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Introduction

The supplementary material contains additional �gures and tables to the paper �Parametric Estima-

tion of Ordinary Di�erential Equations with Orthogonality Conditions�. It gives more information

about the results of the Monte Carlo simulations for the comparison of the TS, NLS and OC esti-

mators. Indeed, for the evaluation of estimator accuracy, we compute the Absolute Relative Error

(ARE) de�ned by

ARE =
1

NMC

NMC∑
i=1

∣∣∣θ∗ − θ̂i∣∣∣
|θ∗|

.

Additionally, we compute the weighted Orthogonal Condition estimators obtained by minimizing

the criterion QW
n,L(θ) = eL

(
φ̂, θ
)>

WeL

(
φ̂, θ
)
, where the weight matrix computed by the IRWOC
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algorithm, as introduced and motivated in section 5 of Supplementary Material I. We also compute

the coverage probabilities of the estimator (NLS, OC and OC with an optimally weighted weight

matrix): we look at the in�uence of the sample size n and of the noise level con�dence ellipses

derived from the asymptotic (Gaussian) approximation.

The supplementary material contains additional tables and �gures for the models introduced in

the paper:α-pinene, Riccati, and also for the real data example: In�uenza virus growth and Blow�y

populations dynamics. Moreover, we have tested our approach with the �FitzHugh-Nagumo model�

for neuron dynamics. This model is chosen as it is an example of 2D nonlinear ODE with nonlinear

dependence in the parameters (with a periodic solution). This model was introduced by Ramsay et

al. as a benchmark for ODE estimation. We recall then brie�y the model, and we compare the 3

approaches discussed in the paper. Concerning the Riccati equation, we plot the objective functions

minimized by NLS and OC, in order to explain the di�erence of the NLS and OC estimators when

the change-point time is not known.

Comments

From the simulations, we can check that the con�dence sets given by NLS are too stringent, and

NLS overestimates the coverage probabilities, as the (Monte-Carlo) estimated coverage probabilities

are quite smaller than 95% (for all simulated models: α-pinene, Riccati, FitzHugh-Nagumo). On

the contrary for OC, we can check the reliability of the derived con�dence sets, as the estimated

coverage probability is around 95% (or even higher). This is partly due to the estimated variance

of OC that is higher than the NLS (as we can see by comparing the sum of estimated parameters

variances Tr
(
V
(
θ̂
))

). Hence, this also con�rms the quality of the Gaussian approximation derived

from the asymptotic analysis of the paper.

The Optimally Weighted OC was introduced in order to ameliorate the variance of the OC esti-

mator, in order to reduce the size of the Con�dence sets while preserving the coverage probabilities.

Although this version should improve on the unweighted OC estimator, this is not always true in

practice, and the �Optimal� estimator can be worse. This is mainly due to the fact that we approx-

imate the variance by linearization technics, and we do not control the error propagation of this

approximation in the IRWOC algorithm. Hence, we are not sure that we obtain the optimal matrix.

Moreover the control of the nonsingularity of the variance matrix can force us to reduce the number

of orthogonal conditions, which can induce a loss of inference power. Nevertheless, the optimal

weighting approaches improve upon the simple OC estimator for α-pinene and FitzHugh-Nagumo;

in addition the optimal weighting estimator gives the best estimate for the In�uenza Virus Growth

model.
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1 Linear ODE: α-pinene

1.1 Known initial condition

×10−2 MSE Tr
(
V (θ̂)

)
(n, σ) TS OC OCopt OC,0 OC,0 opt NLS OC OCopt OC,0 OC,0 opt NLS

(400, 3) 0.72 0.05 0.04 0.04 0.03 0.02 0.04 0.04 0.04 0.05 0.02

(400, 8) 2.28 0.22 0.27 0.25 0.22 0.10 0.95 1.91 1.20 2.23 0.12

(200, 3) 1.19 0.27 0.33 0.30 0.32 0.03 0.09 0.20 0.13 0.24 0.03

(200, 8) 2.95 0.44 0.51 0.37 0.47 0.18 2.66 4.96 2.68 5.48 0.27

(50, 3) 2.39 0.27 0.27 0.26 0.26 0.16 1.37 2.75 1.58 3.31 0.16

(50, 8) 4.54 1.03 0.94 0.93 0.89 0.68 7.96 8.20 7.27 9.13 1.68

×10−2 ARE

(n, σ) TS OC OCopt OC,0 OC,0 opt NLS

(400, 3) 105.85 20.45 19.83 18.99 17.64 11.61

(400, 8) 213.69 47.90 49.48 50.77 45.29 28.65

(200, 3) 150.53 37.16 40.36 36.38 37.40 16.58

(200, 8) 235.62 57.50 60.64 58.54 59.97 38.93

(50, 3) 220.59 51.19 52.41 51.13 51.72 34.49

(50, 8) 283.02 112.52 110.44 107.21 107.77 76.52

Table 1: MSE, Asymptotic Variance & ARE for α-pinene model with known Initial Condition

Figure 1: Coverage Probabilities for the 95% Con�dence Ellipse for α-pinene model with known
Initial Condition
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1.2 Unknown initial condition

×10−2 MSE Tr
(
V (θ̂)

)
(n, σ) TS OC OCopt OC,1 OC,1 opt NLS OC OCopt OC,1 OC,1 opt NLS

(400, 3) 0.25 0.11 0.25 0.11 0.52 0.07 0.10 0.11 0.10 0.09 0.06

(400, 8) 1.07 0.85 0.85 0.56 0.73 0.50 1.06 0.94 0.82 0.45 0.61

(200, 3) 0.6 0.37 0.50 0.23 0.34 0.14 0.25 0.25 0.20 0.17 0.14

(200, 8) 1.64 1.42 1.18 0.83 1.68 1.34 2.36 2.30 1.64 0.50 1.54

(50, 3) 1.33 1.31 1.18 0.80 1.04 0.69 1.63 1.46 1.02 0.39 0.76

(50, 8) 3.64 2.11 1.91 1.79 3.44 1.96 5.34 4.35 2.20 0.81 4.38

×10−2 ARE

(n, σ) TS OC OCopt OC,1 OC,1 opt NLS

(400, 3) 60.13 32.66 39.51 32.58 56.48 24.13

(400, 8) 127.82 86.64 88.53 79.02 112.08 63.52

(200, 3) 88.75 52.84 59.02 47.48 75.10 34.70

(200, 8) 158.17 117.44 113.69 108.70 177.77 98.85

(50, 3) 138.31 99.87 97.36 89.22 121.73 69.27

(50, 8) 247.57 161.97 164.31 165.55 214.20 144.83

Table 2: MSE, Asymptotic Variance & ARE for α-pinene model with unknown initial conditions

Figure 2: Coverage Probabilities for the 95% Con�dence Ellipse for α-Pinene with unknown Initial
Conditions
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2 Nonlinear ODEs

2.1 Ricatti equation

We recall that the asymptotic criterion for the nonlinear least squares is

R∗NLS(θ, x0) = ET,Y

[
‖Y − φ(T ; θ, x0)‖2

]
= σ2 +

ˆ 1

0

‖φ(t; θ, x0)− φ(t; θ∗, x∗0)‖
2
π(t)dt

whereas the asymptotic criterion for OC is

Q∗L(θ) =

L∑
`=1

e`(φ
∗, θ)2.

When the Ricatti equation is simply ẋ = ax2 + c
√
t, with unknown a and c, the criterion RNLS

is nonlinear in θ (no closed-form), whereas the Q∗L(θ) is a simple quadratic form, which is simple

to optimize. In that case, we can check (by Monte-Carlo simulations) that the optimization of

the empirical counterpart of RNLS(θ, x0) gives better results (when we start close to θ∗) than

Q∗L(θ). Nevertheless, when the parametrized ODE is ẋ = ax2 + c
√
t − d′c1[Tr;14], the statistical

inverse problem becomes much harder to solve. This can be seen by plotting the criterion function

R∗NLS(θ, x0) which is a rough function, that makes it di�cult to optimize. At the contrary, the

function Q∗L(θ) is quite smooth and exhibits (locally) only one minimum at θ∗. In order to visualize

the 2 objective functions, we �x a = a∗ and c = c∗ and we consider d′ ∈ [0, 3] and Tr ∈ [10, 14] (for

NLS, we have also to �x x0 = x∗0 = −1). We recall that we have d′∗ = 2 and T ∗r = 11.

2.1.1 Known change-point time Tr
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Figure 3: Contour plots for Asymptotic Statistical Criterions in Ricatti ODE: (Left) NLS criterion
R∗NLS(d

′, Tr); (Right) OC criterion Q∗L(d
′, Tr)

(d′∗ = 2, T ∗r = 11).

Figure 4: Contour plots for Asymptotic Statistical Criterions in Ricatti ODE: (Left) NLS criterion
R∗NLS(d

′, Tr); (Right) OC criterion Q∗L(d
′, Tr), (d

′∗ = 2, T ∗r = 11)
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×10−2 MSE ARE Tr
(
V
(
θ̂
))

(n, σ) TS OC OCopt NLS TS OC OCopt NLS OC OCopt NLS

(400, 0.2) 0.18 0.27 0.51 0.58 21.75 16.47 26.10 18.54 1.76 1.44 0.10

(400, 0.4) 0.78 1.21 1.32 0.94 45.03 31.98 42.82 36.25 2.56 1.80 0.38

(200, 0.2) 0.33 0.87 1.04 0.57 27.09 26.95 39.63 25.81 2.85 2.07 0.25

(200, 0.4) 1.12 2.69 2.62 1.12 53.99 43.17 54.04 45.10 5.64 2.98 0.98

(50, 0.2) 1.03 1.30 2.08 1.54 45.53 41.50 49.98 49.12 4.70 5.39 1.00

(50, 0.4) 3.80 4.43 5.06 3.94 77.08 73.69 73.30 70.96 8.89 8.76 4.08

Table 3: MSE , ARE & Tr
(
V
(
θ̂
))

for Parameter estimation for Ricatti Equation with known Tr

Figure 5: Coverage Probabilities for the 95% Con�dence Ellipse for Ricatti model with known Tr
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2.1.2 Unknown change-point time Tr

×10−2 MSE(â) MSE(ĉ) MSE(d̂′) MSE(T̂r)

(n, σ) OC OCopt OC OCopt OC OCopt OC OCopt

(400, 0.2) 0.09 0.07 0.00 0.00 2.54 2.35 1.39 1.15

(400, 0.4) 0.29 0.26 0.01 0.01 4.27 3.63 3.54 2.95

(200, 0.2) 0.21 0.21 0.00 0.00 4.08 4.44 3.18 3.21

(200, 0.4) 0.61 0.55 0.01 0.01 11.96 12.80 6.93 7.88

(50, 0.4) 0.64 0.48 0.02 0.02 11.20 14.06 14.25 15.92

(50, 0.4) 0.77 0.89 0.01 0.02 17.18 18.63 19.40 18.43

×10−2 MSE ARE Tr
(
V (θ̂)

)
(n, σ) OC OCopt OC OCopt OC OCopt

(400, 0.2) 4.01 3.57 30.90 27.67 3.97 3.53

(400, 0.4) 8.11 6.85 56.12 54.42 8.02 6.62

(200, 0.2) 7.47 7.87 44.56 45.11 7.35 7.77

(200, 0.4) 19.51 21.23 78.91 73.47 18.94 20.82

(50, 0.2) 26.10 30.48 84.33 81.99 5.14 8.61

(50, 0.4) 37.36 37.96 98.67 106.39 9.49 12.90

Table 4: MSE ARE & Sum Empirical Variance for Parameter estimation for Ricatti with unknown
Tr

Figure 6: Coverage Probabilities for the 95% Con�dence Ellipse for Ricatti model with unknown
Tr
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2.2 FitzHugh-Nagumo equation

The FitzHugh-Nagumo is a nonlinear two-dimensional ODE introduced for modeling neurons. For

well-chosen sets of parameters and initial conditions, it exhibits a periodic behavior, with typical

oscillations corresponding to a limit cycle.{
V̇ = c

(
V − V 3

3 +R
)

Ṙ = − 1
c (V − a+ bR)

(1)

The true parameters are a∗ = b∗ = 0.2 and c∗ = 3 and x0 = (V0, R0) = (−1, 1), and are taken from

Ramsay et al (2007) where it was introduced as a benchmark for parameter estimation in ODEs.

Due to the periodicity of the FitzHugh-Nagumo solution for this parameter set we use the sine basis

for the test function and we choose the best number of orthogonal condition between 5 or 6.

×10−2 MSE(â) MSE(̂b) MSE(ĉ)

(n, σ) TS OC OCopt NLS TS OC OCopt NLS TS OC OCopt NLS

(400, 0.15) 0.01 0.01 0.01 0.00 0.09 0.08 0.07 0.05 3.54 0.94 0.12 0.01

(400, 0.3) 0.04 0.04 0.03 0.01 0.36 0.31 0.26 0.17 23.29 4.70 0.49 0.04

(200, 0.15) 0.02 0.02 0.01 0.01 0.20 0.18 0.14 0.08 9.80 2.01 0.25 0.02

(200, 0.3) 0.06 0.08 0.05 0.01 0.72 0.68 0.62 0.33 49.58 9.97 0.97 0.07

(50, 0.15) 0.06 0.07 0.11 0.02 0.77 0.73 1.03 0.29 168.01 36.54 3.07 0.06

(50, 0.3) 0.25 0.28 0.32 0.06 1.96 2.14 3.13 1.10 173.38 58.76 4.47 0.25

×10−2 MSE ARE Tr
(
V (θ̂)

)
(n, σ) TS OC OCopt NLS TS OC OCopt NLS OC OCopt NLS

(400, 0.15) 3.64 1.04 0.20 0.07 21.60 18.12 15.02 11.20 1.09 0.17 0.02

(400, 0.3) 23.69 5.05 0.77 0.22 46.77 36.06 28.69 20.30 3.99 0.68 0.09

(200, 0.15) 10.02 2.21 0.40 0.11 32.73 26.12 20.98 14.64 1.95 0.3 0.05

(200, 0.3) 50.36 10.73 1.64 0.41 66.98 52.63 42.82 28.76 6.62 1.29 0.16

(50, 0.15) 168.84 37.35 4.20 0.37 80.47 58.13 56.39 26.75 4.16 0.77 0.18

(50, 0.3) 175.59 61.17 7.91 1.41 122.27 107.11 103.35 53.40 9.82 3.29 0.70

Table 5: MSE , ARE & Sum Asymptotic Variance for Parameter estimation for FitzHugh-Nagumo
model
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Figure 7: Ellipse set for parameter estimation for FitzHugh-Nagumo model

Results are presented in table 5 and Figure 7. We can see that NLS estimators is the best

among all. Among the non-parametric estimators, the optimal one is OC opt, both in term of MSE

and ARE. A parameter by parameter study shows us IRWOC algorithms dramatically improve the

accuracy of the estimation of c.
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3 Real data analysis

3.1 In�uenza virus growth and migration model

θ̂OC
3 θ̂OC

4 θ̂NLS θ̃ref

ρm 2.9e-5 2.7e-5 1.5e-5 1.6e− 5

ρs 4.1e-5 4.7e-5 4.1e-5 4.5e− 5

δl 2.0 3.4 3.7 3.96

γms 0.39 0.35 0.15 0.157

γsl 0.72 0.81 0.47 0.49

RMSE 13.5 13.9 9.0 9.5

θ̂OC
3 θ̂OC

4 θ̂NLS

Low. Bound Up. Bound Low. Bound Up. Bound Low. Bound Up. Bound

ρm 2.1e-5 3.7e-5 1.9e-5 3.4e-5 0.7e-0.5 2.4e-0.5

ρs 0.7e-5 7.4e-5 0.9e-5 8.4e-5 3.4e-0.5 4.8e-0.5

δl -1.11 5.21 -0.28 7.21 2.59 4.93

γms 0.27 0.50 0.24 0.46 0.03 0.26

γsl -0.10 1.55 -0.14 1.76 0.39 0.55

Table 6: Estimates, RMSE and the 95% con�dence intervals for di�erent L and estimators.

Figure 8: In�uenza: Estimated curves for X1 (red), X2 (green), X3 (blue); ×: observations, �:
solution for θ̂OC

1 , ◦: solution for θ̂OC
2 , solid line: solution with θ̂NLS .
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Figure 9: In�uenza: Estimated curves for X1 (red), X2 (green), X3 (blue); � solution obtained
with OC+NLS, ◦ solution obtained with θ̃ref .
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3.2 Blow�y models

L = 11 L = 9 L = 12

P 7.81 7.52 7.91

N0 381.8 385.9 377.7

δ 0.154 0.153 0.154

RSSE 1.7136e+03 1.7557e+03 1.7990e+03

L = 11 L = 9 L = 12

O.C Low. Bound Up. Bound Low. Bound Up. Bound Low. Bound Up. Bound

P 5.80 9.81 5.64 9.40 5.0416 10.77

N0 303.62 459.94 306.59 465.38 289.36 465.98

δ 0.10 0.20 0.11 0.19 0.10 0.20

Table 7: Estimates, RSSE and 95% con�dence intervals for di�erent L

13


