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Abstract
The work presented here is set in line with fields of theoretical computer

science and biology that study Boolean automata networks frequently seen as
models of genetic regulation networks. In the context of biological regulation,
former studies have highlighted the importance of circuits on the asymptotic
dynamical behaviour of regulation networks. This is why we first chose to con-
centrate on networks whose underlying interaction graphs are circuits, that is,
Boolean automata circuits. Here, we examine the dynamical behaviour of these
networks in the case of a synchronous update schedule of their automata as well
as in that of more general update schedules such as sequential or block sequen-
tial update schedules. Next, driven by the will to develop our understanding of
networks with arbitrary underlying structures, we focus on OR networks and
give some properties of their dynamics in an attempt to fully classify these
networks according to their asymptotic dynamical behaviour considering all of
their synchronous, sequential and block sequential update schedules.

Keywords. Discrete dynamical systems, Boolean regulatory network, positive
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Introduction

1 Introduction

The theme of the research work I am about to present is set in the general
framework of complex dynamical systems, and more precisely, that of regulation
networks modeled by means of discrete mathematical tools. Since Kauffman [12]
and Thomas [17] introduced the first models of genetic regulation networks at the
end of the 1960’s, many other studies based on the same or different formalisms were
carried out in this context. One of the main motivations of these studies was to
better understand those emergent dynamical behaviours that networks display and
that cannot be explained or predicted by a simple analysis of the local interactions
existing between the components of the networks.

Following the lead of some of the authors of these works, we decided to focus
on Boolean automata networks, and more specifically on threshold Boolean automata
networks and their dynamics. Informally, a Boolean automata network is defined
by an interaction graph G = (V,A) and a set of local transition functions fi, one
for each automaton i of the network, that is, one for each node i ∈ V . Every
automaton or node is given a Boolean state that may change over time. The fi
functions are Boolean functions that allow the automata i to compute their Boolean
states at time t + 1 knowing the states at time t1 of their incoming neighbours2 in
G. The arcs of A thus represent the dependencies there exists between the states
of their extremities. Threshold Boolean automata networks are networks that
were initially introduced by McCulloch and Pitts in [13] in order to represent neural
networks formally. Their underlying interaction graph G = (V,A) has weights wi,j ∈
R on each arc (i, j) ∈ A, and their nodes i ∈ V have thresholds θi ∈ R. Their local
transition functions are of the form fi(x) = H(

∑
j∈N−(i)wj,i · xj − θi) where H is

the Heaviside function (H(x) = 0 if x < 0 and H(x) = 1 if x ≥ 0).

Amongst the features of a regulation network that may significantly impact on
its dynamical behaviour, is the update schedule of its automata, that is the order
with which the automata compute their new state within each time step. Here
we make two hypotheses on the update schedules of networks we will consider :
(i) the update schedule is deterministic and invariant with time, (ii) within every
time step, each node is updated exactly once. Now, to construct systematically
an understanding of networks dynamics considering all such update schedules, one
can choose two different approaches : either simplify the underlying structure of
the networks or simplify the transition function of the network, that is the way each
automata computes its new state according to that of the automata that influence it.
This is why, during this internship, I chose to study two types of networks : Boolean
automata circuits, that is, networks whose underlying dependency or interaction
graph is a circuit and OR networks, i.e., networks whose transition functions are the

1To be meticulous, I should add “provided the automata are updated synchronously” but the
point here is only to give a general idea of what are Boolean automata networks. Details concerning
update schedules will be seen later on.

2i.e., the nodes j ∈ V such that (j, i) ∈ A.
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Introduction

OR function.

More precisely, the reason for studying the specific case of circuits is that they
are known to play an important part in the dynamics of a network. One way to
see this is to note that a network whose underlying interaction graph is a tree or
more generally a graph without circuits can only eventually end up in a configu-
ration that will never change over time. A network with retroactive loops, on the
contrary, will exhibit more diverse dynamical behaviour patterns. Thomas [18] had
already noted the importance of underlying circuits in networks. He formulated con-
jectures concerning the role of positive (i.e., with an even number of inhibitions)
and negative (i.e., with an odd number of inhibitions) circuits in the dynamics of
regulation networks. Thus, from the point of view of theoretical biology as well as
that of theoretical computer science (since the problem is very close to the 16th
Hilbert problem concerning the number of limit cycles of dynamical systems [11]), it
seems to be of great interest to address the question of the number of attractors (i.e.,
different asymptotic dynamical behaviours) of regulation networks. In the first part
of this report is given an account of the work that was done during this internship
concerning the dynamics of Boolean automata circuits. More precisely, after the
preliminary section 2, in sections 3 and 4, we consider, respectively, positive circuits
and negative circuits updated synchronously. We obtain the exact values of the total
number of attractors of these circuits and of their number of attractors of period
p for every positive integer p. These values we find happen to be terms of integer
sequences defined by different combinatoric problems. In section 5, we exhibit the
isomorphisms that exists between some of these problems and the one we started
from. Next, in the last section of part I, section 6, we complete our study of the
dynamics of Boolean automata circuits by examining their behaviour when they are
updated according to more general update schedules.

The second part of the work I did focused on the particular instance of (threshold)
Boolean automata networks that are OR networks. Initially, our motivation was to
understand theoretically the simulatory results presented by Elena in his PhD the-
sis [8]. In [8], Elena proposes a classification of networks according to their dynamics
in all update schedules. This seemed to us a particularly inviting starting point for
our study of networks dynamics. As the questions raised by Elena’s work revealed
themselves to be particularly thorny for general threshold Boolean automata net-
works, we decided to concentrate first on OR networks. Besides its simplicity, one of
the main reasons for the choice of the OR function as transition function of networks,
is the fact that it allows a certain transparency of the networks structure in the sense
that it translates straightforwardly every dependency between states of automata,
as we will see more concretely in part II which is the part of this document dealing
with OR networks.

Before moving onto the body of this report, I would like to point out that in
order to preserve a certain fluidity, I chose to introduce definitions and some results
concerning general Boolean automata networks throughout both parts I and II even
though their focus is on particular instances of these networks.
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Part I

Boolean automata circuits

2 Definitions, notations and preliminary results

A circuit of size n is a directed graph that we will denote by Cn = (V,A). We
will consider that its set of nodes, V = {0, . . . , n − 1}, is actually Z/nZ so that,
considering two nodes i and j, i + j will designate the node i + j mod n. The
circuits set of arcs is then A = {(i, i+1) | i ∈ Z/nZ}. Let id be the identity function
(∀a ∈ {0, 1}, id(a) = a) and neg the negation function (∀a ∈ {0, 1}, neg(a) = ¬a =
1 − a). A Boolean automata network of size n associated to a circuit or Boolean
automata circuit of size n is a couple Rn = (Cn, F ) where F : {0, 1}n → {0, 1}n
is the networks global transition function. By a minor abuse of language, we
will refer to the (global) state of Rn as a vector x = (x0 . . . xn−1) ∈ {0, 1}n whose
coefficient xi is the state of node i of Cn. The global transition function F is defined
by a set of n local transition functions {fi ∈ {id, neg} | i ∈ Z/nZ} that will be,
until section 6, applied synchronously: let x = (x0 . . . xn−1) ∈ {0, 1}n represent a
global state of Rn, then

F (x) = (f0(xn−1), . . . , fi(xi−1), . . . , fn−1(xn−2)).

When there will be no ambiguity as to what network we are considering, we will
also note this transition rule x(t + 1) = F (x(t)) where x(t) ∈ {0, 1}n and t ∈ N
so that ∀p ∈ N, x(t + p) = F (F p−1(x(t))) and at the local level of nodes, xi(t +
1) = F (x(t))i = fi(xi−1(t)). Note that with the restriction on the local transition
functions, fi ∈ {id, neg}, we do not loose any generality. Indeed, if at least one of
the nodes of the circuit, say node i, has a constant local function then its incoming
arc is useless: the state of node i does not depend on that of node i − 1 and in
that case we no longer are looking at a “real” circuit. An arc (i, i + 1) is said to be
positive (resp. negative) if fi+1 = id (resp. fi+1 = neg). The network Rn and the
circuit associated, Cn = (V,A), are said to be positive (resp. negative) if the number
of negative arcs of A is even (resp. odd). An intuitive and very coarse explanation of
such a distinction between circuits is that given a pair of consecutive inhibitions (i.e.,
of local transition functions equal to neg) belonging to a circuit, the first member
of this pair is a “real” inhibition whereas the second is only an “inhibition of the
first inhibition”. Thus, positive circuits, unlike negative ones, only eventually have
“neutralised” inhibitions.

Note that Boolean automata circuits as they have just been defined, are particular
instances of quasi-minimal threshold Boolean automata networks3 Indeed, as it can
easily be checked, id and neg can both be expressed as threshold functions and
obviously, choosing local transition functions in {id, neg} we have guaranteed that

3Quasi-minimal networks are such that if an arc is removed from their interaction graph, then
their dynamics is changed.
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every arc appearing in the circuit is necessary, i.e., represents an existing dependency
between the states of two nodes. Now, although quasi-minimal threshold Boolean
automata networks were actually the starting point of the present work, we need not
burden the description of the objects we will be studying with the formalism of those
networks. A few additional definitions are yet needed before we can move on to the
analysis of the dynamics of Boolean automata circuits.

Let Rn = (Cn, F ) be a Boolean automata circuit of size n. In the sequel, we will
make substantial use of the following function:

F [j, i] =

{
fj ◦ fj−1 ◦ . . . ◦ fi if i ≤ j
fj ◦ fj−1 ◦ . . . ◦ f0 ◦ fn−1 ◦ . . . ◦ fi if j < i

There are several things to note about this function. First, because ∀k, fk ∈
{id, neg}, F [j, i] is injective. Second, if Cn is positive then ∀j, F [j + 1, j] = id
and if, on the contrary, Cn is negative then ∀j, F [j + 1, j] = neg. Finally, it is also
important to notice that the following is true for all t ∈ N, p ≤ n, i ∈ Z/nZ :

xi(t+ p) = fi(xi−1(t+ p− 1)) = fi(fi−1(xi−2(t+ p− 2))) = . . .

. . . = F [i, i− p+ 1](xi−p(t)).

Since the set of global states of any finite sized network Rn (may it be a Boolean
automata circuit or any other type of Boolean automata network) is finite, when
the network is updated, it necessarily ends up looping. In other words, ∀ x(0) ∈
{0, 1}n, ∃t, p, x(t + p) = x(t). An attractor or limit cycle is the orbit (that is
the set {x(t + k) | k ∈ N}) of such a state x(t). The period of this attractor is its
cardinal, i.e., the smallest p such that for any integer k ∈ N, x(t+ k+ p) = x(t+ k).
Elements belonging to an attractor of period 1 are usually called fixed points. The
set of all global states of Rn belonging to an attractor of period p is denoted by:

Sp(Rn) = {x ∈ {0, 1}n | F p(x) = x and ∀d < p, F d(x) 6= x}

or Sp when there is no ambiguity as to what network is being considered. The
number of attractors of period p of a network Rn is denoted by:

Ap(Rn) =
1

p
· |Sp(Rn)|.

Now, let Rn = (Cn, F ). We define the following property PF on {1, . . . , n}×{0, 1}n
depending on F :

∀p ∈ N, ∀x ∈ {0, 1}n,

PF (p, x) ⇔ ∀ i ∈ Z/nZ, xi = F [i, i− p+ 1](xi−p)

⇔ ∀ i ∈ Z/nZ, such that r = i mod p,

xr = F [r, r − p+ 1](xr−p) and

xi = F [i, r + 1](xr)
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fixed point or attractor of period 1

y(0)
y(1) = F (y(0))

y(t′)

x(0)
x(1) = F (x(0))

x(t)

attractor of period p > 1

Figure 1: The iteration graph of an arbitrary Boolean automata network of size
n. The nodes of this graph are the elements of {0, 1}n and an arc (x,y) exists
in this graph if and only if F (x) = y where F is the networks global transition
function. Every strongly connected component of the iteration graph corresponds to
an attractor of size the number of elements in this component.

The second equivalence above can be shown by induction on k where i = k ·p+r. The
definition of PF (p, x) takes its meaning from the following result which characterises
global states that loop after p transitions (or less), i.e. states of Sd where d ≤ p:

Lemma 2.1 Let Rn = (Cn, F ) be a Boolean automata circuit of size n, let p ≤ n
and let x(0) ∈ {0, 1}n be an arbitrary global state of Rn. Then,

∀t, x(t) = x(t+ p) ⇔ ∀t, PF (p, x(t)).

Proof of Lemma 2.1 Suppose that ∀t, PF (p, x(t)). Then, ∀r, 0 ≤ r < p,

F [p+ r, r + 1](xr(t)) = xp+r(t+ p) = F [p+ r, r + 1](xr(t+ p)),

where the first equality is always true (see the remark made above after the definition
of F [j, i]) and the second is due to PF (p, x(t+p)). With the injectivity of F [p+r, r+1],
this implies that xr(t) = xr(t+ p). In addition, ∀i, p ≤ i < n such that r = i mod p:

xi(t+ p) = F [i, r + 1](xr(t+ p)) = F [i, r + 1](xr(t)) = xi(t).

The first equality above is due to PF (p, x(t+ p)), the second to xr(t+ p) = xr(t) and
the third to PF (p, x(t)). On the other hand, suppose that ∀t, x(t) = x(t+ p). Then,
∀i ∈ Z/nZ, xi(t) = xi(t+ p) = F [i, i− p+ 1](xi−p(t)). �

In the sequel, we will compare the dynamics of particular couples of circuits of same
signs, Rp = (Cp, H) and Rn = (Cn, F ), where p divides n = p · q and where the
global transition function H of Rp is defined by the set of local transition functions
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Figure 2: Figures 1.a., b. and c. represent three different Boolean automata circuits
of size n = 4. That of figures 1.a. and b. are positive while that of figure 1.c. is
negative. Figures 2.a., b. and c. picture the iteration graph of these network. Note
that in all three cases here, all elements belong to an attractor. This is usually not
the case with arbitrary Boolean automata networks which are not circuits.

7



Positive circuits

{hi | i ∈ Z/pZ} and the global transition function F of Rn is defined by the set
{fi | i ∈ Z/nZ}. More precisely, we will build an isomorphism between the iteration
graphs of Rn and Rp. To do this, we will use the bijection QF,H defined below
that maps a state x(t) ∈ {0, 1}p of Rp to a state y(t) ∈ {0, 1}n of Rn such that
∀c, x0(t+ c) = y0(t+ c). The idea behind the definition of QF,H is roughly to make
Rn “mimic” the dynamical behaviour of Rp.

∀x ∈ {0, 1}p, ∀ i = kp+ r ∈ Z/nZ such that r = i mod p and s = i+ 1 mod p,

QF,H(x)i =


xr if fi+1 = hs and yi+1 = xs

or fi+1 6= hs and yi+1 6= xs

¬xr if fi+1 = hs and yi+1 6= xs
or fi+1 6= hs and yi+1 = xs

=

{
xr if F [0, i+ 1] = H[0, 1]q−1−k ◦H[0, s]

¬xr otherwise

The second equality can be shown by a reversed induction on i. Note thatH[0, 1] = id
if and only Rp is positive. In the sequel, we will only consider one of the two following
cases4:

1. Rp and Rn are both positive or

2. Rp and Rn are both negative and q is odd.

In both cases, it holds that F [0, 1] = H[0, 1] and H[0, 1]q−1 = id so that QF,H(x)0 =
x0. The reader can also check that F (QF,H(x))i+1 = H(QF,H(x))s ⇔ QF,H(x)i+1 =
xs so that F (QF,H(x)) = QF,H(H(x)). Since QF,H is clearly bijective, in both cases
mentioned, QF,H satisfies the desired properties.

3 Positive circuits

In this section, we focus on positive Boolean automata circuits, that is, networks
associated to circuits having an even number of negative arcs. The first lemma below,
which will be crucial later on, is an extension of a result proven by Goles al. in [9].

Lemma 3.1 Let Rn = (Cn, F ) be a positive Boolean automata circuit of size n.
Every global state x ∈ {0, 1}n of Rn belongs to an attractor of period a divisor of n.

Proof of Lemma 3.1 Suppose that F is defined by {fi | i ∈ Z/nZ}. Let x(t) =
(x0(t), . . . , xn−1(t)) be an arbitrary global state of Rn. Then,

∀j ∈ Z/nZ, xj(t+ n) = F [j, j + 1](xj(t+ n− n)) = xj(t).

The last equality above holds because, Cn being positive, F [j, j + 1] = id. �

4the reason why will be given further on
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Positive circuits

The purpose of the two following lemmas is to compare the dynamics of different
positive circuits. More precisely, lemma 3.2 establishes an isomorphism between the
attractors whose period is the largest of two networks of same size. Lemma 3.3
establishes an isomorphism between attractors of circuits of different sizes.

Lemma 3.2 If Rp = (Cp, F ) and R′p = (C′p, H) are two positive Boolean automata
circuits, both of size p, then the number of attractors of period p of both networks is
the same:

Ap(Rp) = Ap(R′p).

Proof of Lemma 3.2 Let x(t) ∈ Sp(Rp) and let y(t) = QF,H(x(t)). From the
remarks concerning QF,H done after its definition, at the end of the previous section,
y(t + p) = QF,H(x(t + p)) = QF,H(x(t)) = y(t) and there exists no d < p such
that y(t + d) = y(t) (otherwise, from the injectivity of QF,H it would hold that
x(t+ d) = x(t) which contradicts x(t) ∈ Sp(Rp)). �

By lemma 3.2, provided Rp = (Cp, F ) is positive, Ap(Rp) is independent of the
distribution and number of negative arcs in Cp. Therefore, from now on, we will use
the following notation for all positive Boolean automata circuits Rp of size p:

A+p =
1

p
· |Sp(Rp)| = Ap(Rp)

Lemma 3.3 Let Rn be a positive Boolean automata circuit of size n. Then, for
every divisor p of n,

Ap(Rn) = A+p .

Proof of Lemma 3.3 Suppose that Rn = (Cn, F ) where F is defined by {fi | i ∈
Z/nZ} and n = q · p, q, p ∈ N. We will show that there exists a network Rp of
size p such that the sets Sp(Rn) and Sp(Rp) are isomorphic. First, we define the
network Rp = (Cp, H) where H, the global transition function of Rp, is defined by
{h0 = F [0, p]} ∪ {hi = fi | 0 < i < p}.

Now, suppose that x(t) belongs to Sp(Rp) and let y(t) = QF,H(x(t)) ∈ {0, 1}n.
By an argument similar to that used in the proof of lemma 3.2, we find that y(t) ∈
Sp(Rn).

On the other hand, if y(t) ∈ Sp(Rn), we define x(t) ∈ {0, 1}p such that ∀ i ∈
Z/pZ, xi(t) = yi(t). Because Cn and Cp are positive and because h0 = F [0, p],
PF (p, y(t)) (true by lemma 2.1) implies y(t) = QF,H(x(t)). Lemma 3.1 suffices to
state that x(t + p) = x(t). But it is, again, by the injectivity of QF,H that we can
claim that there is no d < p such that x(t+ d) = x(t). �

As a consequence of the previous lemmas, we finally get the main result of this
section:

Theorem 3.1 ∀n ∈ N,

(i) 2n =
∑

p|n A
+
p × p

9



Negative circuits

(ii) A+n = 1
n ·
∑

p|n µ(
n
p ) · 2

p

(iii) T+n = 1
n ·
∑

p|n ψ(
n
p ) · 2

p

where µ is the Möbius (see [1]) function, ψ the Euler totient function and T+n the
total number of distinct attractors of a positive Boolean automata circuit.

Proof of Theorem 3.1 Let Rn be a positive Boolean automata circuit. By lemma 3.1,
all of the 2n global states of a Rn belong to an attractor whose period is a divisor
of n. (i) then comes from lemmas 3.2 and 3.3. (ii) is shown using the Möbius
inversion formula (see [1]) on (i). For the proof of (iii), we use the fact that
ψ(m) =

∑
r|m(m/r) · µ(r):

T+n =
∑
p|n

A+p =
∑
p|n

∑
d|p

1

p
· µ(p

d
) · 2d

=
1

n
·
∑
p|n

∑
d|p

2d · n
p
· µ(p

d
) =

1

n
·
∑
p|n

∑
d|p

2d · n

(p/d) · d
· µ(p

d
)

=
1

n
·
∑
d|n

2d
∑
k|n/d

n

k · d
· µ(k) =

1

n
·
∑
d|n

ψ(
n

d
) · 2d.

�

In particular, point (ii) of theorem 3.1 implies that if n is prime then, since µ(n) =
−1,

A+n =
1

n
· (µ(n) · 2 + µ(1) · 2n) =

2n − 2

n
.

Notice also that because 1 is a divisor of all n ∈ N, every positive Boolean automata
circuit Rn has exactly two fixed points, i.e, A1(Rn) = A1(R1) = A+1 = 2. In [3] and [2],
positive circuits are characterised this way and indeed, as we will see in the next
section, negative circuits never have any fixed points. From this characterisation, the
authors of these articles also infer some results concerning more general networks.

We performed computer simulations of the dynamical behaviour of positive cir-
cuits of sizes between 1 and 22. Simulations done for different circuits of the same
size confirmed lemma 3.2. An example picturing these results is given in figure 2
where two different positive circuits of size 4 and their dynamics are represented.
Table 1 shows some of the results we obtained for circuits of different sizes. In this
table, n is the size of the network and p the period of the attractor. In the cell corre-
sponding to line p and column n figures Ap(Rn). Notice that as lemma 3.3 predicts,
all numbers appearing on one line are the same. In particular, line one indicates that
all positive circuits have two fixed points.

4 Negative circuits

We are now going to consider negative circuits. The approach we take here is
very similar to that of the previous section so we will give few comments on how this
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Table 1: Number of attractors of positive Boolean automata circuits.

case is handled. Just as lemma 3.1 does for the positive case, lemma 4.1 recalls and
extends some important general properties of the dynamics of negative circuits that
were mentioned by Goles al. in [9].

Lemma 4.1 Let Rn = (Cn, F ) be a negative Boolean automata circuit of size n.
Then,

1. Every global state x ∈ {0, 1}n of Rn belongs to an attractor of period a divisor
of 2n;

2. If Sp(Rn) 6= ∅, then p is an even divisor of 2n and n = q × p
2 where q is odd.

Proof of Lemma 4.1

1. By a similar proof to that of lemma 3.1, we find that ∀x(t) ∈ {0, 1}n,
x(n + t) = ¬x(t) which implies that x(2n + t) = x(t). Thus every global state
belongs to an attractor of period a divisor of 2n.

2. Suppose that x ∈ Sp(Rn) where p divides n. By lemma 2.1, PF (p, x) must be
true so:
∀ 0 ≤ r < p, xr = F [r, r − p+ 1](xr−p) =

F [r, r − p+ 1] ◦ F [r − p, r + 1](xr) = F [r, r + 1](xr)

However, because Cn is negative, F [r, r + 1] = neg. This leads to the contra-
diction xr = ¬xr. Thus, if Sp(Rn) 6= ∅, then p divides 2n without dividing
n. This means that p must be even and we necessarily must have n = q × p/2
where q is odd. �

The proofs of lemmas 4.2 and 4.3 that follow are, respectively, similar to that of
lemmas 3.2 and 3.3.

11



Negative circuits

Lemma 4.2 If Rp = (Cp, F ) and R′p = (C′p, H) are two negative Boolean automata
circuits, both of size p, then

∀p, A2p(Rp) = A2p(R′p)

By lemma 4.2, provided Rp = (Cp, F ) is negative, A2p(Rp) is independent of the
distribution and number of negative arcs in Cp. Therefore, from now on, we will use
the following notation for all negative Boolean automata circuit Rp:

A−2p =
1

2p
· |S2p(Rp)| = A2p(Rp).

Lemma 4.3 Let Rn be a negative Boolean automata circuit of size n. Then, for
every divisor p of n = p× q where q is odd,

A2p(Rn) = A−2p.

Proof of Lemma 4.3 Suppose that Rn = (Cn, F ) and Rp = (Cp, H), where H is
defined as in the proof of lemma 3.3, are both negative. Suppose that n = p × q
where q is odd. Then, the proof of lemma 4.3 requires to notice that if y ∈ {0, 1}n
and x = (y0, . . . , yp−1) ∈ {0, 1}p, it still holds that P(2p, y) ⇒ y = QF,H(x). A
distinction must be made between nodes i = kp+ r (r = i mod p) such that k is odd
and nodes i = kp+ r such that k is even. �

As a consequence of the previous lemmas, we obtain the following theorem which is
proven with very similar arguments to that used in the proof of theorem 3.1.

Theorem 4.1 ∀n ∈ N,

(i) 2n =
∑

odd q|n A
−
2n/q × 2n/q

(ii) A−2n = 1
2n ·

∑
odd q|n µ(q) · 2n/q

(iii) T−n = 1
2n ·

∑
odd p|n ψ(

n
p ) · 2

p

where T−n is the total number of distinct attractors of a negative Boolean automata
circuit5.

Computer simulations of the dynamics of negative circuits of sizes between 1 and
22 were performed. The results of these simulations are shown in table 2 below (see
the last paragraph of section 3 for an explanation of what holds each cell of this table).
A particular case of formulas (ii) and (iii) of theorem 4.1 is when n = 2k. Then,
since 1 is the only odd divisor of n, A−2n = T−n = 2n−k−1 (see cells (p = 16, n = 8)
and (p = 32, n = 8) of table 2).

Again, we may also note that theorem 4.1 implies that a negative circuit never has
any fixed points in its dynamics. In [3] and [2], the authors proven a result stating
that arbitrary networks containing only negative circuits have no fixed points.

5and where µ and ψ still are, respectively, the Möbius function and the Euler totient
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Table 2: Number of attractors of negative Boolean automata circuits.

5 Related problems

Sequences (A+n )n∈N, (T+n )n∈N, (A
−
2n)n∈N and (T−n )n∈N defined in the previous sec-

tions happen to correspond precisely to the integer sequences A1037, A31, A48 and
A16, respectively, of the OEIS [16]. In [16], these sequences are defined by different
combinatoric problems. In this section, we will study how some of them are related
to the problem of counting the number of attractors (of given period or in total)
of Boolean automata circuits. Conveniently, the relationships that we find between
these different but equivalent problems, provide different ways of formalising the
dynamics of Boolean automata networks updated synchronously.

First of all, note that thanks to the results of the previous sections we may
concentrate our attention on one canonical positive (resp. negative) circuit, wisely
chosen. Indeed, since A+p (resp. A−p ) does not depend on the distribution or number
of negative arcs in the circuit in question as long as this number is even (resp.
odd), we may choose a circuit Rn = (Cn, F ) as the representative of all positive
(resp. negative) circuits of size n. Then, for any other positive (resp. negative)
network R′n = (C′n, F ′) of size n, there exists a permutation σ of {0, 1}n such that
∀x ∈ {0, 1}n, F ′(x) = F (σ(x)). In the positive case, the choice of a canonical circuit
is straightforward. We will choose the positive circuit with no negative arcs and
denote it by R+

n = (Cn, F+). Note that F+ is defined by a set of n local functions
all equal to id and acts as a rotation of the coefficients of vectors in {0, 1}n:

∀(x0, . . . , xn−1) ∈ {0, 1}n, F+(x0, . . . , xn−1) = (xn−1, x0, . . . , xn−2).

The canonical negative circuit is less obvious to choose because a circuit of size n
with n negative arcs is negative only if n is odd. Thus, unless mentioned otherwise,
we will be calling canonical negative network of size n, the network R−n = (Cn, F−)

13
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whose circuit has 1 negative arc (the arc (n− 1, 0)) and n− 1 positive arcs. In that
case, it holds that:

∀(x0, . . . , xn−1) ∈ {0, 1}n, F−(x0, . . . , xn−1) = (¬xn−1, x0, . . . , xn−2).

5.1 Binary shift register sequences

Let f be a function of {0, 1}n → {0, 1}. A n-stage binary shift register is a
group of n cells, c0, . . . , cn−1, connected together. If, at time t, cell ci contains the
binary variable xi, i ∈ Z/nZ, then at time t + 1, xn−1 is outputted, the variables
x0, . . . , xn−2 are shifted to the right so that cell ci contains xi−1 and f(x0 . . . xn−1) is
inserted in cell c0. An output sequence of a shift register is the series of its outputs,
i.e., a sequence of the form:

. . . xn−1, xn−2, . . . , x0, f(x0 . . . xn−1), f(f(x0 . . . xn−1), x1 . . . xn−1) . . .

c0 c1 cn−2 cn−1

Following Golomb [10] and Sloane [15], we will consider two types of shift regis-
ters. The first one corresponds to f(x0 . . . xn−1) = x0 and the second to f(x0 . . . xn−1) =
¬x0. The relationship between shift registers and Boolean automata circuits is then
fairly obvious. If the binary variable that cell ci contains at time t is seen as the state
xi(t) of node i in the circuit Cn, then, a n-stage shift register of the first type corre-
sponds to R+

n and the n-stage shift register of the second type corresponds to R−n .
In both cases, f corresponds to f0 and the shift of the n− 1 other cells corresponds
to the fi = id, 0 < i < n.

Sloane denotes by Z(n) the number of different possible output sequences from
a shift register of the first type and by Z∗(n) that of the second type. Thus, Z(n)
also denotes the total number of attractors (of any period) of a positive Boolean
automata circuit, T+n , and Z∗(n) denotes the same number for negative Boolean
automata circuit, T−n . Theorem 3.1 of [15] states that

Z(n) = A31(n) =
1

n
·
∑
d|n

ψ(d) · 2n/d

and Z∗(n) = A16(n) =
1

2n
·
∑

odd d|n

ψ(d) · 2n/d

which do, indeed, unsurprisingly, match our formulas for T+n and T−n respectively.
The interesting point lies in the proof of the first expression. Following Golomb, we

14
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may see global states of R+
n as elements of a set on which acts the cyclic group of

order n generated by the permutation π = (1, . . . , n) (which actually is precisely the
rotation F+). This way, the orbits {πi(x) | x ∈ {0, 1}n, i ∈ Z/nZ} correspond to
the attractors of the network. And since πi can be written as the product of gcd(n, i)
cycles of length ord(πi) = n/gcd(n, i), the number of vectors x such that πi(x) = x,
i.e. the number of configurations belonging to an attractor of period a divisor of i,
is 2gcd(n,i). The Burnside Lemma [6] then allows to determine the number, Z(n), of
orbits/attractors. The second expression is derived from the first.

5.2 Binary necklaces and Lyndon words

A binary n-bead necklace [14] is defined by a word x of size n on the alphabet
{0, 1} or any rotation of this word. Let us call [x] the set of all words which are
rotations of one another and which define the same n-bead necklace. The sets [x] are
obviously equivalence classes. The primitive period of a necklace defined by the words
in [x] is the smallest number of times one needs to turn the necklace around before
returning to a configuration that is undistinguishable from its initial configuration.
In other words, the primitive period of a necklace defined by the words in [x] is |[x]|.
It also is the smallest p ∈ N such that any x′ ∈ [x] can be written x′ = yp, where
y ∈ {0, 1}n/p and yp = yyp−1. The number of different necklaces of size n, i.e., of
different sets [x], is know [16] to be equal to T+n =A31(n) = Z(n). Again, since F+

acts as a rotation, it is easy to see that the sets [x] correspond to attractors of R+
n

and their primitive periods correspond to the periods of those attractors.
A binary Lyndon word of length n is the lexicographically least word of a class

[x] whose primitive period is n. There are A+n =A1037(n) such words and thus, in
every attractor of period n of R+

n , there is exactly one global state x corresponding
to a Lyndon word of size n (all others are non-trivial rotations of x).

The negative case is trickier. First, in [16], only the sequence A48(n) = A−2n has an
entry related to necklaces (A16(n) = T−n has not). According to this entry, A48(n) =
A−2n equals the number of unlabelled binary Lyndon words. A n-bead unlabelled
necklace corresponds to a set [x] ∪ [¬x]. An unlabelled binary Lyndon word
of size n is the lexicographically least word of a set [x] ∪ [¬x] where |[x]| = |[¬x]| =
n. When n is odd, it is easy to see the relationship between these words and the
attractors of a negative network Rn = (Cn, F ) whose circuit has n negative arcs and
none positive. For such a circuit, the following equalities hold:

∀x = (x0, . . . , xn−1) ∈ {0, 1}n, F (x) = (¬xn−1,¬x0, . . . ,¬xn−2) = ¬F+(x),

F k(x) =

{
F+k(x) if k is even
¬F+k(x) if k is odd

and in particular, ∀k ∈ {0, . . . , n}, F k+n(x) = F k(Fn(x)) = F k(¬x),

where F+ is still the global transition function of the canonical positive circuit R+
n

mentioned above. On the other hand, because n is odd, there exists no class [x] such
that ¬x ∈ [x] so [x]∩ [¬x] = ∅. Thus, sets corresponding to unlabelled necklaces are
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of the form:

[x]∪ [¬x] = {F+k(x) | 0 ≤ k < n}∪{F+k(¬x) | 0 ≤ k < n} = {F k(x) | 0 ≤ k < 2n}.

which is exactly the definition of the attractors of Rn. In each of the sets [x] ∪ [¬x]
where the primitive period of x is n, by definition, there is exactly one unlabelled
binary Lyndon word of primitive period n. Consequently, there are as many such
words as there are attractors of period 2n in the dynamics of the negative Boolean
automata circuit with no positive arcs Rn.

When n is even, however, there generally exists sets [x] and [¬x] that are equal
so that the sets [x]∪ [¬x] do not coincide with the attractors of the negative Boolean
automata circuit Rn.

5.3 Cycles in a digraph under x2 mod q

In this section, we are going to present yet another point of view on the dynamics
of positive circuits inspired by the work presented by Shallit and Vasiga in [19].
In this article, the authors study, amongst other things, the cycles in a digraph
under x2 mod q. In the framework of the cyclic multiplicative group (Z/qZ)∗, where
q = 2n+1 − 1 is a Mersenne prime, they find an expression for the total number of
cycles, of elements in the cycles and of elements that are not in any cycle. Here, we
carry out a very similar study in the cyclic additive group G = Z/(2n − 1)Z. This
change of group allows, in particular, to avoid having any elements of even order
which happen to be precisely those who, in (Z/qZ)∗, do not belong to any cycle
(see [19]).

If we see the global states of the canonical positive Boolean automata circuit
network R+

n as numbers between 0 and 2n − 1 written in binary (x = x0 . . . xn−1
2 =∑n−1

i=0 xi · 2i), then the global transition function of R+
n can be written

F+(x) = (2 · x mod 2n) + xn−1

and it holds that for any c ∈ N: F+c(x) = (2c ·x mod 2n) · (1−2−n)+x ·2c−n. Thus,
for any c ∈ N, c ≤ n the following holds (where the “sufficient direction” of the last
but least equivalence can be checked easily using the fact that c ≤ n):

F+c(x) = x⇔ 0 = (2c · x mod 2n) · (1− 2−n) + x · (2c−n − 1)

⇔ 0 = (2c · x mod 2n) · (2n − 1) + x · (2c − 2n)

⇔ x · (2c − 2n) = x · (2c − 1 + 1− 2n) ≡ 0 mod 2n − 1

⇔ x · (2c − 1) ≡ 0 mod 2n − 1 (1)

Now, let x be an element of the cyclic group G = Z/(2n − 1)Z and let d = ord(x) =
min{k | x · k ≡ 0 mod 2n − 1} be its order in this group. Suppose that x ∈ Sp(R+

n ).
Then, p = min{0 < c | F+c(x) = x} = min{0 < c ≤ n | x · (2c− 1) ≡ 0 mod 2n− 1}
(the first equality is by definition of Sp(R+

n ) and the second comes from (1) above).
Therefore, either p = 1, and x ≡ 0 mod 2n−1, i.e., x ∈ {0, 2n−1}. Either p > 1 and
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then, by definition of d, it holds that x · (2p − 1) ≡ 0 mod 2n − 1 ⇔ 2p ≡ 1 mod d.
In that case, if ordd(2) is the order of 2 in the group (Z/dZ)∗, then p = ordd(2) and

Sp(R+
n ) = {x ∈ G | ord(x) = d and p = ordd(2)}, p > 1.

Every one of the ψ(d) elements in G of order d is thus in a cycle of period ordd(2)6.
Using the fact that when p = ordd(2), d|2n − 1 if and only if p|n, we can now count
the total number of cycles or attractors:∑

p|n

1

p
· |Sp(R+

n )| =
∑

d|2n−1

ψ(d)

ordd(2)

Noticing that necessarily every element x ∈ G belongs to a cycle and using the
Möbius inversion formula again, we can show that this last expression is equal to the
integer sequences already met A31(n) and Tnn. We also may note that the number of
each type of cycle depends very little on the circuit itself : it depends on n, the size
of the circuit, in that the sizes of the cycles must divide n but except from that it
otherwise only depends on the Euler’s totient function.

6 Synchronous, sequential and block sequential update
schedules

We now will look at general update schedules that do not necessarily update
all nodes of a network synchronously. In this section we will continue to focus on
Boolean automata circuits. However, the definition of update schedule is general to
all Boolean networks.

An update schedule or u.s. is a function s : V → {0, . . . , n−1}, where V is the
set of nodes of the network and n its size. s(i) represents the date of update of node i
within one global time step at the end of which all nodes of the network and thus the
network have been updated. Without loss of generality, we will consider only u.s.s s
such that min{s(i) | i ∈ V } = 0 and ∀t, 0 ≤ t < n−1, ∃i ∈ V, s(i) = t+1 ⇒ ∃j ∈
V, s(j) = t. The synchronous u.s. considered in the previous sections is denoted
by π. It is such that ∀ ∈ V, π(i) = 0. A sequential u.s. s is such that ∀i, j ∈ V ,
s(i) 6= s(j), i.e., ∀t, 0 ≤ t < n,∃i ∈ V, s(i) = t. There are n! different sequential
u.s.s of a set of n nodes. U.s.s that are neither synchronous nor sequential are called
block-sequential. For an arbitrary u.s. s, we will write Bst = {i ∈ V | s(i) = t}.
Since s defines an ordered partition of V , we may use the notation suggested in the
example 6.1. By [7], we know that the number of different u.s.s of a set of n nodes
is given by the following formula :

In =
n−1∑
k=0

(
n

k

)
Ik.

6ψ still is Euler’s totient function
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The number of different u.s.s of a networks nodes, thus, grows exponentially with
the size of the network.

Example 6.1 Let V = {0, . . . , 5}. The function s : V → {0, . . . , 5} such that
s(5) = 0, s(3) = 1, s(1) = 2, s(0) = 3, s(2) = 4 and s(4) = 5 is a sequential u.s.. The
function r : V → {0, . . . , 5} such that r(2) = 0, r(3) = r(4) = 1 and r(0) = r(1) =
r(5) = 2 is a block sequential u.s.. A more practical way of denoting s, r and the
synchronous u.s. is the following:

s ≡ (5)(3)(1)(0)(2)(4) r ≡ (2)(3, 4)(0, 1, 5) π ≡ (0, 1, 2, 3, 4, 5).

Let Rn = (Cn, F ) be an arbitrary Boolean automata circuit of size n and s an u.s.
of its nodes. F is defined by the set of local transition functions {fi | i ∈ Z/nZ}. We
define the global transition function with respect to s denoted by F s in the following
manner:

F s :

{
{0, 1}n → {0, 1}n
x(t) 7→ F s(x(t)) = (fs1 (x(t)), . . . , f

s
n−1(x(t)))

where

fsi+1(x(t)) =

{
fi+1(xi(t)) if s(i) ≥ s(i+ 1)

fi+1(xi(t+ 1)) if s(i) < s(i+ 1)

In the sequel, we will write xs(t + 1) instead of F s(x(t)) when there will be no
ambiguity as to what global transition function F we are considering. We define the
inversions of s with respect to Cn as the set

inv(s) = {(i, i+ 1) | s(i) < s(i+ 1)}.

For nodes of an inversion (i, i+ 1), xi+1(t+ 1) depends on xi(t+ 1) instead of xi(t)
as is the case when s(i + 1) ≤ s(i) and when, in particular, s = π. Obviously, the
number of inversions of an u.s. of a circuit of size n is strictly smaller than n. The
only u.s. that has no inversions is the synchronous u.s. π. In the sequel, given a
Boolean automata circuit Rn, we will refer to the dynamics induced by the u.s. s as
the dynamics of Rn when its nodes are updated according s. Now, let

i∗ = max{k < i | (k, k + 1) /∈ inv(s)}, ∀i ∈ Z/nZ,

As = {(i, j) | such that xsj(t+ 1) depends on xsi (t)} = {(i∗, i) | i ∈ Z/nZ},

Csn = (Z/nZ, As) and finally let Rsn be the network (Csn, F s) where the global tran-
sition function F s is defined above but is also given, in the usual manner, by the set
of local transition functions {hi = F [i, i∗ + 1] | i ∈ Z/nZ}. Then, when the nodes of
Rsn are updated synchronously, the dynamics of this network are identical to that of
Rn updated according to s. Furthermore, if |inv(s)| = k, then the nodes i ∈ Z/nZ
such that ∃j ∈ Z/nZ i = j∗ belong to a subgraph Cn−k of Csn which is a circuit of
size n − k and of sign that of Cn. All nodes not belonging to Cn−k depend on one
and only one node of Cn−k (as in figure 3).
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Figure 3: a. The underlying interaction graph C6 of a network R6 = (C6, F ) where F
is arbitrary. b. The interaction graph Cs6 associated to Rs6 where s ≡ (2)(3, 4)(0, 1, 5).
inv(s) = {(2, 3), (4, 5)}. The underlying circuit C4 in Cs6 has as set of nodes
{0, 1, 3, 5} = {i ∈ Z/6Z | ∃j ∈ Z/6Z i = j∗}.

Before moving on to the results of this section, let us first recall that if the
dynamics of a network has fixed points for a certain u.s., then it has the same fixed
points for every other u.s..

Proposition 1 Let Rn = (Cn, F ) be a Boolean automata circuit of size n and let r
and s be two of its u.s.s.

(i) The dynamics induced by r and by s are identical if and only if inv(r) = inv(s).

(ii) Furthermore, if inv(r) 6= inv(s), then the dynamics induced by s and by r have
no attractor of period p > 1 in common.

(iii) If |inv(s)| = k, then the dynamics of Rn are isomorphic to that of a Boolean
automata circuit Rn−k of size n− k.

Proof of Proposition 1

(i) follows directly from theorem... of [4].

(ii) Let us suppose that inv(r) 6= inv(s) and the dynamics induced by s and by r
share an attractor of period p > 1, A = {x(t), . . . , x(t+p−1)}: ∀a, x(t+a) =
xs(t + a) = xr(t + a). Let (i, i + 1) ∈ inv(s) \ inv(r). By definition of i∗, it
holds that ∀a ∈ N,

xsi (t+ a+ 1) = F [i, i∗ + 1](xi∗(t+ a))

and xsi+1(t+ a+ 1) = fi+1(x
s
i (t+ a+ 1)) = F [i+ 1, i∗ + 1](xi∗(t+ a)).

Thus, we can write the following:

xi+1(t+ 2) = xsi+1(t+ 2) = F [i+ 1, i∗ + 1](xi∗(t+ 1)) =

xri+1(t+ 2) = fi+1(xi(t+ 1)) = fi+1(x
s
i (t+ 1)) =

fi+1 ◦ F [i, i∗ + 1](xi∗(t)) = F [i+ 1, i∗ + 1](xi∗(t)).
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By the injectivity of F [i + 1, i∗ + 1], this implies that xi∗(t + 1) = xi∗(t) and
thus that the state of node i∗ and, consequently, that of all nodes are constant.
A must then be a fixed point. This contradicts p > 1.

(iii) follows immediately from the structure of Csn described above. �

Following proposition 1, we may define the equivalence relation between u.s.s that
relates r and s if and only if inv(s) = inv(r). We will denote by [s] the equivalence
class of s. The number of distinct equivalence classes of u.s.s with k inversions, is
clearly

(
n
k

)
. As a direct consequence, the following result holds:

Proposition 2 Let Rn = (Cn, F ) be a Boolean automata circuit of size n. The total
number of distinct dynamics induced by the u.s.s of Rn is

n−1∑
k=0

(
n

k

)
= 2n − 1.

bla

Let Rn = (Cn, F ) be a Boolean automata circuit of size

i

n. We may note that a particular type of equivalence class is
that of classes containing u.s.s with n − 1 inversions. There
are n such classes. Each one is characterised by the unique
i ∈ Z/nZ that is such that (i, i + 1) is not an inversion. Each
class contains exactly one u.s. which is sequential, namely, the
u.s. si ≡ (i+1)(i+2) . . . (i−1)(i) where inv(si) = {(j, j+1), j 6=
i}. The figure on the right pictures the graph underlying the
network Rsin . Because there is a loop over node i in this graph,
the dynamics induced by si contains only fixed points if Cn is
positive and only attractors of period 2 if Cn is negative.

Proposition 3 In all [s], s 6= π, there exists a sequential u.s..

Proof of Proposition 3 Consider a Boolean automata circuit of size n. By defi-
nition of the equivalence classes, it is enough to prove that for every set of k < n
inversions, there exists a sequential u.s. that satisfies exactly these k inversions.
Thus, let inv(r) such that |inv(r)| = k. We define the sets consecutive integers
Il = {il, il+1, . . . , il+ |Il|−1} and Kl = {il+ |Il|, il+ |Il|+1, . . . , il+1−1}, where we
suppose that the indices l belong to a group Z/mZ so that in particular m + 1 = 0.
The sets Il and Kl are such that Z/nZ =

⋃
l≤m(Il ∪Kl) and:

∀i ∈ Il, (i, i+ 1) ∈ inv(r), ∀i ∈ Kl(i, i+ 1) /∈ inv(r).

Using the definitions of these sets, we now define a sequential u.s. s that has exactly
the k inversions of inv(r) as the reader can check :

1. s(im) = 0
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2. ∀l ∈ Z/mZ, s(il−1) = s(il) + |Il|

3. ∀l ∈ Z/mZ, ∀k < |Il|, s(il + k + 1) = s(il + k) + 1

4. s(im + |Im|) = n− 1

5. ∀l ∈ Z/mZ, s(il−1 + |Il−1|) = s(il + |Il|) + |Kl|

6. ∀l ∈ Z/mZ, ∀k < |Kl|, s(il + |Il|+ k + 1) = s(il + |Il|+ k) + 1

Notice that points 3 and 6 above guarantee, respectively, that ∀i ∈ Il, (i, i+1) ∈ inv(s)
and ∀i ∈ Kl, (i, i+ 1) /∈ inv(s) so that inv(s) = inv(r). �

Example 6.2 Let s ≡ (2)(3, 4)(0, 1, 5) be an u.s. of the nodes of C6 (as in fig-
ure 3.....3). Its set of inversions is inv(s) = {(2, 3), (4, 5)}. According to proposi-
tion 1 (i), all of the following u.s.s induce the same dynamics as s, i.e., belong to
[s]:
s1 ≡ (4, 2)(0, 1, 3)(5), s2 ≡ (4)(2)(3)(1)(0)(5), s3 ≡ (2)(4)(1)(0)(5)(3),

s4 ≡ (4)(2)(1)(0)(3)(5).

s2 corresponds to the sequential u.s. built in the proof of proposition 3 when I1 = {2},
I2 = {4}, K1 = {3}, and K2{1, 0, 5}. s3 corresponds to the sequential u.s. built in
the proof of proposition 3 when I1 = {4} and I2 = {2}. s4 is not constructed as in
the proof of proposition 3.

Proposition 4 Given a Boolean automata circuit (positive or negative) Rn = (Cn, F )
and a set A = {x(0), . . . , x(p − 1)}, p > 1, we can determine in O(p · n) steps
whether there exists an u.s. s such that A is an attractor of period p of Rsn, i.e.,
F s(x(t)) = x(t + 1), ∀ 0 ≤ t < p and F s(x(p − 1)) = x(0). If such an u.s. s exists,
we can compute in O(p · n) steps a sequential u.s. r ∈ [s].

Proof of Algorithm 1 To prove that algorithm 1 does indeed return the required u.s.
when it exists, we must prove that the sets Il and Kl that it computes are the same as
those defined with the same names in the proof of proposition 3. Suppose s is the u.s.
inducing the attractor A. First note that (i−1, i) /∈ A(s) ⇔ (i−1, i) ∈ inv(s) Now,
∃t, xi(t) 6= yi(t) ⇒ fi 6= fsi = F [i, i∗+1] ⇔ i∗ 6= i−1 ⇒ (i−1, i) /∈ A(s). On the
other hand, suppose that (i− 1, i) /∈ A(s) that is, i∗ 6= i− 1. There exists necessarily
(because p > 1) an integer t such that xi∗(t) 6= xi∗(t+1) so that xi(t+2) = F [i, i∗+
1](xi∗(t+1)) 6= yi(t+2) = F (x(t+1))i = fi(xi−1(t+1)) = fi ◦F [i−1, i∗+1](xi∗(t)).
�

In conclusion of this first part of my report, I may say that most combinatoric prob-
lems concerning Boolean automata circuits have now been dealt with. In particular,
we know the exact value of both the total number of attractors and the number of
attractors of period p, ∀p ∈ N, in the dynamics of positive and negative Boolean
automata circuits updated with the synchronous, sequential and the block sequential
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Algorithm 1: Finding a sequential u.s. that induces a particular attractor of
a given Boolean automata circuit if it exists

Input: Rn = (Cn, F ) and A = {x(0), . . . , x(p− 1)} as in proposition 4.
Output: A sequential u.s. s such that the attractor A belongs to

the dynamics of Rsn if such an u.s. exists.

begin
In O(p · n) steps, compute the set1

Aπ = {y(t) | 0 ≤ t ≤ p, y(t+ 1) = F (x(t))} (where y(0) = y(p));

In O(p · n) steps, compute the sets of consecutive integers Il2

and Kl as well as their sizes |Il| and |Kl| such that ∀i ∈ Il,
∃t < p, xi(t) 6= yi(t) and ∀i ∈ Kl, ∀t < p, xi(t) = yi(t), ∀i ∈ Kl, ∀j ∈ Il,
i > j;

In O(n) steps, compute the sequential u.s. s as in the proof3

of proposition 3 using the sets Il and Kl;

In O(p · n) steps, compute the set4

As = {x(0), F s(x(0)), . . . , F sp−1
(x(0))} and check that As = A. If

not then no u.s. induces A as an attractor.
end

update schedules. We also know how many different dynamics can be induced by
the set of update schedules of a Boolean automata circuit. One main question re-
mains unanswered however : “What are the sizes of the equivalence classes of update
schedules that yield the same dynamics?”. For the very particular cases of [π] and
of the classes of update schedules with n − 1 inversions (where n is the size of the
circuit) we know the size of the classes is 1. We also obtained a very intricate formula
for the size of classes of update schedules having consecutive inversions only. Being
particularly hard to analyse, I chose not to let this formula feature in this report. It
however implies that the sizes of such classes is exponentional as may certainly be
that of many other classes. One motive (amongst others) for studying this question
follows from A. Elena’s work. In his PhD thesis [8], Elena computed statistics of the
number of attractors of threshold Boolean automata networks as well as of their pe-
riods averaging over all networks (of sizes between 3 and 6) and all update schedules.
For both he found particularly small values. Now, as I have already mentioned, it is
known that underlying circuits play an important role in the dynamics of a network
with an arbitrary structure. Provided we knew how to link some way the dynamics
of a circuit with that of an arbitrary network containing it, knowing the answer to
this question would thus allow us to understand whether the averages found by Elena
are small because most networks contain only small circuits or if it is because most
update schedules of the networks restricted to their underlying circuits correspond to
those equivalence classes inducing the “same” dynamics as that of very small circuits
updated synchronously.
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APARTE

Equivalence classes of u.s.s consecutive inversions [part removed in final
report submitted]

Lemma 6.1 Let V = U ∪ W where U =
⋃
t<q Bt and W = {w1, . . . , wk}. The

number of u.s.s s of V satisfying :

(i) ∀i ∈ Bti , ∀j ∈ Btj , s(i) = s(j)⇔ ti = tj and s(i) < s(j)⇔ ti < tj,

(ii) ∀i ≤ k, s(wi) < s(wi+1)

is equal to Z(q, k) = Z(q, k−1)+2·
q∑
t=0

Z(q−t, k−1).

Proof of By induction on k and q. If k = 0 then, the only u.s. s satisfying the
desired conditions is such that s(i) = t, ∀i ∈ Bt. If q = 0, then, the only u.s. s
satisfying the desired conditions is such that s(wi) = i. Suppose that k, q ≥ 1. There
are three cases. In the first one, there exists t < q such that ∀t′ ≤ t,∀i ∈ Bt′ s(i) = t′

and s(w1) = t. Then, ∀i > 1, s(wi) > t so that there are Z(q − t, k − 1) such
u.s.s. In the second case, there exists t < q such that ∀t′ ≤ t,∀i ∈ Bt′ s(i) = t′ and
s(w1) = t+1. Again, there are Z(q−t, k−1) such u.s.s. In the third case, s(w1) = 0
and ∀i ∈ B0 s(i) > 0. There are Z(q, k − 1) Summing over t, the result follows. �

Proposition 5 Let [s] be an equivalence class of u.s.s that have k consecutive in-
versions, i.e., ∀r ∈ [s], ∃i, j < n,

∀k < i, ∀k ≥ j, (k, k + 1) /∈ inv(r) and ∀k, i ≤ k < j, (k, k + 1) ∈ inv(r).

Then, |[s]| =
n−k∑
q=1

(
n− k
q

)
×Z(q, k − 1).

Proof of
(
n−k
q

)
is the number of ways of partitioning the set {i < n | (i, i + 1) /∈

inv(s)} into q parts. The reason why Z(q, k − 1) figures in this formula instead of
Z(q, k) is that the image of node i = min{k | (k, k + 1) ∈ inv(s)} is necessarily 0.
�
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Part II

OR networks
In this section we are going to look at networks that are more general in their

structure than the circuits considered above, but less general in their transition
function since all of their local transition functions are equal to the function OR
with no negated entries. We will call this class of networks OR+. A network R of
OR+ is thus completely defined by its underlying interaction graph G = (V,A). This
is why, in the sequel, with a slight abuse of language we will refer to G indifferently
as a graph or as a network of OR+. Let i be a node of such a network G = (V,A) of
size |V | = n and let N−(i) = {j ∈ V | (j, i) ∈ A}. Then, if x(t) = (x1(t), . . . , xn(t))
is the global state of G at time t, with the synchronous u.s., the local state of i at
time t+ 1 is:

xi(t+ 1) =
∨

j∈N−(i)

xj(t),

i.e., xi(t + 1) = 1 ⇔ ∃j ∈ N−(i), xj(t) = 1. It is interesting to note that this can
be expressed in terms of matrices. Let M be adjacency matrix of G, that is, the
n × n matrix such that ∀i, j, Mij = 1 ⇔ (i, j) ∈ A. Then ∀x(t) ∈ {0, 1}n, ∀k ∈
N, x(t+k) = x(t)·Mk. Without loss of generality, we suppose all networks considered
in this section to be connected. Many notations used in the sequel are obvious
extensions of notations introduced in the previous sections.

In his PhD Thesis [8], Adrien Elena defines four classes of Boolean threshold
automata networks and describes the extensive computer simulations he performed
in particular to give statistics of the number of networks in each class. The four
classes are defined below. First, note again in this framework that the set of fixed
points of the dynamics of a network is invariant with u.s. changes.

1. Fi is the class of networks whose dynamics only has fixed points whatever the
u.s.,

2. Cy is the class of networks whose dynamics only has attractors of period p > 1
whatever the u.s.,

3. Mi is the class of networks whose dynamics has at least one fixed point and
one attractor of period p > 1 whatever the u.s.,

4. Ev is the class of networks whose dynamics has fixed points for all u.s.s and
for some u.s.s, not all, it also has attractors of period p > 1.

For networks of OR+ of arbitrary size n, it is clear that the states7 0n and 1n are
always fixed points. Consequently, there are no OR+ networks in the class Cy. In
order to carry out a theoretical study related to Elena’s work in the particular case of
OR+ networks we define in table 3 a variant of the set of four classes above. Clearly,
every OR+ network belongs to one of the six classes defined in this table. In the

7If, a ∈ {0, 1}, x = an is the vector such that ∀i, xi = a.
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∃ FP 0n et 1n ∃ CLp, p > 1∃ d’autres FP 6= 0n, 1n

O OO
O ON
O NO
O NN

∃ m.i. tel que O
∃ m.i. tel que N

O O

O N

Ev’

Ev

Mi
Cy
Fi’
Fi

∃ m.i. tel que N
∃ m.i. tel que O

Table 3: In the first column of this table, figures the name of the classes that are
defined on the corresponding lines. In the first line figures properties of the dynamics
of networks: a “Y” in the second column means that the networks dynamics have
the two fixed points 0n and 1n, a “Y” in the second column means that the networks
dynamics have other fixed points, a “N” means they have not and finally, in the last
column, a “Y” means that the networks dynamics have attractors of period p > 1
and a “N” means they have not. “∃ u.s. such that Y” and “∃ u.s. such that N”
that appear in the last columns of lines corresponding to the classes Ev and Ev’
mean that for some u.s.s networks in these classes have attractors of period p > 1
and for some they have not. From theorem 6.3, the lines in white correspond to
classes that are empty. From corollary 6.1, the lines in red correspond to classes of
OR+ networks that are strongly connected and lines in blue to networks that are
not strongly connected.

sequel, given two nodes of a network u and v, we call walk of size k from u to v a set
of nodes {v0 = u, v2, . . . , vk = v} where ∀i < k, (vi, vi+1) is an arc of the network.
The following lemma is easy to show by induction and is crucial to the other results
of this section:

Lemma 6.2 Let G be an OR+ network and i, j ∈ G such that there exists a walk of
size k from i to j in G. Then, xi(t) = 1 ⇒ xj(t+ k) = 1.

This lemma has two important consequences. The first one is that if a node v with
a loop (i.e., an arc from v to v) is initially in state 1 then it will always stay in that
state. The second is that if there exists a node in a strongly connected component C
whose state is fixed at 1 (for instance because there is a loop on it or simply because
we are considering a fixed point in which 1 is this nodes state) then the state of
this component will necessarily evolve to (or remain in) the state 1|C|. Hence the
following results:

Proposition 6 Let G be an OR+ network of arbitrary size n. Let C be a strongly
connected component of G and let x ∈ {0, 1}n be a fixed point of G. Then, either
∀i ∈ C, xi = 0 or ∀i ∈ C, xi = 1.
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Corollary 6.1 An OR+ network of arbitrary size n has as sole fixed points 0n and
1n, i.e., belongs to one of the classes Fi, Cy and Ev, if and only if it is strongly
connected. As a consequence, networks belonging to the classes Fi’, Mi and Ev’ have
at least two strongly connected components.

Proof of Corollary 6.1 The first direction of the equivalence comes from proposi-
tion 6. Suppose G = (V,A) is an OR+ network of size n with at least two strongly
connected components. Let G∗ = (C,A) be the graph whose set of nodes C is the set
of strongly connected components of G and whose set of arcs is A = {(B,C) | B,C ∈
C, ∃i ∈ B, ∃j ∈ C, (i, j) ∈ A}. Let B,C ∈ C such that (B,C) ∈ A and let U = {D ∈
C | ∃ a walk in G∗ from D to B} and D = {D ∈ C | ∃ a walk in G∗ from C to D}.
By definition of G∗, these two sets are disjoint. Then, the state x ∈ {0, 1}n of G
satisfying ∀i ∈ U , xi = 0 and ∀i ∈ D, xi = 1 is clearly a fixed point of G different
from 0n and from 1n. �

We are now going to look at different update schedules of OR+ networks. In a
network G = (V,A) updated according to an update schedule s, the following holds:

xi(t+1) = 1 ⇔ ∃j ∈ N−(i), [s(j) ≥ s(i)∧xj(t) = 1] ∨ [s(j) < s(i)∧xj(t+1) = 1]

In the sequel, we will denote by G(s) the network (or graph) corresponding to the
network (or graph) G updated according to an arbitrary u.s. s, that is, the graph
in which the arc (i, j) exists if and only if xsj(t+ 1) depends on xsi (t). In particular,
if s = π, then G(π) = G. We will refer to the dynamics of G updated according to
s as that of G(s) (updated according to π). The following lemma which is easy to
prove, is true independantly of the type of transition function of the network :

Lemma 6.3 Let G = (V,A) be the graph associated to a Boolean network. Then,
(u, v) ∈ G(s) if and only if there exists a walk {v0 = u, . . . , vk = v} from u to v in
G such that

s(u) ≥ s(v1) and ∀i, 1 ≤ i < k, s(vi) < s(vi+1).

As a consequence, we have the following result :

Theorem 6.1 For any OR+ network G there exists an u.s. s such the dynamics of
G(s) has only fixed points.

Proof of Theorem 6.1 For every strongly connected component C of G we can
choose a node v ∈ C and a walk {v0 = v, v1, . . . , vk = v} from v to v. We then can
define an u.s. s such that for every such node and such walk, s(vi+1) > s(vi), ∀0 <
i < k so that there exists a loop over node v in G(s). Then, from the previous results,
the dynamics of G(s) has only fixed points. �

Now, we define the following property P that applies to strongly connected graphs
or components of a graph :

P(G) ⇔ η(G) = 1
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where η(G) is the greatest common divisor of the lengths of all circuits in the strongly
connected graph or component G. It is known (see for instance [5]) that this property
is equivalent to the adjacency matrix of G being primitive. Results mentioned in [5]
allow us to derive the following theorem:

Theorem 6.2 Let G be a strongly connected graph and s an arbitrary u.s.. P(G(s))
is true if and only if the dynamics of G(s) has no attractor of period p > 1.

Proof of Theorem 6.2 As it has been mentioned above theorem 6.2, P(G(s)) is
equivalent to the adjacency matrix M(s) of G(s) being primitive. Now it is also
known (again, see [5]) that the primitivity of M(s) is equivalent to the existence of
an integer N such that ∀p ≥ N, M(s)p is a positive matrix. This means that if
x(t) 6= 0n then there exists an integer p such that xs(t + p) = x(t) ·M(s)p = 1n.
On the contrary, if M(s) is imprimitive then such an integer N does not exists. The
greatest common divisor of the lengths of all circuits in G(s) = (V,A) is an integer
η(G(s)) = k > 1 and the set of nodes can be partitioned the following way (the proof
of this is given in [5]) : V =

⋃
i<k Vi where ∀(u, v) ∈ A, ∃i < k, u ∈ Vi, v ∈ Vi+1

and ∀v ∈ Vi+1, ∃u ∈ Vi, (u, v) ∈ A. Then, any x ∈ {0, 1}n, x 6= 0n, x 6= 1n, such
that ∀i < k, ∀u, v ∈ Vi, xu = xv belongs to an attractor of period p > 1. �

Summing up the previous results and their consequences, we have the following:

Theorem 6.3 (i) Mi = Cy = ∅,

(ii) Any strongly connected graph G such that ¬P(G) is true, belongs to Ev,

(iii) Any graph G such that every one of its strongly connected components C sat-
isfies ¬P(C) belongs to Ev’,

(iv) None of the classes Fi, Fi’, Ev, Ev’ is empty.

Proof of Theorem 6.3 (i) follows from theorem 6.1, (ii) and (iii) from theorems 6.1
and 6.2 and (iv) from (ii), (iii) and the fact that all networks with at least one loop in
each of their strongly connected components belongs either to Fi or to Fi’ according
to the number of these components. �

G1 ∈ Fi G2 ∈ Fi’ G3 ∈ Ev G4 ∈ Ev’

The remaining question which needs to be answered in order to be able to classify
all OR+ networks into one of the six classes of table 3 is the following :

Which are the OR+ networks G for which there exists an u.s. s such that the
dynamics of G(s) has attractors of period p > 1?
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Following theorem 6.3, the remaining unclassified networks are those that have (or
are) strongly connected components C without loops such that P(C) is true. These
networks whose dynamics only has fixed points for the synchronous u.s., belong
either to Fi or to Ev (resp. to Fi’ or to Ev’) if they are strongly connected (resp. if
they are not). Before, identifying sub-classes of these networks belonging to one of
the classes Fi, Fi’, Ev and Ev’, let us first determine some properties of the graphs
G(s).

Proposition 7 Let G be a strongly connected graph and s an u.s. of its nodes.
Then, G(s) has one unique strongly connected component C. If u ∈ C, then ∀v /∈ C,
there is no walk from v to u and if v /∈ C, then for a certain u ∈ C, there exists a
walk from u to v.

Proof of Proposition 7 Because, in G = (V,A), deg−(u) = |N−(u)| > 0,∀u ∈ V
the same is necessarily true in G(s) = (V,A(s)) (with both u.s. π and s, every
nodes state depends on at least one other nodes state). Thus, there exists a strongly
connected component in G(s) and for any node a which is not in a strongly connected
component, there exists a walk to a from such a component. Now, suppose there exists
two distinct strongly connected components C1 and C2 in G(s) and let u ∈ C1 and
v ∈ C2. In G there exists a walk {v0 = u, v1, . . . , vk = v} from u to v. For every i
such that there exists a j < i satisfying s(vj) ≥ s(vj+1), it can be proven that there
exists a walk from vj to vi using lemma 6.3. If i is such that there is no such j then
∀k < i, s(vk) < s(vk+1). In that case, ∀k ≤ i, xsvk(t+1) depends on xsu(t+1) which
depends on the xw(t) where w is such that (w, u) ∈ A(s) so that also (w, vk) ∈ A(s).
Among such nodes w there necessarily exists some that belong to C1. Therefore,
in any case, there exists a walk from a node w ∈ C1 to

C

vi and thus, as well, a walk from u to vi in G(s). Con-
sequently, in G(s), there exists a walk from u to v and,
for the same reason, a walk from v to u. This contra-
dicts the existence of the two distinct strongly connected
components C1 and C2. �

In the following result, N+(i) = {j ∈ V | (i, j) ∈ A} and
deg+(i) = |N+(i)|.

Proposition 8 Let G = (V,A) be a strongly connected graph and s an u.s. of its
nodes. Then G(s) is strongly connected if and only if ∀i ∈ V, ∃j ∈ N+(i), s(i) ≥
s(j).

G G(s)

ii

Proof of Proposition 8 If i, j ∈ V are such that j ∈ N+(i) and s(i) ≥ s(j), then
xsj(t + 1) depends on xsi (t), ∀x(t) so that (i, j) ∈ A(s) and deg+(i) > 0 in G(s).
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Thus, if ∀i ∈ V, ∃j ∈ N+(i), s(i) ≥ s(j), then ∀i ∈ V, deg+(i) > 0 so that all nodes
belong to the sole (cf proposition 7) strongly component of G(s). Conversely, if i is
such that ∀j ∈ N+(i), s(j) > s(i) then, there are no k ∈ V such that xk(t + 1)
depends on xi(t) and deg+(i) = 0 in G(s). �

Now, we examine a few particular classes of OR+ networks and determine to which
of the four non-empty classes defined in table 3 they belong.

Proposition 9 Let G = (V,A) be a symmetric graph (∀u, v ∈ V, (u, v) ∈ A ⇒
(v, u) ∈ A). G belongs to Fi if and only if it contains a circuit of odd length.
Otherwise, G = G(π) has attractors of period 2 and ∀s 6= π, G(s) has only fixed
points.

G2G1

Figure 4: Two symmetric graphs as in proposition 9. G1 has a circuit of odd length
so G1 ∈ Fi. G2 only has circuits of even length so G2 ∈ Ev.

Proof of Proposition 9 For any nodes u and v such that (u, v), (v, u) ∈ A, if
s(u) > s(v) then and xsu(t+ 1) depends on xsv(t+ 1) which depends on xsu(t) so that
there exists a loop over u in G(s). So the only u.s. of G that can induce limit cycles
is the synchronous u.s. π. If there exists an odd length circuit in G, then since there
also exists circuits of length two in G (between any pair of connected nodes), P(G)
is true. �

In the following result, edges are defined as walks that can only intersect at their
extremities Circuit-edges are edges that belong to at least one circuit of the graph
considered. The length of an edge is the number of arcs in it.

Proposition 10 A graph that has at least one strongly connected component and
only has circuit-edges of length l ≥ 2 belongs to Ev or to Ev’ (according to how many
strongly connected components it has).

Proof of Proposition 10 First note that the property P(G(s)) does not depend on
arcs that are not in a circuit. For every circuit-edge {v0, v1, . . . , vl} of length l ≥ 2
let s be an u.s. satisfying :

s(vi+1) ≤ s(vi), ∀i ∈ {1, } ∪ {3, . . . l − 1} and s(v3) ≤ s(v2) if and only if l is even.
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Figure 5: a. A graph G with as that considered in proposition 10. Different colours
correspond to different circuit-edges. This graph has circuits of sizes 4, 5 and 6 so
that η(G) = 1. b. The graph G(s) where s ≡ (1, 2, 4, 5, 6, 7, 9, 10)(3, 8). The circuits
in G(s) all have size 4 = η(G(s)) > 1.

Note that if l = 2 then ∀i ≤ 2, s(vi+1) ≤ s(vi) and the walk remains unchanged in
G(s). Otherwise, if l is odd s(v3) > s(v2) has as only consequences that in G(s),
v2 no longer belongs to a circuit-edge and the length of the edge between v1 and
vl is cut down to l − 1 without changing the length of any other circuit-edge since
N−(v3) = {v2}. Finally, by definition of circuit-edges, such an u.s. exists. In G(s)
all circuit-edges are then of even length so that the circuits also all have an even sizes
and ¬P(G(s)). �

In fact, the construction of the proof of proposition 10 may give an u.s. s such
that η(G(s)) > 1 for networks G that are less constrained than those mentioned in
proposition 10 (see figure below where s ≡ (2, 3)(1, 4)).

1

4

2 3

G

1

4

2 3

G(s)

Let G = (V,A) be a graph of size |V | = n. We call covering of type k of G a set
C =

⋃
C CC of nodes of G where the Cs are circuits of G, the sets CC are such that: (i)

CC ⊆ C, (ii) ∃q ∈ N, |CC| = k·q and (ii) if C = {v0, . . . , vp−1} and C′ = {v′0, . . . , v′r−1}
are two distinct circuits ofG then ∀v = vi = v′j ∈ C∩C′, v ∈ CC, v /∈ CC′ , vi+1 6= v′j+1.
The purpose of the following result is to allow to express problems concerning the
dynamics of OR+ networks with respect to different u.s.s without mentioning u.s.s.

Proposition 11 Let G = (V,A) be a graph. There exists an u.s. s such that
η(G(s)) = k > 1 if and only if there exists a covering of type k of G.

To prove proposition 11, the following lemma is needed. It can easily be proven using
the results of the previous section or lemma 6.3.
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Lemma 6.4 Let G = (V,A) be a graph and s an u.s. of its nodes.

(i) If C = {v0, . . . , vp−1} is a circuit of G, then Cs = {vi ∈ C, s(vi) ≥ s(vi+1)} is
a circuit of G(s);

(i) If Cs is a circuit of G(s), then there exists a circuit C of G such that all nodes
of Cs belong to C.

Proof of Lemma 6.4 First suppose the u.s. s is such that η(G(s)) = k > 1 and
for every C = {v0, . . . , vp−1} in G, let CC = {vi ∈ C, s(vi) ≥ s(vi+1)} and let
C =

⋃
C CC. Then from lemma 6.4, the sets CC are circuits of G(s) so that k is a

divisor of their size. The last condition required for C to be a covering of type k of
G is obviously satisfied. On the other hand, suppose C =

⋃
C CC is a covering of

type k of G. Let s be an u.s. such that for any circuit C = {v0, . . . , vp−1} of G,
∀vi ∈ CC, s(vi) > s(vi+1) ∀vi ∈ C \ CC, s(vi) ≤ s(vi+1) (it may be verified that such a
s always exists). Then, the sets CC are clearly the circuits of G(s). �

From proposition 11, follows proposition 12 in which the generalised lattice is a graph
as in figure 6. Except on the border of the lattice, nodes are of in-degree and out-
degree either both one or both two and all squares of the lattice are circuits. On
each edge, there can be an arbitrary number of nodes greater or equal to two8. By

Figure 6: The generalised lattice. The arcs in black are the arcs of the initial graph
G. Arcs in red belong to G(s) where s is constructed as in the proof of proposition 11
with C being the set of nodes in red.

showing that there exists a cover of type 2 as in figure 6, we can build an u.s. s such
that G(s) has attractors of period 2.

8Note that the generalised lattice does not fall into the scope of proposition 10 when it has edges
with just two nodes, i.e., one arc.
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Conclusion

Proposition 12 The generalised lattice belongs to Ev.

From the study presented in this section on OR+ networks the first thing we
have learned is that however simple these networks seem to be, they give rise to
many non trivial problems. Thus, it seems reasonable to think that performing
the same study for arbitrary threshold Boolean automata networks still is a rather
ambitious task at this stage. Indeed, a property of OR+ networks we have made
implicit and extensive use of in this section is that of having dynamics that depend
very tightly on the underlying structure of the network. Generally this property
is not true for other networks. Being able to justify theoretically the results Elena
found by computer simulations on small networks, and in particular, being able to
account for the sizes of the classes he defined as well as for the average period of their
attractors, thus remains a particularly inviting challenge, very closely related to the
problem examined in part I of this report. However, although our aim is effectively
to understand the dynamics of threshold Boolean automata networks and not just
OR+ networks9, completing our understanding of the latter would probably be a
first useful step. To do this, we would need to answer the following question which
is the main one remaining unanswered, at least for arbitrary OR+networks, at the
end of part II:

Amongst the networks that have no loops and are such that all of their strongly
connected components C satisfy P(C), which are the ones that have attractors of

period p > 1 for a certain update schedule?

7 Conclusion

To sum up very briefly, during this internship, on the first hand I studied Boolean
automata circuits and significantly cut into the combinatorial analysis of their dy-
namics in all update schedules. The remaining relevant question in this framework
concerns the number of different update schedules inducing the same dynamics, given
a circuit. Subsequently, rather than choosing to go on studying particular patterns
that may be found underlying in arbitrary networks, such as circuits , I chose to lift
all restrictions on the structure of the networks. However, in order to manage to
classify networks according to their dynamics, a was my aim, some different types
of restrictions were needed. Thus, OR+ networks with their very simple transi-
tion function were chosen and some progress that may be pursed was made in their
classification.

Beyond the questions that arise directly from the two different studies I carried
out during this internship (that of parts I and II respectively) and besides their
obvious need for an extension to more general networks than the one examined here,
I believe this work calls for many other investigations in the same or in close lines.

9or, incidently, AND+ networks which can be treated almost identically by exchanging the role
of states 1 and 0
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A first natural and essential perspective would be to carry out some comparisons
with other related studies and the results they produced. For instance, in [12], [3]
and [8], experimental or theoretical results prove or suggest that the networks in
question have only very little different asymptotic dynamical behaviours (O(

√
n) in

the case of connectivity 2 networks considered in [12] and [3], one or two in the case
of the small networks studied by Elena). If, again, we suppose the underlying circuits
in a network play a decisive part in its dynamics, this seems to be at first sight in
contradiction with the exponential number of attractors of Boolean automata circuits
that we found in part I. I believe it would be interesting to connect the two sources
of results in order to lift the contradiction.

Another immediate angle of inquiry that could be taken would be to explore
further the dynamics of networks and consider not only their attractors but also
their basins of attraction, i.e., the set of global configurations that lead to a particular
attractor of a network.
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