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The present paper regards the volume function of a doubly truncated hyperbolic tetrahedron. Starting from the previous results of J. Murakami, U. Yano and A. Ushijima, we have developed a unified approach to express the volume in different geometric cases via dilogarithm functions and to treat properly the many analytic strata of the latter. Finally, several numeric examples are given.

a Lambert cube has been investigated. The case of a general hyperbolic tetrahedron was considered in numerous papers [START_REF] Cho | On the volume formula for hyperbolic tetrahedra[END_REF][START_REF] Derevnin | A formula for the volume of a hyperbolic tetrahedron[END_REF][START_REF] Murakami | On the volume of hyperbolic and spherical tetrahedron[END_REF]. The case of a mildly truncated tetrahedron is due to J. Murakami and A. Ushijima [START_REF] Murakami | A volume formula for hyperbolic tetrahedra in terms of edge lengths[END_REF][START_REF] Ushijima | A volume formula for generalised hyperbolic tetrahedra[END_REF]. The paper [START_REF] Ushijima | A volume formula for generalised hyperbolic tetrahedra[END_REF] is the starting point where the question about intense truncations of a hyperbolic tetrahedron was posed. Thus, the case of a prism truncated tetrahedron remains unattended. As we shall see later, it brings some essential difficulties. First, the structure of the volume formula should change, as first observed in [START_REF] Kellerhals | On the volume of hyperbolic polyhedra[END_REF]. Second, the branching properties of the volume function come into sight. This phenomenon was first observed for tetrahedra in the spherical space and is usually related to the use of the dilogarithm function or its analogues, see [START_REF] Kolpakov | Volume formula for a Z 2 -symmetric spherical tetrahedron through its edge lengths[END_REF][START_REF] Murakami | A volume formula for hyperbolic tetrahedra in terms of edge lengths[END_REF][START_REF] Murakami | The volume formulas for a spherical tetrahedron[END_REF]. For the rest of the paper, a mildly (doubly) truncated tetrahedron is given in Fig. 1. Its dihedral angles are θ k and its corresponding edge lengths are k , k = 1, 6 * . Figure 1: Mildly (doubly) truncated tetrahedron A prism truncated tetrahedron is given in Fig. 2. The dashed edge connects the ultra-ideal vertices and corresponds to the edge 4 in the previous case. The dihedral angles remain the same, except that the altitude of the prism replaces the dihedral angle θ 4 . The altitude carries the dihedral angle µ and is orthogonal to the bases because of the truncation. Right dihedral angles in Fig. 1 

Preliminaries

The following propositions reveal a relationship between the Lorentzian inner product of two vectors and the mutual position of the respective hyperplanes.

Proposition 1 Let u and v be two non-collinear points in H . Then the following holds:

i) The hyperplanes Π u and Π v intersect if and only if | u, v | < 1. The dihedral angle θ between them measured in Γ u ∩ Γ v is given by the formula cos θ = -u, v . 
ii) The hyperplanes Π u and

Π v do not intersect in B n if and only if | u, v | > 1.
They intersect in Ext B n and admit a common perpendicular inside B n of length d given by the formula cosh d = ± u, v † .

iii) The hyperplanes Π u and Π v intersect on the ideal boundary ∂B n only, if and only if | u, v | = 1.

In case ii) we say the hyperplanes Π u and Π v to be ultra-parallel and in case iii) to be parallel.

Proposition 2 Let u be a point in B n and let Π v be a geodesic hyperplane whose normal vector v ∈ H is such that u, v < 0. Then the length d of the perpendicular dropped from the point u onto the hyperplane Π v is given by the formula sinh d = -u, v .

Let T be a generalised tetrahedron in H 3 with outward Lorentzian normals n i , i = 1, 4, to its faces and vertex vectors v i , i = 1, 4, as depicted in Fig. 2. Let G denote the Gram matrix for the normals G = n i , n j 4 i,j=1 . The conditions under which G describes a generalised mildly truncated tetrahedron are given by [START_REF] Mednykh | Elementary formulas for a hyperbolic tetrahedron[END_REF] and [START_REF] Ushijima | A volume formula for generalised hyperbolic tetrahedra[END_REF]. For a prism truncated tetrahedron, its existence and geometry are determined by the vectors ñi , i = 1, 6, where ñi = n i for i = 1, 4 and ñ5 = v 1 , ñ6 = v 2 . Hence the above matrix G does not have necessarily a Lorentzian signature. However, it will suffice for our purpose. In case T is prism truncated, as Fig. 2 shows, we obtain

G =     1 -cos θ 1 -cos θ 2 -cos θ 6 -cos θ 1 1 -cos θ 3 -cos θ 5 -cos θ 2 -cos θ 3 1 -cosh -cos θ 6 -cos θ 5 -cosh 1     , (1) 
in accordance with Proposition 1. We will define the edge length matrix G of T by

G =     -1 -cos µ i sinh 5 i sinh 3 -cos µ -1 i sinh 6 i sinh 2 -i sinh 5 -i sinh 6 -1 -cosh 1 -i sinh 3 -i sinh 2 -cosh 1 -1     (2) 
in order to obtain a Hermitian analogue of the usual edge length matrix for a mildly truncated tetrahedron (for the latter, see [START_REF] Ushijima | A volume formula for generalised hyperbolic tetrahedra[END_REF]). By [START_REF] Mednykh | Elementary formulas for a hyperbolic tetrahedron[END_REF] or [START_REF] Ushijima | A volume formula for generalised hyperbolic tetrahedra[END_REF], we have that

-g ij = c ij √ c ii √ c jj , (3) 
where c ij are the corresponding (i, j) cofactors of the matrix G. The complex conjugation g ij = g ji , i, j = 1, 4, corresponds to a choice of the analytic strata for the square root function √ •.

Proposition 3 ( [START_REF] Mednykh | Elementary formulas for a hyperbolic tetrahedron[END_REF][START_REF] Ushijima | A volume formula for generalised hyperbolic tetrahedra[END_REF]) The vertex v i , i = 1, 4, of T is proper, ideal, or ultra-ideal provided that c ii > 0, c ii = 0, or c ii < 0, respectively.

Hence, Propositions 1-2 imply that the matrices G and G agree concerning the relationship of the geometric parameters of T . The matrix G has complex entries since the minors c ii , i = 1, 4, in formula (3) may have different signs by Proposition 3.

To perform our computations later on in a more efficient way, we shall introduce the parameters a k , k = 1, 6, associated with the edges of the tetrahedron T . If T is a prism truncated tetrahedron, then we set a k := e iθ k , k ∈ {1, 2, 3, 5, 6}, a 4 := e and then

G =      1 -a 1 +1/a 1 2 -a 2 +1/a 2 2 -a 6 +1/a 6 2 -a 1 +1/a 1 2 1 -a 3 +1/a 3 2 -a 5 +1/a 5 2 -a 2 +1/a 2 2 -a 3 +1/a 3 2 1 -a 4 +1/a 4 2 -a 6 +1/a 6 2 -a 5 +1/a 5 2 -a 4 +1/a 4 2 1      . ( 4 
)
The meaning of the parameters becomes clear if one observes the picture of a mildly truncated tetrahedron T (see Fig. 2). In case two vertices v 1 and v 2 of T become ultra-ideal and the corresponding polar hyperplanes intersect (see [START_REF] Ushijima | A volume formula for generalised hyperbolic tetrahedra[END_REF] for more basic details), the edge v 1 v 2 becomes dual in a sense to the altitude of the resulting prism. Since in case of a mildly truncated tetrahedron we have a k = e iθ k according to [START_REF] Ushijima | A volume formula for generalised hyperbolic tetrahedra[END_REF], the altitude for now corresponds still to the parameter a 4 , in order to keep consistent notation.

Volume formula

Let U = U (a 1 , a 2 , a 3 , a 4 , a 5 , a 6 , z) denote the function

U = Li 2 (z) + Li 2 (a 1 a 2 a 4 a 5 z) + Li 2 (a 1 a 3 a 4 a 6 z) + Li 2 (a 2 a 3 a 5 a 6 z) (5) 
-Li 2 (-a 1 a 2 a 3 z) -Li 2 (-a 1 a 5 a 6 z) -Li 2 (-a 2 a 4 a 6 z) -Li 2 (-a 3 a 4 a 5 z)
depending on seven complex variables a k , k = 1, 6 and z, where Li 2 (•) is the dilogarithm function. Let z -and z + be two solutions to the equation e z ∂U ∂z = 1 in the variable z. According to [START_REF] Murakami | On the volume of hyperbolic and spherical tetrahedron[END_REF], these are

z -= -q 1 -q 2 1 -4q 0 q 2 2q 2 and z + = -q 1 + q 2 1 -4q 0 q 2 2q 2 , (6) 
where q 0 = 1+a 1 a 2 a 3 +a 1 a 5 a 6 +a 2 a 4 a 6 +a 3 a 4 a 5 +a 1 a 2 a 4 a 5 +a 1 a 3 a 4 a 6 +a 2 a 3 a 5 a 6 ,

q 1 = -a 1 a 2 a 3 a 4 a 5 a 6 a 1 - 1 a 1 a 4 - 1 a 4 + a 2 - 1 a 2 a 5 - 1 a 5 + a 3 - 1 a 3 a 6 - 1 a 6 , (7) 
q 2 = a 1 a 2 a 3 a 4 a 5 a 6 (a 1 a 4 + a 2 a 5 + a 3 a 6 + a 1 a 2 a 6 + a 1 a 3 a 5 + a 2 a 3 a 4 + a 4 a 5 a 6 + a 1 a 2 a 3 a 4 a 5 a 6 ).
Given a function f (x, y, . . . , z), let f (x, y, . . . , z) | z=z - z=z + denote the difference f (x, y, . . . , z -) -f (x, y, . . . , z + ). Now we define the following function V = V (a 1 , a 2 , a 3 , a 4 , a 5 , a 6 , z) by means of the equality

V = i 4 U (a 1 , a 2 , a 3 , a 4 , a 5 , a 6 , z) -z ∂U ∂z log z z=z - z=z + . (8) 
Let W = W (a 1 , a 2 , a 3 , a 4 , a 5 , a 6 , z) denote the function below, that will correct possible branching of V resulting from the use of (di-)logarithms:

W = 6 k=1 a k ∂V ∂a k - i 4 log e -4i a k ∂V ∂a k log a k . (9) 
Given a generalised hyperbolic tetrahedron as in Fig. 2, truncated down to a quadrilateral prism with essential dihedral angles θ k , k ∈ {1, 2, 3, 5, 6}, altitude and dihedral angle µ along it, we set a k = e iθ k , k ∈ {1, 2, 3, 5, 6}, a 4 = e , as above. Then the following theorem holds.

Theorem 1 Let T be a generalised hyperbolic tetrahedron as given in Fig. 2.

Its volume equals

Vol T = -V + W - µ 2 .
Note. In the statement above, the altitude length is = log a 4 and the corresponding dihedral angle equals µ = -2 a 4

∂V ∂a 4 mod π.

3.1 Preceding lemmas. Before giving a proof to Theorem 1, we need several auxiliary statements concerning the branching of the volume function.

Lemma 1 The function W has a.e. vanishing derivatives ∂W ∂a k , k = 1, 6.

Proof. By computing the derivative of ( 9) with respect to each a k , k = 1, 6, outside of its branching points and by making use of the identities d dz log z = 1/z, e z e w = e z+w for all z, w ∈ C. Since the branching points of a finite amount of log(•) and Li 2 (•) functions form a discrete set in C, the lemma follows.

Lemma 2 The function (-V + W ) does not branch with respect to the variables a k , k = 1, 6, and z.

Proof. Let us consider a possible branching of the function defined by formula [START_REF] Kolpakov | Volume formula for a Z 2 -symmetric spherical tetrahedron through its edge lengths[END_REF]. Let U comprise only principal strata of the dilogarithm and let U correspond to another ones. Then we have

U | z=z ± = U | z=z ± +2πik ± 0 log(z ± ) + 2πik ± 1 log(a 1 a 2 a 4 a 5 z ± ) +2πik ± 2 log(a 1 a 3 a 4 a 6 z ± ) + 2πik ± 3 log(a 2 a 3 a 5 a 6 z ± ) +2πik ± 4 log(-a 1 a 2 a 3 z ± ) + 2πik ± 5 log(-a 1 a 5 a 6 z ± ) (10) +2πik ± 6 log(-a 2 a 4 a 6 z ± ) + 2πik ± 7 log(-a 3 a 4 a 5 z ± ) +4π 2 k ± 8 ,
with some k j ∈ Z, j = 0, 8. From the above formula, it follows that

z ± ∂U ∂z z=z ± log z ± = z ± ∂U ∂z z=z ± log z ± + 2πi 7 j=0 k ± j log z ± . (11) 
Then, according to formulas (8), ( 10) -( 11), the following expression holds for the corresponding analytic strata of the function V :

V = V - π 2 6 j=1 m j log a j + iπ 2 2 m 7 , (12) 
where m j ∈ Z, j = 1, 7 and we have used the formula log(uv) = log u + log v + 2πik, k ∈ Z. Hence, according to [START_REF] Szirmai | Horoball packings for the Lambert-cube tilings in the hyperbolic 3-space[END_REF], we compute

a j ∂V ∂a j = a j ∂V ∂a j - πm j 2 ,
for each j = 1, 6. The latter implies that

a j ∂V ∂a j - i 4 log e -4i a j ∂V ∂a j = a j ∂V ∂a j - i 4 log e -4i a j ∂V ∂a j - πm j 2 ,
for j = 1, 6, since we choose the principal stratum of the logarithm function log(•). Thus, by formula (9),

-V + W = -V + W + π 2 6 j=1 m j log a j - iπ 2 2 m 7 - π 2 6 j=1 m j log a j = -V + W - iπ 2 2 m 7 ,
with m j ∈ Z, j = 1, 7. The proof is completed.

3.2 Proof of Theorem 1. The scheme of our proof is the following: first we show that ∂ ∂θ k Vol T = -k 2 , k ∈ {1, 2, 3, 5, 6}, ∂ ∂µ Vol T = -2 and second we apply the generalised Schläfli formula [7, Equation 1] to show that the volume function and the one from Theorem 1 coincide up to a constant. Finally, the remaining constant is determined. Now, let us prove the three statements below:

(i) ∂ ∂θ 1 Vol T = -1 2 , (ii) ∂ ∂θ k Vol T = -k 2 for k ∈ {2, 3, 5, 6}, (iii) ∂ ∂µ Vol T = -2 .
Note that in case (ii) it suffices to show ∂ ∂θ 2 Vol T = -2 2 . The statement for another k ∈ {3, 5, 6} is completely analogous.

Let us show that the equality in case (i) holds. First, we compute

∂ ∂θ 1 U -z ∂U ∂z log z = i a 1 ∂ ∂a 1 U -z ∂U ∂z log z = = ia 1 ∂U ∂a 1 -log z ∂ ∂a 1 z ∂U ∂z
Upon the substitution z := z ± , we see that

∂ ∂a 1 z ± ∂U ∂z (a 1 , a 2 , a 3 , a 4 , a 5 , a 6 , z ± ) = 0,
by taking the respective derivative on both sides of the identity e z ± ∂U ∂z (a 1 ,a 2 ,a 3 ,a 4 ,a 5 ,a 6 ,z ± ) = 1, c.f. the definition of z ± and formula [START_REF] Mednykh | Elementary formulas for a hyperbolic tetrahedron[END_REF]. Finally, we get

∂V ∂θ 1 = - a 1 4 ∂U ∂a 1 z=z - z=z + = - 1 4 log φ(z -)ψ(z + ) φ(z + )ψ(z -) + iπ 2 k,
for a certain k ∈ Z, where the functions φ(•) and ψ(•) are

φ(z) = (1 + a 1 a 2 a 3 z)(1 + a 1 a 5 a 6 z), ψ(z) = (1 -a 1 a 2 a 4 a 5 z)(1 -a 1 a 3 a 4 a 6 z).
The real part of the above expression is

∂V ∂θ 1 = - 1 4 log φ(z -)ψ(z + ) φ(z + )ψ(z -) . (13) 
Let us set ∆ = det G and δ = √ det G. We shall show that the expression

E = φ(z -)ψ(z + ) c 34 + δ a 1 -1/a 1 2 -φ(z + )ψ(z -) c 34 -δ a 1 -1/a 1 2 (14) 
is identically zero for all a k ∈ C, k = 1, 6, which it actually depends on. In order to perform the computation, the following formulas are used:

z -= -q 1 -4δ 2q 2 , z + = -q 1 + 4δ 2q 2 ,
where ql = q l / 6 k=1 a k for l = 1, 2 (c.f. formulas ( 6) -( 7)). Note that one may consider the expression E as a rational function of independent variables a k , k = 1, 6, ∆ and δ, making the computation easier to perform by a software routine [START_REF] Research | Mathematica 8", a computational software routine[END_REF]. First, we have

1 δ ∂E ∂a 1 = 4a 1 Y q3 2 ∂∆ ∂a 1 ,
where Y = Y (a 1 , a 2 , a 3 , a 4 , a 5 , a 6 ) is a certain technical term explained in Appendix. Since ∂∆ ∂a 1 = 2δ ∂δ ∂a 1 , the above expression gives us

∂E ∂a 1 = 8a 1 ∆ q3 2 ∂δ ∂a 1 Y . (15) 
Second, we obtain

∂E ∂δ = - 8a 1 ∆ q3 2 Y . (16) 
Finally, we recall that δ is a function of a k , k = 1, 6, and the total derivative of E with respect to a 1 is

∂ ∂a 1 E | δ:=δ(a 1 ,a 2 ,a 3 ,a 4 ,a 5 ,a 6 ) = ∂E ∂a 1 + ∂E ∂δ ∂δ ∂a 1 = 0,
according to equalities ( 15)-( 16).

An analogous computation shows that ∂ ∂a k E | δ:=δ(a 1 ,a 2 ,a 3 ,a 4 ,a 5 ,a 6 ) = 0 for all k = 1, 6. Then by setting a k = 1, k = 1, 6, we get ∆ = -16 and so δ = 8i. In this case E = 0. Thus the equality E ≡ 0 holds for all a k ∈ C, k = 1, 6. Together with [START_REF] Ushijima | A volume formula for generalised hyperbolic tetrahedra[END_REF] it gives

∂V ∂θ 1 = - 1 4 log c 34 -δ a 1 -a -1 1 2 c 34 + δ a 1 -a -1 1 2 . ( 17 
)
On the other hand, by formula (3), we have

g 34 = -cosh 1 = -c 34 √ c 33 √ c 44 .
Here, both c 33 and c 44 are positive by Proposition 3, since the vertices v 3 and v 4 are proper. The formula above leads to the following equation e 2 1 + 2 g 34 e 1 + 1 = 0, the solution to which is determined by

e 2 1 = c 34 + δ a 1 -a -1 1 2 c 34 -δ a 1 -a -1 1 2 , (18) 
in analogy to [13, Equation 5.3]. Thus, equalities (17) -(18) imply

∂V ∂θ 1 = - 1 4 log e -2 1 = 1 2 .
Together with Lemma 1, this implies that claim (i) is satisfied. As already mentioned, in case (ii) it suffices to prove ∂ ∂θ 2 Vol T = -2 2 . The statement for another k ∈ {3, 5, 6} is analogous. By formula (3) we have that

g 24 = i sinh 2 = -c 24 √ c 22 √ c 44 .
Since the vertex v 2 is ultra-ideal and the vertex v 4 is proper, by Proposition 3, c 22 < 0 and c 44 > 0. Thus, sinh 2 = c 24 √ -c 22 c 44 .

The formula above implies e 

-e 2 2 = c 24 + δ a 2 -a -1 2 2 c 24 -δ a 2 -a -1 2 2 . (21) 
By analogy with (13), we get the formula

∂V ∂θ 2 = - 1 4 log φ(z -)ψ(z + ) φ(z + )ψ(z -) , (22) 
where

φ(z) = (1 + a 1 a 2 a 3 z)(1 + a 2 a 4 a 6 z), ψ(z) = (1 -a 1 a 2 a 4 a 5 z)(1 -a 2 a 3 a 5 a 6 z).
Similar to case (i), the following relation holds:

φ(z -)ψ(z + ) φ(z + )ψ(z -) = c 24 -δ a 2 -a -1 2 2 c 24 + δ a 2 -a -1 2 2 .
Then formulas (21) -( 22) yield

∂V ∂θ 2 = - 1 4 log -1 e 2 2 = 2 2 .
The first equality of case (ii) now follows. Carrying out an analogous computation for ∂V ∂θ k , k = 3, 5, we obtain

∂V ∂θ 3 = 3 2 and ∂V ∂θ 5 = 5 2 .
Thus, all equalities of case (ii) hold.

As before, by formula (3), we obtain that Without loss of generality, the solution we choose is

-g 12 = cos µ = c 12 √ c 11 √ c 22 . ( 23 
e iµ = -c 12 + c 2 12 -c 11 c 22 √ c 11 c 22 . (24) 
By squaring (24) and by applying Jacobi's theorem to the corresponding cofactors of the matrix G, the formula below follows: Together with the equalities of cases (i)-(iii) it yields

e 2iµ = c 12 -δ a 4 -a -1 4 2 c 12 + δ a 4 -a -1
Vol T = -V + W - µ 2 + C , (27) 
where C ∈ R is a constant. Finally, we prove that C = 0, and the theorem follows. Passing to the limit θ k → π 2 , k = 1, 6, the generalised hyperbolic tetrahedron T shrinks to a point, since geometrically it tends to a Euclidean prism. Thus, we have µ → π 2 and → 0. By setting the limiting values above, we obtain that a k = i, k ∈ {1, 2, 3, 5, 6}, a 4 = 1. Then z -= z + = 1 by equality [START_REF] Mednykh | Elementary formulas for a hyperbolic tetrahedron[END_REF], and hence V = 0. Since the dilogarithm function does not branch at ±1, ±i, we have W = 0. Since T shrinks to a point, Vol T → 0, that implies C = 0 by means of (27) and the proof is completed.
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 2 Figure 2: Prism (intensely) truncated tetrahedron T and its geometric parameters
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† we chose the minus sign if Γu ∩ Γv = ∅, otherwise we choose the plus sign.
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Numeric computations

In Table 1 we have collected several volumes of prism truncated tetrahedron computed by using Theorem 1 and before in [START_REF] Derevnin | The Coxeter prisms in H 3 " in Recent advances in group theory and low-dimensional topology[END_REF][START_REF] Szirmai | Horoball packings for the Lambert-cube tilings in the hyperbolic 3-space[END_REF]. The altitude of a prism truncated tetrahedron is computed from its dihedral angles, as the remark after Theorem 1 states. All numeric computations are carried out using the software routine "Mathematica" [START_REF] Research | Mathematica 8", a computational software routine[END_REF].

Appendix

The term Y from Section 3.2 Let us first recall of the expressions q k , k = 0, 1, 2, that are polynomials in the variables a k , k = 1, 6 defined by formula ( 7) and the expressions ql , l = 1, 2, defined in the proof of Theorem 1 by ql = q l / 6 k=1 a k , l = 1, 2. Then, the following lemma holds concerning the technical term Y mentioned above, that actually equals Proof. By setting a 1 = a 6 := 0, we get q 0 = 1 + a 3 a 4 a 5 , q 1 = q 2 = 0 and Y | a 1 =a 6 :=0 = a 3 2 a 3 a 4 a 5 (a 3 a 4 + a 5 ) = a 3 2 (q 0 | a 1 =a 6 :=0 -1) (a 3 a 4 + a 5 ).

As well, we have q2 = a 2 (a 3 a 4 + a 5 ) and

The former equality proves that Y is not a polynomial in the variables q 0 , q 1 , q 2 . The latter shows that Y is not a polynomial in q 0 , q 1 , q2 either.