] · νz(fi) = −deg div fi = 0,

and so degD ⊂ σ. If degD = σ then by Corollary 3.9 one concludes that FracA
is different from FracK0[M ], contradicting our assumption. Hence degD 6= σ. Let
m′ ∈ σ∨

M be such that degD(m ′) = 0. Then m′ belongs to the boundary of σ∨ (see
[CLS, §1.2]). Consider the half-line L′ generated by m′. Applying Corollary 3.9 for the
algebra AL′ , we deduce that a multiple of D(m′) is principal. �

Proof of Theorem 3.6 (ii). Let us show that the field of fractions of A := A[C,D] is
FracK0[M ]. For any half-line L = Q≥0 · m, intersecting σ∨ with its relative interior,
the weight semigroup of AL generates the sublattice L∩M . Futhermore, Q(AL)0 = K0

and so K0 ⊂ FracA. Since the relative interior of σ∨ contains a basis of M , we obtain
our first claim. This argument also proves that σ∨ is the weight cone of A. The proof of
the normality of A[C,D] is similar to that of Theorem 2.6 (i) and is left to the reader.

Let us prove that A[C,D] is finitely generated. Passing to a subdivision we may
assume that σ∨ is a strongly convex regular cone. Let (e1, . . . , en) be a basis of M such
that e1, . . . , en generate σ∨. Let d ∈ Z>0 be such that D(d · ei) is an integral divisor
for i = 1, . . . , r. The line bundles OC(D(d · ei)) are globally generated. Therefore by
[Ha2], the k-algebra

Ad =
⊕

(s1,...,sn)∈Nn

H0

(
Y,OY

(
n∑

i=1

si D(d · ei)
))

χ
∑n

i=1
siei.

is finitely generated. Using the same argument as before, we obtain

L := FracAd = FracK0[Md ],

where Md is the sublattice generated by d · e1, . . . , d · en. The extension FracK0[M ]/L
is finite. Since the integral closure of Ad in FracK0[M ] is A[C,D], by [Bou, §V.3.2,
Theorem 2], the algebra A[C,D] is finitely generated. �

In order to have a geometrical interpretation of the previous results 2.6 and 3.6,
we can regard an affine variety over k as a representable functor in the category of
k-algebras.

3.10. Recall that Gm = Gm,k denotes the multiplicative group scheme of the field k.
A (split) algebraic torus T over k is an algebraic group isomorphic to Gn

m, for some
integer n ≥ 1. Let X be an affine variety represented by an integral finitely generated
k-algebra A = k[X ]. Assume that a torus T acts on X . This means that there is a
natural transformation

Φ : T×X → X
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such that for every k-algebra B, the map Φ(B) is a T(B)-action on the set X(B). The
coaction gives a morphism of k-algebras

A → A⊗k k[M ],

where M is the character lattice of T and k[M ] is the semigroup algebra of M . Using
this morphism, we endow A with an M-grading. Conversely an M-grading on the
algebra A yields naturally a T-action on X (see [SGA III, 4.7.3]).

We say that X is an affine T-variety if A is normal and if the weight semigroup of
A generates M . We define as well the complexity of a T-action as the transcendence
degree over k of the field

Q(A)0 =
{a
b
, a, b ∈ A homogeneous of same degree

}
∪ {0}.

3.11. More generally, if C is an arbitrary smooth algebraic curve over k then we define
a proper σ-polyhedral divisors D over C in the following way. There is two cases. If C
is affine then D is a polyhedral divisor over the Dedekind Domain A0 = k[C]. In this
case, we denote by A[C,D] the algebra A0[D] given in 2.4. Otherwise C is projective
and the polyhedral divisor D verifies Definition 3.5.

Combining 2.6 and 3.6, one can describes an affine T-variety of complexity one over
the field k by a polyhedral divisors on a smooth curve.

Corollary 3.12. Let T be a split algebraic torus over k. Denote by N its one parameter
lattice and by M its character lattice with the natural duality. Then the following hold.

(i) For every affine T-variety X of complexity one represented by an M-graded
algebra A with weight cone σ∨ ⊂ MQ there is a proper σ-polyhedral divisor D

on a smooth curve C over k such that A ≃ A[C,D].
(ii) Conversely, if σ ⊂ NQ is a strongly convex cone and if D is a proper σ-polyhedral

divisor on a smooth curve C over k, then

X [C,D] := Hom(A[C ,D], − )

is an affine T-variety of complexity one.

Proof. The assertion (ii) follows immediately from 2.6 (i) and 3.6 (ii).
Given an affine T-variety of complexity one, consider the corresponding M-graded

algebra A. For any m ∈ M , let

Q(A)m =
{a
b
, a ∈ Am+m′ , b ∈ Am′ , b 6= 0

}
.

For a vector m ∈ M , one can find a nonzero element am such that for all m,m′ ∈ M ,
am+m′ = am · am′ . Hence A is an M-graded subring of

R :=
⊕

m∈M

Q(A)m =
⊕

m∈M

Q(A)0 · am.

Assume that A0 6= k. Let us show that in this case K0 = Q(A)0. By normality of A,
every algebraic element ofK0 over k belongs to k. Therefore the trancendence degree of
K0/k is greater than 1 and so Q(A)0/K0 is algebraic. Using the same argument as that
in 3.7, one concludes that K0 = Q(A)0. Since A is normal and finitely generated, A0

is too. The ring A0 is a Dedekind Domain. Indentifying R with the semigroup algebra
K0[M ], A verifies the assumption of 2.6 (ii) and so A ≃ A[C,D] for some polyhedral
divisor D over the curve C = SpecA0.
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In the case where A0 = k the proof is similar by using Theorem 3.6 (i). �
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